1
|
Evidence for Different Virulence Determinants and Host Response after Infection of Turkeys and Chickens with Highly Pathogenic H7N1 Avian Influenza Virus. J Virol 2022; 96:e0099422. [PMID: 35993736 PMCID: PMC9472639 DOI: 10.1128/jvi.00994-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.
Collapse
|
2
|
Gischke M, Bagato O, Breithaupt A, Scheibner D, Blaurock C, Vallbracht M, Karger A, Crossley B, Veits J, Böttcher-Friebertshäuser E, Mettenleiter TC, Abdelwhab EM. The role of glycosylation in the N-terminus of the hemagglutinin of a unique H4N2 with a natural polybasic cleavage site in virus fitness in vitro and in vivo. Virulence 2021; 12:666-678. [PMID: 33538209 PMCID: PMC7872060 DOI: 10.1080/21505594.2021.1881344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
To date, only low pathogenic (LP) H5 and H7 avian influenza viruses (AIV) have been observed to naturally shift to a highly pathogenic (HP) phenotype after mutation of the monobasic hemagglutinin (HA) cleavage site (HACS) to polybasic motifs. The LPAIV monobasic HACS is activated by tissue-restricted trypsin-like enzymes, while the HPAIV polybasic HACS is activated by ubiquitous furin-like enzymes. However, glycosylation near the HACS can affect proteolytic activation and reduced virulence of some HPAIV in chickens. In 2012, a unique H4N2 virus with a polybasic HACS was isolated from quails but was LP in chickens. Whether glycosylation sites (GS) near the HACS hinder the evolution of HPAIV H4N2 remains unclear. Here, we analyzed the prevalence of potential GS in the N-terminus of HA1, 2NYT4 and 18NGT20, in all AIV sequences and studied their impact on H4N2 virus fitness. Although the two motifs are conserved, some non-H5/H7 subtypes lack one or both GS. Both sites were glycosylated in this H4N2 virus. Deglycosylation increased trypsin-independent replication in cell culture, cell-to-cell spread and syncytium formation at low-acidic pH, but negatively affected the thermostability and receptor-binding affinity. Alteration of 2NYT4 with or without 18NGT20 enabled systemic spread of the virus to different organs including the brain of chicken embryos. However, all intranasally inoculated chickens did not show clinical signs. Together, although the conserved GS near the HACS are important for HA stability and receptor binding, deglycosylation increased the H4N2 HA-activation, replication and tissue tropism suggesting a potential role for virus adaptation in poultry.
Collapse
Affiliation(s)
- Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Dokki, Giza, Egypt
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Claudia Blaurock
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Melina Vallbracht
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Beate Crossley
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California, Davis, United States
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | | | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Laleye AT, Abolnik C. Emergence of highly pathogenic H5N2 and H7N1 influenza A viruses from low pathogenic precursors by serial passage in ovo. PLoS One 2020; 15:e0240290. [PMID: 33031421 PMCID: PMC7544131 DOI: 10.1371/journal.pone.0240290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/24/2020] [Indexed: 02/01/2023] Open
Abstract
Highly pathogenic (HPAI) strains emerge from their low pathogenic (LPAI) precursors and cause severe disease in poultry with enormous economic losses, and zoonotic potential. Understanding the mechanisms involved in HPAI emergence is thus an important goal for risk assessments. In this study ostrich-origin H5N2 and H7N1 LPAI progenitor viruses were serially passaged seventeen times in 14-day old embryonated chicken eggs and Ion Torrent ultra-deep sequencing was used to monitor the incremental changes in the consensus genome sequences. Both virus strains increased in virulence with successive passages, but the H7N1 virus attained a virulent phenotype sooner. Mutations V63M, E228V and D272G in the HA protein, Q357K in the nucleoprotein (NP) and H155P in the neuraminidase protein correlated with the increased pathogenicity of the H5N2 virus; whereas R584H and L589I substitutions in the polymerase B2 protein, A146T and Q220E in HA plus D231N in the matrix 1 protein correlated with increased pathogenicity of the H7N1 virus in embryos. Enzymatic cleavage of HA protein is the critical virulence determinant, and HA cleavage site motifs containing multibasic amino acids were detected at the sub-consensus level. The motifs PQERRR/GLF and PQRERR/GLF were first detected in passages 11 and 15 respectively of the H5N2 virus, and in the H7N1 virus the motifs PELPKGKK/GLF and PELPKRR/GLF were detected as early as passage 7. Most significantly, a 13 nucleotide insert of unknown origin was identified at passage 6 of the H5N2 virus, and at passage 17 a 42 nucleotide insert derived from the influenza NP gene was identified. This is the first report of non-homologous recombination at the HA cleavage site in an H5 subtype virus. This study provides insights into how HPAI viruses emerge from low pathogenic precursors and demonstrated the pathogenic potential of H5N2 and H7N1 strains that have not yet been implicated in HPAI outbreaks.
Collapse
Affiliation(s)
- Agnes Tinuke Laleye
- National Veterinary Research Institute, Vom, Nigeria
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Naguib MM, Verhagen JH, Mostafa A, Wille M, Li R, Graaf A, Järhult JD, Ellström P, Zohari S, Lundkvist Å, Olsen B. Global patterns of avian influenza A (H7): virus evolution and zoonotic threats. FEMS Microbiol Rev 2019; 43:608-621. [PMID: 31381759 PMCID: PMC8038931 DOI: 10.1093/femsre/fuz019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023] Open
Abstract
Avian influenza viruses (AIVs) continue to impose a negative impact on animal and human health worldwide. In particular, the emergence of highly pathogenic AIV H5 and, more recently, the emergence of low pathogenic AIV H7N9 have led to enormous socioeconomical losses in the poultry industry and resulted in fatal human infections. While H5N1 remains infamous, the number of zoonotic infections with H7N9 has far surpassed those attributed to H5. Despite the clear public health concerns posed by AIV H7, it is unclear why specifically this virus subtype became endemic in poultry and emerged in humans. In this review, we bring together data on global patterns of H7 circulation, evolution and emergence in humans. Specifically, we discuss data from the wild bird reservoir, expansion and epidemiology in poultry, significant increase in their zoonotic potential since 2013 and genesis of highly pathogenic H7. In addition, we analysed available sequence data from an evolutionary perspective, demonstrating patterns of introductions into distinct geographic regions and reassortment dynamics. The integration of all aspects is crucial in the optimisation of surveillance efforts in wild birds, poultry and humans, and we emphasise the need for a One Health approach in controlling emerging viruses such as AIV H7.
Collapse
Affiliation(s)
- Mahmoud M Naguib
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, 7 Nadi El-Seid Street, Giza 12618, Egypt
| | - Josanne H Verhagen
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 44008 Hus Vita, Kalmar SE-391 82 , Sweden
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen 35392, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), 33 El-Buhouth street, Giza 12622, Egypt
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne 3000, Victoria, Australia
| | - Ruiyun Li
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, Praed Street, London W2 1PG, United Kingdom
| | - Annika Graaf
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, Uppsala SE-75189, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Husargatan 3, Uppsala University, Uppsala SE-75237, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Sjukhusvägen 85, Uppsala SE-75185, Sweden
| |
Collapse
|
5
|
Variable impact of the hemagglutinin polybasic cleavage site on virulence and pathogenesis of avian influenza H7N7 virus in chickens, turkeys and ducks. Sci Rep 2019; 9:11556. [PMID: 31399610 PMCID: PMC6689016 DOI: 10.1038/s41598-019-47938-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/24/2019] [Indexed: 11/09/2022] Open
Abstract
Avian influenza viruses (AIV) are classified into 16 hemagglutinin (HA; H1-H16) and 9 neuraminidase (NA; N1-N9) subtypes. All AIV are low pathogenic (LP) in birds, but subtypes H5 and H7 AIV can evolve into highly pathogenic (HP) forms. In the last two decades evolution of HPAIV H7 from LPAIV has been frequently reported. However, little is known about the pathogenesis and evolution of HP H7 from LP ancestors particularly, in non-chicken hosts. In 2015, both LP and HP H7N7 AIV were isolated from chickens in two neighbouring farms in Germany. Here, the virulence of these isogenic H7N7 LP, HP and LP virus carrying a polybasic HA cleavage site (HACS) from HP (designated LP-Poly) was studied in chickens, turkeys and different duck breeds. The LP precursor was avirulent in all birds. In contrast, all inoculated and contact chickens and turkeys died after infection with HP. HP infected Pekin and Mallard ducks remained clinically healthy, while Muscovy ducks exhibited moderate depression and excreted viruses at significantly higher amounts. The polybasic HACS increased virulence in a species-specific manner with intravenous pathogenicity indices of 3.0, 1.9 and 0.2 in chickens, turkeys and Muscovy ducks, respectively. Infection of endothelial cells was only observed in chickens. In summary, Pekin and Mallard were more resistant to HPAIV H7N7 than chickens, turkeys and Muscovy ducks. The polybasic HACS was the main determinant for virulence and endotheliotropism of HPAIV H7N7 in chickens, whereas other viral and/or host factors play an essential role in virulence and pathogenesis in turkeys and ducks.
Collapse
|
6
|
Scheibner D, Blaurock C, Mettenleiter TC, Abdelwhab EM. Virulence of three European highly pathogenic H7N1 and H7N7 avian influenza viruses in Pekin and Muscovy ducks. BMC Vet Res 2019; 15:142. [PMID: 31077209 PMCID: PMC6511205 DOI: 10.1186/s12917-019-1899-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/02/2019] [Indexed: 11/24/2022] Open
Abstract
Background There is paucity of data on the virulence of highly pathogenic (HP) avian influenza viruses (AIV) H7 in ducks compared to HPAIV H5. Here, the virulence of HPAIV H7N1 (designated H7N1-FPV34 and H7N1-It99) and H7N7 (designated H7N7-FPV27) was assessed in Pekin and/or Muscovy ducklings after intrachoanal (IC) or intramuscular (IM) infection. Results The morbidity rate ranged from 60 to 100% and mortality rate from 20 to 80% depending on the duck species, virus strain and/or challenge route. All Muscovy ducklings inoculated IC with H7N7-FPV27 or H7N1-FPV34 exhibited mild to severe clinical signs resulting in the death of 2/10 and 8/10 ducklings, respectively. Also, 2/10 and 6/9 of inoculated Muscovy ducklings died after IC or IM infection with H7N1-It99, respectively. Moreover, 5/10 Pekin ducklings inoculated IC or IM with H7N1-It99 died. The level of virus detected in the oropharyngeal swabs was higher than in the cloacal swabs. Conclusion Taken together, HPAIV H7 cause mortality and morbidity in Muscovy and Pekin ducklings. The severity of disease in Muscovy ducklings depended on the virus strain and/or route of infection. Preferential replication of the virus in the respiratory tract compared to the gut merits further investigation.
Collapse
Affiliation(s)
- David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Claudia Blaurock
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
7
|
Wang X, Zeng Z, Zhang Z, Zheng Y, Li B, Su G, Li H, Huang L, Qi W, Liao M. The Appropriate Combination of Hemagglutinin and Neuraminidase Prompts the Predominant H5N6 Highly Pathogenic Avian Influenza Virus in Birds. Front Microbiol 2018; 9:1088. [PMID: 29896169 PMCID: PMC5987672 DOI: 10.3389/fmicb.2018.01088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Haemagglutinin (HA) and neuraminidase (NA) are two vital surface glycoproteins of influenza virus. The HA of H5N6 highly pathogenic avian influenza virus is divided into Major/H5 and Minor/H5, and its NA consists of short stalk NA and full-length stalk NA. The strain combined with Major/H5 and short stalk NA account for 76.8% of all strains, and the proportion was 23.0% matched by Minor/H5 and full-length stalk NA. Our objective was to investigate the influence of HA-NA matching on the biological characteristics and the effects of the epidemic trend of H5N6 on mice and chickens. Four different strains combined with two HAs and two NAs of the represented H5N6 viruses with the fixed six internal segments were rescued and analyzed. Plaque formation, NA activity of infectious particles, and virus growth curve assays, as well as a saliva acid receptor experiment, with mice and chickens were performed. We found that all the strains can replicate well on Madin-Darby canine kidney (MDCK) cells and chicken embryo fibroblasts (CEF) cells, simultaneously, mice and infection group chickens were complete lethal. However, the strain combined with Major/H5 and short stalk N6 formed smaller plaque on MDCK, showed a moderate replication ability in both MDCK and CEF, and exhibited a higher survival rate among the contact group of chickens. Conversely, strains with opposite biological characters which combined with Minor/H5 and short stalk N6 seldom exist in nature. Hence, we drew the conclusion that the appropriate combination of Major/H5 and short stalk N6 occur widely in nature with appropriate biological characteristics for the proliferation and transmission, whereas other combinations of HA and NA had a low proportion and even have not yet been detected.
Collapse
Affiliation(s)
- Xiuhui Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoyong Zeng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zaoyue Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yi Zheng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bo Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guanming Su
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huanan Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihong Huang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Wenbao Qi
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
8
|
Dietze K, Graaf A, Homeier-Bachmann T, Grund C, Forth L, Pohlmann A, Jeske C, Wintermann M, Beer M, Conraths FJ, Harder T. From low to high pathogenicity-Characterization of H7N7 avian influenza viruses in two epidemiologically linked outbreaks. Transbound Emerg Dis 2018; 65:1576-1587. [PMID: 29790657 DOI: 10.1111/tbed.12906] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 01/05/2023]
Abstract
The ability of low pathogenic (LP) avian influenza viruses (AIV) of the subtypes H5 and H7 to mutate spontaneously to highly pathogenic (HP) variants is the main reason for their stringent control. On-the-spot evidence from the field of mutations in LPAIV to render the virus into nascent HP variants is scarce. Epidemiological investigations and molecular characterization of two spatiotemporally linked outbreaks caused by LP, and subsequently, HPAIV H7N7 in two-layer farms in Germany yielded such evidence. The outbreaks occurred within 45 days on farms 400 m apart. The LP progenitor virus was identified on both farms, with its putative HP inheritor cocirculating and then dominating on the second farm. As postulated before, mutations in the hemagglutinin cleavage site (HACS) proved to be the most decisive change in the genome of HPAIV, in this case, it was mutated from monobasic (LP) PEIPKGR*GLF into polybasic (HP) PEIPKRKRR*GLF. The full-length genome sequences of both viruses were nearly identical with only ten coding mutations outside the HACS scattered along six genome segments in the HPAIV. Five of these were already present as minor variants in the LPAIV quasispecies of the LPAI-only affected farm. H7-specific seroconversion of part of the chicken population together with the codetection of LPAIV HACS sequences in swab samples of the HPAI outbreak farm suggested an initial introduction of the LP progenitor and a subsequent switch to HPAIV H7N7 after the incursion. The findings provide rare field evidence for a shift in pathogenicity of a notifiable AIV infection and re-inforce the validity of current approaches of control measures to curtail low pathogenic H5 and H7 virus circulation in poultry.
Collapse
Affiliation(s)
- Klaas Dietze
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Annika Graaf
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | | | - Leonie Forth
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Christa Jeske
- Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES), Wardenburg, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Timm Harder
- Friedrich-Loeffler-Institut, Greifswald, Germany
| |
Collapse
|
9
|
Christiansen DH, McBeath AJA, Aamelfot M, Matejusova I, Fourrier M, White P, Petersen PE, Falk K. First field evidence of the evolution from a non-virulent HPR0 to a virulent HPR-deleted infectious salmon anaemia virus. J Gen Virol 2017; 98:595-606. [PMID: 28475029 DOI: 10.1099/jgv.0.000741] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The putatively non-virulent subtype of infectious salmon anaemia virus (ISAV), ISAV-HPR0, is proposed to act as a progenitor and reservoir for all virulent ISAVs and thus represent a potential risk factor for the emergence of infectious salmon anaemia (ISA) disease. Here, we provide the first evidence of genetic and functional evolution from an ISAV-HPR0 variant (FO/07/12) to a low-virulent ISAV virus (FO/121/14) in a Faroese Atlantic salmon marine farm. The FO/121/14 virus infection was not associated with specific clinical signs of ISA and was confined to a single net-pen, while various ISAV-HPR0 subtypes were found circulating in most epidemiologically linked marine and freshwater farms. Sequence analysis of all eight segments revealed that the FO/121/14 virus was identical, apart from a substitution in the fusion (F) gene (Q266L) and a deletion in the haemagglutinin-esterase (HE) gene, to the FO/07/12 variant from a freshwater farm, which supplied smolts exclusively to the FO/121/14-positive net-pen. An immersion challenge with the FO/121/14 virus induced a systemic infection in Atlantic salmon associated with a low mortality and mild clinical signs confirming its low pathogenicity. Our results demonstrate that mutations in the F protein and deletions in the highly polymorphic region (HPR) of the HE protein represent a minimum requirement for ISAV to gain virulence and to switch cell tropism from a localized epithelial infection to a systemic endotheliotropic infection. This documents that ISAV-HPR0 represents a reservoir and risk factor for the emergence of ISA disease.
Collapse
Affiliation(s)
- Debes H Christiansen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, Tórshavn, Faroe Islands
| | | | | | | | | | - Patricia White
- Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland
| | - Petra E Petersen
- Faroese Food and Veterinary Authority, National Reference Laboratory for Fish Diseases, Tórshavn, Faroe Islands
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
10
|
Composition of the Hemagglutinin Polybasic Proteolytic Cleavage Motif Mediates Variable Virulence of H7N7 Avian Influenza Viruses. Sci Rep 2016; 6:39505. [PMID: 28004772 PMCID: PMC5177941 DOI: 10.1038/srep39505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
Acquisition of a polybasic cleavage site (pCS) in the hemagglutinin (HA) is a prerequisite for the shift of low pathogenic (LP) avian influenza virus (AIV) to the highly pathogenic (HP) form in chickens. Whereas presence of a pCS is required for high pathogenicity, less is known about the effect of composition of pCS on virulence of AIV particularly H7N7. Here, we investigated the virulence of four avian H7N7 viruses after insertion of different naturally occurring pCS from two HPAIV H7N7 (designated pCSGE and pCSUK) or from H7N1 (pCSIT). In vitro, the different pCS motifs modulated viral replication and the HA cleavability independent on the HA background. However, in vivo, the level of virulence conferred by the different pCS varied significantly. Within the respective viral backgrounds viruses with pCSIT and pCSGE were more virulent than those coding for pCSUK. The latter showed also the most restricted spread in inoculated birds. Besides the pCS, other gene segments modulated virulence of these H7N7 viruses. Together, the specific composition of the pCS significantly influences virulence of H7N7 viruses. Eurasian LPAIV H7N7 may shift to high pathogenicity after acquisition of “specific” pCS motifs and/or other gene segments from HPAIV.
Collapse
|
11
|
Harder T, Stech J, Abdelwhab ESM, Veits J, Conraths FJ, Beer M, Mettenleiter TC. A pallid rainbow: toward improved understanding of avian influenza biology. Future Virol 2016. [DOI: 10.2217/fvl-2016-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly pathogenic avian influenza (‘fowl plague’) has been known since the late 19th century as a devastating infection in poultry but of concern primarily to farmers and veterinarians. Mostly sporadic outbreaks occurred and, except for one episode, wild birds were unaffected. This situation changed drastically by the recognition that avian influenza viruses exhibit zoonotic potential leading to fatal infections in mammals including humans. Moreover, highly pathogenic avian influenza gained access to highly mobile, migratory wild bird populations resulting in unprecedented intercontinental spread. The rapid evolution of avian influenza viruses, their adaption to novel hosts and the resulting change in epidemiology are of major concern. Recent advances in understanding influenza virus biology at the interface between wild birds-terrestrial poultry-livestock and humans are highlighted here.
Collapse
Affiliation(s)
- Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Jürgen Stech
- Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - El-Sayed M Abdelwhab
- Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Jutta Veits
- Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Franz J Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology & Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Affiliation(s)
- Daniel Marc
- a ISP, INRA, Université Tours , Nouzilly , France
| |
Collapse
|
13
|
Abdelwhab ESM, Veits J, Breithaupt A, Gohrbandt S, Ziller M, Teifke JP, Stech J, Mettenleiter TC. Prevalence of the C-terminal truncations of NS1 in avian influenza A viruses and effect on virulence and replication of a highly pathogenic H7N1 virus in chickens. Virulence 2016; 7:546-57. [PMID: 26981790 DOI: 10.1080/21505594.2016.1159367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Highly pathogenic (HP) avian influenza viruses (AIV) evolve from low pathogenic (LP) precursors after circulation in poultry by reassortment and/or single mutations in different gene segments including that encoding NS1. The carboxyl terminal end (CTE) of NS1 exhibits deletions between amino acid 202 and 230 with still unknown impact on virulence of AIV in chickens. In this study, NS1 protein sequences of all AIV subtypes in birds from 1902 to 2015 were analyzed to study the prevalence and distribution of CTE truncation (ΔCTE). Thirteen different ΔCTE forms were observed in NS1 proteins from 11 HA and 8 NA subtypes with high prevalences in H9, H7, H6 and H10 and N9, N2, N6 and N1 subtypes particularly in chickens and minor poultry species. With 88% NS217 lacking amino acids 218-230 was the most common ΔCTE form followed by NS224 (3.6%). NS217 was found in 10 and 8 different HA and NA subtypes, respectively, whereas NS224 was detected exclusively in the Italian HPAIV H7N1 suggesting relevance for virulence. To test this assumption, 3 recombinant HPAIV H7N1 were constructed carrying wild-type HP NS1 (Hp-NS224), NS1 with extended CTE (Hp-NS230) or NS1 from LPAIV H7N1 (Hp-NSLp), and tested in-vitro and in-vivo. Extension of CTE in Hp NS1 significantly decreased virus replication in chicken embryo kidney cells. Truncation in the NS1 decreased the tropism of Hp-NS224 to the endothelium, central nervous system and respiratory tract epithelium without significant difference in virulence in chickens. This study described the variable forms of ΔCTE in NS1 and indicated that CTE is not an essential virulence determinant particularly for the Italian HPAIV H7N1 but may be a host-adaptation marker required for efficient virus replication.
Collapse
Affiliation(s)
- El-Sayed M Abdelwhab
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Jutta Veits
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Angele Breithaupt
- b Department of Experimental Animal Facilities and Biorisk Management , Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Sandra Gohrbandt
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Mario Ziller
- c Biomathematics Working Group, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Jens P Teifke
- b Department of Experimental Animal Facilities and Biorisk Management , Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Jürgen Stech
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| | - Thomas C Mettenleiter
- a Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald , Germany
| |
Collapse
|