1
|
Palumbo PJ, Grant-McAuley W, Grabowski MK, Zhang Y, Richardson P, Piwowar-Manning E, Sharma D, Clarke W, Laeyendecker O, Rose S, Ha TV, Dumchev K, Djoerban Z, Redd A, Hanscom B, Hoffman I, Miller WC, Eshleman SH. Multiple Infection and Human Immunodeficiency Virus Superinfection Among Persons who Inject Drugs in Indonesia and Ukraine. J Infect Dis 2022; 226:2181-2191. [PMID: 36346452 PMCID: PMC10205628 DOI: 10.1093/infdis/jiac441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/26/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The HIV Prevention Trials Network (HPTN) 074 study evaluated an integrated human immunodeficiency virus (HIV) treatment and prevention strategy among persons who inject drugs (PWID) in Indonesia, Ukraine, and Vietnam. We previously detected multiple HIV infection in 3 of 7 (43%) of seroconverters with 3-8 HIV strains per person. In this report, we analyzed multiple HIV infection and HIV superinfection (SI) in the HPTN 074 cohort. METHODS We analyzed samples from 70 participants in Indonesia and Ukraine who had viral load >400 copies/mL at enrollment and the final study visit (median follow-up, 2.5 years). HIV was characterized with Sanger sequencing, next-generation sequencing, and phylogenetic analysis. Additional methods were used to characterize a rare case of triple-variant SI. RESULTS At enrollment, multiple infection was detected in only 3 of 58 (5.2%) participants with env sequence data. SI was detected in only 1 of 70 participants over 172.3 person-years of follow-up (SI incidence, 0.58/100 person-years [95% confidence interval, .015-3.2]). The SI case involved acquisition of 3 HIV strains with rapid selection of a strain with a single pol region cluster. CONCLUSIONS These data from a large cohort of PWID suggest that intrahost viral selection and other factors may lead to underestimation of the frequency of multiple HIV infection and SI events.
Collapse
Affiliation(s)
- Philip J Palumbo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mary Kate Grabowski
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yinfeng Zhang
- Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center Presbyterian Shadyside, Pittsburgh, Pennsylvania, USA
| | - Paul Richardson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deeksha Sharma
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Scott Rose
- Science Facilitation Department, FHI 360, Durham, North Carolina, USA
| | - Tran V Ha
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Zubairi Djoerban
- Departments of Hematology, Medical Oncology, and Medicine, University of Indonesia/Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Andrew Redd
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brett Hanscom
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Irving Hoffman
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - William C Miller
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Susan H Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Zhang H, Cao S, Gao Y, Sun X, Jiang F, Zhao B, Ding H, Dong T, Han X, Shang H. HIV-1-Specific Immunodominant T-Cell Responses Drive the Dynamics of HIV-1 Recombination Following Superinfection. Front Immunol 2022; 12:820628. [PMID: 35095925 PMCID: PMC8794799 DOI: 10.3389/fimmu.2021.820628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
A series of HIV-1 CRF01_AE/CRF07_BC recombinants were previously found to have emerged gradually in a superinfected patient (patient LNA819). However, the extent to which T-cell responses influenced the development of these recombinants after superinfection is unclear. In this study, we undertook a recombination structure analysis of the gag, pol, and nef genes from longitudinal samples of patient LNA819. A total of 9 pol and 5 nef CRF01_AE/CRF07_BC recombinants were detected. The quasispecies makeup and the composition of the pol and nef gene recombinants changed continuously, suggestive of continuous evolution in vivo. T-cell responses targeting peptides of the primary strain and the recombination regions were screened. The results showed that Pol-LY10, Pol-RY9, and Nef-GL9 were the immunodominant epitopes. Pol-LY10 overlapped with the recombination breakpoints in multiple recombinants. For the LY10 epitope, escape from T-cell responses was mediated by both recombination with a CRF07_BC insertion carrying the T467E/T472V variants and T467N/T472V mutations originating in the CRF01_AE strain. In pol recombinants R8 and R9, the recombination breakpoints were located ~23 amino acids upstream of the RY9 epitope. The appearance of new recombination breakpoints harboring a CRF07_BC insertion carrying a R984K variant was associated with escape from RY9-specific T-cell responses. Although the Nef-GL9 epitope was located either within or 10~11 amino acids downstream of the recombination breakpoints, no variant of this epitope was observed in the nef recombinants. Instead, a F85V mutation originating in the CRF01_AE strain was the main immune escape mechanism. Understanding the cellular immune pressure on recombination is critical for monitoring the new circulating recombinant forms of HIV and designing epitope-based vaccines. Vaccines targeting antigens that are less likely to escape immune pressure by recombination and/or mutation are likely to be of benefit to patients with HIV-1.
Collapse
Affiliation(s)
- Hui Zhang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Shuang Cao
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Clinical Laboratory, China Medical University Shengjing Hospital Nanhu Branch, Shenyang, China
| | - Yang Gao
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Xiao Sun
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Fanming Jiang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Bin Zhao
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Haibo Ding
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom.,Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, United Kingdom
| | - Xiaoxu Han
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Hong Shang
- National Health Commission (NHC) Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, China.,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China.,Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
3
|
Yao Y, Zeng Y, Huang H, Li J, Li J, Xin R. Characteristics of Four Novel Recombinant Strains from the Backbone of CRF55_01B and CRF65_cpx in Beijing by Near Full-Length Genome. AIDS Res Hum Retroviruses 2021; 37:936-945. [PMID: 34167316 DOI: 10.1089/aid.2020.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The HIV-1 epidemic was mainly driven by men who have sex with men (MSM) recently in Beijing, China, with high genetic diversity. Novel recombinant strains were frequently reported at 3.4%-9.9%. It is imperative to interpret the recombinant modes and the putative transmission sources by near full-length genome (NFLG). Four individuals from the MSM population were identified as novel recombinant strains during surveillance of pretreatment drug resistance. NFLG sequences were harvested by near end-point dilution and nested PCR with two overlapping half fragments. Phylogenetic inference was performed with subtyping reference sequences and major parental strain sequences, to explore the patterns of genetic recombinant and potential sources of parent strains. The breakpoints were determined using SimPlot 3.5 to draw genome mosaic map, and the potential parental strains were confirmed by Mega 6.0 using segmental neighbor-joining trees. BL19487-00 and BL1948-00 sequences were obtained from epidemiologically linked individuals and shared similar breakpoints (HXB2 nt 4,497 ± 8 to 4,722) with substitution of subtype B pol gene segment in the backbone of CRF55_01B. BL3104-00 and BL4307-00 carried seven and eight breakpoints, respectively, in the backbone of CRF65_cpx with g5 CRF01_AE substitutions. The recombinant fragments were located around gag, pol, and env genes, with vpr-tat and nef-3'-LTR genes only for BL4307-00. No transmitted drug resistance was observed with the four unique recombinant forms (URFs), except for some drug resistance associated mutations. The advent of URFs around CRF55_01B and CRF65_cpx identified in recent years implied that the sexual behaviors were active and the epidemic of HIV was complicated among MSM in Beijing. Molecular epidemiological surveillance and precise control should be reinforced for this population.
Collapse
Affiliation(s)
- Yaping Yao
- Department of Science Research and Information Management, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yuhong Zeng
- School of Public Health, Capital Medical University, Beijing, China
| | - Huihuang Huang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia Li
- Institute of STD/AIDS Prevention and Treatment, Beijing Center Disease Prevention and Control, Beijing, China
| | - Jie Li
- Institute of STD/AIDS Prevention and Treatment, Beijing Center Disease Prevention and Control, Beijing, China
| | - Ruolei Xin
- Institute of STD/AIDS Prevention and Treatment, Beijing Center Disease Prevention and Control, Beijing, China
| |
Collapse
|
4
|
Hu W, He M, Wang X, Sun Q, Kuang M. Specific CD8 + TCR Repertoire Recognizing Conserved Antigens of SARS-CoV-2 in Unexposed Population: A Prerequisite for Broad-Spectrum CD8 + T Cell Immunity. Vaccines (Basel) 2021; 9:1093. [PMID: 34696201 PMCID: PMC8541101 DOI: 10.3390/vaccines9101093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed variants escaping neutralization antibody immunity established against the original virus. An understanding of broad-spectrum adaptive immunity, including CD8+ T cell immunity to wide range of epitopes, could help translational efforts to improve coronavirus disease 2019 (COVID-19) prevention and therapy. However, there have been few direct studies in which such immunity exists in a population. METHODS We selected SARS-CoV-2-conserved structural peptides that are not prone to mutation as antigens for broad-spectrum CD8+ T cell immunity. Peripheral blood mononuclear cells (PBMCs) from unexposed healthy donors were stimulated with these peptides in vitro and CD8+ T cell-specific response was monitored. The conserved peptide-specific CD8+ T cells were sorted for T cell receptor (TCR) repertoire sequencing. The presence of specific complementary determining region 3 (CDR3) clones was analyzed in a healthy cohort. RESULTS For each structural protein, including S, E, M, N, the conserved peptides could potentially provide the largest number of major histocompatibility complex-I (MHC-I) epitopes in the Oriental and Caucasian populations. For conserved peptides from spike (S), envelope (E), membrane (M), nucleocapsid (N) proteins, we found that there were no cross-reactive memory T cells in the unexposed individuals. Instead, their T cells contain naïve TCR repertoire recognizing these conserved peptides. Using TCR sequencing and CDR3 clustering for the conserved peptides specific T cells, we found that the recovered patients had a higher proportion of TCR repertoire similar with that of specific CD8+ T cells in unexposed individuals. Meanwhile, CDR3 clones of the above T cells were widely present in the healthy population. CONCLUSIONS This study provides evidence of broad-spectrum SARS-CoV-2 specific CD8+ TCR repertoire in unexposed healthy population, which is implicated in the development and implementation of broad-spectrum vaccines against COVID-19.
Collapse
Affiliation(s)
- Wei Hu
- Department of Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Xiaoning Wang
- National Clinical Research Center for Geriatrics Diseases, Chinese PLA General Hospital, Beijing 100853, China;
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing 100071, China;
- Research Unit of Cell Death Mechanism, 2020RU009, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ming Kuang
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Caetano DG, Côrtes FH, Bello G, de Azevedo SSD, Hoagland B, Villela LM, Grinsztejn B, Veloso VG, Guimarães ML, Morgado MG. A case report of HIV-1 superinfection in an HIV controller leading to loss of viremia control: a retrospective of 10 years of follow-up. BMC Infect Dis 2019; 19:588. [PMID: 31277590 PMCID: PMC6612226 DOI: 10.1186/s12879-019-4229-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/26/2019] [Indexed: 12/03/2022] Open
Abstract
Background HIV controllers (HICs) are a rare group of HIV-1-infected individuals able to naturally control viral replication. Several studies have identified the occurrence of HIV dual infections in seropositive individuals leading to disease progression. In HICs, however, dual infections with divergent outcomes in pathogenesis have been described. Case presentation Here, we present a case report of a HIC diagnosed in late 1999 who displayed stable CD4+ T cell levels and low plasmatic viral load across 12 years of follow-up. In early 2013, the patient started to present an increase in viral load, reaching a peak of 10,000 copies/ml in early 2014, followed by an oscillation of viremia at moderate levels in the following years. The genetic diversity of env proviral quasispecies from peripheral blood mononuclear cells (PBMCs) was studied by single genome amplification (SGA) at six timepoints across 2009–2017. Phylogenetic analyses of env sequences from 2009 and 2010 samples showed the presence of a single subtype B variant (called B1). Analyses of sequences from 2011 and after revealed an additional subtype B variant (called B2) and a subsequent dominance shift in the proviral quasispecies frequencies, with the B2 variant becoming the most frequent from 2014 onwards. Latent syphilis related to unprotected sexual intercourse was diagnosed a year before the first detection of B2, evidencing risk behavior and supporting the superinfection hypothesis. Immunologic analyses revealed an increase in CD8+ and CD4+ T cell immune activation following viremia increase and minor T cell subset alterations during follow-up. HIV-specific T cell responses remained low throughout the follow-up period. Conclusions Altogether, these results show that loss of viremia control in the HIC was associated with superinfection. These data alert to the negative consequences of reinfection on HIV pathogenesis, even in patients with a long history of viremia control and an absence of disease progression, reinforcing the need for continued use of adequate prevention strategies.
Collapse
Affiliation(s)
- Diogo Gama Caetano
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Fernanda Heloise Côrtes
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil.
| | - Gonzalo Bello
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Suwellen Sardinha Dias de Azevedo
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Brenda Hoagland
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Larissa Melo Villela
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Valdiléa Gonçalves Veloso
- Instituto Nacional de Infectologia Evandro Chagas (INI), Laboratório de Pesquisa clínica em DST e Aids, Rio de Janeiro, Brazil
| | - Monick Lindenmeyer Guimarães
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Mariza Gonçalves Morgado
- Laboratório de Aids e Imunologia Molecular, Instituto Oswaldo Cruz (IOC) -FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, 21045-900, Brazil
| |
Collapse
|
6
|
Reduced frequency of HIV superinfection in a high-risk cohort in Zambia. Virology 2019; 535:11-19. [PMID: 31254743 DOI: 10.1016/j.virol.2019.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 11/20/2022]
Abstract
Rates of HIV-1 superinfection, re-infection with a genetically distinct virus despite HIV-1 specific immune responses, vary in different risk populations. We previously found the rates of superinfection were similar to primary HIV infection (PHI) in a Zambian heterosexual transmission cohort. Here, we conduct a similar analysis of 47 HIV-positive Zambians from an acute infection cohort with more frequent follow-up, all infected by non-spousal partners. We identified only one case of superinfection in the first two years, significantly fewer than in our previous study, which was likely due to increased counseling during acute infection and an overall population-wide decline in factors associated with HIV transmission. The predominant virus detected after superinfection was a recombinant of the transmitted founder (TF) and the superinfecting strain. The superinfected individual mounted a neutralizing antibody response to the primary TF virus, which remained TF-specific over time and even after superinfection, did not neutralize the superinfecting variant.
Collapse
|
7
|
Stevenson M. CROI 2019: advances in basic science understanding of HIV. TOPICS IN ANTIVIRAL MEDICINE 2019; 27:2-6. [PMID: 31136998 PMCID: PMC6550362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The annual Conference on Retroviruses and Opportunistic Infections remains the preeminent venue for the sharing and dissemination of research advances in the field of HIV and AIDS research. The 26th conference in Seattle featured highlights including news of additional individuals who experienced long-term virologic remission following a bone marrow transplant. The factors driving reservoir persistence gathered a lot of interest, as well as data presented on new factors involved in regulating HIV-1 latency. The effectiveness of the conference in disseminating new findings is further enhanced through themed discussions that focus the attention of participants on abstracts with a common theme. In addition, the Program Committee workshops provide an outstanding venue, directed to new investigators, fellows, and students, to receive updates on different aspects of HIV and AIDS research. These sessions add to the information-sharing environment provided by the conference.
Collapse
|
8
|
HIV controllers suppress viral replication and evolution and prevent disease progression following intersubtype HIV-1 superinfection. AIDS 2019; 33:399-410. [PMID: 30531316 DOI: 10.1097/qad.0000000000002090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the impact of intersubtype HIV-1 superinfection on viremia, reservoir reseeding, viral evolution and disease progression in HIV controllers (HIC). DESIGN A longitudinal analysis of two Brazilian HIC individuals (EEC09 and VC32) previously identified as dually infected with subtypes B and F1 viruses. METHODS Changes in plasma viremia, total HIV-1 DNA levels, CD4+ T-cell counts and HIV-1 quasispecies composition were measured over time. HIV-1 env diversity in peripheral blood mononuclear cell (PBMC) and plasma samples was accessed by single genome amplification and next-generation sequencing approaches, respectively. Viral evolution was evaluated by estimating nucleotide diversity and divergence. RESULTS Individual EEC09 was probably initially infected with a CCR5-tropic subtype B strain and sequentially superinfected with a CXCR4-tropic subtype B strain and with a subtype F1 variant. Individual VC32 was infected with a subtype B strain and superinfected with a subtype F1 variant. The intersubtype superinfection events lead to a moderate increase in viremia and extensive turnover of viral population in plasma but exhibited divergent impact on the size and composition of cell-associated HIV DNA population. Both individuals maintained virologic control (<2000 copies/ml) and presented no evidence of viral evolution or immunologic progression for at least 2 years after the intersubtype superinfection event. CONCLUSION These data revealed that some HIC are able to repeatedly limit replication and evolution of superinfecting viral strains of a different subtype with no signs of disease progression.
Collapse
|
9
|
Cohen YZ, Lorenzi JCC, Krassnig L, Barton JP, Burke L, Pai J, Lu CL, Mendoza P, Oliveira TY, Sleckman C, Millard K, Butler AL, Dizon JP, Belblidia SA, Witmer-Pack M, Shimeliovich I, Gulick RM, Seaman MS, Jankovic M, Caskey M, Nussenzweig MC. Relationship between latent and rebound viruses in a clinical trial of anti-HIV-1 antibody 3BNC117. J Exp Med 2018; 215:2311-2324. [PMID: 30072495 PMCID: PMC6122972 DOI: 10.1084/jem.20180936] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/19/2018] [Accepted: 07/17/2018] [Indexed: 11/04/2022] Open
Abstract
A clinical trial was performed to evaluate 3BNC117, a potent anti-HIV-1 antibody, in infected individuals during suppressive antiretroviral therapy and subsequent analytical treatment interruption (ATI). The circulating reservoir was evaluated by quantitative and qualitative viral outgrowth assay (Q2VOA) at entry and after 6 mo. There were no significant quantitative changes in the size of the reservoir before ATI, and the composition of circulating reservoir clones varied in a manner that did not correlate with 3BNC117 sensitivity. 3BNC117 binding site amino acid variants found in rebound viruses preexisted in the latent reservoir. However, only 3 of 217 rebound viruses were identical to 868 latent viruses isolated by Q2VOA and near full-length sequencing. Instead, 63% of the rebound viruses appeared to be recombinants, even in individuals with 3BNC117-resistant reservoir viruses. In conclusion, viruses emerging during ATI in individuals treated with 3BNC117 are not the dominant species found in the circulating latent reservoir, but frequently appear to represent recombinants of latent viruses.
Collapse
Affiliation(s)
- Yehuda Z Cohen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Lisa Krassnig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - John P Barton
- Department of Physics and Astronomy, University of California, Riverside, CA
| | - Leah Burke
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY
| | - Joy Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Ching-Lan Lu
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | - Katrina Millard
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Allison L Butler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Juan P Dizon
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Shiraz A Belblidia
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Maggi Witmer-Pack
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Roy M Gulick
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
10
|
Hebberecht L, Vancoillie L, Schauvliege M, Staelens D, Dauwe K, Mortier V, Verhofstede C. Frequency of occurrence of HIV-1 dual infection in a Belgian MSM population. PLoS One 2018; 13:e0195679. [PMID: 29624605 PMCID: PMC5889168 DOI: 10.1371/journal.pone.0195679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction HIV-1 dual infection is a condition that results from infection with at least two HIV-1 variants from different sources. The scarceness of information on this condition is partly due to the fact that its detection is technically challenging. Using next-generation sequencing we defined the extent of HIV-1 dual infection in a cohort of men who have sex with men (MSM). Material & methods Eighty-six MSM, diagnosed with HIV-1 subtype B infection between 2008 and 2013 were selected for next-generation sequencing of the HIV-1 envelope V3. Sequencing was performed on 2 plasma samples collected with an interval of > 6 months before the initiation of antiretroviral therapy. Maximum likelihood phylogenetic trees were inspected for dual infection, defined as the presence of two or more monophyletic clusters with ≥ 90% bootstrap support and a mean between-cluster genetic distance of ≥ 10%. To confirm dual infection, deep V3 sequencing of intermediate samples was performed as well as clonal sequencing of the HIV-1 protease-reverse transcriptase gene. Results Five of the 74 patients (6.8%) for whom deep sequencing was successful, showed clear evidence of dual infection. In 4 of them, the second strain was absent in the first sample but occurred in subsequent samples. This was highly suggestive for superinfection. In 3 patients both virus variants were of subtype B, in 2 patients at least one of the variants was a subtype B/non-B recombinant virus. Conclusions Dual infection was confirmed in 6.8% of MSM diagnosed with HIV-1 in Belgium. This prevalence is probably an underestimation, because stringent criteria were used to classify viral variants as originating from a new infection event.
Collapse
Affiliation(s)
- Laura Hebberecht
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Leen Vancoillie
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Marlies Schauvliege
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Delfien Staelens
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Kenny Dauwe
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Virginie Mortier
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
11
|
Dual Infection Contributes to Rapid Disease Progression in Men Who Have Sex With Men in China. J Acquir Immune Defic Syndr 2017; 75:480-487. [PMID: 28490044 PMCID: PMC5483982 DOI: 10.1097/qai.0000000000001420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is Available in the Text. Background: Considerable numbers of HIV-1–infected men who have sex with men (MSM) show a relatively rapid disease progression in China; however, the cause remains elusive. HIV-1 dual infection was reported to occur commonly among the MSM population, and its contribution to clinical prognosis remains controversial. We investigated the occurrence and impact on disease progression of dual infection in a prospective MSM cohort in China. Methods: Sixty-four HIV-1 early-infected participants were longitudinally followed up for 2 years. Deep sequencing was used as dual-infection screening. CD4+ T-cell counts and HIV-1 viral load were compared between coinfection and single-infection participants and pre- versus post-superinfection. Results: Eight coinfected participants and 10 superinfected participants were identified, including 9 participants with intersubtype and 9 with intrasubtype dual infections. The prevalence of coinfection was 13.1%, with a superinfection incidence of 15.6%. Coinfection participants showed lower CD4+ T-cell counts at 120 days after infection (P = 0.042) and a higher viral set point tendency (P = 0.053) as compared with single-infection participants. Kaplan–Meier analysis showed that the time for the viral load to increase to above 4 log10 copies per milliliter was shorter in coinfection participants than in single-infection participants (P < 0.001). After superinfection, the median CD4+ T-cell count decreased from 635 to 481 cells/μL (P = 0.027). Conclusions: The occurrence of dual infection among Chinese MSM is relatively high, and HIV-1 dual infection might contribute to rapid disease progression seen in the MSM population.
Collapse
|
12
|
Stefic K, Salmona M, Capitao M, Splittgerber M, Maakaroun-Vermesse Z, Néré ML, Bernard L, Chaix ML, Barin F, Delaugerre C. Unravelling the dynamics of selection of multiresistant variants to integrase inhibitors in an HIV-1-infected child using ultra-deep sequencing. J Antimicrob Chemother 2017; 72:850-854. [PMID: 27999055 DOI: 10.1093/jac/dkw507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022] Open
Abstract
Background Ultra-deep sequencing (UDS) allows detection of minority resistant variants (MRVs) with a threshold of 1% and could be useful to identify variants harbouring single or multiple drug-resistance mutations (DRMs). Objectives We analysed the integrase gene region longitudinally using UDS in an HIV-1-infected child rapidly failing a raltegravir-based regimen. Methods Longitudinal plasma samples at baseline and weeks 4, 8, 13, 17 and 39 were obtained, as well as the mother's baseline plasma sample. Sanger sequencing and UDS were performed on the integrase gene using Roche 454 GS-Junior. A bioinformatic workflow was developed to identify the major DRMs, accessory mutations and the linkage between mutations. Results In Sanger sequencing and UDS, no MRV in the integrase gene was detected at baseline in either the mother or the child. The major DRM N155H conferring resistance to raltegravir and elvitegravir was detected in 4% of the sequences by week 4 using UDS, whereas it was not detected by Sanger sequencing. The double mutant E92Q + N155H, conferring resistance to the entire integrase inhibitor class, including dolutegravir, emerged at week 8 (16%) and became rapidly dominant (57% by week 13). At the last timepoint under raltegravir (week 17), Y143R emerged, leading to different resistance mutation patterns: single mutants N155H (47%) and Y143R (24%) and double mutants E92Q + N155H (13%), Y143R + N155H (2%) and E92Q + Y143R (2%). The polymorphic substitution M50I was preferentially selected on resistant variants, especially on E92Q + N155H variants. Conclusions This case study illustrates the usefulness of UDS in detecting early MRVs and determining the dynamics of selected HIV-1 variants in longitudinal analysis.
Collapse
Affiliation(s)
- Karl Stefic
- Inserm U966, Université François Rabelais, Tours, France.,Laboratoire de Bactériologie-Virologie & Centre National de Référence du VIH, CHU Bretonneau, Tours, France
| | - Maud Salmona
- Inserm U941, Université Paris Diderot, Paris, France.,Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Marisa Capitao
- Inserm U941, Université Paris Diderot, Paris, France.,Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Marion Splittgerber
- Inserm U941, Université Paris Diderot, Paris, France.,Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
| | | | - Marie-Laure Néré
- Inserm U941, Université Paris Diderot, Paris, France.,Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Louis Bernard
- CHU Bretonneau, Médecine Interne et Maladies Infectieuses, Tours, France
| | - Marie-Laure Chaix
- Inserm U941, Université Paris Diderot, Paris, France.,Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Francis Barin
- Inserm U966, Université François Rabelais, Tours, France.,Laboratoire de Bactériologie-Virologie & Centre National de Référence du VIH, CHU Bretonneau, Tours, France
| | - Constance Delaugerre
- Inserm U941, Université Paris Diderot, Paris, France.,Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
| |
Collapse
|
13
|
Intrasubtype B HIV-1 Superinfection Correlates with Delayed Neutralizing Antibody Response. J Virol 2017; 91:JVI.00475-17. [PMID: 28615205 DOI: 10.1128/jvi.00475-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
Understanding whether the neutralizing antibody (NAb) response impacts HIV-1 superinfection and how superinfection subsequently modulates the NAb response can help clarify correlates of protection from HIV exposures and better delineate pathways of NAb development. We examined associations between the development of NAb and the occurrence of superinfection in a well-characterized, antiretroviral therapy (ART)-naive, primary infection cohort of men who have sex with men. Deep sequencing was applied to blood plasma samples from the cohort to detect cases of superinfection. We compared the NAb activity against autologous and heterologous viruses between 10 participants with intrasubtype B superinfection and 19 monoinfected controls, matched to duration of infection and risk behavior. Three to 6 months after primary infection, individuals who would later become superinfected had significantly weaker NAb activity against tier 1 subtype B viruses (P = 0.003 for SF-162 and P = 0.017 for NL4-3) and marginally against autologous virus (P = 0.054). Lower presuperinfection NAb responses correlated with weaker gp120 binding and lower plasma total IgG titers. Soon after superinfection, the NAb response remained lower, but between 2 and 3 years after primary infection, NAb levels strengthened and reached those of controls. Superinfecting viruses were typically not susceptible to neutralization by presuperinfection plasma. These observations suggest that recently infected individuals with a delayed NAb response against primary infecting and tier 1 subtype B viruses are more susceptible to superinfection.IMPORTANCE Our findings suggest that within the first year after HIV infection, a relatively weak neutralizing antibody response against primary and subtype-specific neutralization-sensitive viruses increases susceptibility to superinfection in the face of repeated exposures. As natural infection progresses, the immune response strengthens significantly in some superinfected individuals. These findings will inform HIV vaccine design by providing testable correlates of protection from initial HIV infection.
Collapse
|
14
|
Vesa J, Chaillon A, Wagner GA, Anderson CM, Richman DD, Smith DM, Little SJ. Increased HIV-1 superinfection risk in carriers of specific human leukocyte antigen alleles. AIDS 2017; 31:1149-1158. [PMID: 28244954 PMCID: PMC5559224 DOI: 10.1097/qad.0000000000001445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to characterize the demographic, behavioural, clinical and immunogenetic determinants of HIV-1 superinfection in a high-risk cohort of MSM. DESIGN A retrospective cohort study of prospectively followed MSM. METHODS Ninety-eight MSM with acute or early HIV-1 monoinfection were followed for a median of 15.6 months. Demographic and human leukocyte antigen (HLA) genotype data were collected at enrolment. Sexual behaviour, clinical and the infection status (monoinfection or superinfection) data were recorded at each visit (at enrolment and thereafter at a median of 4.2-month intervals). HIV-1 superinfection risk was determined by Cox regression and Kaplan-Meier survival analysis. RESULTS Ten individuals (10.2%) had superinfection during follow-up. Cox regression did not show significantly increased superinfection risk for individuals with an increased amount of condomless anal intercourse, lower CD4 T-cell count or higher viral load, but higher number of sexual contacts demonstrated a trend towards significance [hazard ratio, 4.74; 95% confidence interval (95% CI), 0.87-25.97; P = 0.073]. HLA-A*29 (hazard ratio, 4.10; 95% CI, 0.88-14.76; P = 0.069), HLA-B*35 (hazard ratio, 4.64; 95% CI, 1.33-18.17; P = 0.017), HLA-C*04 (hazard ratio, 5.30; 95% CI, 1.51-20.77; P = 0.010), HLA-C*16 (hazard ratio, 4.05; 95% CI, 0.87-14.62; P = 0.071), HLA-DRB1*07 (hazard ratio, 3.29; 95% CI, 0.94-12.90; P = 0.062) and HLA-DRB1*08 (hazard ratio, 15.37; 95% CI, 2.11-79.80; P = 0.011) were associated with an increased risk of superinfection at α = 0.10, whereas HLA-DRB1*11 was associated with decreased superinfection risk (hazard ratio, 0.13; 95% CI, 0.00-1.03; P = 0.054). CONCLUSION HLA genes may, in part, elucidate the genetic basis of differential superinfection risk, and provide important information for the development of efficient prevention and treatment strategies of HIV-1 superinfection.
Collapse
Affiliation(s)
- Jouni Vesa
- University of California San Diego, La Jolla
| | | | | | | | - Douglas D. Richman
- University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Davey M. Smith
- University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | | |
Collapse
|
15
|
Contrasting antibody responses to intrasubtype superinfection with CRF02_AG. PLoS One 2017; 12:e0173705. [PMID: 28288209 PMCID: PMC5348025 DOI: 10.1371/journal.pone.0173705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/25/2017] [Indexed: 11/22/2022] Open
Abstract
HIV superinfection describes the sequential infection of an individual with two or more unrelated HIV strains. Intersubtype superinfection has been shown to cause a broader and more potent heterologous neutralizing antibody response when compared to singly infected controls, yet the effects of intrasubtype superinfection remain controversial. Longitudinal samples were analyzed phylogenetically for pol and env regions using Next-Generation Sequencing and envelope cloning. The impact of CRF02_AG intrasubtype superinfection was assessed for heterologous neutralization and antibody binding responses. We compared two cases of CRF02_AG intrasubtype superinfection that revealed complete replacement of the initial virus by superinfecting CRF02_AG variants with signs of recombination. NYU6564, who became superinfected at an early time point, exhibited greater changes in antibody binding profiles and generated a more potent neutralizing antibody response post-superinfection compared to NYU6501. In contrast, superinfection occurred at a later time point in NYU6501 with strains harboring significantly longer V1V2 regions with no observable changes in neutralization patterns. Here we show that CRF02_AG intrasubtype superinfection can induce a cross-subtype neutralizing antibody response, and our data suggest timing and/or superinfecting viral envelope characteristics as contributing factors. These results highlight differential outcomes in intrasubtype superinfection and provide the first insight into cases with CRF02_AG, the fourth most prevalent HIV-1 strain worldwide.
Collapse
|
16
|
Sun M, Zheng H, Xie Y, Li B, Long H, Guo G, Guo L, Wang J, Ning R, Li Y, Liu L. Functional effector memory T cells contribute to protection from superinfection with heterologous simian immunodeficiency virus or simian-human immunodeficiency virus isolates in Chinese rhesus macaques. Arch Virol 2017; 162:1211-1221. [PMID: 28110425 DOI: 10.1007/s00705-017-3222-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Many studies have revealed a protective effect of infection of an individual with an immunodeficiency virus against subsequent infection with a heterologous strain. However, the extent of protection against superinfection conferred by the first infection and the biological consequences of superinfection are not well understood. Here, we report that a rhesus monkey model of mucosal superinfection was established to investigate the protective immune response. Protection against superinfection was shown to correlate with the extent of the polyfunctionality of CD4+ effector memory T cells, whereas neutralizing antibody responses did not protect against superinfection in this model. Notably, immunodeficiency-virus-associated effector memory T-cell responses might significantly contribute to the suppression of virus superinfection. This provides a potential theoretical basis for the development of an HIV/AIDS vaccine.
Collapse
Affiliation(s)
- Ming Sun
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Yingpeng Xie
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Bingxiang Li
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Haiting Long
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Ge Guo
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lei Guo
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Jingjing Wang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Ruotong Ning
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Yue Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Longding Liu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.
| |
Collapse
|
17
|
Cornelissen M, Euler Z, van den Kerkhof TL, van Gils MJ, Boeser-Nunnink BD, Kootstra NA, Zorgdrager F, Schuitemaker H, Prins JM, Sanders RW, van der Kuyl AC. The Neutralizing Antibody Response in an Individual with Triple HIV-1 Infection Remains Directed at the First Infecting Subtype. AIDS Res Hum Retroviruses 2016; 32:1135-1142. [PMID: 26910384 DOI: 10.1089/aid.2015.0324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The effect of serial HIV-1 infection on the development of the broadly neutralizing antibody (bNAb) response was studied in an individual, H01-10366, with a serial HIV-1 superinfection (SI), hence triple infection, and compared with the bNAb response in three superinfected as well as 11 monoinfected men who have had sex with men (MSM) from Amsterdam, the Netherlands. Neutralization assays measuring heterologous neutralizing antibody (NAb) titers on a panel of six representative viruses from different HIV-1 subtypes were performed on blood serum samples obtained ∼3 years after primary HIV infection (PHI) and longitudinally for H01-10366. A bNAb response was defined as having a geometric mean neutralization titer (the reciprocal serum dilution giving 50% inhibition of virus infection, inhibitory dilution (ID50)) ≥100 and neutralizing >50% of viruses in the panel with an ID50 titer ≥100. H01-10366 quickly developed a potent NAb response against subtype B viruses before subtype B SI, but no broadening of the response occurred after the second subtype B infection or the third infection with CRF01_AE. When comparing H01-10366 with matched monoinfected (N = 11) and superinfected (N = 3) individuals analyzed 3 years after PHI, we found that 5 of the 15 individuals (4/11 monoinfected, 1/4 SI) developed a bNAb response. However, there was no statistically discernible difference between the bNAb response and HIV-1 SI. Thus, HIV-1 SI was not associated with the breadth and potency of the bNAb response in this small group of Dutch MSM with SI that included a triple HIV-1-infected individual.
Collapse
Affiliation(s)
- Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Zelda Euler
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom L.G.M. van den Kerkhof
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marit J. van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Brigitte D.M. Boeser-Nunnink
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Fokla Zorgdrager
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan M. Prins
- Division of Infectious Diseases, Department of Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rogier W. Sanders
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College, Cornell University, New York, New York
| | - Antoinette C. van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
HIV-1 neutralizing antibody response and viral genetic diversity characterized with next generation sequencing. Virology 2014; 474:34-40. [PMID: 25463602 DOI: 10.1016/j.virol.2014.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/16/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022]
Abstract
To better understand the dynamics of HIV-specific neutralizing antibody (NAb), we examined associations between viral genetic diversity and the NAb response against a multi-subtype panel of heterologous viruses in a well-characterized, therapy-naïve primary infection cohort. Using next generation sequencing (NGS), we computed sequence-based measures of diversity within HIV-1 env, gag and pol, and compared them to NAb breadth and potency as calculated by a neutralization score. Contemporaneous env diversity and the neutralization score were positively correlated (p=0.0033), as were the neutralization score and estimated duration of infection (EDI) (p=0.0038), and env diversity and EDI (p=0.0005). Neither early env diversity nor baseline viral load correlated with future NAb breadth and potency (p>0.05). Taken together, it is unlikely that neutralizing capability in our cohort was conditioned on viral diversity, but rather that env evolution was driven by the level of NAb selective pressure.
Collapse
|
19
|
Basu D, Xiao P, Ende Z, Bere A, Britt WJ, Mulenga J, Kilembe W, Allen SA, Derdeyn CA, Hunter E. Low antibody-dependent cellular cytotoxicity responses in Zambians prior to HIV-1 intrasubtype C superinfection. Virology 2014; 462-463:295-8. [PMID: 25004405 DOI: 10.1016/j.virol.2014.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/07/2014] [Accepted: 06/15/2014] [Indexed: 11/17/2022]
Abstract
We have previously shown that HIV-1 superinfected Zambian seroconverters mount low binding and neutralizing antibody responses to their primary HIV-1 infecting virus, which could increase susceptibility to re-infection. Here, we investigated if antibody-dependent cellular cytotoxicity (ADCC), a process by which virus-infected cells are killed, was also reduced. Superinfected individuals exhibited low ADCC activity compared to non-superinfected individuals, but similar levels of CMV-reactive binding antibodies, suggesting superinfected individuals are capable of generating and maintaining virus-specific antibodies.
Collapse
Affiliation(s)
- Debby Basu
- Emory Vaccine Center at Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA.
| | - Peng Xiao
- Emory Vaccine Center at Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA.
| | - Zachary Ende
- Emory Vaccine Center at Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA.
| | - Alfred Bere
- Emory Vaccine Center at Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA.
| | - William J Britt
- University of Alabama - Birmingham, 1600 7th Avenue South, Children׳s Harbor Building 107, Birmingham, AL 35233-1711, USA.
| | - Joseph Mulenga
- Zambia Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale, Post Net 412; P/BagE891, Zambia.
| | - William Kilembe
- Zambia Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale, Post Net 412; P/BagE891, Zambia.
| | - Susan A Allen
- Zambia Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale, Post Net 412; P/BagE891, Zambia; Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA; Department of Pathology and Laboratory Medicine, Emory University, 101, Woodruff Circle, Atlanta, GA 30322, USA.
| | - Cynthia A Derdeyn
- Emory Vaccine Center at Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University, 101, Woodruff Circle, Atlanta, GA 30322, USA.
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University, 101, Woodruff Circle, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Association between cellular immune activation, target cell frequency, and risk of human immunodeficiency virus type 1 superinfection. J Virol 2014; 88:5894-9. [PMID: 24623424 DOI: 10.1128/jvi.00187-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We performed a case-control study of women at risk of HIV-1 superinfection to understand the relationship between immune activation and HIV-1 acquisition. An increase in the frequency of HIV-1 target cells, but not in other markers of T cell activation, was associated with a 1.7-fold increase in the odds of superinfection. This suggests that HIV-1 acquisition risk is influenced more by the frequency of target cells than by the generalized level of immune activation.
Collapse
|