1
|
Faivre N, Verollet C, Dumas F. The chemokine receptor CCR5: multi-faceted hook for HIV-1. Retrovirology 2024; 21:2. [PMID: 38263120 PMCID: PMC10807162 DOI: 10.1186/s12977-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
Chemokines are cytokines whose primary role is cellular activation and stimulation of leukocyte migration. They perform their various functions by interacting with G protein-coupled cell surface receptors (GPCRs) and are involved in the regulation of many biological processes such as apoptosis, proliferation, angiogenesis, hematopoiesis or organogenesis. They contribute to the maintenance of the homeostasis of lymphocytes and coordinate the function of the immune system. However, chemokines and their receptors are sometimes hijacked by some pathogens to infect the host organism. For a given chemokine receptor, there is a wide structural, organizational and conformational diversity. In this review, we describe the evidence for structural variety reported for the chemokine receptor CCR5, how this variability can be exploited by HIV-1 to infect its target cells and what therapeutic solutions are currently being developed to overcome this problem.
Collapse
Affiliation(s)
- Natacha Faivre
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
2
|
Sheppard CM, Goldhill DH, Swann OC, Staller E, Penn R, Platt OK, Sukhova K, Baillon L, Frise R, Peacock TP, Fodor E, Barclay WS. An Influenza A virus can evolve to use human ANP32E through altering polymerase dimerization. Nat Commun 2023; 14:6135. [PMID: 37816726 PMCID: PMC10564888 DOI: 10.1038/s41467-023-41308-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/09/2023] [Indexed: 10/12/2023] Open
Abstract
Human ANP32A and ANP32B are essential but redundant host factors for influenza virus genome replication. While most influenza viruses cannot replicate in edited human cells lacking both ANP32A and ANP32B, some strains exhibit limited growth. Here, we experimentally evolve such an influenza A virus in these edited cells and unexpectedly, after 2 passages, we observe robust viral growth. We find two mutations in different subunits of the influenza polymerase that enable the mutant virus to use a novel host factor, ANP32E, an alternative family member, which is unable to support the wild type polymerase. Both mutations reside in the symmetric dimer interface between two polymerase complexes and reduce polymerase dimerization. These mutations have previously been identified as adapting influenza viruses to mice. Indeed, the evolved virus gains the ability to use suboptimal mouse ANP32 proteins and becomes more virulent in mice. We identify further mutations in the symmetric dimer interface which we predict allow influenza to adapt to use suboptimal ANP32 proteins through a similar mechanism. Overall, our results suggest a balance between asymmetric and symmetric dimers of influenza virus polymerase that is influenced by the interaction between polymerase and ANP32 host proteins.
Collapse
Affiliation(s)
- Carol M Sheppard
- Department of Infectious Disease, Imperial College London, London, UK.
| | - Daniel H Goldhill
- Department of Infectious Disease, Imperial College London, London, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Olivia C Swann
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ecco Staller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rebecca Penn
- Department of Infectious Disease, Imperial College London, London, UK
| | - Olivia K Platt
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Frise
- Department of Infectious Disease, Imperial College London, London, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
3
|
Zhao L, Lai Y. Monoclonal CCR5 Antibody: A Promising Therapy for HIV. Curr HIV Res 2023; 21:91-98. [PMID: 36927434 DOI: 10.2174/1570162x21666230316110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 03/18/2023]
Abstract
HIV is one of the world's most devastating viral infections and has claimed tens of millions of lives worldwide since it was first identified in the 1980s. There is no cure for HIV infection. However, with tremendous progress in HIV diagnosis, prevention, and treatment, HIV has become a manageable chronic health disease. CCR5 is an important coreceptor used by HIV to infect target cells, and genetic deficiency of the chemokine receptor CCR5 confers a significant degree of protection against HIV infection. In addition, since CCR5 deficiency does not appear to cause any adverse health effects, targeting this coreceptor is a promising strategy for the treatment and prevention of HIV. Monoclonal antibodies are frequently used as therapeutics for many diseases and therefore are being used as a potential therapy for HIV-1 infection. This review reports on CCR5 antibody research in detail and describes the role and advantages of CCR5 antibodies in HIV prevention or treatment, introduces several main CCR5 antibodies, and discusses the future strategy of antibody-conjugated nanoparticles including the potential challenges. CCR5 antibodies may be a novel therapy for treating HIV infection effectively and could overcome the limitations of the currently available options.
Collapse
Affiliation(s)
- Li Zhao
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Naming the Barriers between Anti-CCR5 Therapy, Breast Cancer and Its Microenvironment. Int J Mol Sci 2022; 23:ijms232214159. [PMID: 36430633 PMCID: PMC9694078 DOI: 10.3390/ijms232214159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Breast cancer represents the most common malignancy among women in the world. Although immuno-, chemo- and radiation therapy are widely recognized as the therapeutic trifecta, new strategies in the fight against breast cancer are continually explored. The local microenvironment around the tumor plays a great role in cancer progression and invasion, representing a promising therapeutic target. CCL5 is a potent chemokine with a physiological role of immune cell attraction and has gained particular attention in R&D for breast cancer treatment. Its receptor, CCR5, is a well-known co-factor for HIV entry through the cell membrane. Interestingly, biology research is unusually unified in describing CCL5 as a pro-oncogenic factor, especially in breast cancer. In silico, in vitro and in vivo studies blocking the CCL5/CCR5 axis show cancer cells become less invasive and less malignant, and the extracellular matrices produced are less oncogenic. At present, CCR5 blocking is a mainstay of HIV treatment, but despite its promising role in cancer treatment, CCR5 blocking in breast cancer remains unperformed. This review presents the role of the CCL5/CCR5 axis and its effector mechanisms, and names the most prominent hurdles for the clinical adoption of anti-CCR5 drugs in cancer.
Collapse
|
5
|
Trawiński J, Wroński M, Skibiński R. Efficient removal of anti-HIV drug - maraviroc from natural water by peroxymonosulfate and TiO 2 photocatalytic oxidation: Kinetic studies and identification of transformation products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115735. [PMID: 35863307 DOI: 10.1016/j.jenvman.2022.115735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
In this study photochemical transformation of the antiretroviral pharmaceutical maraviroc under the simulated UV-Vis radiation was presented. The drug was shown to be extremely photo-resistant, with a half-life over 250 h, which is particularly significant, considering its presence in the aquatic environments. Addition of the natural river water matrix substantially increased the degradation rate, albeit the process led to formation of numerous phototransformation products. Due to high photostability and presumable environmental persistence of maraviroc, a photocatalytic method of its elimination was proposed. Although titanium dioxide alone presented acceptable results, its combination with peroxymonosulfate enormously accelerated the degradation process, increasing it over 67 000 times in comparison with the direct photolysis. Substitution of ultrapure water with river water resulted in inhibition of the PMS-driven processes, however the decomposition efficiency was still very high. Noteworthy, majority of the identified photoproducts were still present after termination of irradiation in all the experiments, which may indicate necessity of ecotoxicological assessment of those compounds.
Collapse
Affiliation(s)
- Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Michał Wroński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland.
| |
Collapse
|
6
|
Enhancement of CD4 Binding, Host Cell Entry, and Sensitivity to CD4bs Antibody Inhibition Conferred by a Natural but Rare Polymorphism in the HIV-1 Envelope. J Virol 2022; 96:e0185121. [PMID: 35862673 PMCID: PMC9327689 DOI: 10.1128/jvi.01851-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A rare but natural polymorphism in the HIV-1 envelope (Env) glycoprotein, lysine at position 425 was selected as a mutation conferring resistance to maraviroc (MVC) in vitro. N425K has not been identified in HIV-infected individuals failing an MVC-based treatment. This study reports that the rare K425 polymorphism in an HIV-1 subtype A Env has increased affinity for CD4, resulting in faster host cell entry kinetics and the ability to scavenge for low cell surface expression of CD4 to mediate entry. Whereas the subtype A wild-type isolate-74 Env (N425) is inhibited by soluble (s) CD4, HIV-1 with K425 A74 Env shows enhanced infection and the ability to infect CCR5+ cells when pretreated with sCD4. Upon adding K425 or N425 HIV-1 to CD4+/CCR5+ cells along with RANTES/CCL3, only K425 HIV-1 was able to infect cells when CCR5 recycled/returned to the cell surface at 12 h post-treatment. These findings suggest that upon binding to CD4, K425 Env may maintain a stable State 2 "open" conformation capable of engaging CCR5 for entry. Only K425 was significantly more sensitivity than wild-type N425 A74 to inhibition by the CD4 binding site (bs) compound, BMS-806, the CD4bs antibody, VRC01 and N6, and the single-chain CD4i antibody, SCm9. K425 A74 was also capable of activating B cells expressing the VRC01 surface immunoglobulin. In summary, despite increased replicative fitness, we propose that K425 HIV-1 may be counterselected within infected individuals if K425 HIV-1 is rapidly eliminated by CD4bs-neutralizing antibodies. IMPORTANCE Typically, a natural amino acid polymorphism is found as the wild-type sequence in the HIV-1 population if it provides a selective advantage to the virus. The natural K425 polymorphism in HIV-1 Env results in higher host cell entry efficiency and greater replicative fitness by virtue of its high binding affinity to CD4. The studies presented herein suggest that the rare K425 HIV-1, compared to the common N425 HIV-1, may be more sensitive to inhibition by CD4bs-neutralizing antibodies (i.e., antibodies that bind to the CD4 binding pocket on the HIV-1 envelope glycoprotein). If CD4bs antibodies did emerge in an infected individual, the K425 HIV-1 may be hypersensitive to inhibition, and thus this K425 virus variant may be removed from the HIV-1 swarm despite its higher replication fitness. Studies are now underway to determine whether addition of the K425 polymorphism into the Envelope-based HIV-1 vaccines could enhance protective immunity.
Collapse
|
7
|
Herrera C, Cottrell ML, Prybylski J, Kashuba ADM, Veazey RS, García-Pérez J, Olejniczak N, McCoy CF, Ziprin P, Richardson-Harman N, Alcami J, Malcolm KR, Shattock RJ. The ex vivo pharmacology of HIV-1 antiretrovirals differs between macaques and humans. iScience 2022; 25:104409. [PMID: 35663021 PMCID: PMC9157191 DOI: 10.1016/j.isci.2022.104409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 05/11/2022] [Indexed: 01/08/2023] Open
Abstract
Non-human primates (NHP) are widely used for the pre-clinical assessment of antiretrovirals (ARVs) for HIV treatment and prevention. However, the utility of these models is questionable given the differences in ARV pharmacology between humans and macaques. Here, we report a model based on ex vivo ARV exposure and the challenge of mucosal tissue explants to define pharmacological differences between NHPs and humans. For colorectal and cervicovaginal explants in both species, high concentrations of tenofovir (TFV) and maraviroc were predictive of anti-viral efficacy. However, their combinations resulted in increased inhibitory potency in NHP when compared to human explants. In NHPs, higher TFV concentrations were measured in colorectal versus cervicovaginal explants (p = 0.042). In humans, this relationship was inverted with lower levels in colorectal tissue (p = 0.027). TFV-resistance caused greater loss of viral fitness for HIV-1 than SIV. This, tissue explants provide an important bridge to refine and appropriately interpret NHP studies. Tenofovir-maraviroc combinations show greater potency in NHP than in human tissue Opposite drug distribution in mucosal tissues was observed between both species Greater loss of viral replication fitness with RT mutations for SIV than for HIV-1 Ex vivo tissue models are a bridge between NHP studies and human clinical trials
Collapse
Affiliation(s)
- Carolina Herrera
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, UK
| | - Mackenzie L Cottrell
- University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, NC, USA
| | - John Prybylski
- University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, NC, USA
| | - Angela D M Kashuba
- University of North Carolina at Chapel Hill, UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, NC, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Javier García-Pérez
- AIDS Immunopathology Unit. National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Olejniczak
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, UK
| | - Clare F McCoy
- School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, UK
| | - Paul Ziprin
- Department of Surgery and Cancer, St Mary's Hospital, Imperial College London, UK
| | | | - José Alcami
- AIDS Immunopathology Unit. National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,HIV Unit, Hospital Clinic-IDIBAPS, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Karl R Malcolm
- School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, UK
| | - Robin J Shattock
- Section of Virology, Faculty of Medicine, St. Mary's Campus, Imperial College London, UK
| |
Collapse
|
8
|
Chang XL, Reed JS, Webb GM, Wu HL, Le J, Bateman KB, Greene JM, Pessoa C, Waytashek C, Weber WC, Hwang J, Fischer M, Moats C, Shiel O, Bochart RM, Crank H, Siess D, Giobbi T, Torgerson J, Agnor R, Gao L, Dhody K, Lalezari JP, Bandar IS, Carnate AM, Pang AS, Corley MJ, Kelly S, Pourhassan N, Smedley J, Bimber BN, Hansen SG, Ndhlovu LC, Sacha JB. Suppression of human and simian immunodeficiency virus replication with the CCR5-specific antibody Leronlimab in two species. PLoS Pathog 2022; 18:e1010396. [PMID: 35358290 PMCID: PMC8970399 DOI: 10.1371/journal.ppat.1010396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
The CCR5-specific antibody Leronlimab is being investigated as a novel immunotherapy that can suppress HIV replication with minimal side effects. Here we studied the virological and immunological consequences of Leronlimab in chronically CCR5-tropic HIV-1 infected humans (n = 5) on suppressive antiretroviral therapy (ART) and in ART-naïve acutely CCR5-tropic SHIV infected rhesus macaques (n = 4). All five human participants transitioned from daily combination ART to self-administered weekly subcutaneous (SC) injections of 350 mg or 700 mg Leronlimab and to date all participants have sustained virologic suppression for over seven years. In all participants, Leronlimab fully occupied CCR5 receptors on peripheral blood CD4+ T cells and monocytes. In ART-naïve rhesus macaques acutely infected with CCR5-tropic SHIV, weekly SC injections of 50 mg/kg Leronlimab fully suppressed plasma viremia in half of the macaques. CCR5 receptor occupancy by Leronlimab occurred concomitant with rebound of CD4+ CCR5+ T-cells in peripheral blood, and full CCR5 receptor occupancy was found in multiple anatomical compartments. Our results demonstrate that weekly, self-administered Leronlimab was safe, well-tolerated, and efficacious for long-term virologic suppression and should be included in the arsenal of safe, easily administered, longer-acting antiretroviral treatments for people living with HIV-1. Trial Registration: ClinicalTrials.gov Identifiers: NCT02175680 and NCT02355184.
Collapse
Affiliation(s)
- Xiao L. Chang
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jason S. Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gabriela M. Webb
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Helen L. Wu
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jimmy Le
- Quest Clinical Research, San Francisco, California, United States of America
| | - Katherine B. Bateman
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Justin M. Greene
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Cleiton Pessoa
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Courtney Waytashek
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Whitney C. Weber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Joseph Hwang
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Miranda Fischer
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Cassandra Moats
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Oriene Shiel
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rachele M. Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hugh Crank
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Don Siess
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Travis Giobbi
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey Torgerson
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rebecca Agnor
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lina Gao
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kush Dhody
- Amarex Clinical Research LLC, Germantown, Maryland, United States of America
| | - Jacob P. Lalezari
- Quest Clinical Research, San Francisco, California, United States of America
| | - Ivo Sah Bandar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Alnor M. Carnate
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Alina S. Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Scott Kelly
- CytoDyn Inc., Vancouver, Washington, United States of America
| | | | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Benjamin N. Bimber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
9
|
Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022; 65:3729-3757. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge. Herein, we summarize state-of-the-art medicinal chemistry strategies for the discovery of potent NNRTIs, such as structure-based design strategies, contemporary computer-aided drug design, covalent-binding strategies, and the application of multi-target-directed ligands. The strategies described here will facilitate the identification of promising HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Wenbo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
10
|
Hachiya A, Kubota M, Shigemi U, Ode H, Yokomaku Y, Kirby KA, Sarafianos SG, Iwatani Y. Specific mutations in the HIV-1 G-tract of the 3'-polypurine tract cause resistance to integrase strand transfer inhibitors. J Antimicrob Chemother 2021; 77:574-577. [PMID: 34894227 PMCID: PMC8865006 DOI: 10.1093/jac/dkab448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In vitro selection experiments identified viruses resistant to integrase strand transfer inhibitors (INSTIs) carrying mutations in the G-tract (six guanosines) of the 3'-polypurine tract (3'-PPT). A clinical study also reported that mutations in the 3'-PPT were observed in a patient receiving dolutegravir monotherapy. However, recombinant viruses with the 3'-PPT mutations that were found in the clinical study were recently shown to be susceptible to INSTIs. OBJECTIVES To identify the specific mutation(s) in the G-tract of the 3'-PPT for acquiring INSTI resistance, we constructed infectious clones bearing single or multiple mutations and systematically characterized the susceptibility of these clones to both first- and second-generation INSTIs. METHODS The infectious clones were tested for their infectivity and susceptibility to INSTIs in a single-cycle assay using TZM-bl cells. RESULTS A single mutation of thymidine (T) at the fifth position (GGG GTG) in the G-tract of the 3'-PPT had no effect on INSTI resistance. A double mutation, cytidine (C) or 'T' at the second position and 'T' at the fifth position (GCG GTG and GTG GTG), increased resistance to INSTIs, with the appearance of a plateau in the maximal percentage inhibition (MPI) of the dose-response curves, consistent with a non-competitive mechanism of inhibition. CONCLUSIONS Mutations at the second and fifth positions in the G-tract of the 3'-PPT may result in complex resistance mechanism(s), rather than simply affecting INSTI binding at the IN active site.
Collapse
Affiliation(s)
- Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan,Corresponding author. Present address: Tokyo Medical University, Department of Laboratory Medicine, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan and Nitobe Bunka College, Department of Infectious Diseases and Immunology, 3-43-16, Nakano, Nakano-ku, Tokyo 164-0001, Japan. E-mail:
| | - Mai Kubota
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Urara Shigemi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan,Department of AIDS Research, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
11
|
Lewis ME, Simpson P, Mori J, Jubb B, Sullivan J, McFadyen L, van der Ryst E, Craig C, Robertson DL, Westby M. V3-Loop genotypes do not predict maraviroc susceptibility of CCR5-tropic virus or clinical response through week 48 in HIV-1-infected, treatment-experienced persons receiving optimized background regimens. Antivir Chem Chemother 2021; 29:20402066211030380. [PMID: 34343443 PMCID: PMC8369958 DOI: 10.1177/20402066211030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Viruses from 15 of 35 maraviroc-treated participants with virologic failure and CCR5-tropic (R5) virus in the MOTIVATE studies at Week 24 had reduced maraviroc susceptibility. On-treatment amino acid changes were observed in the viral envelope glycoprotein 120 third variable (V3)-loop stems and tips and differed between viruses. No amino acid change reliably predicted reduced susceptibility, indicating that resistance was genetic context-dependent. Through Week 24, poor adherence was associated with maraviroc-susceptible virologic failure, whereas reduced maraviroc susceptibility was associated with suboptimal background regimen activity, highlighting the importance of overall regimen activity and good adherence. Predictive values of pretreatment V3-loop sequences containing these Week 24 mutations or other variants present at >3% in pretreatment viruses of participants with virologic failure at Week 48 were retrospectively assessed. Week 48 clinical outcomes were evaluated for correlates with pretreatment V3-loop CCR5-tropic sequences from 704 participants (366 responders; 338 virologic failures [83 with R5 virus with maraviroc susceptibility assessment]). Seventy-five amino acid variants with >3% prevalence were identified among 23 V3-loop residues. Previously identified variants associated with resistance in individual isolates were represented, but none were associated reliably with virologic failure alone or in combination. Univariate analysis showed virologic-failure associations with variants 4L, 11R, and 19S (P < 0.05). However, 11R is a marker for CXCR4 tropism, whereas neither 4L nor 19S was reliably associated with reduced maraviroc susceptibility in R5 failure. These findings from a large study of V3-loop sequences confirm lack of correlation between V3-loop genotype and clinical outcome in participants treated with maraviroc.Clinical trial registration numbers (ClinicalTrials.gov): NCT00098306 and NCT00098722.
Collapse
Affiliation(s)
- M E Lewis
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,The Research Network Ltd, Sandwich, Kent, UK
| | - P Simpson
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,AstraZeneca, Cambridge, UK
| | - J Mori
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,hVIVO, Queen Mary BioEnterprise Innovation Centre, London, UK
| | - B Jubb
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK
| | - J Sullivan
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,Cytel, London, UK
| | - L McFadyen
- Pfizer Inc, Pharmacometrics, Sandwich, UK
| | - E van der Ryst
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,The Research Network Ltd, Sandwich, Kent, UK
| | - C Craig
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,The Research Network Ltd, Sandwich, Kent, UK
| | - D L Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - M Westby
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, UK.,Centauri Therapeutics Limited, Discovery Park, Kent, UK
| |
Collapse
|
12
|
Aquaro S, Borrajo A, Pellegrino M, Svicher V. Mechanisms underlying of antiretroviral drugs in different cellular reservoirs with a focus on macrophages. Virulence 2021; 11:400-413. [PMID: 32375558 PMCID: PMC7219522 DOI: 10.1080/21505594.2020.1760443] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ongoing with current combinations of antiretroviral drugs for the treatment of Human Immunodeficiency Virus (HIV) infection can successfully maintain long-term suppression of HIV-1 replication in plasma. Still, none of these therapies is capable of extinguishing the virus from the long-lived cellular reservoir, including monocyte-derived macrophages (MDM), that means the principal obstacle to HIV cure. MDM are widely distributed in all tissues and organs, including central system nervous (CNS) where they represent the most frequent HIV-infected cells that means the principal obstacle to HIV cure. Current FDA-approved antiretroviral drugs target viral reverse transcriptase, protease, integrase, and entry processes (coreceptor or fusion blockade). It is desirable to continue to develop new antiretrovirals directed against alternative targets in the virus lifecycle in order to further optimize therapeutic options, overcome resistance to existing medications, and potentially contribute to the elimination of viral reservoirs.This review provides a comprehensive overview of the activity of antiretroviral drugs (classical and upcoming) in monocytes-derived macrophages (MDM). Defining the antiviral activity of these drugs in this important cellular HIV-1 reservoir provides crucial hints about their efficacy in HIV-1 infected patients.
Collapse
Affiliation(s)
- Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ana Borrajo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy.,Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Italy
| |
Collapse
|
13
|
Lewis ME, Jubb B, Simpson P, Lopatukhin A, Kireev D, Bobkova M, Craig C, van der Ryst E, Westby M, Butler SL. Highly prevalent Russian HIV-1 V3-loop sequence variants are susceptible to maraviroc. Antivir Chem Chemother 2021; 29:20402066211025156. [PMID: 34160290 PMCID: PMC8236768 DOI: 10.1177/20402066211025156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/26/2021] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Maraviroc inhibits CCR5-tropic HIV-1 across different subtypes in vitro and has demonstrated efficacy in clinical trials. V3-loop amino acid variants observed in individual maraviroc-resistant viruses have not been found to be predictive of reduced susceptibility. Sequence-database searches have demonstrated that approximately 7.3% of viruses naturally encode these variants, raising concerns regarding potential pre-existing resistance. A study from Russia reported that combinations of these same amino acids are present in the V3 loops of the Russian variant subtype A (IDU-A, now A6) with a much greater prevalence (range: 74.4%-92.3%) depending on the combination. However, these studies and database searches did not include phenotypic evaluation. METHODS Sixteen Russian HIV-1 isolates (including sub-subtype A6 viruses) were assessed for V3 loop sequence and phenotypic susceptibility to maraviroc. RESULTS All 12 of the A6 viruses and 2/4 subtype B isolates encoded V3-loop variants that have previously been identified in individual virus isolates with reduced susceptibility to maraviroc. However, despite the prevalence of these V3-loop amino acid variants among the tested viruses, phenotypic sensitivity to maraviroc was observed in all instances. Similarly, reduced susceptibility to maraviroc was not found in virus from participants who experienced virologic failure in a clinical study of maraviroc in Russia (A4001101, [NCT01275625]). DISCUSSION Altogether, these data confirm that the presence of individual or combinations of V3-loop amino acid residues in sub-subtype A6 viruses alone does not predict natural resistance to maraviroc and that V3-loop genotype analysis of R5 virus prior to treatment is not helpful in predicting clinical outcome.
Collapse
Affiliation(s)
- ME Lewis
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
- The Research Network Ltd, Sandwich, UK
| | - B Jubb
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
| | - P Simpson
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
| | - A Lopatukhin
- HIV Research Group, Central Research Institute of Epidemiology, Moscow, Russia
| | - D Kireev
- HIV Research Group, Central Research Institute of Epidemiology, Moscow, Russia
| | - M Bobkova
- Laboratory of Virus Leucosis, Ivanovsky Institute of Virology, Moscow, Russia
| | - C Craig
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
- The Research Network Ltd, Sandwich, UK
| | - E van der Ryst
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
- The Research Network Ltd, Sandwich, UK
| | - M Westby
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
| | - SL Butler
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, UK
| |
Collapse
|
14
|
Kelentse N, Moyo S, Mogwele ML, Ditshwanelo D, Mokaleng B, Moraka NO, Lechiile K, Leeme TB, Lawrence DS, Musonda R, Kasvosve I, Harrison TS, Jarvis JN, Gaseitsiwe S. HIV-1C env and gag Variation in the Cerebrospinal Fluid and Plasma of Patients with HIV-Associated Cryptococcal Meningitis in Botswana. Viruses 2020; 12:E1404. [PMID: 33297399 PMCID: PMC7762280 DOI: 10.3390/v12121404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022] Open
Abstract
HIV-1 compartmentalization in reservoir sites remains a barrier to complete HIV eradication. It is unclear whether there is variation in HIV-1 env and gag between cerebrospinal fluid (CSF) and plasma of individuals with HIV-associated cryptococcal meningitis (CM). We compared HIV-1 env characteristics and the gag cytotoxic T-lymphocyte (CTL) escape mutations from CSF and plasma samples. Employing population-based Sanger sequencing, we sequenced HIV-1 env from CSF of 25 patients and plasma of 26 patients. For gag, 15 CSF and 21 plasma samples were successfully sequenced. Of these, 18 and 9 were paired env and gag CSF/plasma samples, respectively. There was no statistically significant difference in the proportion of CCR5-using strains in the CSF and plasma, (p = 0.50). Discordant CSF/plasma virus co-receptor use was found in 2/18 pairs (11.1%). The polymorphisms in the HIV-1 V3 loop were concordant between the two compartments. From the HIV-1 gag sequences, three pairs had discordant CTL escape mutations in three different epitopes of the nine analyzed. These findings suggest little variation in the HIV-1 env between plasma and CSF and that the CCR5-using strains predominate in both compartments. HIV-1 gag CTL escape mutations also displayed little variation in CSF and plasma suggesting similar CTL selective pressure.
Collapse
MESH Headings
- AIDS-Related Opportunistic Infections/blood
- AIDS-Related Opportunistic Infections/cerebrospinal fluid
- AIDS-Related Opportunistic Infections/diagnosis
- AIDS-Related Opportunistic Infections/metabolism
- Adult
- Amino Acid Sequence
- Amino Acid Substitution
- Botswana
- CD4 Lymphocyte Count
- Cross-Sectional Studies
- Disease Susceptibility
- Female
- HIV Infections/complications
- HIV Infections/virology
- Humans
- Immunocompromised Host
- Male
- Meningitis, Cryptococcal/blood
- Meningitis, Cryptococcal/cerebrospinal fluid
- Meningitis, Cryptococcal/etiology
- Meningitis, Cryptococcal/metabolism
- Middle Aged
- Mutation
- RNA, Viral
- Viral Load
- env Gene Products, Human Immunodeficiency Virus/blood
- env Gene Products, Human Immunodeficiency Virus/cerebrospinal fluid
- env Gene Products, Human Immunodeficiency Virus/metabolism
- gag Gene Products, Human Immunodeficiency Virus/blood
- gag Gene Products, Human Immunodeficiency Virus/cerebrospinal fluid
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Nametso Kelentse
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mompati L. Mogwele
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Doreen Ditshwanelo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
| | - Baitshepi Mokaleng
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Natasha O. Moraka
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Pathology, Stellenbosch University, Stellenbosch 7505, South Africa
| | - Kwana Lechiile
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Tshepo B. Leeme
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - David S. Lawrence
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Rosemary Musonda
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana;
| | - Thomas S. Harrison
- Centre for Global Health, Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK;
| | - Joseph N. Jarvis
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana; (N.K.); (S.M.); (M.L.M.); (D.D.); (B.M.); (N.O.M.); (K.L.); (T.B.L.); (D.S.L.); (R.M.); (J.N.J.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
15
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
16
|
Jubb B, Lewis M, McFadyen L, Simpson P, Mori J, Chan P, Weatherley B, van der Ryst E, Westby M, Craig C. Incidence of CXCR4 tropism and CCR5-tropic resistance in treatment-experienced participants receiving maraviroc in the 48-week MOTIVATE 1 and 2 trials. Antivir Chem Chemother 2019; 27:2040206619895706. [PMID: 31856576 PMCID: PMC6931239 DOI: 10.1177/2040206619895706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Maraviroc blocks HIV-1 entry into CD4+ cells by interrupting the interaction
between viral gp120 and cell-surface CCR5. Resistance to CCR5
antagonist–mediated inhibition can develop by unmasking pre-existing CXCR4-using
virus or through selection of CCR5-tropic resistant virus, characterized by
plateaus in maximum percent inhibition <95%. Here, we examine viral escape in
maraviroc-treated participants during virologic failure through Week 48 in the
MOTIVATE 1 and 2 trials. Resistance was assessed relative to number of active
drugs in participants’ optimized background therapy, pharmacokinetic adherence
markers, Baseline demographic data, HIV-1 RNA and CD4+ counts. For participants
with R5 virus confirmed (post hoc) at Screening, Baseline
genotypic weighted optimized background therapy susceptibility scores (gwOBTSS)
were assigned where possible. Through Week 48, 219/392 (56%) participants with
an assigned gwOBTSS achieved a virologic response. Of those remaining, 48/392
(12%) had CXCR4-using virus; 58/392 (15%) had R5 virus (maraviroc sensitive:
n = 35/392, 9%; maraviroc resistant:
n = 18/392, 5%; undeterminable: n = 5/392, 1%)
and 67/392 (17%) had no failure tropism result. When optimized background
therapy provided limited support to maraviroc (gwOBTSS <2), 143/286 (50%)
responded to therapy, while 76/106 (72%) participants with gwOBTSS ≥2 responded
(p < 0.001). Resistance rates were highest for
participants with gwOBTSS <2, accounting for 45/48 (94%) of total CXCR4-using
emergence and 18/18 (100%) of total CCR5-tropic resistance. R5 viruses from
participants with gwOBTSS ≥2 (n = 10) were exclusively
maraviroc sensitive; five of these participants had pharmacokinetic and/or
pill-count markers of non-adherence. When co-administered with a fully active
background regimen, maraviroc did not readily generate resistance in the
clinical setting.
Collapse
Affiliation(s)
- Becky Jubb
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA
| | - Marilyn Lewis
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA.,The Research Network, Sandwich, UK
| | | | - Paul Simpson
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA
| | - Julie Mori
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA
| | | | | | - Elna van der Ryst
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA.,The Research Network, Sandwich, UK
| | - Mike Westby
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA
| | - Charles Craig
- Pfizer Inc, Clinical Group, Rare Disease, Groton, CT, USA.,The Research Network, Sandwich, UK
| |
Collapse
|
17
|
Johnson VA, Cramer YS, Rosenkranz SL, Becker S, Klingman KL, Kallungal B, Coakley E, Acosta EP, Calandra G, Saag MS, Bedimo R, Owens S, Ferguson E, Kessels L, Shugarts D, Parrillo V, Upton K, White V, Goldman M, Zwickl W, del Rio C, Turkia A, Zadzilk A, Darren Hazelwood J, Lu D. Antiretroviral Activity of AMD11070 (An Orally Administered CXCR4 Entry Inhibitor): Results of NIH/NIAID AIDS Clinical Trials Group Protocol A5210. AIDS Res Hum Retroviruses 2019; 35:691-697. [PMID: 31099252 DOI: 10.1089/aid.2018.0256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AMD11070 binds to the chemokine receptor CXCR4, with anti-HIV-1 activity in vitro and in vivo. We conducted a phase IB/IIA proof-of-concept dose-escalating, open-label study to determine safety and antiviral activity of AMD11070 administered over 10 days to HIV-1-infected participants who harbored CXCR4-tropic virus. Primary endpoints were ≥1 log10 rlu (relative luminescence units) reduction in CXCR4-tropic virus during 10 days of AMD11070 treatment or in the 7 days following treatment discontinuation, rlu changes over 10 days of treatment, and safety. Plasma pharmacokinetic parameters, HIV-1 RNA, and safety labs were obtained over 90 days of study. The study was stopped early due to emerging AMD11070 animal toxicity data. Six HIV-infected participants with plasma HIV-1 RNA ≥5,000 copies/mL on no antiretroviral therapy for 14 days before entry were treated. AMD11070 was well-tolerated when administered at 200 mg orally every 12 h for 10 days. All enrolled participants had dual/mixed (D/M) viruses. Reductions of almost 1 log10 rlu or more in CXCR4 virus were seen in three of six participants after 10 days of treatment. No participants had ≥1 log10 decline in plasma HIV-1 RNA from baseline at day 10. No clear relationship between pharmacokinetic parameters and response to therapy (X4 log rlu reduction) was observed. AMD11070 demonstrated in vivo activity as measured by reductions in CXCR4 rlu signal. Despite the finding of discordant rlu and plasma HIV RNA responses in these participants with D/M viruses, exploration of other HIV-1 CXCR4 antagonist therapies is possible.
Collapse
Affiliation(s)
- Victoria A. Johnson
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Yoninah S. Cramer
- Statistical and Data Management Center, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Susan L. Rosenkranz
- Statistical and Data Management Center, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | | | | | | | - Eoin Coakley
- Monogram Biosciences, Inc., South San Francisco, California
| | - Edward P. Acosta
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Michael S. Saag
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu E, Du Y, Gao X, Zhang J, Martin J, Mitreva M, Ratner L. V1 and V2 Domains of HIV Envelope Contribute to CCR5 Antagonist Resistance. J Virol 2019; 93:e00050-19. [PMID: 30787151 PMCID: PMC6475789 DOI: 10.1128/jvi.00050-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023] Open
Abstract
Vicriviroc (VCV) is a CCR5 antagonist that blocks the viral entry of CCR5-tropic (R5) virions by binding to and inducing a conformational change in the chemokine receptor. Clinical resistance to CCR5 antagonists occurs in two phases, competitive and noncompetitive stages. In this study, we analyzed two subjects, from a phase 2b VCV clinical trial, whose quasispecies contained R5 and dual-mixed virions at the earliest recorded time of virological failure (VF). Genotypic analysis of R5-tropic patient-derived envelope genes revealed significant changes in the V1/V2 coding domain and convergence toward a more homogenous sequence under VCV therapy. Additionally, a small population of baseline clones sharing similar V1/V2 and V3 domains with the predominant VF isolate was observed. These clones were denoted preresistant based on their genotype. Preresistant clones and chimeric clones containing V1/V2 regions isolated during VF displayed high 50% inhibitory concentration (IC50) values relative to those at baseline, consistent with early competitive resistance. Genotypic analysis of the dual-tropic clones also showed significant changes in the V1/V2 region, different from the resistant R5-tropic viruses. Our findings suggest that the V1/V2 domain plays a key role in the initial step of development of drug resistance.IMPORTANCE It is believed that each CCR5 antagonist-resistant isolate will develop its own unique set of mutations, making it difficult to identify a signature mutation that can effectively predict CCR5 antagonist resistance. This may explain why we do not observe shared mutations among clinical studies. The present study examined the earliest events in the development of drug resistance with viral quasispecies that continued the use of CCR5 for entry. Genotypic and phenotypic assays demonstrated a distinct role of the variable domain V1/V2 in competitive resistance to CCR5 antagonist therapy. Thus, future studies analyzing the development of clinical resistance should focus on the relationship between the V1/V2 and V3 domains.
Collapse
Affiliation(s)
- Ellen Wu
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yueqi Du
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiang Gao
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jie Zhang
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John Martin
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lee Ratner
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Activity and structural analysis of GRL-117C: a novel small molecule CCR5 inhibitor active against R5-tropic HIV-1s. Sci Rep 2019; 9:4828. [PMID: 30886166 PMCID: PMC6423129 DOI: 10.1038/s41598-019-41080-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
CCR5 is a member of the G-protein coupled receptor family that serves as an essential co-receptor for cellular entry of R5-tropic HIV-1, and is a validated target for therapeutics against HIV-1 infections. In the present study, we designed and synthesized a series of novel small CCR5 inhibitors and evaluated their antiviral activity. GRL-117C inhibited the replication of wild-type R5-HIV-1 with a sub-nanomolar IC50 value. These derivatives retained activity against vicriviroc-resistant HIV-1s, but did not show activity against maraviroc (MVC)-resistant HIV-1. Structural modeling indicated that the binding of compounds to CCR5 occurs in the hydrophobic cavity of CCR5 under the second extracellular loop, and amino acids critical for their binding were almost similar with those of MVC, which explains viral cross-resistance with MVC. On the other hand, one derivative, GRL-10018C, less potent against HIV-1, but more potent in inhibiting CC-chemokine binding, occupied the upper region of the binding cavity with its bis-THF moiety, presumably causing greater steric hindrance with CC-chemokines. Recent studies have shown additional unique features of certain CCR5 inhibitors such as immunomodulating properties and HIV-1 latency reversal properties, and thus, continuous efforts in developing new CCR5 inhibitors with unique binding profiles is necessary.
Collapse
|
20
|
Latinovic OS, Reitz M, Heredia A. CCR5 Inhibitors and HIV-1 Infection. JOURNAL OF AIDS AND HIV TREATMENT 2019; 1:1-5. [PMID: 31414081 PMCID: PMC6693856 DOI: 10.33696/aids.1.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Olga S. Latinovic
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marvin Reitz
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- School of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Lewis M, Mori J, Toma J, Mosley M, Huang W, Simpson P, Mansfield R, Craig C, van der Ryst E, Robertson DL, Whitcomb JM, Westby M. Clonal analysis of HIV-1 genotype and function associated with virologic failure in treatment-experienced persons receiving maraviroc: Results from the MOTIVATE phase 3 randomized, placebo-controlled trials. PLoS One 2018; 13:e0204099. [PMID: 30586365 PMCID: PMC6306210 DOI: 10.1371/journal.pone.0204099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/17/2018] [Indexed: 11/29/2022] Open
Abstract
Detailed clonal phenotypic/genotypic analyses explored viral-escape mechanisms during maraviroc-based therapy in highly treatment-experienced participants from the MOTIVATE trials. To allow real-time assessment of samples while maintaining a blind trial, the first 267 enrolled participants were selected for evaluation. At failure, plasma samples from 20/50 participants (16/20 maraviroc-treated) with CXCR4-using virus and all 38 (13 maraviroc-treated) with CCR5-tropic virus were evaluated. Of those maraviroc-treated participants with CXCR4-using virus at failure, genotypic and phenotypic clonal tropism determinations showed >90% correspondence in 14/16 at Day 1 and 14/16 at failure. Phylogenetic analysis of clonal sequences detected pre-treatment progenitor CXCR4-using virus, or on-treatment virus highly divergent from the Day 1 R5 virus, excluding possible co-receptor switch through maraviroc-mediated evolution. Re-analysis of pre-treatment samples using the enhanced-sensitivity Trofile® assay detected CXCR4-using virus pre-treatment in 16/20 participants failing with CXCR4-using virus. Post-maraviroc reversion of CXCR4-use to CCR5-tropic occurred in 7/8 participants with follow-up, suggesting selective maraviroc inhibition of CCR5-tropic variants in a mixed-tropic viral population, not emergence of de novo mutations in CCR5-tropic virus, as the main virologic escape mechanism. Maraviroc-resistant CCR5-tropic virus was observed in plasma from 5 treated participants with virus displaying reduced maximal percent inhibition (MPI) but no evidence of IC50 change. Env clones with reduced MPI showed 1-5 amino acid changes specific to each V3-loop region of env relative to Day 1. However, transferring on-treatment resistance-associated changes using site-directed mutagenesis did not always establish resistance in Day 1 virus, and key 'signature' mutation patterns associated with reduced susceptibility to maraviroc were not identified. Evolutionary divergence of the CXCR4-using viruses is confirmed, emphasizing natural selection not influenced directly by maraviroc; maraviroc simply unmasks pre-existing lineages by inhibiting the R5 virus. For R5-viral failure, resistance development through drug selection pressure was uncommon and manifested through reduced MPI and with virus strain-specific mutational patterns.
Collapse
Affiliation(s)
- Marilyn Lewis
- The Research Network, Sandwich, Kent, United Kingdom
| | - Julie Mori
- hVIVO, Queen Mary BioEnterprise Innovation Centre, London, United Kingdom
| | - Jonathan Toma
- Monogram Biosciences, South San Francisco, California, United States of America
| | - Mike Mosley
- University of Oxford, Oxford, United Kingdom
| | - Wei Huang
- Monogram Biosciences, South San Francisco, California, United States of America
| | | | - Roy Mansfield
- Pfizer Global Research and Development, Sandwich Labs, Sandwich, Kent, United Kingdom
| | - Charles Craig
- The Research Network, Sandwich, Kent, United Kingdom
| | | | - David L. Robertson
- Evolution and Genomic Sciences, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Mike Westby
- Centauri Therapeutics Limited, Discovery Park, Kent, United Kingdom
| |
Collapse
|
22
|
Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature 2018; 565:318-323. [PMID: 30542158 PMCID: PMC6391877 DOI: 10.1038/s41586-018-0804-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/02/2018] [Indexed: 01/26/2023]
Abstract
HIV-1 envelope glycoprotein (Env), which consists of trimeric (gp160)3 cleaved to (gp120 and gp41)3, interacts with the primary receptor CD4 and a coreceptor (such as chemokine receptor CCR5) to fuse viral and target-cell membranes. The gp120-coreceptor interaction has previously been proposed as the most crucial trigger for unleashing the fusogenic potential of gp41. Here we report a cryo-electron microscopy structure of a full-length gp120 in complex with soluble CD4 and unmodified human CCR5, at 3.9 Å resolution. The V3 loop of gp120 inserts into the chemokine-binding pocket formed by seven transmembrane helices of CCR5, and the N terminus of CCR5 contacts the CD4-induced bridging sheet of gp120. CCR5 induces no obvious allosteric changes in gp120 that can propagate to gp41; it does bring the Env trimer close to the target membrane. The N terminus of gp120, which is gripped by gp41 in the pre-fusion or CD4-bound Env, flips back in the CCR5-bound conformation and may irreversibly destabilize gp41 to initiate fusion. The coreceptor probably functions by stabilizing and anchoring the CD4-induced conformation of Env near the cell membrane. These results advance our understanding of HIV-1 entry into host cells and may guide the development of vaccines and therapeutic agents.
Collapse
|
23
|
Falkenhagen A, Joshi S. HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:347-364. [PMID: 30340139 PMCID: PMC6197789 DOI: 10.1016/j.omtn.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
HIV entry is a highly specific and time-sensitive process that can be divided into receptor binding, coreceptor binding, and membrane fusion. Bifunctional antiviral proteins (bAVPs) exploit the multi-step nature of the HIV entry process by binding to two different extracellular targets. They are generated by expressing a fusion protein containing two entry inhibitors with a flexible linker. The resulting fusion proteins exhibit exceptional neutralization potency and broad cross-clade inhibition. In this review, we summarize the HIV entry process and provide an overview of the design, antiviral potency, and methods of delivery of bAVPs. Additionally, we discuss the advantages and limitations of bAVPs for HIV prevention and treatment.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
24
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
25
|
Dhody K, Pourhassan N, Kazempour K, Green D, Badri S, Mekonnen H, Burger D, Maddon PJ. PRO 140, a monoclonal antibody targeting CCR5, as a long-acting, single-agent maintenance therapy for HIV-1 infection. HIV CLINICAL TRIALS 2018; 19:85-93. [PMID: 29676212 DOI: 10.1080/15284336.2018.1452842] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Background PRO 140 is a humanized monoclonal antibody targeting CCR5 with potent antiviral activity in patients with CCR5-tropic HIV-1 infection. In phase 2b studies, we evaluated the long-term efficacy, safety, and tolerability of PRO 140 monotherapy in maintaining viral suppression for over 24 months in patients who were stable on combination antiretroviral therapy on entry into the trials. Methods and Results Forty-one adult patients, infected exclusively with CCR5-tropic HIV-1 with viral loads <50 copies/mL, were switched from daily oral combination ART regimens to weekly PRO 140 monotherapy for 12 weeks. Participants who completed 12 weeks of treatment without experiencing virologic rebound were allowed to self-administer PRO 140 as a 350 mg subcutaneous injection weekly, for up to an additional 160 weeks. Participants were monitored bi-weekly for one year, and every four weeks thereafter for virologic rebound. PRO 140 provided virologic suppression in 23/41 (56.1%) participants for 12 weeks and was well tolerated. Ten (10) participants are currently ongoing, of which nine participants have completed more than two years of monotherapy treatment (47-129 weeks). Participants experiencing virologic rebound achieved full viral suppression upon re-initiation of oral combination ART regimen. Anti-PRO 140 antibodies were not detected in any patient, and no drug-related major adverse events or treatment discontinuations were reported. Conclusions PRO 140 has a potential to address an unmet need for a long-acting, single-agent, maintenance regimen for HIV infection in selected patients. Studies are underway to determine host and/or virologic factors that may predict treatment success on PRO 140 monotherapy. Moreover, it has sufficient potency for a prolonged period of monotherapy that it would be an excellent component of a multi long-acting drug combination.
Collapse
Affiliation(s)
- Kush Dhody
- a Amarex Clinical Research LLC , Germantown , MD , USA
| | | | | | - Derry Green
- a Amarex Clinical Research LLC , Germantown , MD , USA
| | - Shide Badri
- a Amarex Clinical Research LLC , Germantown , MD , USA
| | - Hana Mekonnen
- a Amarex Clinical Research LLC , Germantown , MD , USA
| | | | | |
Collapse
|
26
|
Flynn JK, Ellenberg P, Duncan R, Ellett A, Zhou J, Sterjovski J, Cashin K, Borm K, Gray LR, Lewis M, Jubb B, Westby M, Lee B, Lewin SR, Churchill M, Roche M, Gorry PR. Analysis of Clinical HIV-1 Strains with Resistance to Maraviroc Reveals Strain-Specific Resistance Mutations, Variable Degrees of Resistance, and Minimal Cross-Resistance to Other CCR5 Antagonists. AIDS Res Hum Retroviruses 2017; 33:1220-1235. [PMID: 28797170 DOI: 10.1089/aid.2017.0097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Maraviroc (MVC) is an allosteric inhibitor of human immunodeficiency virus type 1 (HIV-1) entry, and is the only CCR5 antagonist licensed for use as an anti-HIV-1 therapeutic. It acts by altering the conformation of the CCR5 extracellular loops, rendering CCR5 unrecognizable by the HIV-1 envelope (Env) glycoproteins. This study aimed to understand the mechanisms underlying the development of MVC resistance in HIV-1-infected patients. To do this, we obtained longitudinal plasma samples from eight subjects who experienced treatment failure with phenotypically verified, CCR5-tropic MVC resistance. We then cloned and characterized HIV-1 Envs (n = 77) from plasma of pretreatment (n = 36) and treatment failure (n = 41) samples. Our results showed variation in the magnitude of MVC resistance as measured by reductions in maximal percent inhibition of Env-pseudotyped viruses, which was more pronounced in 293-Affinofile cells compared to other cells with similar levels of CCR5 expression. Amino acid determinants of MVC resistance localized to the V3 Env region and were strain specific. We also observed minimal cross-resistance to other CCR5 antagonists by MVC-resistant strains. We conclude that 293-Affinofile cells are highly sensitive for detecting and measuring MVC resistance through a mechanism that is CCR5-dependent yet independent of CCR5 expression levels. The strain-specific nature of resistance mutations suggests that sequence-based diagnostics and prognostics will need to be more sophisticated than simple position scoring to be useful for managing resistance in subjects taking MVC. Finally, the minimal levels of cross-resistance suggests that recognition of the MVC-modified form of CCR5 does not necessarily lead to recognition of other antagonist-modified forms of CCR5.
Collapse
Affiliation(s)
- Jacqueline K. Flynn
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Paula Ellenberg
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Renee Duncan
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Anne Ellett
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Jingling Zhou
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Jasminka Sterjovski
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Kieran Cashin
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Katharina Borm
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Microbiology, La Trobe University, Melbourne, Australia
| | - Lachlan R Gray
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Marilyn Lewis
- Pfizer Global Research and Development, Sandwich, United Kingdom
| | - Becky Jubb
- Pfizer Global Research and Development, Sandwich, United Kingdom
| | - Mike Westby
- Centauri Therapeutics, Ltd., Sandwich, United Kingdom
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Melissa Churchill
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Michael Roche
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Paul R. Gorry
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Australia
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| |
Collapse
|
27
|
Espy N, Pacheco B, Sodroski J. Adaptation of HIV-1 to cells with low expression of the CCR5 coreceptor. Virology 2017; 508:90-107. [PMID: 28521215 DOI: 10.1016/j.virol.2017.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
The binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) to the receptors CD4 and CCR5 triggers virus entry into host cells. To identify Env regions that respond to CCR5 binding, HIV-1 was serially passaged on a CD4-positive canine cell line expressing progressively lower levels of CCR5. HIV-1 replication was observed in cells expressing ~1300 CCR5 molecules/cell. Env changes that conferred this low-CCR5 replication phenotype were located outside of the known CCR5-binding region of the gp120 Env subunit and did not apparently increase CCR5 binding affinity. The adaptation-associated changes, located in the gp120 α1 helix and in the gp41 HR1 heptad repeat and membrane-proximal external region (MPER), enhanced HIV-1 replication in cells at all levels of CCR5 expression. The adapted Envs exhibited a greater propensity to undergo conformational changes, as evidenced by increased exposure of conserved regions near the CD4- and CCR5-binding sites.
Collapse
Affiliation(s)
- Nicole Espy
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Beatriz Pacheco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Joseph Sodroski
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
How to win the HIV-1 drug resistance hurdle race: running faster or jumping higher? Biochem J 2017; 474:1559-1577. [PMID: 28446620 DOI: 10.1042/bcj20160772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 11/17/2022]
Abstract
Infections by the human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), are still totaling an appalling 36.7 millions worldwide, with 1.1 million AIDS deaths/year and a similar number of yearly new infections. All this, in spite of the discovery of HIV-1 as the AIDS etiological agent more than 30 years ago and the introduction of an effective combinatorial antiretroviral therapy (cART), able to control disease progression, more than 20 years ago. Although very effective, current cART is plagued by the emergence of drug-resistant viral variants and most of the efforts in the development of novel direct-acting antiviral agents (DAAs) against HIV-1 have been devoted toward the fighting of resistance. In this review, rather than providing a detailed listing of all the drugs and the corresponding resistance mutations, we aim, through relevant examples, at presenting to the general reader the conceptual shift in the approaches that are being taken to overcome the viral resistance hurdle. From the classic 'running faster' strategy, based on the development of novel DAAs active against the mutant viruses selected by the previous drugs and/or presenting to the virus a high genetic barrier toward the development of resilience, to a 'jumping higher' approach, which looks at the cell, rather than the virus, as a source of valuable drug targets, in order to make the cellular environment non-permissive toward the replication of both wild-type and mutated viruses.
Collapse
|
29
|
Harada S, Yoshimura K. Driving HIV-1 into a Vulnerable Corner by Taking Advantage of Viral Adaptation and Evolution. Front Microbiol 2017; 8:390. [PMID: 28360890 PMCID: PMC5352695 DOI: 10.3389/fmicb.2017.00390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Anti-retroviral therapy (ART) is crucial for controlling human immunodeficiency virus type-1 (HIV-1) infection. Recently, progress in identifying and characterizing highly potent broadly neutralizing antibodies has provided valuable templates for HIV-1 therapy and vaccine design. Nevertheless, HIV-1, like many RNA viruses, exhibits genetically diverse populations known as quasispecies. Evolution of quasispecies can occur rapidly in response to selective pressures, such as that exerted by ART and the immune system. Hence, rapid viral evolution leading to drug resistance and/or immune evasion is a significant barrier to the development of effective HIV-1 treatments and vaccines. Here, we describe our recent investigations into evolutionary pressure exerted by anti-retroviral drugs and monoclonal neutralizing antibodies (NAbs) on HIV-1 envelope sequences. We also discuss sensitivities of HIV-1 escape mutants to maraviroc, a CCR5 inhibitor, and HIV-1 sensitized to NAbs by small-molecule CD4-mimetic compounds. These studies help to develop an understanding of viral evolution and escape from both anti-retroviral drugs and the immune system, and also provide fundamental insights into the combined use of NAbs and entry inhibitors. These findings of the adaptation and evolution of HIV in response to drug and immune pressure will inform the development of more effective antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| |
Collapse
|
30
|
Drugs for HIV Infection. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
31
|
Kim MB, Giesler KE, Tahirovic YA, Truax VM, Liotta DC, Wilson LJ. CCR5 receptor antagonists in preclinical to phase II clinical development for treatment of HIV. Expert Opin Investig Drugs 2016; 25:1377-1392. [PMID: 27791451 PMCID: PMC5776690 DOI: 10.1080/13543784.2016.1254615] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The chemokine receptor CCR5 has garnered significant attention in recent years as a target to treat HIV infection largely due to the approval and success of the drug Maraviroc. The side effects and inefficiencies with other first generation agents led to failed clinical trials, prompting the development of newer CCR5 antagonists. Areas covered: This review aims to survey the current status of 'next generation' CCR5 antagonists in the preclinical pipeline with an emphasis on emerging agents for the treatment of HIV infection. These efforts have culminated in the identification of advanced second-generation agents to reach the clinic and the dual CCR5/CCR2 antagonist Cenicriviroc as the most advanced currently in phase II clinical studies. Expert opinion: The clinical success of CCR5 inhibitors for treatment of HIV infection has rested largely on studies of Maraviroc and a second-generation dual CCR5/CCR2 antagonist Cenicriviroc. Although research efforts identified several promising preclinical candidates, these were dropped during early clinical studies. Despite patient access to Maraviroc, there is insufficient enthusiasm surrounding its use as front-line therapy for treatment of HIV. The non-HIV infection related development activities for Maraviroc and Cenicriviroc may help drive future interests.
Collapse
Affiliation(s)
- Michelle B Kim
- a Department of Chemistry , Emory University , Atlanta , GA , USA
| | - Kyle E Giesler
- a Department of Chemistry , Emory University , Atlanta , GA , USA
| | | | - Valarie M Truax
- a Department of Chemistry , Emory University , Atlanta , GA , USA
| | - Dennis C Liotta
- a Department of Chemistry , Emory University , Atlanta , GA , USA
| | | |
Collapse
|
32
|
Borm K, Jakobsen MR, Cashin K, Flynn JK, Ellenberg P, Ostergaard L, Lee B, Churchill MJ, Roche M, Gorry PR. Frequency and Env determinants of HIV-1 subtype C strains from antiretroviral therapy-naive subjects that display incomplete inhibition by maraviroc. Retrovirology 2016; 13:74. [PMID: 27809912 PMCID: PMC5093974 DOI: 10.1186/s12977-016-0309-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entry of human immunodeficiency virus type 1 (HIV-1) into cells involves the interaction of the viral gp120 envelope glycoproteins (Env) with cellular CD4 and a secondary coreceptor, which is typically one of the chemokine receptors CCR5 or CXCR4. CCR5-using (R5) HIV-1 strains that display reduced sensitivity to CCR5 antagonists can use antagonist-bound CCR5 for entry. In this study, we investigated whether naturally occurring gp120 alterations in HIV-1 subtype C (C-HIV) variants exist in antiretroviral therapy (ART)-naïve subjects that may influence their sensitivity to the CCR5 antagonist maraviroc (MVC). RESULTS Using a longitudinal panel of 244 R5 Envs cloned from 20 ART-naïve subjects with progressive C-HIV infection, we show that 40% of subjects (n = 8) harbored viruses that displayed incomplete inhibition by MVC, as shown by plateau's of reduced maximal percent inhibitions (MPIs). Specifically, when pseudotyped onto luciferase reporter viruses, 16 Envs exhibited MPIs below 98% in NP2-CCR5 cells (range 79.7-97.3%), which were lower still in 293-Affinofile cells that were engineered to express high levels of CCR5 (range 15.8-72.5%). We further show that Envs exhibiting reduced MPIs to MVC utilized MVC-bound CCR5 less efficiently than MVC-free CCR5, which is consistent with the mechanism of resistance to CCR5 antagonists that can occur in patients failing therapy. Mutagenesis studies identified strain-specific mutations in the gp120 V3 loop that contributed to reduced MPIs to MVC. CONCLUSIONS The results of our study suggest that some ART-naïve subjects with C-HIV infection harbor HIV-1 with reduced MPIs to MVC, and demonstrate that the gp120 V3 loop region contributes to this phenotype.
Collapse
Affiliation(s)
- Katharina Borm
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology, La Trobe University, Melbourne, VIC, Australia
| | | | - Kieran Cashin
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, 3001, Australia
| | - Jacqueline K Flynn
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, 3001, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Paula Ellenberg
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, 3001, Australia
| | - Lars Ostergaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa J Churchill
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Michael Roche
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia. .,The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, 3000, Australia.
| | - Paul R Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia. .,School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
33
|
The Microtubule Inhibitor Podofilox Inhibits an Early Entry Step of Human Cytomegalovirus. Viruses 2016; 8:v8100295. [PMID: 27783035 PMCID: PMC5086627 DOI: 10.3390/v8100295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus is a ubiquitous β-herpesvirus that infects many different cell types through an initial binding to cell surface receptors followed by a fusion event at the cell membrane or endocytic vesicle. A recent high-throughput screen to identify compounds that block a step prior to viral gene expression identified podofilox as a potent and nontoxic inhibitor. Time-of-addition studies in combination with quantitative-PCR analysis demonstrated that podofilox limits an early step of virus entry at the cell surface. Podofilox was also able to drastically reduce infection by herpes simplex 1, an α-herpesvirus with a very similar entry process to CMV. Podofilox caused a reduced maximal plateau inhibition of infection by viruses with single step binding processes prior to fusion-like Newcastle disease virus, Sendai virus, and influenza A virus or viruses that enter via endocytosis like vesicular stomatitis virus and a clinical-like strain of CMV. These results indicate that microtubules appear to be participating in the post-binding step of virus entry including the pre- and post-penetration events. Modulation of the plasma membrane is required to promote virus entry for herpesviruses, and that podofilox, unlike colchicine or nocodazole, is able to preferentially target microtubule networks at the plasma membrane.
Collapse
|
34
|
HIV-1 drug resistance and resistance testing. INFECTION GENETICS AND EVOLUTION 2016; 46:292-307. [PMID: 27587334 DOI: 10.1016/j.meegid.2016.08.031] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/23/2022]
Abstract
The global scale-up of antiretroviral (ARV) therapy (ART) has led to dramatic reductions in HIV-1 mortality and incidence. However, HIV drug resistance (HIVDR) poses a potential threat to the long-term success of ART and is emerging as a threat to the elimination of AIDS as a public health problem by 2030. In this review we describe the genetic mechanisms, epidemiology, and management of HIVDR at both individual and population levels across diverse economic and geographic settings. To describe the genetic mechanisms of HIVDR, we review the genetic barriers to resistance for the most commonly used ARVs and describe the extent of cross-resistance between them. To describe the epidemiology of HIVDR, we summarize the prevalence and patterns of transmitted drug resistance (TDR) and acquired drug resistance (ADR) in both high-income and low- and middle-income countries (LMICs). We also review to two categories of HIVDR with important public health relevance: (i) pre-treatment drug resistance (PDR), a World Health Organization-recommended HIVDR surveillance metric and (ii) and pre-exposure prophylaxis (PrEP)-related drug resistance, a type of ADR that can impact clinical outcomes if present at the time of treatment initiation. To summarize the implications of HIVDR for patient management, we review the role of genotypic resistance testing and treatment practices in both high-income and LMIC settings. In high-income countries where drug resistance testing is part of routine care, such an understanding can help clinicians prevent virological failure and accumulation of further HIVDR on an individual level by selecting the most efficacious regimens for their patients. Although there is reduced access to diagnostic testing and to many ARVs in LMIC, understanding the scientific basis and clinical implications of HIVDR is useful in all regions in order to shape appropriate surveillance, inform treatment algorithms, and manage difficult cases.
Collapse
|
35
|
Hikichi Y, Yokoyama M, Takemura T, Fujino M, Kumakura S, Maeda Y, Yamamoto N, Sato H, Matano T, Murakami T. Increased HIV-1 sensitivity to neutralizing antibodies by mutations in the Env V3-coding region for resistance to CXCR4 antagonists. J Gen Virol 2016; 97:2427-2440. [PMID: 27368421 DOI: 10.1099/jgv.0.000536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 passage in cell culture in the presence of chemokine receptor antagonists can result in selection of viruses with env mutations that confer resistance to these inhibitors. In the present study, we examined the effect of HIV-1env mutations that confer resistance to CXCR4 antagonists on envelope (Env) sensitivity to neutralizing antibodies (NAbs). Serial passage of CXCR4-tropic HIV-1 NL4-3 in PM1/CCR5 cells under CXCR4 antagonists KRH-3955, AMD3100 and AMD070 yielded two KRH-3955-resistant, one AMD3100-resistant and one AMD070-resistant viruses. These viruses had multiple env mutations including the Env gp120 V3 region. The majority of viruses having these CXCR4 antagonist-resistant Envs showed higher sensitivity to NAbs 447-52D, b12 and 2F5 targeting the V3 region, the gp120 CD4-binding site and the gp41 membrane proximal region, respectively, compared to NL4-3 WT virus. Recombinant NL4-3 viruses with the V3-coding region replaced with those derived from the CXCR4 antagonist-resistant viruses showed increased sensitivity to NAbs b12, 2F5 and 447-52D. Molecular dynamics simulations of Env gp120 outer domains predicted that the V3 mutations increased levels of fluctuations at the tip and stem of the V3 loop. These results indicate that mutations in the V3-coding region that result in loss of viral sensitivity to CXCR4 antagonists increase viral sensitivity to NAbs, providing insights into our understanding of the interplay of viral Env accessibility to chemokine receptors and sensitivity to NAbs.
Collapse
Affiliation(s)
- Yuta Hikichi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639 Tokyo, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi Murayama-shi, 208-0011 Tokyo, Japan
| | - Taichiro Takemura
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, 852-8523 Nagasaki, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan
| | - Sei Kumakura
- Kureha Corporation, 3-26-2, Hyakunin-cho, Shinjuku-ku, 169-8503 Tokyo, Japan
| | - Yosuke Maeda
- Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, 860-8556 Kumamoto, Japan
| | - Naoki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi Murayama-shi, 208-0011 Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639 Tokyo, Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640 Tokyo, Japan
| |
Collapse
|
36
|
Reduced Baseline Sensitivity to Maraviroc Inhibition Among R5 HIV-1 Isolates From Individuals With Severe Immunodeficiency. J Acquir Immune Defic Syndr 2016; 71:e79-82. [PMID: 26492461 PMCID: PMC4770368 DOI: 10.1097/qai.0000000000000873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is Available in the Text.
Collapse
|
37
|
Garg H, Lee RT, Maurer-Stroh S, Joshi A. HIV-1 adaptation to low levels of CCR5 results in V3 and V2 loop changes that increase envelope pathogenicity, CCR5 affinity and decrease susceptibility to Maraviroc. Virology 2016; 493:86-99. [DOI: 10.1016/j.virol.2016.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/26/2022]
|
38
|
Takeda S, Takizawa M, Miyauchi K, Urano E, Fujino M, Murakami T, Murakami T, Komano J. Conformational properties of the third variable loop of HIV-1AD8 envelope glycoprotein in the liganded conditions. Biochem Biophys Res Commun 2016; 475:113-8. [PMID: 27178216 DOI: 10.1016/j.bbrc.2016.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
The conformational dynamics of the HIV-1 envelope glycoprotein gp120 and gp41 (Env) remains poorly understood. Here we examined how the V3 loop conformation is regulated in the liganded state using a panel of recombinant HIV-1NL4-3 clones bearing HIV-1AD8 Env by two experimental approaches, one adopting a monoclonal neutralizing antibody KD-247 (suvizumab) that recognizes the tip of the V3 loop, and the other assessing the function of the V3 loop. A significant positive correlation of the Env-KD-247 binding was detected between the liganded and unliganded conditions. Namely, the mutation D163G located in the V2 loop, which enhances viral susceptibility to KD-247 by 59.4-fold, had little effect on the sCD4-induced increment of the virus-KD-247 binding. By contrast, a virus with the S370N mutation in the C3 region increased the virus-KD-247 binding by 91.4-fold, although it did not influence the KD-247-mediated neutralization. Co-receptor usage and the susceptibility to CCR5 inhibitor Maraviroc were unaffected by D163G and S370N mutations. Collectively, these data suggest that the conformation of the liganded V3-loop of HIV-1AD8 Env is still under regulation of other Env domains aside from the V3 loop, including V2 and C3. Our results give an insight into the structural properties of HIV-1 Env and viral resistance to entry inhibitors by non-V3 loop mutations.
Collapse
Affiliation(s)
- Satoshi Takeda
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku, Tokyo, 162-0053, Japan
| | - Mari Takizawa
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku, Tokyo, 162-0053, Japan
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Emiko Urano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku, Tokyo, 162-0053, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku, Tokyo, 162-0053, Japan
| | - Toshio Murakami
- The Chemo-Sero-Therapeutic Research Institute, 1314-1 Kawabe Kyokushi, Kikuchi, Kumamoto, 869-1298, Japan
| | - Tsutomu Murakami
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku, Tokyo, 162-0053, Japan
| | - Jun Komano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama Shinjuku, Tokyo, 162-0053, Japan; Department of Clinical Laboratory, Nagoya Medical Center, 1-1 4-Chome, Sannomaru, Naka-ku, Nagoya, 460-0001, Japan.
| |
Collapse
|
39
|
Lin N, Gonzalez OA, Registre L, Becerril C, Etemad B, Lu H, Wu X, Lockman S, Essex M, Moyo S, Kuritzkes DR, Sagar M. Humoral Immune Pressure Selects for HIV-1 CXC-chemokine Receptor 4-using Variants. EBioMedicine 2016; 8:237-247. [PMID: 27428434 PMCID: PMC4919596 DOI: 10.1016/j.ebiom.2016.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/26/2022] Open
Abstract
Although both C-C chemokine receptor 5 (CCR5)- and CXC chemokine receptor 4 (CXCR4)-using HIV-1 strains cause AIDS, the emergence of CXCR4-utilizing variants is associated with an accelerated decline in CD4+ T cells. It remains uncertain if CXCR4-using viruses hasten disease or if these variants only emerge after profound immunological damage. We show that exclusively CXCR4- as compared to cocirculating CCR5-utilizing variants are less sensitive to neutralization by both contemporaneous autologous plasma and plasma pools from individuals that harbor only CCR5-using HIV-1. The CXCR4-utilizing variants, however, do not have a global antigenic change because they remain equivalently susceptible to antibodies that do not target coreceptor binding domains. Studies with envelope V3 loop directed antibodies and chimeric envelopes suggest that the neutralization susceptibility differences are potentially influenced by the V3 loop. In vitro passage of a neutralization sensitive CCR5-using virus in the presence of autologous plasma and activated CD4+ T cells led to the emergence of a CXCR4-utilizing virus in 1 of 3 cases. These results suggest that in some but not necessarily all HIV-1 infected individuals humoral immune pressure against the autologous virus selects for CXCR4-using variants, which potentially accelerates disease progression. Our observations have implications for using antibodies for HIV-1 immune therapy.
Collapse
Affiliation(s)
- Nina Lin
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Oscar A Gonzalez
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Ludy Registre
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Carlos Becerril
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, United States
| | - Behzad Etemad
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Hong Lu
- Aaron Diamond AIDS Research Center, New York, NY, United States
| | - Xueling Wu
- Aaron Diamond AIDS Research Center, New York, NY, United States
| | - Shahin Lockman
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, United States; Harvard School of Public Health, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Myron Essex
- Harvard School of Public Health, Boston, MA, United States; Botswana Harvard AIDS Institute, Gaborone, Botswana
| | | | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Manish Sagar
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA, United States.
| |
Collapse
|
40
|
Xu GG, Guo J, Wu Y. Chemokine receptor CCR5 antagonist maraviroc: medicinal chemistry and clinical applications. Curr Top Med Chem 2016; 14:1504-14. [PMID: 25159165 DOI: 10.2174/1568026614666140827143745] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus (HIV) causes acquired immumodeficiency syndrome (AIDS), one of the worst global pandemic. The virus infects human CD4 T cells and macrophages, and causes CD4 depletion. HIV enters target cells through the binding of the viral envelope glycoprotein to CD4 and the chemokine coreceptor, CXCR4 or CCR5. In particular, the CCR5-utilizing viruses predominate in the blood during the disease course. CCR5 is expressed on the surface of various immune cells including macrophages, monocytes, microglia, dendric cells, and active memory CD4 T cells. In the human population, the CCR5 genomic mutation, CCR5Δ32, is associated with relative resistance to HIV. These findings paved the way for the discovery and development of CCR5 inhibitors to block HIV transmission and replication. Maraviroc, discovered as a CCR5 antagonist, is the only CCR5 inhibitor that has been approved by both US FDA and the European Medicines Agency (EMA) for treating HIV/AIDS patients. In this review, we summarize the medicinal chemistry and clinical studies of Maraviroc.
Collapse
Affiliation(s)
| | | | - Yuntao Wu
- Department of Molecular and Microbiology, National Center for Biodefense & Infectious Diseases, George Mason University, 10900 University Drive, Manassas, VA 20220, USA.
| |
Collapse
|
41
|
Mitsuki YY, Yamamoto T, Mizukoshi F, Momota M, Terahara K, Yoshimura K, Harada S, Tsunetsugu-Yokota Y. A novel dual luciferase assay for the simultaneous monitoring of HIV infection and cell viability. J Virol Methods 2016; 231:25-33. [PMID: 26898957 DOI: 10.1016/j.jviromet.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) reporter cell lines are critical tools for drug development. However, one disadvantage of HIV-1 reporter cell lines is that reductions in reporter gene activity need to be normalized to cytotoxicity, i.e., live cell numbers. Here, we developed a dual luciferase assay based on a R. reniformis luciferase (hRLuc)-expressing R5-type HIV-1 (NLAD8-hRLuc) and a CEM cell line expressing CCR5 and firefly luciferase (R5CEM-FiLuc). The NLAD8-hRLuc reporter virus was replication competent in peripheral blood mononuclear cells. The level of hRLuc was correlated with p24 antigen levels (p<0.001, R=0.862). The target cell line, R5CEM-FiLuc, stably expressed the firefly luciferase (FiLuc) reporter gene and allowed the simultaneous monitoring of compound cytotoxicity. The dual reporter assay combining a NLAD8-hRLuc virus with R5CEM-FiLuc cells permitted the accurate determination of drug susceptibility for entry, reverse transcriptase, integrase, and protease inhibitors at different multiplicities of infection. This dual reporter assay provides a rapid and direct method for the simultaneous monitoring of HIV infection and cell viability.
Collapse
Affiliation(s)
- Yu-Ya Mitsuki
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan; AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mt. Sinai, One Gustave Levy Place, Box 1090, New York, NY 10029, USA
| | - Takuya Yamamoto
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (IFReC), Osaka University, 6F IFReC Research Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo, Kumamoto 860-0811, Japan
| | - Fuminori Mizukoshi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| | - Masatoshi Momota
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center (IFReC), Osaka University, 6F IFReC Research Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo, Kumamoto 860-0811, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, Japan.
| |
Collapse
|
42
|
Pessôa R, Sanabani SS. Frequent detection of CXCR4-using viruses among Brazilian blood donors with HIV-1 long-standing infection and unknown clinical stage: Analysis of massive parallel sequencing data. Data Brief 2016; 6:267-74. [PMID: 26862570 PMCID: PMC4706613 DOI: 10.1016/j.dib.2015.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/28/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022] Open
Abstract
The determination of viral tropism is critically important and highly recommended to guide therapy with the CCR5 antagonist, which does not inhibit the effect of X4-tropic viruses. Here, we report the prevalence of HIV-1×4 HIV strains in 84 proviral DNA massively parallel sequencing “MPS” data from well-defined non-recently infected first-time Brazilian blood donors. The MPS data covering the entire V3 region of the env gene was extracted from our recently generated HIV-1 genomes sequenced by a paired-end protocol (Illumina). Of the 84 MPS data samples, 63 (75%) were derived from donors with long-standing infection and 21 (25%) were lacking stage information. HIV‐1 tropism was inferred using Geno2pheno (g2p) [454] algorithm (FPR=1%, 2.5%, and 3.75%). Among the 84 data samples for which tropism was defined by g2p2.5%, 13 (15.5%) participants had detectable CXCR4-using viruses in their MPS reads. Mixed infections with R5 and X4 were observed in 11.9% of the study subjects and minority X4 viruses were detected in 7 (8.3%) of participants. Nine of the 63 (14.3%) subjects with LS infection were predicted by g2p 2.5% to harbor proviral CXCR4-using viruses. Our findings of a high proportion of blood donors (15.5%) harboring CXCR4-using viruses in PBMCs may indicate that this phenomenon is common. These findings may have implications for clinical and therapeutic aspects and may benefit individuals who plan to receive CCR5 antagonists.
Collapse
Affiliation(s)
| | - Sabri S. Sanabani
- Correspondence to: Universidade de São Paulo, Faculdade de Medicina Instituto de Medicina, Tropical de São Paulo, LIM 52-Av. Dr. Enéas Carvalho de Aguiar, 470-2° andar-Cerqueira Cesar, 05403-000 Sao Paulo, SP-Brasil. Tel.: +55 11 3061 8699; fax: +55 11 3061 7020.Universidade de São Paulo, Faculdade de Medicina Instituto de Medicina, Tropical de São PauloLIM 52-Av. Dr. Enéas Carvalho de Aguiar, 470-2° andar-Cerqueira CesarSao Paulo05403-000SP-Brasil http://www.imt.usp.br
| |
Collapse
|
43
|
Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies. Antimicrob Agents Chemother 2015; 60:437-50. [PMID: 26525792 DOI: 10.1128/aac.02285-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
Cenicriviroc is a CCR5 antagonist which prevents human immunodeficiency virus type 1 (HIV-1) from cellular entry. The CCR5-binding regions of the HIV-1 envelope glycoprotein are important targets for neutralizing antibodies (NAbs), and mutations conferring cenicriviroc resistance may therefore affect sensitivity to NAbs. Here, we used the in vitro induction of HIV-1 variants resistant to cenicriviroc or NAbs to examine the relationship between resistance to cenicriviroc and resistance to NAbs. The cenicriviroc-resistant variant KK652-67 (strain KK passaged 67 times in the presence of increasing concentrations of cenicriviroc) was sensitive to neutralization by NAbs against the V3 loop, the CD4-induced (CD4i) region, and the CD4-binding site (CD4bs), whereas the wild-type (WT) parental HIV-1 strain KKWT from which cenicriviroc-resistant strain KK652-67 was obtained was resistant to these NAbs. The V3 region of KK652-67 was important for cenicriviroc resistance and critical to the high sensitivity of the V3, CD4i, and CD4bs epitopes to NAbs. Moreover, induction of variants resistant to anti-V3 NAb 0.5γ and anti-CD4i NAb 4E9C from cenicriviroc-resistant strain KK652-67 resulted in reversion to the cenicriviroc-sensitive phenotype comparable to that of the parental strain, KKWT. Resistance to 0.5γ and 4E9C was caused by the novel substitutions R315K, G324R, and E381K in the V3 and C3 regions near the substitutions conferring cenicriviroc resistance. Importantly, these amino acid changes in the CCR5-binding region were also responsible for reversion to the cenicriviroc-sensitive phenotype. These results suggest the presence of key amino acid residues where resistance to cenicriviroc is incompatible with resistance to NAbs. This implies that cenicriviroc and neutralizing antibodies may restrict the emergence of variants resistant to each other.
Collapse
|
44
|
Nankya IL, Tebit DM, Abraha A, Kyeyune F, Gibson R, Jegede O, Nickel G, Arts EJ. Defining the fitness of HIV-1 isolates with dual/mixed co-receptor usage. AIDS Res Ther 2015; 12:34. [PMID: 26435727 PMCID: PMC4592561 DOI: 10.1186/s12981-015-0066-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 07/28/2015] [Indexed: 02/08/2023] Open
Abstract
Background CCR5-using (r5) HIV-1 predominates during asymptomatic disease followed by occasional emergence of CXCR4-using (x4) or dual tropic (r5x4) virus. We examined the contribution of the x4 and r5 components to replicative fitness of HIV-1 isolates. Methods Dual tropic r5x4 viruses were predicted from average HIV-1 env sequences of two primary subtype C HIV-1 isolates (C19 and C27) and from two patient plasma samples (B12 and B19). Chimeric Env viruses with an NL4-3 backbone were constructed from the B12 and B19 env sequences. To determine replicative fitness, these primary and chimeric dual tropic HIV-1 were then competed against HIV-1 reference isolates in U87.CD4 cells expressing CXCR4 or CCR5 or in PBMCs ± entry inhibitors. Contribution of the x4 and r5 clones within the quasispecies of these chimeric or primary HIV-1 isolates were then compared to the frequency of x4, r5, and dual tropic clones within the quasispecies as predicted by phenotypic assays, clonal sequencing, and 454 deep sequencing. Results In the primary HIV-1 isolates (C19 and C27), subtype C dual tropic clones dominated over x4 clones while pure r5 clones were absent. In two subtype B chimeric viruses (B12 and B19), r5 clones were >100-fold more abundant than x4 or r5/x4 clones. The dual tropic C19 and C27 HIV-1 isolates outcompeted r5 primary HIV-1 isolates, B2 and C3 in PBMCs. When AMD3100 was added or when only U87.CD4.CCR5 cells were used, the B2 and C3 reference viruses now out-competed the r5 component of the dual tropic C19 and C27. In contrast, the same replicative fitness was observed with dualtropic B12 and B19 HIV-1 isolates relative to x4 HIV-1 A8 and E6 or the r5 B2 and C3 viruses, even when the r5 or x4 component was inhibited by maraviroc (or AMD3100) or in U87.CD4.CXCR4 (or CCR5) cells. Conclusions In the dual tropic HIV-1 isolates, the x4 replicative fitness is higher than r5 clones but the x4 or x4/r5 clones are typically at low frequency in the intrapatient virus population. Ex vivo HIV propagation promotes outgrowth of the x4 clones and provides an over-estimate of x4 dominance in replicative fitness within dual tropic viruses. Electronic supplementary material The online version of this article (doi:10.1186/s12981-015-0066-7) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Woollard SM, Kanmogne GD. Maraviroc: a review of its use in HIV infection and beyond. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5447-68. [PMID: 26491256 PMCID: PMC4598208 DOI: 10.2147/dddt.s90580] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human immunodeficiency virus-1 (HIV-1) enters target cells by binding its envelope glycoprotein gp120 to the CD4 receptor and/or coreceptors such as C-C chemokine receptor type 5 (CCR5; R5) and C-X-C chemokine receptor type 4 (CXCR4; X4), and R5-tropic viruses predominate during the early stages of infection. CCR5 antagonists bind to CCR5 to prevent viral entry. Maraviroc (MVC) is the only CCR5 antagonist currently approved by the United States Food and Drug Administration, the European Commission, Health Canada, and several other countries for the treatment of patients infected with R5-tropic HIV-1. MVC has been shown to be effective at inhibiting HIV-1 entry into cells and is well tolerated. With expanding MVC use by HIV-1-infected humans, different clinical outcomes post-approval have been observed with MVC monotherapy or combination therapy with other antiretroviral drugs, with MVC use in humans infected with dual-R5- and X4-tropic HIV-1, infected with different HIV-1 genotype or infected with HIV-2. This review discuss the role of CCR5 in HIV-1 infection, the development of the CCR5 antagonist MVC, its pharmacokinetics, pharmacodynamics, drug–drug interactions, and the implications of these interactions on treatment outcomes, including viral mutations and drug resistance, and the mechanisms associated with the development of resistance to MVC. This review also discusses available studies investigating the use of MVC in the treatment of other diseases such as cancer, graft-versus-host disease, and inflammatory diseases.
Collapse
Affiliation(s)
- Shawna M Woollard
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
46
|
Characterizing the Diverse Mutational Pathways Associated with R5-Tropic Maraviroc Resistance: HIV-1 That Uses the Drug-Bound CCR5 Coreceptor. J Virol 2015; 89:11457-72. [PMID: 26339063 PMCID: PMC4645647 DOI: 10.1128/jvi.01384-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Entry inhibitors represent a potent class of antiretroviral drugs that target a host cell protein, CCR5, an HIV-1 entry coreceptor, and not viral protein. Lack of sensitivity can occur due to preexisting virus that uses the CXCR4 coreceptor, while true resistance occurs through viral adaptation to use a drug-bound CCR5 coreceptor. To understand this R5 resistance pathway, we analyzed >500 envelope protein sequences and phenotypes from viruses of 20 patients from the clinical trials MOTIVATE 1 and 2, in which treatment-experienced patients received maraviroc plus optimized background therapy. The resistant viral population was phylogenetically distinct and associated with a genetic bottleneck in each patient, consistent with de novo emergence of resistance. Recombination analysis showed that the C2-V3-C3 region tends to genotypically correspond to the recombinant's phenotype, indicating its primary importance in conferring resistance. Between patients, there was a notable lack of commonality in the specific sites conferring resistance, confirming the unusual nature of R5-tropic resistance. We used coevolutionary and positive-selection analyses to characterize the genotypic determinants of resistance and found that (i) there are complicated covariation networks, indicating frequent coevolutionary/compensatory changes in the context of protein structure; (ii) covarying sites under positive selection are enriched in resistant viruses; (iii) CD4 binding sites form part of a unique covariation network independent of the V3 loop; and (iv) the covariation network formed between the V3 loop and other regions of gp120 and gp41 intersects sites involved in glycosylation and protein secretion. These results demonstrate that while envelope sequence mutations are the key to conferring maraviroc resistance, the specific changes involved are context dependent and thus inherently unpredictable. IMPORTANCE The entry inhibitor drug maraviroc makes the cell coreceptor CCR5 unavailable for use by HIV-1 and is now used in combination antiretroviral therapy. Treatment failure with drug-resistant virus is particularly interesting because it tends to be rare, with lack of sensitivity usually associated with the presence of CXCR4-using virus (CXCR4 is the main alternative coreceptor HIV-1 uses, in addition to CD4). We analyzed envelope sequences from HIV-1, obtained from 20 patients who enrolled in maraviroc clinical trials and experienced treatment failure, without detection of CXCR4-using virus. Evolutionary analysis was employed to identify molecular changes that confer maraviroc resistance. We found that in these individuals, resistant viruses form a distinct population that evolved once and was successful as a result of drug pressure. Further evolutionary analysis placed the complex network of interdependent mutational changes into functional groups that help explain the impediments to the emergence of maraviroc-associated R5 drug resistance.
Collapse
|
47
|
Boonchawalit S, Harada S, Shirai N, Gatanaga H, Oka S, Matsushita S, Yoshimura K. Impact of the Maraviroc-Resistant Mutation M434I in the C4 Region of HIV-1 gp120 on Sensitivity to Antibody-Mediated Neutralization. Jpn J Infect Dis 2015; 69:236-43. [PMID: 26166507 DOI: 10.7883/yoken.jjid.2015.310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously reported that a maraviroc (MVC)-resistant human immunodeficiency virus type 1variant, generated using in vitro selection, exhibited high sensitivity to several neutralizing monoclonal antibodies (NMAbs) and autologous plasma IgGs. The MVC-resistant variant acquired 4 sequential mutations in gp120: T297I, M434I, V200I, and K305R. In this study, we examined the mutation most responsible for conferring enhanced neutralization sensitivity of the MVC-resistant variant to several NMAbs and autologous plasma IgGs. The virus with the first resistant mutation, T297I, was sensitive to all NMAbs, whereas the passage control virus was not. The neutralization sensitivity of the variant greatly increased following its acquisition of the second mutation, M434I, in the C4 region. The M434I mutation conferred the greatest neutralizing sensitivity among the 4 MVC-resistant mutations. Additionally, the single M434I mutation was sufficient for the enhanced neutralization of the virus by NMAbs, autologous plasma IgGs, and heterologous sera relative to that of the parental virus.
Collapse
|
48
|
Garcia-Perez J, Staropoli I, Azoulay S, Heinrich JT, Cascajero A, Colin P, Lortat-Jacob H, Arenzana-Seisdedos F, Alcami J, Kellenberger E, Lagane B. A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity. Retrovirology 2015; 12:50. [PMID: 26081316 PMCID: PMC4470041 DOI: 10.1186/s12977-015-0177-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
Background Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited. Results Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3. Conclusion These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their fusion and replication efficiencies. This study thus sheds light on unsuspected mechanisms whereby MVC-resistant HIV-1 could emerge and grow in treated patients. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Garcia-Perez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Isabelle Staropoli
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | | | | | - Almudena Cascajero
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Philippe Colin
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France. .,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, 75015, Paris, France.
| | - Hugues Lortat-Jacob
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), 38027, Grenoble, France. .,CNRS, IBS, 38027, Grenoble, France. .,CEA, DSV, IBS, 38027, Grenoble, France.
| | - Fernando Arenzana-Seisdedos
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | | | - Bernard Lagane
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
49
|
Lombardi F, Nakamura KJ, Chen T, Sobrera ER, Tobin NH, Aldrovandi GM. A Conserved Glycan in the C2 Domain of HIV-1 Envelope Acts as a Molecular Switch to Control X4 Utilization by Clonal Variants with Identical V3 Loops. PLoS One 2015; 10:e0128116. [PMID: 26083631 PMCID: PMC4471078 DOI: 10.1371/journal.pone.0128116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/23/2015] [Indexed: 11/18/2022] Open
Abstract
Nearly all persons newly infected with HIV-1 harbor exclusively CCR5-using virus. CXCR4-using variants eventually arise in up to 50% of patients infected with subtypes B or D. This transition to efficient CXCR4 utilization is often co-incident with progression to AIDS. The basis for HIV-1's initial dependence on CCR5, the selective force(s) that drive CXCR4-utilization, and the evolutionary pathways by which it occurs are incompletely understood. Greater knowledge of these processes will inform interventions at all stages, from vaccination to cure. The determinants of co-receptor use map primarily, though not exclusively, to the V3 loop of gp120. In this study, we describe five clonal variants with identical V3 loops but divergent CXCR4 use. Mutagenesis revealed two residues controlling this phenotypic switch: a rare polymorphism in C1 and a highly conserved N-glycan in C2. To our knowledge, this is the first description of co-receptor usage regulated by the N-glycan at position 262.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Kyle J. Nakamura
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Thomas Chen
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Edwin R. Sobrera
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Nicole H. Tobin
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Grace M. Aldrovandi
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
50
|
Pharmacodynamic Activity of Dapivirine and Maraviroc Single Entity and Combination Topical Gels for HIV-1 Prevention. Pharm Res 2015; 32:3768-81. [PMID: 26078001 DOI: 10.1007/s11095-015-1738-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/08/2015] [Indexed: 02/08/2023]
Abstract
PURPOSE Dapivirine (DPV), a non-nucleoside reverse transcriptase inhibitor, and maraviroc (MVC), a CCR5 antagonist, were formulated into aqueous gels designed to prevent mucosal HIV transmission. METHODS 0.05% DPV, 0.1% MVC, 0.05% DPV/0.1% MVC and placebo gels were evaluated for pH, viscosity, osmolality, and in vitro release. In vitro assays and mucosal tissues were used to evaluate anti-HIV activity. Viability (Lactobacilli only) and epithelial integrity in cell lines and mucosal tissues defined safety. RESULTS The gels were acidic and viscous. DPV gel had an osmolality of 893 mOsm/kg while the other gels had an osmolality of <100 mOsm/kg. MVC release was similar from the single and combination gels (~5 μg/cm(2)/min(1/2)), while DPV release was 10-fold less from the single as compared to the combination gel (0.4331 μg/cm(2)/min(1/2)). Titrations of the gels showed 10-fold more drug was needed to protect ectocervical than colonic tissue. The combination gel showed ~10- and 100-fold improved activity as compared to DPV and MVC gel, respectively. All gels were safe. CONCLUSIONS The DPV/MVC gel showed a benefit blocking HIV infection of mucosal tissue compared to the single entity gels. Combination products with drugs affecting unique steps in the viral replication cycle would be advantageous for HIV prevention.
Collapse
|