1
|
Kalam N, Balasubramaniam V. Changing Epidemiology of Hand, Foot, and Mouth Disease Causative Agents and Contributing Factors. Am J Trop Med Hyg 2024; 111:740-755. [PMID: 39106854 PMCID: PMC11448535 DOI: 10.4269/ajtmh.23-0852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/18/2024] [Indexed: 08/09/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common viral infection primarily affecting children. It causes vesicles on the skin and inside the mouth. Although most cases get better on their own, severe cases can lead to complications such as brain stem encephalitis, meningoencephalitis, acute flaccid paralysis, and pulmonary edema. Hand, foot, and mouth disease is caused by various enteroviruses, with enterovirus A71 (EV-A71) and coxsackievirus A16 being the most common. However, recent studies have shown a shift in the molecular epidemiology of HFMD-causing pathogens, with coxsackievirus A6 and coxsackievirus A10 causing more infections. In addition, extensive recombination events have been identified among enterovirus strains, which may have a role in faster evolution and extinction of dominant enterovirus serotypes. Other strains of enterovirus can also cause severe complications, and there has been an increase in mortality associated with brain stem encephalitis in children under 3 years of age and teenagers. Currently, there are no effective antiviral therapies available to treat enterovirus infections. Vaccines against EV-A71 have been approved and are now used in mainland China. Studying the changing epidemiology of HFMD pathogens and the evolution patterns of its causative agents is crucial in developing effective prevention and control strategies. Increased interest in the molecular epidemiology of HFMD causative agents has led to a better understanding of the critical drivers of HFMD outbreaks, which can inform efforts to prevent and control the disease.
Collapse
Affiliation(s)
- Nida Kalam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Wang Z, Wen H. A review of the recombination events, mechanisms and consequences of Coxsackievirus A6. INFECTIOUS MEDICINE 2024; 3:100115. [PMID: 38974347 PMCID: PMC11225671 DOI: 10.1016/j.imj.2024.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is one of the most common class C infectious diseases, posing a serious threat to public health worldwide. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) have been regarded as the major pathogenic agents of HFMD; however, since an outbreak caused by coxsackievirus A6 (CV-A6) in France in 2008, CV-A6 has gradually become the predominant pathogen in many regions. CV-A6 infects not only children but also adults, and causes atypical clinical symptoms such as a more generalized rash, eczema herpeticum, high fever, and onychomadesis, which are different from the symptoms associated with EV-A71 and CV-A16. Importantly, the rate of genetic recombination of CV-A6 is high, which can lead to changes in virulence and the rapid evolution of other characteristics, thus posing a serious threat to public health. To date, no specific vaccines or therapeutics have been approved for CV-A6 prevention or treatment, hence it is essential to fully understand the relationship between recombination and evolution of this virus. Here, we systematically review the genetic recombination events of CV-A6 that have occurred worldwide and explore how these events have promoted virus evolution, thus providing important information regarding future HFMD surveillance and prevention.
Collapse
Affiliation(s)
- Zequn Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| |
Collapse
|
3
|
Wang D, Yang X, Ren Z, Hu B, Zhao H, Yang K, Shi P, Zhang Z, Feng Q, Nawenja CV, Obanda V, Robert K, Nalikka B, Waruhiu CN, Ochola GO, Onyuok SO, Ochieng H, Li B, Zhu Y, Si H, Yin J, Kristiansen K, Jin X, Xu X, Xiao M, Agwanda B, Ommeh S, Li J, Shi ZL. Substantial viral diversity in bats and rodents from East Africa: insights into evolution, recombination, and cocirculation. MICROBIOME 2024; 12:72. [PMID: 38600530 PMCID: PMC11005217 DOI: 10.1186/s40168-024-01782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.
Collapse
Affiliation(s)
- Daxi Wang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Xinglou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Lab, Wuhan, 430071, China
| | - Zirui Ren
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Hailong Zhao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Kaixin Yang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Peibo Shi
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Zhipeng Zhang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Qikai Feng
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Carol Vannesa Nawenja
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | - Kityo Robert
- Department of Zoology, Entomology and Fisheries Sciences, School of BioSciences, Makerere University, Kampala, Uganda
| | - Betty Nalikka
- Department of Zoology, Entomology and Fisheries Sciences, School of BioSciences, Makerere University, Kampala, Uganda
| | - Cecilia Njeri Waruhiu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Griphin Ochieng Ochola
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Samson Omondi Onyuok
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Harold Ochieng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haorui Si
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Minfeng Xiao
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China.
| | - Bernard Agwanda
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya.
| | - Sheila Ommeh
- Center for Animal Science, Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Junhua Li
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China.
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
4
|
Nguyen HM, Watanabe S, Sharmin S, Kawaguchi T, Tan XE, Wannigama DL, Cui L. RNA and Single-Stranded DNA Phages: Unveiling the Promise from the Underexplored World of Viruses. Int J Mol Sci 2023; 24:17029. [PMID: 38069353 PMCID: PMC10707117 DOI: 10.3390/ijms242317029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
RNA and single-stranded DNA (ssDNA) phages make up an understudied subset of bacteriophages that have been rapidly expanding in the last decade thanks to advancements in metaviromics. Since their discovery, applications of genetic engineering to ssDNA and RNA phages have revealed their immense potential for diverse applications in healthcare and biotechnology. In this review, we explore the past and present applications of this underexplored group of phages, particularly their current usage as therapeutic agents against multidrug-resistant bacteria. We also discuss engineering techniques such as recombinant expression, CRISPR/Cas-based genome editing, and synthetic rebooting of phage-like particles for their role in tailoring phages for disease treatment, imaging, biomaterial development, and delivery systems. Recent breakthroughs in RNA phage engineering techniques are especially highlighted. We conclude with a perspective on challenges and future prospects, emphasizing the untapped diversity of ssDNA and RNA phages and their potential to revolutionize biotechnology and medicine.
Collapse
Affiliation(s)
- Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Sultana Sharmin
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Tomofumi Kawaguchi
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Yamagata, Japan;
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (H.M.N.); (S.W.); (S.S.); (T.K.); (X.-E.T.)
| |
Collapse
|
5
|
Shi Y, Liu Y, Wu Y, Hu S, Sun B. Molecular epidemiology and recombination of enterovirus D68 in China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105512. [PMID: 37827347 DOI: 10.1016/j.meegid.2023.105512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Enterovirus D68 (EV-D68), a member of Enterovirus genus of the Picornaviridae family, mainly causes respiratory system-related diseases as well as neurological complications in some patients. At present, there is no effective vaccine or treatment for the virus. The aim of this research was to systematically analyse the molecular epidemiology, recombination and changes in the epitope of EV-D68 in China from 2008 to 2022. Through phylogenetic analysis based on VP1 sequences, it was found that there was limited information about EV-D68 infection before 2011 and that EV-D68 infection was dominated by the A2 gene subtype from 2011 to 2013 and the B3 genotype from 2014 to 2018, during which A2 and B3 were coprevalent and alternately prevalent. We also constructed a phylogenetic tree using the EV-D68 full-length genome sequences, and the genotype of each sequence was consistent with that of the VP1 sequence evolutionary tree. Recombination analysis showed that MH341715 underwent intertypic recombination with the A2 genotype MH341729 at the 5' untranslated region (5'UTR) and that P1-P3 underwent recombination with the B3 genotype MH341712. The capsid protein VP1 is one of the most important structural proteins. In VP1, the BC-loop (89-105 amino acids) and DE-loop (140-152 amino acids) are the most variable domains on the surface of the virus and are associated with epitopes. In this study, it was found that the dominant amino acid composition of the BC-loop and DE-loop continued to change with the epidemic of the virus; the amino acid composition also differed in different regions of the same genotypes. The ongoing genomic and molecular epidemiology of EV-D68 remains important for predicting emergence of new viruses and preventing major outbreaks of respiratory diseases.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Yongjuan Liu
- Department of Central Laboratory, the Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu 222002, China
| | - Yanli Wu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, China
| | - Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
6
|
Wang Q, Meng H, Ge D, Shan H, Geri L, Liu F. Structural and nonstructural proteins of Senecavirus A: Recent research advances, and lessons learned from those of other picornaviruses. Virology 2023; 585:155-163. [PMID: 37348144 DOI: 10.1016/j.virol.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Senecavirus A (SVA) is an emerging virus, causing vesicular disease in swine. SVA is a single-stranded, positive-sense RNA virus, which is the only member of the genus Senecavirus in the family Picornaviridae. SVA genome encodes 12 proteins: L, VP4, VP2, VP3, VP1, 2A, 2B, 2C, 3A, 3B, 3C and 3D. The VP1 to VP4 are structural proteins, and the others are nonstructural proteins. The replication of SVA in host cells is a complex process coordinated by an elaborate interplay between the structural and nonstructural proteins. Structural proteins are primarily involved in the invasion and assembly of virions. Nonstructural proteins modulate viral RNA translation and replication, and also take part in antagonizing the antiviral host response and in disrupting some cellular processes to allow virus replication. Here, we systematically reviewed the molecular functions of SVA structural and nonstructural proteins by reference to literatures of SVA itself and other picornaviruses.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China
| | - Hailan Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Ge
- Qingdao Lijian Bio-tech Co., Ltd., Qingdao, 266114, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010011, China.
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Kim H, Aponte-Diaz D, Sotoudegan MS, Shengjuler D, Arnold JJ, Cameron CE. The enterovirus genome can be translated in an IRES-independent manner that requires the initiation factors eIF2A/eIF2D. PLoS Biol 2023; 21:e3001693. [PMID: 36689548 PMCID: PMC9894558 DOI: 10.1371/journal.pbio.3001693] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 02/02/2023] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
RNA recombination in positive-strand RNA viruses is a molecular-genetic process, which permits the greatest evolution of the genome and may be essential to stabilizing the genome from the deleterious consequences of accumulated mutations. Enteroviruses represent a useful system to elucidate the details of this process. On the biochemical level, it is known that RNA recombination is catalyzed by the viral RNA-dependent RNA polymerase using a template-switching mechanism. For this mechanism to function in cells, the recombining genomes must be located in the same subcellular compartment. How a viral genome is trafficked to the site of genome replication and recombination, which is membrane associated and isolated from the cytoplasm, is not known. We hypothesized that genome translation was essential for colocalization of genomes for recombination. We show that complete inactivation of internal ribosome entry site (IRES)-mediated translation of a donor enteroviral genome enhanced recombination instead of impairing it. Recombination did not occur by a nonreplicative mechanism. Rather, sufficient translation of the nonstructural region of the genome occurred to support subsequent steps required for recombination. The noncanonical translation initiation factors, eIF2A and eIF2D, were required for IRES-independent translation. Our results support an eIF2A/eIF2D-dependent mechanism under conditions in which the eIF2-dependent mechanism is inactive. Detection of an IRES-independent mechanism for translation of the enterovirus genome provides an explanation for a variety of debated observations, including nonreplicative recombination and persistence of enteroviral RNA lacking an IRES. The existence of an eIF2A/eIF2D-dependent mechanism in enteroviruses predicts the existence of similar mechanisms in other viruses.
Collapse
Affiliation(s)
- Hyejeong Kim
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David Aponte-Diaz
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mohamad S. Sotoudegan
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Jamie J. Arnold
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Craig E. Cameron
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
8
|
Yeager C, Carter G, Gohara DW, Yennawar NH, Enemark E, Arnold J, Cameron CE. Enteroviral 2C protein is an RNA-stimulated ATPase and uses a two-step mechanism for binding to RNA and ATP. Nucleic Acids Res 2022; 50:11775-11798. [PMID: 36399514 PMCID: PMC9723501 DOI: 10.1093/nar/gkac1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
The enteroviral 2C protein is a therapeutic target, but the absence of a mechanistic framework for this enzyme limits our understanding of inhibitor mechanisms. Here, we use poliovirus 2C and a derivative thereof to elucidate the first biochemical mechanism for this enzyme and confirm the applicability of this mechanism to other members of the enterovirus genus. Our biochemical data are consistent with a dimer forming in solution, binding to RNA, which stimulates ATPase activity by increasing the rate of hydrolysis without impacting affinity for ATP substantially. Both RNA and DNA bind to the same or overlapping site on 2C, driven by the phosphodiester backbone, but only RNA stimulates ATP hydrolysis. We propose that RNA binds to 2C driven by the backbone, with reorientation of the ribose hydroxyls occurring in a second step to form the catalytically competent state. 2C also uses a two-step mechanism for binding to ATP. Initial binding is driven by the α and β phosphates of ATP. In the second step, the adenine base and other substituents of ATP are used to organize the active site for catalysis. These studies provide the first biochemical description of determinants driving specificity and catalytic efficiency of a picornaviral 2C ATPase.
Collapse
Affiliation(s)
- Calvin Yeager
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Griffin Carter
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David W Gohara
- Department of Biochemistry and Molecular Biology, St. Louis University, St. Louis, MO 63104, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Eric J Enemark
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jamie J Arnold
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig E Cameron
- To whom correspondence should be addressed. Tel: +1 919 966 9699; Fax: +1 919 962 8103;
| |
Collapse
|
9
|
Li C, Wu X, Wang X, Shi J, Liu C, Peng Z, Han H, Xu S, Wang S, Ma Y, Zheng L, Hrabchenko N, Li J. Complete genome and pathogenesis of a novel recombinant Senecavirus A isolate in P.R. China. J Gen Virol 2022; 103. [PMID: 36748492 DOI: 10.1099/jgv.0.001788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Senecavirus A (SVA), formerly called Seneca Valley virus (SVV) was first isolated from the USA in 2002. This study isolated an SVA strain from a pig herd in Shandong Province, PR China and designated it SVA-CH-SDGT-2017. The full-length genome, excluding the poly(A) tails of the SVA isolates, was 7280 nucleotides long, with the genomic organization resembling and sharing high nucleotide identities of 90.7-96.9 % with other previously reported SVA isolates. To investigate the pathogenicity of the SVA isolates, experimental infections of pigs were performed. The SVA strains successfully infected the pigs, as evidenced by the presence of virus shedding and robust serum neutralizing antibody responses. In addition, the contact-exposed experiment showed that the virus shedding of the contact-exposed pigs was approximately a 100-fold reduced compared to that of the inoculated group, indicating that the virus is capable of transmission to pigs. Our findings provide useful data for studying the pathogenesis and transmission of SVA in pigs.
Collapse
Affiliation(s)
- Chen Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Xiaoyan Wu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China.,College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, PR China
| | - Jianli Shi
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Chang Liu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Zhe Peng
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Hong Han
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Shaojian Xu
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Shuo Wang
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Yingru Ma
- Qingdao Agricultural University, Qingdao, PR China
| | - Limei Zheng
- Qingdao Agricultural University, Qingdao, PR China
| | - Nataliia Hrabchenko
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Jun Li
- Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, PR China.,College of Life Sciences, Shandong Normal University, Jinan, PR China.,Qingdao Agricultural University, Qingdao, PR China
| |
Collapse
|
10
|
Foot-and-Mouth Disease Virus Interserotypic Recombination in Superinfected Carrier Cattle. Pathogens 2022; 11:pathogens11060644. [PMID: 35745498 PMCID: PMC9231328 DOI: 10.3390/pathogens11060644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Viral recombination contributes to the emergence of novel strains with the potential for altered host range, transmissibility, virulence, and immune evasion. For foot-and-mouth disease virus (FMDV), cell culture experiments and phylogenetic analyses of field samples have demonstrated the occurrence of recombination. However, the frequency of recombination and associated virus–host interactions within an infected host have not been determined. We have previously reported the detection of interserotypic recombinant FMDVs in oropharyngeal fluid (OPF) samples of 42% (5/12) of heterologously superinfected FMDV carrier cattle. The present investigation consists of a detailed analysis of the virus populations in these samples including identification and characterization of additional interserotypic minority recombinants. In every animal in which recombination was detected, recombinant viruses were identified in the OPF at the earliest sampling point after superinfection. Some recombinants remained dominant until the end of the experiment, whereas others were outcompeted by parental strains. Genomic analysis of detected recombinants suggests host immune pressure as a major driver of recombinant emergence as all recombinants had capsid-coding regions derived from the superinfecting virus to which the animals did not have detectable antibodies at the time of infection. In vitro analysis of a plaque-purified recombinant virus demonstrated a growth rate comparable to its parental precursors, and measurement of its specific infectivity suggested that the recombinant virus incurred no penalty in packaging its new chimeric genome. These findings have important implications for the potential role of persistently infected carriers in FMDV ecology and the emergence of novel strains.
Collapse
|
11
|
Wang H, Cui X, Cai X, An T. Recombination in Positive-Strand RNA Viruses. Front Microbiol 2022; 13:870759. [PMID: 35663855 PMCID: PMC9158499 DOI: 10.3389/fmicb.2022.870759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
RNA recombination is a major driver of genetic shifts tightly linked to the evolution of RNA viruses. Genomic recombination contributes substantially to the emergence of new viral lineages, expansion in host tropism, adaptations to new environments, and virulence and pathogenesis. Here, we review some of the recent progress that has advanced our understanding of recombination in positive-strand RNA viruses, including recombination triggers and the mechanisms behind them. The study of RNA recombination aids in predicting the probability and outcome of viral recombination events, and in the design of viruses with reduced recombination frequency as candidates for the development of live attenuated vaccines. Surveillance of viral recombination should remain a priority in the detection of emergent viral strains, a goal that can only be accomplished by expanding our understanding of how these events are triggered and regulated.
Collapse
Affiliation(s)
| | | | | | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
12
|
Kinobe R, Wiyatno A, Artika IM, Safari D. Insight into the Enterovirus A71: A review. Rev Med Virol 2022; 32:e2361. [PMID: 35510476 DOI: 10.1002/rmv.2361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Enterovirus A71 is a major causative pathogen of hand, foot and mouth disease. It has become a global public health threat, and is especially important for infants and young children in the Asian-Pacific countries. The enterovirus A71 is a non-enveloped virus of the Picornaviridae family having a single-stranded positive-sense RNA genome of about 7.4 kb which encodes the structural and nonstructural proteins. Currently there are no US FDA-approved vaccines or antiviral therapy available against enterovirus A71 infection. Although enterovirus A71 vaccines have been licenced in China, clinically approved vaccines for widespread vaccination programs are lacking. Substantial progress has recently been achieved on understanding the structure and function of enterovirus A71 proteins together with information on the viral genetic diversity and geographic distribution. The present review is intended to provide an overview on our current understanding of the molecular biology and epidemiology of enterovirus A71 which will aid the development of vaccines, therapeutics and other control strategies so as to bolster the preparedness for future enterovirus A71 outbreaks.
Collapse
Affiliation(s)
- Robert Kinobe
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Ageng Wiyatno
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.,Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
13
|
Li Z, Kong D, Liu Y, Li M. Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease. Genes Dis 2022; 9:80-94. [PMID: 35005109 PMCID: PMC8720699 DOI: 10.1016/j.gendis.2021.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Infections caused by viruses are one of the foremost causes of morbidity and mortality in the world. Although a number of antiviral drugs are currently used for treatment of various kinds of viral infection diseases, there is still no available therapeutic agent for most of the viruses in clinical practice. Coumarin is a chemical compound which is found naturally in a variety of plants, it can also be synthetically produced possessing diverse biological effects. More recently, reports have highlighted the potential role of coumarin derivatives as antiviral agents. This review outlines the advances in coumarin-based compounds against various viruses including human immunodeficiency virus, hepatitis virus, herpes simplex virus, Chikungunya virus and Enterovirus 71, as well as the structure activity relationship and the possible mechanism of action of the most potent coumarin derivatives.
Collapse
Affiliation(s)
- Zhoupeng Li
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
| | - Dehui Kong
- School of Nursing, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yongsheng Liu
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
| | - Mingkai Li
- Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
- Precision Pharmacy & Drug Development Center, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
- Corresponding author. Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi Province 710032, PR China.
| |
Collapse
|
14
|
Isolation and Identification of Inter-Species Enterovirus Recombinant Genomes. Viruses 2021; 13:v13122390. [PMID: 34960659 PMCID: PMC8703282 DOI: 10.3390/v13122390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
Positive-strand RNA virus evolution is partly attributed to the process of recombination. Although common between closely genetically related viruses, such as within species of the Enterovirus genus of the Picornaviridae family, inter-species recombination is rarely observed in nature. Recent studies have shown recombination is a ubiquitous process, resulting in a wide range of recombinant genomes and progeny viruses. While not all recombinant genomes yield infectious progeny virus, their existence and continued evolution during replication have critical implications for the evolution of the virus population. In this study, we utilised an in vitro recombination assay to demonstrate inter-species recombination events between viruses from four enterovirus species, A-D. We show that inter-species recombinant genomes are generated in vitro with polymerase template-switching events occurring within the virus polyprotein coding region. However, these genomes did not yield infectious progeny virus. Analysis and attempted recovery of a constructed recombinant cDNA revealed a restriction in positive-strand but not negative-strand RNA synthesis, indicating a significant block in replication. This study demonstrates the propensity for inter-species recombination at the genome level but suggests that significant sequence plasticity would be required in order to overcome blocks in the virus life cycle and allow for the production of infectious viruses.
Collapse
|
15
|
Janissen R, Woodman A, Shengjuler D, Vallet T, Lee KM, Kuijpers L, Moustafa IM, Fitzgerald F, Huang PN, Perkins AL, Harki DA, Arnold JJ, Solano B, Shih SR, Vignuzzi M, Cameron CE, Dekker NH. Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses. Mol Cell 2021; 81:4467-4480.e7. [PMID: 34687604 PMCID: PMC8628313 DOI: 10.1016/j.molcel.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Viral RNA-dependent RNA polymerases (RdRps) are a target for broad-spectrum antiviral therapeutic agents. Recently, we demonstrated that incorporation of the T-1106 triphosphate, a pyrazine-carboxamide ribonucleotide, into nascent RNA increases pausing and backtracking by the poliovirus RdRp. Here, by monitoring enterovirus A-71 RdRp dynamics during RNA synthesis using magnetic tweezers, we identify the "backtracked" state as an intermediate used by the RdRp for copy-back RNA synthesis and homologous recombination. Cell-based assays and RNA sequencing (RNA-seq) experiments further demonstrate that the pyrazine-carboxamide ribonucleotide stimulates these processes during infection. These results suggest that pyrazine-carboxamide ribonucleotides do not induce lethal mutagenesis or chain termination but function by promoting template switching and formation of defective viral genomes. We conclude that RdRp-catalyzed intra- and intermolecular template switching can be induced by pyrazine-carboxamide ribonucleotides, defining an additional mechanistic class of antiviral ribonucleotides with potential for broad-spectrum activity.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Andrew Woodman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Djoshkun Shengjuler
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan
| | - Louis Kuijpers
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Fiona Fitzgerald
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan
| | - Angela L Perkins
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Belén Solano
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
16
|
Tohma K, Lepore CJ, Martinez M, Degiuseppe JI, Khamrin P, Saito M, Mayta H, Nwaba AUA, Ford-Siltz LA, Green KY, Galeano ME, Zimic M, Stupka JA, Gilman RH, Maneekarn N, Ushijima H, Parra GI. Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints. PLoS Pathog 2021; 17:e1009744. [PMID: 34255807 PMCID: PMC8318288 DOI: 10.1371/journal.ppat.1009744] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/28/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission. Norovirus is a highly diverse enteric pathogen. The large genomic database accumulated in the last three decades advanced our understanding of norovirus diversity; however, this information is limited by geographical bias, sporadic times of collection, and missing or incomplete genome sequences. In this multinational collaborative study, we mined archival samples collected since the 1970s and sequenced nearly full-length new genomes from 281 historical noroviruses, including the first full-length genomic sequences for three genotypes. Using this novel dataset, we found evidence for restrictions in the recombination of genetically disparate viruses and that diversifying selection results in new variants with different epidemiological profiles. These new insights on the diversification of noroviruses could provide baseline information for the study of future epidemics and ultimately the prevention of norovirus infections.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Cara J. Lepore
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Magaly Martinez
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
- IICS, National University of Asuncion, Asuncion, Paraguay
| | | | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Holger Mayta
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Amy U. Amanda Nwaba
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Lauren A. Ford-Siltz
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
| | - Kim Y. Green
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | | | - Mirko Zimic
- Department of Cellular and Molecular Sciences, Faculty of Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Robert H. Gilman
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Gabriel I. Parra
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Wang M, Zhu L, Fan J, Yan J, Dun Y, Yu R, Liu L, Zhang S. Rules governing genetic exchanges among viral types from different Enterovirus A clusters. J Gen Virol 2021; 101:1145-1155. [PMID: 32762804 PMCID: PMC7879560 DOI: 10.1099/jgv.0.001479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The species Enterovirus A (EV-A) consists of two conventional clusters and one unconventional cluster. At present, sequence analysis shows no evidence of recombination between conventional and unconventional EV-A types. However, the factors underlying this genetic barrier are unclear. Here, we systematically dissected the genome components linked to these peculiar phenomena, using the viral reverse genetic tools. We reported that viral capsids of the unconventional EV-A types expressed poorly in human cells. The trans-encapsidation outputs across conventional and unconventional EV-A types were also with low efficiency. However, replicons of conventional types bearing exchanged 5'-untranslated region (UTR) or non-structural regions from the unconventional types were replication-competent. Furthermore, we created a viable recombinant EVA71 (conventional type) with its P3 region replaced by that from EVA89 (unconventional type). Thus, our data for the first time reveal the potential for fertile genetic exchanges between conventional and unconventional EV-A types. It also discloses that the mysterious recombination barriers may lie in uncoordinated capsid expression and particle assembly by different EV-A clusters.
Collapse
Affiliation(s)
- Min Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Liuyao Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Jun Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Jingjing Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Ying Dun
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Rui Yu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Lizhen Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| |
Collapse
|
18
|
Xu L, Qi M, Ma C, Yang M, Huang P, Sun J, Shi J, Hu Y. Natural intertypic and intratypic recombinants of enterovirus 71 from mainland China during 2009-2018: a complete genome analysis. Virus Genes 2021; 57:172-180. [PMID: 33575934 PMCID: PMC7877514 DOI: 10.1007/s11262-021-01830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Surveillance of recombinant enterovirus 71 (EV71) and subgenotype replacement is vital for preventing and controlling hand, foot, and mouth disease (HFMD) outbreaks. Despite this, data on recombinant variants and phylogeny of circulating EV71 strains in mainland China are limited. In this study, recombinant variants of EV71 were identified in mainland China from 2009 to 2018. Phylogenetic analysis indicated that except for individual strains (CQ2014-86/CQ/CHN/2014 and EV71/Xiamen/2009 (B5)), almost all of the EV71 strains in mainland China belonged to the subgenotype C4a. Analysing complete genome sequences of 196 EV71 isolates, 3 intertypic recombination strains (VR1432, 30-2/2015/BJ, and Guangdong-2009) and 5 intratypic recombination strains (EV71/P1034/2013, VR1432, Henan-ZMD/CHN/2012, Hubei-WH/CHN/2012, and EV71/P868/2013/China) were identified among naturally circulating EV71. The breakpoints of these recombinant strains were located within the P1, P2, and P3 encoding regions. Notably, a double recombinant (VR1432) resulting from recombination between EV71 subgenotype C4a and C4b strain SHZH98 and a CA8 strain Donovan was identified. This study reports these specific intertypic and intratypic recombination events for the first time highlighting the importance of genetic recombination in the emergence of new enterovirus variants.
Collapse
Affiliation(s)
- Liangzi Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Mengdi Qi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.,Kunming Medical University, Kunming, Yunnan, China
| | - Chunli Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.,Kunming Medical University, Kunming, Yunnan, China
| | - Mengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Pu Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China
| | - Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China.,Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, Yunnan, China
| | - Jiandong Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China. .,Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, Yunnan, China.
| | - Yunzhang Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, 650118, Yunnan Province, China. .,Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Pu'er, Yunnan, China.
| |
Collapse
|
19
|
Gribble J, Stevens LJ, Agostini ML, Anderson-Daniels J, Chappell JD, Lu X, Pruijssers AJ, Routh AL, Denison MR. The coronavirus proofreading exoribonuclease mediates extensive viral recombination. PLoS Pathog 2021; 17:e1009226. [PMID: 33465137 PMCID: PMC7846108 DOI: 10.1371/journal.ppat.1009226] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Recombination is proposed to be critical for coronavirus (CoV) diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. While RNA recombination is required during normal CoV replication, the mechanisms and determinants of CoV recombination are not known. CoVs encode an RNA proofreading exoribonuclease (nsp14-ExoN) that is distinct from the CoV polymerase and is responsible for high-fidelity RNA synthesis, resistance to nucleoside analogues, immune evasion, and virulence. Here, we demonstrate that CoVs, including SARS-CoV-2, MERS-CoV, and the model CoV murine hepatitis virus (MHV), generate extensive and diverse recombination products during replication in culture. We show that the MHV nsp14-ExoN is required for native recombination, and that inactivation of ExoN results in decreased recombination frequency and altered recombination products. These results add yet another critical function to nsp14-ExoN, highlight the uniqueness of the evolved coronavirus replicase, and further emphasize nsp14-ExoN as a central, completely conserved, and vulnerable target for inhibitors and attenuation of SARS-CoV-2 and future emerging zoonotic CoVs.
Collapse
Affiliation(s)
- Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Laura J. Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maria L. Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jordan Anderson-Daniels
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, University of Texas–Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas–Medical Branch, Galveston, Texas, United States of America
| | - Mark R. Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
20
|
Differential Alphavirus Defective RNA Diversity between Intracellular and Extracellular Compartments Is Driven by Subgenomic Recombination Events. mBio 2020; 11:mBio.00731-20. [PMID: 32817101 PMCID: PMC7439471 DOI: 10.1128/mbio.00731-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Our understanding of viral defective RNAs (D-RNAs), or truncated viral genomes, comes largely from passaging studies in tissue culture under artificial conditions and/or packaged viral RNAs. Here, we show that specific populations of alphavirus D-RNAs arise de novo and that they are not packaged into virions, thus imposing a transmission bottleneck and impeding their prior detection. This raises important questions about the roles of D-RNAs, both in nature and in tissue culture, during viral infection and whether their influence is constrained by packaging requirements. Further, during the course of these studies, we found a novel type of alphavirus D-RNA that is enriched intracellularly; dubbed subgenomic D-RNAs (sgD-RNAs), they are defined by deletion boundaries between the capsid-E3 region and the E1-3′ untranslated region (UTR) and are common to chikungunya, Mayaro, Sindbis, and Aura viruses. These sgD-RNAs are enriched intracellularly and do not appear to be selectively packaged, and additionally, they may exist as subgenome-derived transcripts. Alphaviruses are positive-sense RNA arboviruses that can cause either a chronic arthritis or a potentially lethal encephalitis. Like other RNA viruses, alphaviruses produce truncated, defective viral RNAs featuring large deletions during replication. These defective RNAs (D-RNAs) have primarily been isolated from virions after high-multiplicity-of-infection passaging. Here, we aimed to characterize both intracellular and packaged viral D-RNA populations during early-passage infections under the hypothesis that D-RNAs arise de novo intracellularly that may not be packaged and thus have remained undetected. To this end, we generated next-generation sequencing libraries using RNA derived from passage 1 (P1) stock chikungunya virus (CHIKV) 181/clone 25, intracellular virus, and P2 virions and analyzed samples for D-RNA expression, followed by diversity and differential expression analyses. We found that the diversity of D-RNA species is significantly higher for intracellular D-RNA populations than P2 virions and that specific populations of D-RNAs are differentially expressed between intracellular and extracellular compartments. Importantly, these trends were likewise observed in a murine model of CHIKV AF15561 infection, as well as in vitro studies using related Mayaro, Sindbis, and Aura viruses. Additionally, we identified a novel subtype of subgenomic D-RNA that is conserved across arthritogenic alphaviruses. D-RNAs specific to intracellular populations were defined by recombination events specifically in the subgenomic region, which were confirmed by direct RNA nanopore sequencing of intracellular CHIKV RNAs. Together, these studies show that only a portion of D-RNAs generated intracellularly are packaged and D-RNAs readily arise de novo in the absence of transmitted template.
Collapse
|
21
|
Watkins CL, Kempf BJ, Beaucourt S, Barton DJ, Peersen OB. Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases. J Biol Chem 2020; 295:10624-10637. [PMID: 32493771 PMCID: PMC7397104 DOI: 10.1074/jbc.ra120.013906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Indexed: 01/23/2023] Open
Abstract
Picornaviral RNA-dependent RNA polymerases (RdRPs) have low replication fidelity that is essential for viral fitness and evolution. Their global fold consists of the classical "cupped right hand" structure with palm, fingers, and thumb domains, and these RdRPs also possess a unique contact between the fingers and thumb domains. This interaction restricts movements of the fingers, and RdRPs use a subtle conformational change within the palm domain to close their active sites for catalysis. We have previously shown that this core RdRP structure and mechanism provide a platform for polymerases to fine-tune replication rates and fidelity to optimize virus fitness. Here, we further elucidated the structural basis for differences in replication rates and fidelity among different viruses by generating chimeric RdRPs from poliovirus and coxsackievirus B3. We designed these chimeric polymerases by exchanging the fingers, pinky finger, or thumb domains. The results of biochemical, rapid-quench, and stopped-flow assays revealed that differences in biochemical activity map to individual modular domains of this polymerase. We found that the pinky finger subdomain is a major regulator of initiation and that the palm domain is the major determinant of catalytic rate and nucleotide discrimination. We further noted that thumb domain interactions with product RNA regulate translocation and that the palm and thumb domains coordinately control elongation complex stability. Several RdRP chimeras supported the growth of infectious poliovirus, providing insights into enterovirus species-specific protein-protein interactions required for virus replication.
Collapse
Affiliation(s)
- Colleen L Watkins
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
22
|
Song Y, Zhang Y, Han Z, Xu W, Xiao J, Wang X, Wang J, Yang J, Yu Q, Yu D, Chen J, Huang W, Li J, Xie T, Lu H, Ji T, Yang Q, Yan D, Zhu S, Xu W. Genetic recombination in fast-spreading coxsackievirus A6 variants: a potential role in evolution and pathogenicity. Virus Evol 2020; 6:veaa048. [PMID: 34804589 PMCID: PMC8597624 DOI: 10.1093/ve/veaa048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common global epidemic. From 2008
onwards, many HFMD outbreaks caused by coxsackievirus A6 (CV-A6) have been
reported worldwide. Since 2013, with a dramatically increasing number of
CV-A6-related HFMD cases, CV-A6 has become the predominant HFMD pathogen in
mainland China. Phylogenetic analysis based on the VP1 capsid
gene revealed that subtype D3 dominated the CV-A6 outbreaks. Here, we performed
a large-scale (near) full-length genetic analysis of global and Chinese CV-A6
variants, including 158 newly sequenced samples collected extensively in
mainland China between 2010 and 2018. During the global transmission of subtype
D3 of CV-A6, the noncapsid gene continued recombining, giving rise to a series
of viable recombinant hybrids designated evolutionary lineages, and each lineage
displayed internal consistency in both genetic and epidemiological features. The
emergence of lineage –A since 2005 has triggered CV-A6 outbreaks
worldwide, with a rate of evolution estimated at
4.17 × 10−3 substitutions
site-1 year−1 based on a
large number of monophyletic open reading frame sequences, and created a series
of lineages chronologically through varied noncapsid recombination events. In
mainland China, lineage –A has generated another two novel widespread
lineages (–J and –L) through recombination within the
enterovirus A gene pool, with robust estimates of occurrence time. Lineage
–A, –J, and –L infections presented dissimilar clinical
manifestations, indicating that the conservation of the CV-A6 capsid gene
resulted in high transmissibility, but the lineage-specific noncapsid gene might
influence pathogenicity. Potentially important amino acid substitutions were
further predicted among CV-A6 variants. The evolutionary phenomenon of noncapsid
polymorphism within the same subtype observed in CV-A6 was uncommon in other
leading HFMD pathogens; such frequent recombination happened in fast-spreading
CV-A6, indicating that the recovery of deleterious genomes may still be ongoing
within CV-A6 quasispecies. CV-A6-related HFMD outbreaks have caused a
significant public health burden and pose a great threat to children’s
health; therefore, further surveillance is greatly needed to understand the full
genetic diversity of CV-A6 in mainland China.
Collapse
Affiliation(s)
- Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Jianfang Yang
- Shanxi Center for Disease Control and Prevention, Taiyuan, Shanxi Province, China
| | - Qiuli Yu
- Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Deshan Yu
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Jianhua Chen
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Wei Huang
- Chongqing Center for Disease Control and Prevention, Chongqing City, China
| | - Jie Li
- Beijing Center for Disease Control and Prevention, Beijing City, China
| | - Tong Xie
- Tianjin Center for Disease Control and Prevention, Tianjin City, China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, China.,Anhui University of Science and Technology, Anhui Province, China
| |
Collapse
|
23
|
RNA-Dependent RNA Polymerase Speed and Fidelity are not the Only Determinants of the Mechanism or Efficiency of Recombination. Genes (Basel) 2019; 10:genes10120968. [PMID: 31775299 PMCID: PMC6947342 DOI: 10.3390/genes10120968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 01/05/2023] Open
Abstract
Using the RNA-dependent RNA polymerase (RdRp) from poliovirus (PV) as our model system, we have shown that Lys-359 in motif-D functions as a general acid in the mechanism of nucleotidyl transfer. A K359H (KH) RdRp derivative is slow and faithful relative to wild-type enzyme. In the context of the KH virus, RdRp-coding sequence evolves, selecting for the following substitutions: I331F (IF, motif-C) and P356S (PS, motif-D). We have evaluated IF-KH, PS-KH, and IF-PS-KH viruses and enzymes. The speed and fidelity of each double mutant are equivalent. Each exhibits a unique recombination phenotype, with IF-KH being competent for copy-choice recombination and PS-KH being competent for forced-copy-choice recombination. Although the IF-PS-KH RdRp exhibits biochemical properties within twofold of wild type, the virus is impaired substantially for recombination in cells. We conclude that there are biochemical properties of the RdRp in addition to speed and fidelity that determine the mechanism and efficiency of recombination. The interwoven nature of speed, fidelity, the undefined property suggested here, and recombination makes it impossible to attribute a single property of the RdRp to fitness. However, the derivatives described here may permit elucidation of the importance of recombination on the fitness of the viral population in a background of constant polymerase speed and fidelity.
Collapse
|
24
|
Huang SW, Cheng D, Wang JR. Enterovirus A71: virulence, antigenicity, and genetic evolution over the years. J Biomed Sci 2019; 26:81. [PMID: 31630680 PMCID: PMC6802317 DOI: 10.1186/s12929-019-0574-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
As a neurotropic virus, enterovirus A71 (EV-A71) emerge and remerge in the Asia-Pacific region since the 1990s, and has continuously been a threat to global public health, especially in children. Annually, EV-A71 results in hand-foot-and-mouth disease (HFMD) and occasionally causes severe neurological disease. Here we reviewed the global epidemiology and genotypic evolution of EV-A71 since 1997. The natural selection, mutation and recombination events observed in the genetic evolution were described. In addition, we have updated the antigenicity and virulence determinants that are known to date. Understanding EV-A71 epidemiology, genetic evolution, antigenicity, and virulence determinants can expand our insights of EV-A71 pathogenesis, which may benefit us in the future.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Dayna Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Jen-Ren Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, One, University Road, Tainan, 701, Taiwan. .,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
25
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
26
|
Lee KM, Gong YN, Shih SR. Methods for detection and study of virus-derived small RNAs produced from the intramolecular base-pairing region of the picornavirus genome. Methods 2019; 183:4-12. [PMID: 31493516 DOI: 10.1016/j.ymeth.2019.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022] Open
Abstract
There is conclusive evidential support for the existence of virus-derived small RNA (vsRNA) in mammals. Two types of vsRNA have been reported from picornaviruses. The first is virus-derived short-interfering RNA (vsiRNA) that is processed from viral double-stranded RNA intermediates during RNA replication. The other is small RNA derived from the highly base-paired single-stranded genomic region, e.g. the internal ribosome entry site (IRES) of picornaviruses. vsiRNA interacts with the Argonaute protein to control viral RNA replication through the process of RNA interference. However, the function of structure-based vsRNA is largely unknown. We previously identified vsRNA1 generated from the enterovirus-A71 (EV-A71) IRES region by the endogenous enzyme Dicer. Exogenous vsRNA1 can inhibit IRES activity both in vivo and in vitro, hence viral replication is inhibited. Here we describe key methods used to characterize vsRNA, including annotation by next-generation sequencing, abundance measurement by Northern blotting, determination of Dicer-dependence by gel-shift assay and in vitro cleavage assay, and the inhibitory effect on IRES activity via in vitro translation assay.
Collapse
Affiliation(s)
- Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
27
|
Cifuente JO, Moratorio G. Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Front Cell Infect Microbiol 2019; 9:283. [PMID: 31482072 PMCID: PMC6710328 DOI: 10.3389/fcimb.2019.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Picornaviruses constitute one of the most relevant viral groups according to their impact on human and animal health. Etiologic agents of a broad spectrum of illnesses with a clinical presentation that ranges from asymptomatic to fatal disease, they have been the cause of uncountable epidemics throughout history. Picornaviruses are small naked RNA-positive single-stranded viruses that include some of the most important pillars in the development of virology, comprising poliovirus, rhinovirus, and hepatitis A virus. Picornavirus infectious particles use the fecal-oral or respiratory routes as primary modes of transmission. In this regard, successful viral spread relies on the capability of viral capsids to (i) shelter the viral genome, (ii) display molecular determinants for cell receptor recognition, (iii) facilitate efficient genome delivery, and (iv) escape from the immune system. Importantly, picornaviruses display a substantial amount of genetic variability driven by both mutation and recombination. Therefore, the outcome of their replication results in the emergence of a genetically diverse cloud of individuals presenting phenotypic variance. The host humoral response against the capsid protein represents the most active immune pressure and primary weapon to control the infection. Since the preservation of the capsid function is deeply rooted in the virus evolutionary dynamics, here we review the current structural evidence focused on capsid antibody evasion mechanisms from that perspective.
Collapse
Affiliation(s)
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
28
|
Chang X, Lin Q, Hu J, Wang X, Li X, Cai M, Wang W, Zhang Z, Wang X. Discovery of a virus of the species Enterovirus F in goats. Arch Virol 2019; 164:2551-2558. [PMID: 31321588 DOI: 10.1007/s00705-019-04331-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Here, we report two novel enteroviruses, designated as SD-S67 and SD-S68, isolated from a goat farm. Their complete genome sequences were determined and found to be 7455 and 7465 nucleotides in length, respectively. Molecular characterization revealed that SD-S67 is closely related to bovine enterovirus strain 261 and that SD-S68 to caprine enterovirus strain CEV-JL14. Phylogenetic analysis showed that SD-S67 clustered with members of the species Enterovirus F, and that SD-S68 clustered with enteroviruses of goats and sheep. Recombination analysis showed that SD-S67 is likely to have undergone several recombination events in the process of its evolution. To the best of our knowledge, this is the first report of an enterovirus F isolate from a goat and of a coinfection with enteroviruses of different species in the same goat herd.
Collapse
Affiliation(s)
- Xiaoran Chang
- College of Veterinary Medicine, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Qian Lin
- College of Veterinary Medicine, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Junying Hu
- College of Veterinary Medicine, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Xu Wang
- College of Veterinary Medicine, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Xin Li
- College of Veterinary Medicine, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Menglu Cai
- College of Veterinary Medicine, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Weiyu Wang
- College of Veterinary Medicine, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Zecai Zhang
- College of Veterinary Medicine, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China
| | - Xinping Wang
- College of Veterinary Medicine, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China.
- Key Laboratory for Zoonoses Research, Ministry of Education, Changchun, Jilin, China.
| |
Collapse
|
29
|
Kempf BJ, Watkins CL, Peersen OB, Barton DJ. Picornavirus RNA Recombination Counteracts Error Catastrophe. J Virol 2019; 93:e00652-19. [PMID: 31068422 PMCID: PMC6600191 DOI: 10.1128/jvi.00652-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/24/2023] Open
Abstract
Template-dependent RNA replication mechanisms render picornaviruses susceptible to error catastrophe, an overwhelming accumulation of mutations incompatible with viability. Viral RNA recombination, in theory, provides a mechanism for viruses to counteract error catastrophe. We tested this theory by exploiting well-defined mutations in the poliovirus RNA-dependent RNA polymerase (RDRP), namely, a G64S mutation and an L420A mutation. Our data reveal two distinct mechanisms by which picornaviral RDRPs influence error catastrophe: fidelity of RNA synthesis and RNA recombination. A G64S mutation increased the fidelity of the viral polymerase and rendered the virus resistant to ribavirin-induced error catastrophe, but only when RNA recombination was at wild-type levels. An L420A mutation in the viral polymerase inhibited RNA recombination and exacerbated ribavirin-induced error catastrophe. Furthermore, when RNA recombination was substantially reduced by an L420A mutation, a high-fidelity G64S polymerase failed to make the virus resistant to ribavirin. These data indicate that viral RNA recombination is required for poliovirus to evade ribavirin-induced error catastrophe. The conserved nature of L420 within RDRPs suggests that RNA recombination is a common mechanism for picornaviruses to counteract and avoid error catastrophe.IMPORTANCE Positive-strand RNA viruses produce vast amounts of progeny in very short periods of time via template-dependent RNA replication mechanisms. Template-dependent RNA replication, while efficient, can be disadvantageous due to error-prone viral polymerases. The accumulation of mutations in viral RNA genomes leads to error catastrophe. In this study, we substantiate long-held theories regarding the advantages and disadvantages of asexual and sexual replication strategies among RNA viruses. In particular, we show that picornavirus RNA recombination counteracts the negative consequences of asexual template-dependent RNA replication mechanisms, namely, error catastrophe.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Colleen L Watkins
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
30
|
Li C, Wang H, Shi J, Yang D, Zhou G, Chang J, Cameron CE, Woodman A, Yu L. Senecavirus-Specific Recombination Assays Reveal the Intimate Link between Polymerase Fidelity and RNA Recombination. J Virol 2019; 93:e00576-19. [PMID: 30996084 PMCID: PMC6580943 DOI: 10.1128/jvi.00576-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Senecavirus A (SVA) is a reemerging virus, and recent evidence has emphasized the importance of SVA recombination in vivo on virus evolution. In this study, we report the development of an infectious cDNA clone for the SVA/HLJ/CHA/2016 strain. We used this strain to develop a reporter virus expressing enhanced green fluorescent protein (eGFP), which we then used to screen for a recombination-deficient SVA by an eGFP retention assay. Sequencing of the virus that retained the eGFP following passage allowed us to identify the nonsynonymous mutations (S460L alone and I212V-S460L in combination) in the RNA-dependent RNA polymerase (RdRp) region of the genome. We developed a Senecavirus-specific cell culture-based recombination assay, which we used to elucidate the role of RdRp in SVA recombination. Our results demonstrate that these two polymerase variants (S460L and I212/S460L) have reduced recombination capacity. These results indicate that the RdRp plays a central role in SVA replicative recombination. Notably, our results showed that the two recombination-deficient variants have higher replication fidelity than the wild type (WT) and display decreased ribavirin sensitivity compared to the WT. In addition, these two mutants exhibited significantly increased fitness in vitro compared to the WT. These results demonstrate that recombination and mutation rates are intimately linked. Our results have important implications for understanding the crucial role of the RdRp in virus recombination and fitness, especially in the molecular mechanisms of SVA evolution and pathogenicity.IMPORTANCE Recent evidence has emphasized the importance of SVA recombination on virus evolution in vivo We describe the first assays to study Senecavirus A recombination. The results show that the RNA-dependent RNA polymerase plays a crucial role in recombination and that recombination can impact the fitness of SVA in cell culture. Further, SVA polymerase fidelity is closely related to recombination efficiency. The results provide key insights into the role of recombination in positive-strand RNA viruses.
Collapse
Affiliation(s)
- Chen Li
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Haiwei Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jiabao Shi
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Guohui Zhou
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jitao Chang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Craig E Cameron
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew Woodman
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|