1
|
Li L, Li X, Zhong H, Li M, Wan B, He W, Zhang Y, Du Y, Chen D, Zhang W, Ji P, Jiang D, Han S. VP3 protein of Senecavirus A promotes viral IRES-driven translation and attenuates innate immunity by specifically relocalizing hnRNPA2B1. J Virol 2024; 98:e0122724. [PMID: 39207136 PMCID: PMC11406996 DOI: 10.1128/jvi.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Viruses deploy sophisticated strategies to hijack the host's translation machinery to favor viral protein synthesis and counteract innate cellular defenses. However, little is known about the mechanisms by which Senecavirus A (SVA) controls the host's translation. Using a series of sophisticated molecular cell manipulation techniques, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was identified as an essential host factor involved in translation control in SVA-infected cells. It was also determined that the SVA structural protein, VP3, binds to and relocalizes hnRNPA2B1, which interferes with the host's protein synthesis machinery to establish a cellular environment that facilitates viral propagation via a two-pronged strategy: first, hnRNPA2B1 serves as a potent internal ribosome entry site (IRES) trans-acting factor, which is selectively co-opted to promote viral IRES-driven translation by supporting the assembly of translation initiation complexes. Second, a strong repression of host cell translation occurs in the context of the VP3-hnRNPA2B1 interaction, resulting in attenuation of the interferons response. This is the first study to demonstrate the interaction between SVA VP3 and hnRNPA2B1, and to characterize their key roles in manipulating translation. This novel dual mechanism, which regulates selective mRNA translation and immune evasion of virus-infected cells, highlights the VP3-hnRNPA2B1 complex as a potential target for the development of modified antiviral or oncolytic reagents. IMPORTANCE Viral reproduction is contingent on viral protein synthesis, which relies entirely on the host's translation machinery. As such, viruses often need to control the cellular translational apparatus to favor viral protein production and avoid host innate defenses. Senecavirus A (SVA) is an important virus, both as an emerging pathogen in the pork industry and as a potential oncolytic virus for neuroendocrine cancers. Here, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was identified as a critical regulator of the translational landscape during SVA infection. This study supports a model whereby the VP3 protein of SVA efficiently subverts the host's protein synthesis machinery through its ability to bind to and relocalize hnRNPA2B1, not only selectively promoting viral internal ribosome entry site-driven translation but also resulting in global translation shutdown and immune evasion. Together, these data provide new insights into how the complex interactions between translation machinery, SVA, and innate immunity contribute to the pathogenicity of the SVA.
Collapse
Affiliation(s)
- Lu Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinwei Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Han Zhong
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mingyang Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Wenrui He
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Yongkun Du
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengchao Ji
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Dawei Jiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Shichong Han
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Li Y, Zhang L, Wang L, Li J, Zhao Y, Liu F, Wang Q. Structure and function of type IV IRES in picornaviruses: a systematic review. Front Microbiol 2024; 15:1415698. [PMID: 38855772 PMCID: PMC11157119 DOI: 10.3389/fmicb.2024.1415698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
The Picornaviridae is a family of icosahedral viruses with single-stranded, highly diverse positive-sense RNA genomes. Virions consist of a capsid, without envelope, surrounding a core of RNA genome. A typical genome of picornavirus harbors a well-conserved and highly structured RNA element known as the internal ribosome entry site (IRES), functionally essential for viral replication and protein translation. Based on differences in their structures and mechanisms of action, picornaviral IRESs have been categorized into five types: type I, II, III, IV, and V. Compared with the type IV IRES, the others not only are structurally complicated, but also involve multiple initiation factors for triggering protein translation. The type IV IRES, often referred to as hepatitis C virus (HCV)-like IRES due to its structural resemblance to the HCV IRES, exhibits a simpler and more compact structure than those of the other four. The increasing identification of picornaviruses with the type IV IRES suggests that this IRES type seems to reveal strong retention and adaptation in terms of viral evolution. Here, we systematically reviewed structural features and biological functions of the type IV IRES in picornaviruses. A comprehensive understanding of the roles of type IV IRESs will contribute to elucidating the replication mechanism and pathogenesis of picornaviruses.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Lei Zhang
- Shandong New Hope Liuhe Group Co., Ltd., Qingdao, China
| | - Ling Wang
- University Hospital, Qingdao Agricultural University, Qingdao, China
| | - Jing Li
- Market Supervision Administration of Huangdao District, Qingdao, China
| | - Yanwei Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Nouwen LV, Breeuwsma M, Zaal EA, van de Lest CHA, Buitendijk I, Zwaagstra M, Balić P, Filippov DV, Berkers CR, van Kuppeveld FJM. Modulation of nucleotide metabolism by picornaviruses. PLoS Pathog 2024; 20:e1012036. [PMID: 38457376 PMCID: PMC10923435 DOI: 10.1371/journal.ppat.1012036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/08/2024] [Indexed: 03/10/2024] Open
Abstract
Viruses actively reprogram the metabolism of the host to ensure the availability of sufficient building blocks for virus replication and spreading. However, relatively little is known about how picornaviruses-a large family of small, non-enveloped positive-strand RNA viruses-modulate cellular metabolism for their own benefit. Here, we studied the modulation of host metabolism by coxsackievirus B3 (CVB3), a member of the enterovirus genus, and encephalomyocarditis virus (EMCV), a member of the cardiovirus genus, using steady-state as well as 13C-glucose tracing metabolomics. We demonstrate that both CVB3 and EMCV increase the levels of pyrimidine and purine metabolites and provide evidence that this increase is mediated through degradation of nucleic acids and nucleotide recycling, rather than upregulation of de novo synthesis. Finally, by integrating our metabolomics data with a previously acquired phosphoproteomics dataset of CVB3-infected cells, we identify alterations in phosphorylation status of key enzymes involved in nucleotide metabolism, providing insight into the regulation of nucleotide metabolism during infection.
Collapse
Affiliation(s)
- Lonneke V. Nouwen
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martijn Breeuwsma
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther A. Zaal
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chris H. A. van de Lest
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Inge Buitendijk
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marleen Zwaagstra
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Pascal Balić
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Universiteit Leiden, Leiden, The Netherlands
| | - Dmitri V. Filippov
- Gorlaeus Laboratories, Leiden Institute of Chemistry, Universiteit Leiden, Leiden, The Netherlands
| | - Celia R. Berkers
- Division Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J. M. van Kuppeveld
- Section of Virology, Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Krogvold L, Genoni A, Puggioni A, Campani D, Richardson SJ, Flaxman CS, Edwin B, Buanes T, Dahl-Jørgensen K, Toniolo A. Live enteroviruses, but not other viruses, detected in human pancreas at the onset of type 1 diabetes in the DiViD study. Diabetologia 2022; 65:2108-2120. [PMID: 35953727 PMCID: PMC9630231 DOI: 10.1007/s00125-022-05779-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Enterovirus (EV) infection of pancreatic islet cells is one possible factor contributing to type 1 diabetes development. We have reported the presence of EV genome by PCR and of EV proteins by immunohistochemistry in pancreatic sections. Here we explore multiple human virus species in the Diabetes Virus Detection (DiViD) study cases using innovative methods, including virus passage in cell cultures. METHODS Six recent-onset type 1 diabetes patients (age 24-35) were included in the DiViD study. Minimal pancreatic tail resection was performed under sterile conditions. Eleven live cases (age 43-83) of pancreatic carcinoma without diabetes served as control cases. In the present study, we used EV detection methods that combine virus growth in cell culture, gene amplification and detection of virus-coded proteins by immunofluorescence. Pancreas homogenates in cell culture medium were incubated with EV-susceptible cell lines for 3 days. Two to three blind passages were performed. DNA and RNA were extracted from both pancreas tissue and cell cultures. Real-time PCR was used for detecting 20 different viral agents other than EVs (six herpesviruses, human polyomavirus [BK virus and JC virus], parvovirus B19, hepatitis B virus, hepatitis C virus, hepatitis A virus, mumps, rubella, influenza A/B, parainfluenza 1-4, respiratory syncytial virus, astrovirus, norovirus, rotavirus). EV genomes were detected by endpoint PCR using five primer pairs targeting the partially conserved 5' untranslated region genome region of the A, B, C and D species. Amplicons were sequenced. The expression of EV capsid proteins was evaluated in cultured cells using a panel of EV antibodies. RESULTS Samples from six of six individuals with type 1 diabetes (cases) and two of 11 individuals without diabetes (control cases) contained EV genomes (p<0.05). In contrast, genomes of 20 human viruses other than EVs could be detected only once in an individual with diabetes (Epstein-Barr virus) and once in an individual without diabetes (parvovirus B19). EV detection was confirmed by immunofluorescence of cultured cells incubated with pancreatic extracts: viral antigens were expressed in the cytoplasm of approximately 1% of cells. Notably, infection could be transmitted from EV-positive cell cultures to uninfected cell cultures using supernatants filtered through 100 nm membranes, indicating that infectious agents of less than 100 nm were present in pancreases. Due to the slow progression of infection in EV-carrying cell cultures, cytopathic effects were not observed by standard microscopy but were recognised by measuring cell viability. Sequences of 5' untranslated region amplicons were compatible with EVs of the B, A and C species. Compared with control cell cultures exposed to EV-negative pancreatic extracts, EV-carrying cell cultures produced significantly higher levels of IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP1). CONCLUSIONS/INTERPRETATION Sensitive assays confirm that the pancreases of all DiViD cases contain EVs but no other viruses. Analogous EV strains have been found in pancreases of two of 11 individuals without diabetes. The detected EV strains can be passaged in series from one cell culture to another in the form of poorly replicating live viruses encoding antigenic proteins recognised by multiple EV-specific antibodies. Thus, the early phase of type 1 diabetes is associated with a low-grade infection by EVs, but not by other viral agents.
Collapse
Affiliation(s)
- Lars Krogvold
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Angelo Genoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Anna Puggioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniela Campani
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Sarah J Richardson
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Christine S Flaxman
- Islet Biology Group (IBEx), Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter College of Medicine and Health, Exeter, UK
| | - Bjørn Edwin
- Department for HPB Surgery, Oslo University Hospital, Oslo, Norway
| | - Trond Buanes
- Department for HPB Surgery, Oslo University Hospital, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
5
|
Bolten A, Schmidt V, Steinhauer K. Use of the European standardization framework established by CEN/TC 216 for effective disinfection strategies in human medicine, veterinary medicine, food hygiene, industry, and domestic and institutional use - a review. GMS HYGIENE AND INFECTION CONTROL 2022; 17:Doc14. [PMID: 36157383 PMCID: PMC9487781 DOI: 10.3205/dgkh000417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The SARS-CoV-2 pandemic illustrates the necessity of effective preventive measures for existing and newly emerging pathogens. When confronted with pathogens or spoilage agents, especially if they are not yet well studied, effective hygiene protocols are needed immediately. In the medical field, effective preventive measures are key to prevent vulnerable patients from infections. In production areas, effective hygiene measures are needed to protect goods from spoilage or microbial contamination. The European standardization framework established by the European Committee for Standardization (CEN) ensures that effective hygiene measures are available and can be immediately implemented when needed. Based on a broad portfolio of standards/laboratory tests, activity claims specifically addressing the special features of applications of antimicrobial formulations are substantiated. In this review, the concept of using standardized surrogate test organisms is explained, and the European standardized test approach to claim microbicidal and virucidal efficacy, the specificity of claims and their relevance for infection prevention measures is illustrated. Furthermore, relevance of the European Norm test methods is elucidated in the light of legal requirements. Finally, the review explains the systematics of the standardized methodological portfolio of CEN, Technical Committee 216, which is very useful when effective strategies for fighting or preventing microbial and viral induced infections, contaminations or spoilage are needed on an immediate basis.
Collapse
Affiliation(s)
| | - Verona Schmidt
- Chemische Fabrik Dr. Weigert GmbH & Co. KG, Hamburg, Germany
| | - Katrin Steinhauer
- bactologicum GmbH, Itzehoe, Germany,Faculty of Mechanical Engineering, University of Applied Sciences, Kiel, Germany,*To whom correspondence should be addressed: Katrin Steinhauer, bactologicum GmbH, 25524 Itzehoe, Germany, Phone: +49 4821 13636 36, E-mail:
| |
Collapse
|
6
|
Persistent Enterovirus Infection: Little Deletions, Long Infections. Vaccines (Basel) 2022; 10:vaccines10050770. [PMID: 35632526 PMCID: PMC9143164 DOI: 10.3390/vaccines10050770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Enteroviruses have now been shown to persist in cell cultures and in vivo by a novel mechanism involving the deletion of varying amounts of the 5′ terminal genomic region termed domain I (also known as the cloverleaf). Molecular clones of coxsackievirus B3 (CVB3) genomes with 5′ terminal deletions (TD) of varying length allow the study of these mutant populations, which are able to replicate in the complete absence of wildtype virus genomes. The study of TD enteroviruses has revealed numerous significant differences from canonical enteroviral biology. The deletions appear and become the dominant population when an enterovirus replicates in quiescent cell populations, but can also occur if one of the cis-acting replication elements of the genome (CRE-2C) is artificially mutated in the element’s stem and loop structures. This review discusses how the TD genomes arise, how they interact with the host, and their effects on host biology.
Collapse
|
7
|
Kang HR, Seong MS, Yim HS, Lee JH, Cha SH, Cheong J. Fibroblast growth factor 11 inhibits foot-and-mouth disease virus gene expression and replication in vitro. J Vet Med Sci 2022; 84:726-733. [PMID: 35387954 PMCID: PMC9177392 DOI: 10.1292/jvms.21-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes highly contagious disease of cloven-hoofed animals such as cattle, swine, and sheep. Although FMD vaccine is the traditional way to protect against the disease, the use of FMD vaccines to protect early infection is limited. The alternative strategy of applying antiviral agents is required to control the spread of FMDV in outbreak situations. Fibroblast growth factor 11 (FGF11) is a member of the intracellular FGF. Here, we identified the inhibitory effect of FGF11 on FMDV gene expression through the transcriptional and translational regulation. For the quantitative analysis of FMDV transcription/translation level, we firstly constructed a plasmid reporter system (FMDV five prime untranslated region (5′ UTR) -luci) conjugating luciferase encoding gene with FMDV 5′ UTR region, which is a non-coding region to control FMDV transcription/translation and includes cis-acting replication element (CRE) and internal ribosome entry site (IRES). FGF11 decreased the gene expression of FMDV 5′ UTR-luci reporter in a dose-dependent manner. We further confirmed the inhibitory function of FGF11 on FMDV gene expression a replication in the FMDV-infected pig cells. FGF11 expression inhibited RNA production of FMDV RNA polymerase 3D gene in the FMDV-infected cells. In addition, while FMDV cell infection induced cytopathic effect (CPE) within 24 hr, FGF11 expression dramatically repressed CPE at the basal level. These results indicate that FGF11 inhibits FMDV gene expression and replication in vitro, implicating to provide intervention strategy for FMDV pathogenesis and transmission.
Collapse
Affiliation(s)
- Hyo Rin Kang
- Department of Molecular Biology, Pusan National University
| | - Mi So Seong
- Department of Molecular Biology, Pusan National University
| | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology
| | - Sang Ho Cha
- Foot-and-Mouth Disease Research Division, Animal and Plant Quarantine Agency
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University
| |
Collapse
|
8
|
Embarc-Buh A, Francisco-Velilla R, Martinez-Salas E. RNA-Binding Proteins at the Host-Pathogen Interface Targeting Viral Regulatory Elements. Viruses 2021; 13:952. [PMID: 34064059 PMCID: PMC8224014 DOI: 10.3390/v13060952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Viral RNAs contain the information needed to synthesize their own proteins, to replicate, and to spread to susceptible cells. However, due to their reduced coding capacity RNA viruses rely on host cells to complete their multiplication cycle. This is largely achieved by the concerted action of regulatory structural elements on viral RNAs and a subset of host proteins, whose dedicated function across all stages of the infection steps is critical to complete the viral cycle. Importantly, not only the RNA sequence but also the RNA architecture imposed by the presence of specific structural domains mediates the interaction with host RNA-binding proteins (RBPs), ultimately affecting virus multiplication and spreading. In marked difference with other biological systems, the genome of positive strand RNA viruses is also the mRNA. Here we focus on distinct types of positive strand RNA viruses that differ in the regulatory elements used to promote translation of the viral RNA, as well as in the mechanisms used to evade the series of events connected to antiviral response, including translation shutoff induced in infected cells, assembly of stress granules, and trafficking stress.
Collapse
Affiliation(s)
| | | | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, 28049 Madrid, Spain; (A.E.-B.); (R.F.-V.)
| |
Collapse
|
9
|
Structures and Functions of Viral 5' Non-Coding Genomic RNA Domain-I in Group-B Enterovirus Infections. Viruses 2020; 12:v12090919. [PMID: 32839386 PMCID: PMC7552046 DOI: 10.3390/v12090919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5′ end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (internal ribosome entry site, IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5′ terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I (Retinoic acid inducible gene I) or MDA5 (melanoma differentiation-associated protein 5) receptors, a way to overcome antiviral innate immune response. Overall, natural 5′ terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host–cell interactions driving the development of acute or persistent EV-B infections.
Collapse
|
10
|
Yao M, Xu C, Shen H, Liu T, Wang X, Shao C, Shao S. The regulatory role of miR-107 in Coxsackie B3 virus replication. Aging (Albany NY) 2020; 12:14467-14479. [PMID: 32674073 PMCID: PMC7425430 DOI: 10.18632/aging.103488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
Coxsackie B3 virus (CVB3) is a member of small RNA viruses that belongs to the genus Enterovirus of the family Picornaviridae and CVB3 is the main pathogen of acute and chronic viral myocarditis. In this study RT-qPCR was used to determine the expression of miR-107 in CVB3-infected and uninfected HeLa cells. The experimental results show that the level of miR-107 began to rise at 4 h after the infection, and significantly boosted at 6 h. Based on the results of this experiment, we consider that miR-107 expression is related to CVB3 infection. In order to further clarify the effect of miR-107 in the process of CVB3 infection, we studied the effect of miR-107 upstream and downstream target genes on CVB3 replication. Levels of the target RNAs were detected by RT-qPCR after CVB3 infection, and the expression of CVB3 capsid protein VP1 by western blot analysis. Then the virus in the supernatant was quantitated via a viral plaque assay, reflecting the release of the virus. The experimental results showed that miRNA-107 expression is associated with CVB3 replication and proliferation, while KLF4 and BACE1 as the downstream of miR-107 weakened CVB3 replication. Overexpressions of KLF4 and BACE1 negatively regulated CVB3 replication, this effect on CVB3 was completely opposite to that of miR-107. Further experiments revealed that the upstream lncRNA004787, a new lncRNA that had not been reported, was located on chromosome 5, strand - from 37073250 to 37070908 (genome assembly: hg19). We sequenced and studied lncRNA004787 and found that it partially inhibited CVB3 replication. This prompted us to speculate that lncRNA004787 probably impacted the replication by other means. In conclusion, miR-107 interfered with CVB3 replication and release.
Collapse
Affiliation(s)
- Min Yao
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chi Xu
- Marshall International Center for Digestive Diseases, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Hongxing Shen
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tingjun Liu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiuping Wang
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shihe Shao
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.,Marshall International Center for Digestive Diseases, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| |
Collapse
|
11
|
Poma AM, Genoni A, Broccolo F, Denaro M, Pugliese A, Basolo F, Toniolo A. Immune Transcriptome of Cells Infected with Enterovirus Strains Obtained from Cases of Type 1 Diabetes. Microorganisms 2020; 8:microorganisms8071031. [PMID: 32664675 PMCID: PMC7409211 DOI: 10.3390/microorganisms8071031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Enterovirus (EV) infection of insulin-producing pancreatic beta cells is associated with type 1 diabetes (T1D), but little is known about the mechanisms that lead the virus to cause a persistent infection and, possibly, to induce beta cell autoimmunity. A cell line susceptible to most enterovirus types was infected with EV isolates from cases of T1D and, for comparison, with a replication-competent strain of coxsackievirus B3. The transcription of immune-related genes and secretion of cytokines was evaluated in infected vs. uninfected cells. Acutely infected cells showed the preserved transcription of type I interferon (IFN) pathways and the enhanced transcription/secretion of IL6, IL8, LIF, MCP1, and TGFB1. On the other hand, infection by defective EV strains obtained from diabetic subjects suppressed IFN pathways and the transcription of most cytokines, while enhancing the expression of IL8, IL18, IL32, and MCP1. IL18 and IL32 are known for their pathogenic role in autoimmune diabetes. Thus, the cytokine profile of AV3 cells infected by diabetes-derived EV strains closely matches that observed in patients at the early stages of T1D. The concordance of our results with clinically verified information reinforces the hypothesis that the immune changes observed in type 1 diabetic patients are due to a hardly noticeable virus infection.
Collapse
Affiliation(s)
- Anello Marcello Poma
- Department of Surgical, Medical, Molecular Pathology and Clinical Area, University of Pisa, 56126 Pisa, Italy; (M.D.); (F.B.)
- Correspondence:
| | - Angelo Genoni
- Medical Microbiology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.G.); (A.T.)
| | - Francesco Broccolo
- Medical Microbiology, Department of Medical Sciences, University Milano Bicocca, 20126 Milano, Italy;
| | - Maria Denaro
- Department of Surgical, Medical, Molecular Pathology and Clinical Area, University of Pisa, 56126 Pisa, Italy; (M.D.); (F.B.)
| | - Alberto Pugliese
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA;
| | - Fulvio Basolo
- Department of Surgical, Medical, Molecular Pathology and Clinical Area, University of Pisa, 56126 Pisa, Italy; (M.D.); (F.B.)
| | - Antonio Toniolo
- Medical Microbiology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.G.); (A.T.)
- Global Virus Network, 21100 Varese, Italy
| |
Collapse
|