1
|
Warren CJ, Barbachano-Guerrero A, Bauer VL, Stabell AC, Dirasantha O, Yang Q, Sawyer SL. Adaptation of CD4 in gorillas and chimpanzees conveyed resistance to simian immunodeficiency viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566830. [PMID: 38014262 PMCID: PMC10680607 DOI: 10.1101/2023.11.13.566830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Simian immunodeficiency viruses (SIVs) comprise a large group of primate lentiviruses that endemically infect African monkeys. HIV-1 spilled over to humans from this viral reservoir, but the spillover did not occur directly from monkeys to humans. Instead, a key event was the introduction of SIVs into great apes, which then set the stage for infection of humans. Here, we investigate the role of the lentiviral entry receptor, CD4, in this key and fateful event in the history of SIV/HIV emergence. First, we reconstructed and tested ancient forms of CD4 at two important nodes in ape speciation, both prior to the infection of chimpanzees and gorillas with these viruses. These ancestral CD4s fully supported entry of diverse SIV isolates related to the viruses that made this initial jump to apes. In stark contrast, modern chimpanzee and gorilla CD4 orthologs are more resistant to these viruses. To investigate how this resistance in CD4 was gained, we acquired CD4 gene sequences from 32 gorilla individuals of two species, and identified alleles that encode 8 unique CD4 protein variants. Functional testing of these identified variant-specific differences in susceptibility to virus entry. By engineering single point mutations from resistant gorilla CD4 variants into the permissive human CD4 receptor, we demonstrate that acquired substitutions in gorilla CD4 did convey resistance to virus entry. We provide a population genetic analysis to support the theory that selection is acting in favor of more and more resistant CD4 alleles in ape species harboring SIV endemically (gorillas and chimpanzees), but not in other ape species that lack SIV infections (bonobos and orangutans). Taken together, our results show that SIV has placed intense selective pressure on ape CD4, acting to propagate SIV-resistant alleles in chimpanzee and gorilla populations.
Collapse
Affiliation(s)
- Cody J. Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Vanessa L. Bauer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Alex C. Stabell
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Obaiah Dirasantha
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Qing Yang
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
2
|
Jasinska AJ, Apetrei C, Pandrea I. Walk on the wild side: SIV infection in African non-human primate hosts-from the field to the laboratory. Front Immunol 2023; 13:1060985. [PMID: 36713371 PMCID: PMC9878298 DOI: 10.3389/fimmu.2022.1060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4+ T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Nagornykh AM, Tyumentseva MA, Tyumentsev AI, Akimkin VG. Anatomical and physiological aspects of the HIV infection pathogenesis in animal models. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the entire pathogenesis of HIV infection, from penetration at the gates of infection to the induction of severe immunodeficiency, is an essential tool for the development of new treatment methods. Less than 40 years of research into the mechanisms of HIV infection that lead to the development of acquired immunodeficiency syndrome have accumulated a huge amount of information, but HIV's own unique variability identifies new whitespaces.
Despite the constant improvement of the protocols of antiretroviral therapy and the success of its use, it has not yet been possible to stop the spread of HIV infection. The development of new protocols and the testing of new groups of antiretroviral drugs is possible, first of all, due to the improvement of animal models of the HIV infection pathogenesis. Their relevance, undoubtedly increases, but still depends on specific research tasks, since none of the in vivo models can comprehensively simulate the mechanism of the infection pathology in humans which leads to multi-organ damage.
The aim of the review was to provide up-to-date information on known animal models of HIV infection, focusing on the method of their infection and anatomical, physiological and pathological features.
Collapse
|
4
|
Rawson JMO, Nikolaitchik OA, Shakya S, Keele BF, Pathak VK, Hu WS. Transcription Start Site Heterogeneity and Preferential Packaging of Specific Full-Length RNA Species Are Conserved Features of Primate Lentiviruses. Microbiol Spectr 2022; 10:e0105322. [PMID: 35736240 PMCID: PMC9430795 DOI: 10.1128/spectrum.01053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
HIV-1 must package its RNA genome to generate infectious viruses. Recent studies have revealed that during genome packaging, HIV-1 not only excludes cellular mRNAs, but also distinguishes among full-length viral RNAs. Using NL4-3 and MAL molecular clones, multiple transcription start sites (TSS) were identified, which generate full-length RNAs that differ by only a few nucleotides at the 5' end. However, HIV-1 selectively packages RNAs containing one guanosine (1G RNA) over RNAs with three guanosines (3G RNA) at the 5' end. Thus, the 5' context of HIV-1 full-length RNA can affect its function. To determine whether the regulation of genome packaging by TSS usage is unique to NL4-3 and MAL, we examined 15 primate lentiviruses including transmitted founder viruses of HIV-1, HIV-2, and several simian immunodeficiency viruses (SIVs). We found that all 15 viruses used multiple TSS to some extent. However, the level of TSS heterogeneity in infected cells varied greatly, even among closely related viruses belonging to the same subtype. Most viruses also exhibited selective packaging of specific full-length viral RNA species into particles. These findings demonstrate that TSS heterogeneity and selective packaging of certain full-length viral RNA species are conserved features of primate lentiviruses. In addition, an SIV strain closely related to the progenitor virus that gave rise to HIV-1 group M, the pandemic pathogen, exhibited TSS usage similar to some HIV-1 strains and preferentially packaged 1G RNA. These findings indicate that multiple TSS usage and selective packaging of a particular unspliced RNA species predate the emergence of HIV-1. IMPORTANCE Unspliced HIV-1 RNA serves two important roles during viral replication: as the virion genome and as the template for translation of Gag/Gag-Pol. Previous studies of two HIV-1 molecular clones have concluded that the TSS usage affects unspliced HIV-1 RNA structures and functions. To investigate the evolutionary origin of this replication strategy, we determined TSS of HIV-1 RNA in infected cells and virions for 15 primate lentiviruses. All HIV-1 isolates examined, including several transmitted founder viruses, utilized multiple TSS and selected a particular RNA species for packaging. Furthermore, these features were observed in SIVs related to the progenitors of HIV-1, suggesting that these characteristics originated from the ancestral viruses. HIV-2, SIVs related to HIV-2, and other SIVs also exhibited multiple TSS and preferential packaging of specific unspliced RNA species, demonstrating that this replication strategy is broadly conserved across primate lentiviruses.
Collapse
Affiliation(s)
- Jonathan M. O. Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Olga A. Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Saurabh Shakya
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
5
|
SIVgsn-99CM71 Vpu employs different amino acids to antagonize human and greater spot-nosed monkey BST-2. J Virol 2021; 96:e0152721. [PMID: 34878886 DOI: 10.1128/jvi.01527-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral protein U (Vpu) is an accessory protein encoded by human immunodeficiency virus type 1 (HIV-1) and certain simian immunodeficiency virus (SIV) strains. Some of these viruses were reported to use Vpu to overcome restriction by BST-2 of their natural hosts. Our own recent report revealed that Vpu of SIVgsn-99CM71 (SIVgsn71) antagonizes human BST-2 through two AxxxxxxxW motifs (A22W30 and A25W33) whereas antagonizing BST-2 of its natural host, greater spot-nosed monkey (GSN), involved only A22W30 motif. Here we show that residues A22, A25, W30, and W33 of SIVgsn71 Vpu are all essential to antagonize human BST-2, while, neither single mutation of A22 nor W30 affected the ability to antagonize GSN BST-2. Similar to A18, which is located in the middle of the A14xxxxxxxW22 motif in HIV-1 NL4-3 Vpu and is essential to antagonize human BST-2, A29, located in the middle of the A25W33 motif of SIVgsn71 Vpu was found to be necessary for antagonizing human but not GSN BST-2. Further mutational analyses revealed that residues L21 and K32 of SIVgsn71 Vpu were also essential for antagonizing human BST-2. On the other hand, the ability of SIVgsn71 Vpu to target GSN BST-2 was unaffected by single amino acid substitutions but required multiple mutations to render SIVgsn71 Vpu inactive against GSN BST-2. These results suggest additional requirements for SIVgsn71 Vpu antagonizing human BST-2, implying evolution of the bst-2 gene under strong selective pressure. Importance Genes related to survival against life-threating pathogens are important determinants of natural selection in animal evolution. For instance, BST-2, a protein showing broad-spectrum antiviral activity, shows polymorphisms entailing different phenotypes even among primate species, suggesting that the bst-2 gene of primates has been subject to strong selective pressure during evolution. At the same time, viruses readily adapt to these evolutionary changes. Thus, we found that Vpu of an SIVgsn isolate (SIVgsn-99CM71) can target BST-2 from humans as well as from its natural host thus potentially facilitating zoonosis. Here we mapped residues in SIVgsn71 Vpu potentially contributing to cross-species transmission. We found that the requirements for targeting human BST-2 are distinct from and more complex than those for targeting GSN BST-2. Our results suggest that the human bst-2 gene might have evolved to acquire more restrictive phenotype than GSN bst-2 against viral proteins after being derived from their common ancestor.
Collapse
|
6
|
Russell RM, Bibollet-Ruche F, Liu W, Sherrill-Mix S, Li Y, Connell J, Loy DE, Trimboli S, Smith AG, Avitto AN, Gondim MVP, Plenderleith LJ, Wetzel KS, Collman RG, Ayouba A, Esteban A, Peeters M, Kohler WJ, Miller RA, François-Souquiere S, Switzer WM, Hirsch VM, Marx PA, Piel AK, Stewart FA, Georgiev AV, Sommer V, Bertolani P, Hart JA, Hart TB, Shaw GM, Sharp PM, Hahn BH. CD4 receptor diversity represents an ancient protection mechanism against primate lentiviruses. Proc Natl Acad Sci U S A 2021; 118:e2025914118. [PMID: 33771926 PMCID: PMC8020793 DOI: 10.1073/pnas.2025914118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of N-linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons (Cercopithecus spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.
Collapse
Affiliation(s)
- Ronnie M Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Dorothy E Loy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephanie Trimboli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew G Smith
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa N Avitto
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marcos V P Gondim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
- Centre for Immunity, Infection, and Evolution, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Katherine S Wetzel
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ahidjo Ayouba
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Amandine Esteban
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - William J Kohler
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329
| | - Vanessa M Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Preston A Marx
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433
| | - Alex K Piel
- Department of Anthropology, University College London, WC1H 0BW London, United Kingdom
| | - Fiona A Stewart
- Department of Anthropology, University College London, WC1H 0BW London, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, United Kingdom
| | - Alexander V Georgiev
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- School of Biological Sciences, Bangor University, LL57 2UW Bangor, United Kingdom
| | - Volker Sommer
- Department of Anthropology, University College London, WC1H 0BW London, United Kingdom
| | - Paco Bertolani
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, CB2 1QH Cambridge, United Kingdom
| | - John A Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - Terese B Hart
- Lukuru Wildlife Research Foundation, Tshuapa-Lomami-Lualaba Project, BP 2012, Kinshasa, Democratic Republic of the Congo
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
- Centre for Immunity, Infection, and Evolution, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
7
|
Uriu K, Kosugi Y, Ito J, Sato K. The Battle between Retroviruses and APOBEC3 Genes: Its Past and Present. Viruses 2021; 13:124. [PMID: 33477360 PMCID: PMC7830460 DOI: 10.3390/v13010124] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
The APOBEC3 family of proteins in mammals consists of cellular cytosine deaminases and well-known restriction factors against retroviruses, including lentiviruses. APOBEC3 genes are highly amplified and diversified in mammals, suggesting that their evolution and diversification have been driven by conflicts with ancient viruses. At present, lentiviruses, including HIV, the causative agent of AIDS, are known to encode a viral protein called Vif to overcome the antiviral effects of the APOBEC3 proteins of their hosts. Recent studies have revealed that the acquisition of an anti-APOBEC3 ability by lentiviruses is a key step in achieving successful cross-species transmission. Here, we summarize the current knowledge of the interplay between mammalian APOBEC3 proteins and viral infections and introduce a scenario of the coevolution of mammalian APOBEC3 genes and viruses.
Collapse
Affiliation(s)
- Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; (K.U.); (J.I.)
- Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| | - Yusuke Kosugi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan;
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; (K.U.); (J.I.)
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; (K.U.); (J.I.)
- Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| |
Collapse
|
8
|
Moser KA, Madebe RA, Aydemir O, Chiduo MG, Mandara CI, Rumisha SF, Chaky F, Denton M, Marsh PW, Verity R, Watson OJ, Ngasala B, Mkude S, Molteni F, Njau R, Warsame M, Mandike R, Kabanywanyi AM, Mahende MK, Kamugisha E, Ahmed M, Kavishe RA, Greer G, Kitojo CA, Reaves EJ, Mlunde L, Bishanga D, Mohamed A, Juliano JJ, Ishengoma DS, Bailey JA. Describing the current status of Plasmodium falciparum population structure and drug resistance within mainland Tanzania using molecular inversion probes. Mol Ecol 2020; 30:100-113. [PMID: 33107096 DOI: 10.1111/mec.15706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/25/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023]
Abstract
High-throughput Plasmodium genomic data is increasingly useful in assessing prevalence of clinically important mutations and malaria transmission patterns. Understanding parasite diversity is important for identification of specific human or parasite populations that can be targeted by control programmes, and to monitor the spread of mutations associated with drug resistance. An up-to-date understanding of regional parasite population dynamics is also critical to monitor the impact of control efforts. However, this data is largely absent from high-burden nations in Africa, and to date, no such analysis has been conducted for malaria parasites in Tanzania countrywide. To this end, over 1,000 P. falciparum clinical isolates were collected in 2017 from 13 sites in seven administrative regions across Tanzania, and parasites were genotyped at 1,800 variable positions genome-wide using molecular inversion probes. Population structure was detectable among Tanzanian P. falciparum parasites, approximately separating parasites from the northern and southern districts and identifying genetically admixed populations in the north. Isolates from nearby districts were more likely to be genetically related compared to parasites sampled from more distant districts. Known drug resistance mutations were seen at increased frequency in northern districts (including two infections carrying pfk13-R561H), and additional variants with undetermined significance for antimalarial resistance also varied by geography. Malaria Indicator Survey (2017) data corresponded with genetic findings, including average region-level complexity-of-infection and malaria prevalence estimates. The parasite populations identified here provide important information on extant spatial patterns of genetic diversity of Tanzanian parasites, to which future surveys of genetic relatedness can be compared.
Collapse
Affiliation(s)
- Kara A Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | | | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Mercy G Chiduo
- National Institute for Medical Research, Tanga, Tanzania
| | - Celine I Mandara
- National Institute for Medical Research, Tanga, Tanzania.,Kilimanjaro Christian Medical Centre/Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Susan F Rumisha
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Frank Chaky
- National Malaria Control Program (NMCP), Dodoma, Tanzania
| | - Madeline Denton
- Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Patrick W Marsh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Robert Verity
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Oliver J Watson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.,MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Billy Ngasala
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Sigsbert Mkude
- National Malaria Control Program (NMCP), Dodoma, Tanzania
| | | | - Ritha Njau
- World Health Organization Country Office, Dar es Salaam, Tanzania
| | - Marian Warsame
- Gothenburg University, Gothenburg, Sweden.,Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Renata Mandike
- National Malaria Control Program (NMCP), Dodoma, Tanzania
| | | | | | - Erasmus Kamugisha
- Catholic University of Health and Allied Sciences/Bugando Medical Centre, Mwanza, Tanzania
| | - Maimuna Ahmed
- Catholic University of Health and Allied Sciences/Bugando Medical Centre, Mwanza, Tanzania
| | - Reginald A Kavishe
- Kilimanjaro Christian Medical Centre/Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - George Greer
- U.S. President's Malaria Initiative, U.S. Agency for International Development, U.S. Embassy, Dar es Salaam, Tanzania
| | - Chonge A Kitojo
- U.S. President's Malaria Initiative, U.S. Agency for International Development, U.S. Embassy, Dar es Salaam, Tanzania
| | - Erik J Reaves
- U.S. President's Malaria Initiative, U.S. Agency for International Development, U.S. Embassy, Dar es Salaam, Tanzania
| | - Linda Mlunde
- Jhpiego/Boresha Afya Project, Dar es Salaam, Tanzania
| | | | - Ally Mohamed
- National Malaria Control Program (NMCP), Dodoma, Tanzania
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA.,Department of Epidemiology, Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania.,Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Vic, Australia.,Harvard T.H. Chan School of Public health, Harvard University, Boston, MA, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
9
|
Site-Specific Evolutionary Rate Shifts in HIV-1 and SIV. Viruses 2020; 12:v12111312. [PMID: 33207801 PMCID: PMC7696578 DOI: 10.3390/v12111312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Site-specific evolutionary rate shifts are defined as protein sites, where the rate of substitution has changed dramatically across the phylogeny. With respect to a given clade, sites may either undergo a rate acceleration or a rate deceleration, reflecting a site that was conserved and became variable, or vice-versa, respectively. Sites displaying such a dramatic evolutionary change may point to a loss or gain of function at the protein site, reflecting adaptation, or they may indicate epistatic interactions among sites. Here, we analyzed full genomes of HIV and SIV-1 and identified 271 rate-shifting sites along the HIV-1/SIV phylogeny. The majority of rate shifts occurred at long branches, often corresponding to cross-species transmission branches. We noted that in most proteins, the number of rate accelerations and decelerations was equal, and we suggest that this reflects epistatic interactions among sites. However, several accessory proteins were enriched for either accelerations or decelerations, and we suggest that this may be a signature of adaptation to new hosts. Interestingly, the non-pandemic HIV-1 group O clade exhibited a substantially higher number of rate-shift events than the pandemic group M clade. We propose that this may be a reflection of the height of the species barrier between gorillas and humans versus chimpanzees and humans. Our results provide a genome-wide view of the constraints operating on proteins of HIV-1 and SIV.
Collapse
|
10
|
Nakano Y, Yamamoto K, Ueda MT, Soper A, Konno Y, Kimura I, Uriu K, Kumata R, Aso H, Misawa N, Nagaoka S, Shimizu S, Mitsumune K, Kosugi Y, Juarez-Fernandez G, Ito J, Nakagawa S, Ikeda T, Koyanagi Y, Harris RS, Sato K. A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. PLoS Pathog 2020; 16:e1008812. [PMID: 32913367 PMCID: PMC7482973 DOI: 10.1371/journal.ppat.1008812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The APOBEC3 deaminases are potent inhibitors of virus replication and barriers to cross-species transmission. For simian immunodeficiency virus (SIV) to transmit to a new primate host, as happened multiple times to seed the ongoing HIV-1 epidemic, the viral infectivity factor (Vif) must be capable of neutralizing the APOBEC3 enzymes of the new host. Although much is known about current interactions of HIV-1 Vif and human APOBEC3s, the evolutionary changes in SIV Vif required for transmission from chimpanzees to gorillas and ultimately to humans are poorly understood. Here, we demonstrate that gorilla APOBEC3G is a factor with the potential to hamper SIV transmission from chimpanzees to gorillas. Gain-of-function experiments using SIVcpzPtt Vif revealed that this barrier could be overcome by a single Vif acidic amino acid substitution (M16E). Moreover, degradation of gorilla APOBEC3F is induced by Vif through a mechanism that is distinct from that of human APOBEC3F. Thus, our findings identify virus adaptations in gorillas that preceded and may have facilitated transmission to humans. Humans are exposed continuously to a menace of viral diseases such as Ebola virus and coronaviruses. Such emerging/re-emerging viral outbreaks can be triggered by cross-species viral transmission from wild animals to humans. HIV-1, the causative agent of AIDS, most likely originated from related precursors found in chimpanzees and gorillas (SIVcpzPtt or SIVgor), approximately 100 years ago. Additionally, SIVgor most likely emerged through the cross-species jump of SIVcpzPtt from chimpanzees to gorillas. However, it remains unclear how primate lentiviruses successfully transmitted among different species. To limit cross-species lentiviral transmission, cellular "restriction factors", including tetherin, SAMHD1, and APOBEC3 proteins potentially inhibit lentiviral replication. In contrast, primate lentiviruses have evolutionary acquired their own "arms" to antagonize the antiviral effect of restriction factors. Here we show that gorilla APOBEC3G potentially plays a role in inhibiting SIVcpzPtt replication. To our knowledge, this is the first report suggesting that a great ape APOBEC3 protein can potentially restrict the cross-species transmission of great ape lentiviruses and how lentiviruses overcame this species barrier.
Collapse
Affiliation(s)
- Yusuke Nakano
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keisuke Yamamoto
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mahoko Takahashi Ueda
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Andrew Soper
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoriyuki Konno
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Izumi Kimura
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Ryuichi Kumata
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Faculty of Science, Kyoto University, Kyoto, Japan
| | - Hirofumi Aso
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Naoko Misawa
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shumpei Nagaoka
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Soma Shimizu
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Keito Mitsumune
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Kosugi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Guillermo Juarez-Fernandez
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jumpei Ito
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Terumasa Ikeda
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kei Sato
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- * E-mail:
| |
Collapse
|
11
|
Vpu of a Simian Immunodeficiency Virus Isolated from Greater Spot-Nosed Monkey Antagonizes Human BST-2 via Two AxxxxxxxW Motifs. J Virol 2020; 94:JVI.01669-19. [PMID: 31666374 DOI: 10.1128/jvi.01669-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 01/20/2023] Open
Abstract
BST-2/CD317/tetherin is a host transmembrane protein that potently inhibits human immunodeficiency virus type 1 (HIV-1) virion release by tethering the nascent virions to the plasma membrane. Viral protein U (Vpu) is an accessory protein encoded by HIV-1 as well as by some simian immunodeficiency viruses (SIVs) infecting wild chimpanzees, gorillas, or monkeys (SIVcpz, SIVgor, or SIVgsn/SIVmon/SIVmus, respectively). HIV-1 Vpu directly binds to and downregulates human BST-2. The antagonism is highly species specific because the amino acid sequences of BST-2 are different among animal species. Here, we show that Vpu proteins from several SIVcpz, SIVgsn, SIVmon, or SIVmus isolates fail to antagonize human BST-2. Only Vpu from an SIVgsn isolate (SIVgsn-99CM71 [SIVgsn71]) was able to antagonize human BST-2 as well as BST-2 of its natural host, greater spot-nosed monkey (GSN). This SIVgsn Vpu interacted with human BST-2, downregulated cell surface human BST-2 expression, and facilitated HIV-1 virion release in the presence of human BST-2. While the unique 14AxxxxxxxW22 motif in the transmembrane domain of HIV-1NL4-3Vpu was reported to be important for antagonizing human BST-2, we show here that two AxxxxxxxW motifs (A22W30 and A25W33) exist in SIVgsn71 Vpu. Only the A22W30 motif was needed for SIVgsn71 Vpu to antagonize GSN BST-2, suggesting that the mechanism of this antagonism resembles that of HIV-1NL4-3 Vpu against human BST-2. Interestingly, SIVgsn71 Vpu requires two AxxxxxxxW (A22W30 and A25W33) motifs to antagonize human BST-2, suggesting an as-yet-undefined way that SIVgsn71 Vpu works against human BST-2. These results imply an evolutionary impact of primate BST-2 on lentiviral Vpu.IMPORTANCE Genetic alterations conferring a selective advantage in protecting from life-threating pathogens are maintained during evolution. In fact, the amino acid sequences of BST-2 differ among primate animals and their susceptibility to viral proteins is species specific, suggesting that such genetic diversity has arisen through the evolutionarily controlled balance between the host and pathogens. The M (main) group of HIV-1 is thought to be derived from SIVcpz, which utilizes Nef, but not Vpu, to antagonize chimpanzee BST-2. SIVcpz Nef is, however, unable to antagonize human BST-2, and Vpu was consequently chosen again as an antagonist against human BST-2 in the context of HIV-1. Studies on how Vpu lost and acquired this ability, together with the distinct mechanisms by which SIVgsn71 Vpu binds to and downregulates human or GSN BST-2, may help to explain the evolution of this lentiviral protein as a result of host-pathogen interactions.
Collapse
|
12
|
Coggins SA, Holler JM, Kimata JT, Kim DH, Schinazi RF, Kim B. Efficient pre-catalytic conformational change of reverse transcriptases from SAMHD1 non-counteracting primate lentiviruses during dNTP incorporation. Virology 2019; 537:36-44. [PMID: 31442614 DOI: 10.1016/j.virol.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Abstract
Unlike HIV-1, HIV-2 and some SIV strains replicate at high dNTP concentrations even in macrophages due to their accessory proteins, Vpx or Vpr, that target SAMHD1 dNTPase for proteasomal degradation. We previously reported that HIV-1 reverse transcriptase (RT) efficiently synthesizes DNA even at low dNTP concentrations because HIV-1 RT displays faster pre-steady state kpol values than SAMHD1 counteracting lentiviral RTs. Here, since the kpol step consists of two sequential sub-steps post dNTP binding, conformational change and chemistry, we investigated which of the two sub-steps RTs from SAMHD1 non-counteracting viruses accelerate in order to complete reverse transcription in the limited dNTP pools found in macrophages. Our study demonstrates that RTs of SAMHD1 non-counteracting lentiviruses have a faster conformational change rate during dNTP incorporation, supporting that these lentiviruses may have evolved to harbor RTs that can efficiently execute the conformational change step in order to circumvent SAMHD1 restriction and dNTP depletion in macrophages.
Collapse
Affiliation(s)
- Si'Ana A Coggins
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jessica M Holler
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, 77030, Texas, USA
| | - Dong-Hyun Kim
- College of Pharmacy, Kyung Hee University, Seoul, 04427, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA; College of Pharmacy, Kyung Hee University, Seoul, 04427, South Korea; Children's Healthcare of Atlanta, Atlanta, 30322, USA.
| |
Collapse
|
13
|
Saito A, Ode H, Nohata K, Ohmori H, Nakayama EE, Iwatani Y, Shioda T. HIV-1 is more dependent on the K182 capsid residue than HIV-2 for interactions with CPSF6. Virology 2019; 532:118-126. [PMID: 31071616 DOI: 10.1016/j.virol.2019.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022]
Abstract
The HIV-1 capsid (CA) utilizes CPSF6 for nuclear entry and integration site targeting. Previous studies demonstrated that the HIV-1 CA C-terminal domain (CTD) contains a highly conserved K182 residue involved in interaction with CPSF6. In contrast, certain HIV-2 strains possess a substitution at this residue (K182R). To assess whether CA-CPSF6 interaction via the CA CTD is conserved among primate lentiviruses, we examined resistance of several HIV-1- and HIV-2-lineage viruses to a truncated form of CPSF6, CPSF6-358. The results demonstrated that viruses belonging to the HIV-2-lineage maintain interaction with CPSF6 regardless of the presence of the K182R substitution, in contrast to the case with HIV-1-lineage viruses. Our structure-guided mutagenesis indicated that the differential requirement for CA-CPSF6 interaction is regulated in part by residues near the 182nd amino acid of CA. These results demonstrate a previously unrecognized distinction between HIV-1 and HIV-2, which may reflect differences in their evolutionary histories.
Collapse
Affiliation(s)
- Akatsuki Saito
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kyotaro Nohata
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hisaki Ohmori
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Emi E Nakayama
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Abstract
HIV, the causative agent of AIDS, has a complex evolutionary history involving several cross-species transmissions and recombination events as well as changes in the repertoire and function of its accessory genes. Understanding these events and the adaptations to new host species provides key insights into innate defense mechanisms, viral dependencies on cellular factors, and prerequisites for the emergence of the AIDS pandemic. In addition, understanding the factors and adaptations required for the spread of HIV in the human population helps to better assess the risk of future lentiviral zoonoses and provides clues to how improved control of viral replication can be achieved. Here, we summarize our current knowledge on viral features and adaptations preceding the AIDS pandemic. We aim at providing a viral point of view, focusing on known key hurdles of each cross-species transmission and the mechanisms that HIV and its simian precursors evolved to overcome them.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm 89081, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Centre, Ulm 89081, Germany.
| |
Collapse
|
15
|
Bibollet-Ruche F, Russell RM, Liu W, Stewart-Jones GBE, Sherrill-Mix S, Li Y, Learn GH, Smith AG, Gondim MVP, Plenderleith LJ, Decker JM, Easlick JL, Wetzel KS, Collman RG, Ding S, Finzi A, Ayouba A, Peeters M, Leendertz FH, van Schijndel J, Goedmakers A, Ton E, Boesch C, Kuehl H, Arandjelovic M, Dieguez P, Murai M, Colin C, Koops K, Speede S, Gonder MK, Muller MN, Sanz CM, Morgan DB, Atencia R, Cox D, Piel AK, Stewart FA, Ndjango JBN, Mjungu D, Lonsdorf EV, Pusey AE, Kwong PD, Sharp PM, Shaw GM, Hahn BH. CD4 receptor diversity in chimpanzees protects against SIV infection. Proc Natl Acad Sci U S A 2019; 116:3229-3238. [PMID: 30718403 PMCID: PMC6386711 DOI: 10.1073/pnas.1821197116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human and simian immunodeficiency viruses (HIV/SIVs) use CD4 as the primary receptor to enter target cells. Here, we show that the chimpanzee CD4 is highly polymorphic, with nine coding variants present in wild populations, and that this diversity interferes with SIV envelope (Env)-CD4 interactions. Testing the replication fitness of SIVcpz strains in CD4+ T cells from captive chimpanzees, we found that certain viruses were unable to infect cells from certain hosts. These differences were recapitulated in CD4 transfection assays, which revealed a strong association between CD4 genotypes and SIVcpz infection phenotypes. The most striking differences were observed for three substitutions (Q25R, Q40R, and P68T), with P68T generating a second N-linked glycosylation site (N66) in addition to an invariant N32 encoded by all chimpanzee CD4 alleles. In silico modeling and site-directed mutagenesis identified charged residues at the CD4-Env interface and clashes between CD4- and Env-encoded glycans as mechanisms of inhibition. CD4 polymorphisms also reduced Env-mediated cell entry of monkey SIVs, which was dependent on at least one D1 domain glycan. CD4 allele frequencies varied among wild chimpanzees, with high diversity in all but the western subspecies, which appeared to have undergone a selective sweep. One allele was associated with lower SIVcpz prevalence rates in the wild. These results indicate that substitutions in the D1 domain of the chimpanzee CD4 can prevent SIV cell entry. Although some SIVcpz strains have adapted to utilize these variants, CD4 diversity is maintained, protecting chimpanzees against infection with SIVcpz and other SIVs to which they are exposed.
Collapse
Affiliation(s)
| | - Ronnie M Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew G Smith
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marcos V P Gondim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Julie M Decker
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Juliet L Easlick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Katherine S Wetzel
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Shilei Ding
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du Centre Hospitalier de L'Université de Montréal, Montréal, QC H2X0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Andrés Finzi
- Département de Microbiologie, Infectiologie et Immunologie, Centre de Recherche du Centre Hospitalier de L'Université de Montréal, Montréal, QC H2X0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Ahidjo Ayouba
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Fabian H Leendertz
- Research Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany
| | - Joost van Schijndel
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Chimbo Foundation, 1011 PW Amsterdam, The Netherlands
| | | | - Els Ton
- Chimbo Foundation, 1011 PW Amsterdam, The Netherlands
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Hjalmar Kuehl
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Mimi Arandjelovic
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Paula Dieguez
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Mizuki Murai
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Christelle Colin
- Projet Primates France, Centre de Conservation pour Chimpanzés, BP 36 Faranah, Republic of Guinea
| | - Kathelijne Koops
- Department of Anthropology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Sheri Speede
- Sanaga-Yong Chimpanzee Rescue Center, In Defense of Animals-Africa, Portland, OR 97204
| | - Mary K Gonder
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | - Martin N Muller
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, St Louis, MO 63130
- Congo Program, Wildlife Conservation Society, BP 14537 Brazzaville, Republic of the Congo
| | - David B Morgan
- Congo Program, Wildlife Conservation Society, BP 14537 Brazzaville, Republic of the Congo
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL 60614
| | - Rebecca Atencia
- Tchimpounga Chimpanzee Rehabilitation Center, The Jane Goodall Institute-Congo, BP 1206 Pointe Noire, Republic of Congo
| | - Debby Cox
- Tchimpounga Chimpanzee Rehabilitation Center, The Jane Goodall Institute-Congo, BP 1206 Pointe Noire, Republic of Congo
- Africa Programs, The Jane Goodall Institute, Vienna, VA 22182
| | - Alex K Piel
- School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF Liverpool, United Kingdom
| | - Fiona A Stewart
- School of Natural Sciences and Psychology, Liverpool John Moores University, L3 3AF Liverpool, United Kingdom
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, BP 2012 Kisangani, Democratic Republic of the Congo
| | - Deus Mjungu
- Gombe Stream Research Centre, The Jane Goodall Institute, Kigoma, Tanzania
| | | | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
The N-Terminus of the HIV-1 p6 Gag Protein Regulates Susceptibility to Degradation by IDE. Viruses 2018; 10:v10120710. [PMID: 30545091 PMCID: PMC6316412 DOI: 10.3390/v10120710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 12/14/2022] Open
Abstract
As part of the Pr55Gag polyprotein, p6 fulfills an essential role in the late steps of the replication cycle. However, almost nothing is known about the functions of the mature HIV-1 p6 protein. Recently, we showed that p6 is a bona fide substrate of the insulin-degrading enzyme (IDE), a ubiquitously expressed zinc metalloprotease. This phenomenon appears to be specific for HIV-1, since p6 homologs of HIV-2, SIV and EIAV were IDE-insensitive. Furthermore, abrogation of the IDE-mediated degradation of p6 reduces the replication capacity of HIV-1 in an Env-dependent manner. However, it remained unclear to which extent the IDE mediated degradation is phylogenetically conserved among HIV-1. Here, we describe two HIV-1 isolates with IDE resistant p6 proteins. Sequence comparison allowed deducing one single amino acid regulating IDE sensitivity of p6. Exchanging the N-terminal leucine residue of p6 derived from the IDE sensitive isolate HIV-1NL4-3 with proline enhances its stability, while replacing Pro-1 of p6 from the IDE insensitive isolate SG3 with leucine restores susceptibility towards IDE. Phylogenetic analyses of this natural polymorphism revealed that the N-terminal leucine is characteristic for p6 derived from HIV-1 group M except for subtype A, which predominantly expresses p6 with an N-terminal proline. Consequently, p6 peptides derived from subtype A are not degraded by IDE. Thus, IDE mediated degradation of p6 is specific for HIV-1 group M isolates and not occasionally distributed among HIV-1.
Collapse
|
17
|
Villabona‐Arenas CJ, Ayouba A, Esteban A, D'arc M, Mpoudi Ngole E, Peeters M. Noninvasive western lowland gorilla's health monitoring: A decade of simian immunodeficiency virus surveillance in southern Cameroon. Ecol Evol 2018; 8:10698-10710. [PMID: 30519399 PMCID: PMC6262910 DOI: 10.1002/ece3.4478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Simian immunodeficiency virus (SIVgor) causes persistent infection in critically endangered western lowland gorillas (Gorilla gorilla gorilla) from west central Africa. SIVgor is closely related to chimpanzee and human immunodeficiency viruses (SIVcpz and HIV-1, respectively). We established a noninvasive method that does not interfere with gorillas' natural behaviour to provide wildlife pathogen surveillance and health monitoring for conservation. A total of 1,665 geo-referenced fecal samples were collected at regular intervals from February 2006 to December 2014 (123 sampling days) in the Campo-Ma'an National Park (southwest Cameroon). Host genotyping was performed using microsatellite markers, SIVgor infection was identified by serology and genetic amplification was attempted on seropositive individuals. We identified at least 125 distinct gorillas, 50 were resampled (observed 3.5 times in average) and 38 were SIVgor+ (seven individuals were seroconverters). Six groups of gorillas were identified based on the overlapping occurrence of individuals with apparent high rates of gene flow. We obtained SIVgor genetic sequences from 25 of 38 seropositive genotyped gorillas and showed that the virus follows exponential growth dynamics under a strict molecular clock. Different groups shared SIVgor lineages demonstrating intergroup viral spread and recapture of positive individuals illustrated intra-host viral evolution. Relatedness and relationship genetic analysis of gorillas together with Bayesian phylogenetic inference of SIVgor provided evidence suggestive of vertical transmission. In conclusion, we provided insights into gorilla social dynamics and SIVgor evolution and emphasized the utility of noninvasive sampling to study wildlife health populations. These findings contribute to prospective planning for better monitoring and conservation.
Collapse
Affiliation(s)
- Christian Julian Villabona‐Arenas
- TransVIHMIInstitut de Recherche pour le Développement (IRD)Institut national de la santé et de la recherche médicale (INSERM)Université de MontpellierMontpellierFrance
| | - Ahidjo Ayouba
- TransVIHMIInstitut de Recherche pour le Développement (IRD)Institut national de la santé et de la recherche médicale (INSERM)Université de MontpellierMontpellierFrance
| | - Amandine Esteban
- TransVIHMIInstitut de Recherche pour le Développement (IRD)Institut national de la santé et de la recherche médicale (INSERM)Université de MontpellierMontpellierFrance
| | - Mirela D'arc
- TransVIHMIInstitut de Recherche pour le Développement (IRD)Institut national de la santé et de la recherche médicale (INSERM)Université de MontpellierMontpellierFrance
| | - Eitel Mpoudi Ngole
- Centre de recherche sur les maladies émergentes et réémergentes (CREMER)Institut de Recherches Médicales et d'Etudes des Plantes Médicinales (IMPM)YaoundéCameroun
| | - Martine Peeters
- TransVIHMIInstitut de Recherche pour le Développement (IRD)Institut national de la santé et de la recherche médicale (INSERM)Université de MontpellierMontpellierFrance
| |
Collapse
|
18
|
Abstract
Pandemic HIV-1, a human lentivirus, is the result of zoonotic transmission of SIV from chimpanzees (SIVcpz). How SIVcpz established spread in humans after spillover is an outstanding question. Lentiviral cross-species transmissions are exceptionally rare events. Nevertheless, the chimpanzee and the gorilla were part of the transmission chains that resulted in sustained infections that evolved into HIV-1. Although many restriction factors can repress the early stages of lentiviral replication, others target replication during the late phases. In some cases, viruses incorporate host proteins that interfere with subsequent rounds of replication. Though limited and small, HIVs and SIVs, including SIVcpz can use their genome products to modulate and escape some of these barriers and thus establish a chronic infection.
Collapse
Affiliation(s)
- Augustin Penda Twizerimana
- Clinic for Gastroenterology, Hepatology & Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Rachel Scheck
- Clinic for Gastroenterology, Hepatology & Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology & Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology & Infectiology, Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
19
|
HIV-1 group P infection: towards a dead-end infection? AIDS 2018; 32:1317-1322. [PMID: 29547436 DOI: 10.1097/qad.0000000000001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES HIV/1 group P (HIV-1/P) is the last HIV/1 group discovered and, to date, constitutes only two strains. To obtain new insight into this divergent group, we screened for new infections by developing specific tools, and analysed phenotypic and genotypic properties of the prototypic strain RBF168. In addition, the follow-up of the unique infected patient monitored so far has raised the knowledge of the natural history of this infection and its therapeutic management. DESIGN/METHODS We developed an HIV-1/P specific seromolecular strategy and screened over 29 498 specimen samples. Infectivity and evolution of the gag-30 position, considered as marker of adaptation to human, were explored by successive passages of RBF168 strain onto human peripheral blood mononuclear cells. Natural history and immunovirological responses to combined antiretroviral therapy (cART) were analysed based on CD4+ cells and plasmatic viral load evolution. RESULTS No new infection was detected. Infectivity of RBF168 was found lower, relative to other main HIV groups and the conservative methionine found in the gag-30 position revealed a lack of adaptation to human. The follow-up of the patient during the 5-year ART-free period, showed a relative stability of CD4+ cell count with a mean of 326 cells/μl. Initiation of cART led to rapid RNA undetectability with a significant increase of CD4+ cells, reaching 687 cells/μl after 8 years. CONCLUSION Our results showed that HIV-1/P strains remain extremely rare and could be less adapted and pathogenic than other HIV strains. These data lead to the hypothesis that HIV-1/P infection could evolve towards, or even already corresponds to, a dead-end infection.
Collapse
|
20
|
Bowder D, Thompson J, Durst K, Hollingsead H, Hu D, Wei W, Xiang SH. Characterization of twin-cysteine motif in the V2-loop region of gp120 in primate lentiviruses. Virology 2018; 519:180-189. [DOI: 10.1016/j.virol.2018.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
21
|
Meyerson NR, Warren CJ, Vieira DASA, Diaz-Griferro F, Sawyer SL. Species-specific vulnerability of RanBP2 shaped the evolution of SIV as it transmitted in African apes. PLoS Pathog 2018. [PMID: 29518153 PMCID: PMC5843284 DOI: 10.1371/journal.ppat.1006906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
HIV-1 arose as the result of spillover of simian immunodeficiency viruses (SIVs) from great apes in Africa, namely from chimpanzees and gorillas. Chimpanzees and gorillas were, themselves, infected with SIV after virus spillover from African monkeys. During spillover events, SIV is thought to require adaptation to the new host species. The host barriers that drive viral adaptation have predominantly been attributed to restriction factors, rather than cofactors (host proteins exploited to promote viral replication). Here, we consider the role of one cofactor, RanBP2, in providing a barrier that drove viral genome evolution during SIV spillover events. RanBP2 (also known as Nup358) is a component of the nuclear pore complex known to facilitate nuclear entry of HIV-1. Our data suggest that transmission of SIV from monkeys to chimpanzees, and then from chimpanzees to gorillas, both coincided with changes in the viral capsid that allowed interaction with RanBP2 of the new host species. However, human RanBP2 subsequently provided no barrier to the zoonotic transmission of SIV from chimpanzees or gorillas, indicating that chimpanzee- and gorilla-adapted SIVs are pre-adapted to humans in this regard. Our observations are in agreement with RanBP2 driving virus evolution during cross-species transmissions of SIV, particularly in the transmissions to and between great ape species. Multiple times, HIV-1 has entered the human population after emerging from a viral reservoir that exists in African primates. First, simian immunodeficiency virus (SIV) made the jump from monkeys into African great apes, and then from apes (namely, chimpanzees and gorillas) into humans. It is well appreciated that restriction factors, which are specialized proteins of the innate immune system, acted as host-specific barriers that drove virus adaptation during these spillover events. Here, we present data showing that a major constituent of the nuclear pore complex, RanBP2, was also a barrier to the spillover of SIVs, particularly in great ape species. Spillover of SIV into chimpanzee and gorilla populations required that the SIV capsid mutate to establish interaction with RanBP2 in the new host species. Our study highlights how essential housekeeping proteins, despite being generally more evolutionarily conserved than restriction factors, can also drive virus evolution during spillover events.
Collapse
Affiliation(s)
- Nicholas R. Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Cody J. Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Daniel A. S. A. Vieira
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Felipe Diaz-Griferro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Sara L. Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| |
Collapse
|
22
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
23
|
D'arc M, Furtado C, Siqueira JD, Seuánez HN, Ayouba A, Peeters M, Soares MA. Assessment of the gorilla gut virome in association with natural simian immunodeficiency virus infection. Retrovirology 2018; 15:19. [PMID: 29402305 PMCID: PMC5800045 DOI: 10.1186/s12977-018-0402-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/28/2018] [Indexed: 01/10/2023] Open
Abstract
Background Simian immunodeficiency viruses (SIVs) of chimpanzees and gorillas from Central Africa crossed the species barrier at least four times giving rise to human immunodeficiency virus type 1 (HIV-1) groups M, N, O and P. The paradigm of non-pathogenic lentiviral infections has been challenged by observations of naturally infected chimpanzees with SIVcpz associated with a negative impact on their life span and reproduction, CD4+ T-lymphocyte loss and lymphoid tissue destruction. With the advent and dissemination of new generation sequencing technologies, novel promising markers of immune deficiency have been explored in human and nonhuman primate species, showing changes in the microbiome (dysbiosis) that might be associated with pathogenic conditions. The aim of the present study was to identify and compare enteric viromes of SIVgor-infected and uninfected gorillas using noninvasive sampling and ultradeep sequencing, and to assess the association of virome composition with potential SIVgor pathogenesis in their natural hosts. Results We analyzed both RNA and DNA virus libraries of 23 fecal samples from 11 SIVgor-infected (two samples from one animal) and 11 uninfected western lowland gorillas from Campo-Ma’an National Park (CP), in southwestern Cameroon. Three bacteriophage families (Siphoviridae, Myoviridae and Podoviridae) represented 67.5 and 68% of the total annotated reads in SIVgor-infected and uninfected individuals, respectively. Conversely, mammalian viral families, such as Herpesviridae and Reoviridae, previously associated with gut- and several mammalian diseases were significantly more abundant (p < 0.003) in the SIVgor-infected group. In the present study, we analyzed, for the first time, the enteric virome of gorillas and their association with SIVgor status. This also provided the first evidence of association of specific mammalian viral families and SIVgor in a putative dysbiosis context. Conclusions Our results suggested that viromes might be potentially used as markers of lentiviral disease progression in wild gorilla populations. The diverse mammalian viral families, herein described in SIVgor-infected gorillas, may play a pivotal role in a disease progression still unclear in these animals but already well characterized in pathogenic lentiviral infections in other organisms. Larger sample sets should be further explored to reduce intrinsic sampling variation.
Collapse
Affiliation(s)
- Mirela D'arc
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.,Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | - Héctor N Seuánez
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.,Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ahidjo Ayouba
- UMI233/INSERM1175 Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| | - Martine Peeters
- UMI233/INSERM1175 Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| | - Marcelo A Soares
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil. .,Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Experimental Adaptive Evolution of Simian Immunodeficiency Virus SIVcpz to Pandemic Human Immunodeficiency Virus Type 1 by Using a Humanized Mouse Model. J Virol 2018; 92:JVI.01905-17. [PMID: 29212937 DOI: 10.1128/jvi.01905-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, originated from simian immunodeficiency virus from chimpanzees (SIVcpz), the precursor of the human virus, approximately 100 years ago. This indicates that HIV-1 has emerged through the cross-species transmission of SIVcpz from chimpanzees to humans. However, it remains unclear how SIVcpz has evolved into pandemic HIV-1 in humans. To address this question, we inoculated three SIVcpz strains (MB897, EK505, and MT145), four pandemic HIV-1 strains (NL4-3, NLCSFV3, JRCSF, and AD8), and two nonpandemic HIV-1 strains (YBF30 and DJO0131). Humanized mice infected with SIVcpz strain MB897, a virus phylogenetically similar to pandemic HIV-1, exhibited a peak viral load comparable to that of mice infected with pandemic HIV-1, while peak viral loads of mice infected with SIVcpz strain EK505 or MT145 as well as nonpandemic HIV-1 strains were significantly lower. These results suggest that SIVcpz strain MB897 is preadapted to humans, unlike the other SIVcpz strains. Moreover, viral RNA sequencing of MB897-infected humanized mice identified a nonsynonymous mutation in env, a G413R substitution in gp120. The infectivity of the gp120 G413R mutant of MB897 was significantly higher than that of parental MB897. Furthermore, we demonstrated that the gp120 G413R mutant of MB897 augments the capacity for viral replication in both in vitro cell cultures and humanized mice. Taken together, this is the first experimental investigation to use an animal model to demonstrate a gain-of-function evolution of SIVcpz into pandemic HIV-1.IMPORTANCE From the mid-20th century, humans have been exposed to the menace of infectious viral diseases, such as severe acute respiratory syndrome coronavirus, Ebola virus, and Zika virus. These outbreaks of emerging/reemerging viruses can be triggered by cross-species viral transmission from wild animals to humans, or zoonoses. HIV-1, the causative agent of AIDS, emerged by the cross-species transmission of SIVcpz, the HIV-1 precursor in chimpanzees, around 100 years ago. However, the process by which SIVcpz evolved to become HIV-1 in humans remains unclear. Here, by using a hematopoietic stem cell-transplanted humanized-mouse model, we experimentally recapitulate the evolutionary process of SIVcpz to become HIV-1. We provide evidence suggesting that a strain of SIVcpz, MB897, preadapted to infect humans over other SIVcpz strains. We further demonstrate a gain-of-function evolution of SIVcpz in infected humanized mice. Our study reveals that pandemic HIV-1 has emerged through at least two steps: preadaptation and subsequent gain-of-function mutations.
Collapse
|
25
|
Zhang Z, Gu Q, de Manuel Montero M, Bravo IG, Marques-Bonet T, Häussinger D, Münk C. Stably expressed APOBEC3H forms a barrier for cross-species transmission of simian immunodeficiency virus of chimpanzee to humans. PLoS Pathog 2017; 13:e1006746. [PMID: 29267382 PMCID: PMC5739507 DOI: 10.1371/journal.ppat.1006746] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023] Open
Abstract
APOBEC3s (A3s) are potent restriction factors of human immunodeficiency virus type 1/simian immunodeficiency viruses (HIV-1/SIV), and can repress cross-species transmissions of lentiviruses. HIV-1 originated from a zoonotic infection of SIV of chimpanzee (SIVcpz) to humans. However, the impact of human A3s on the replication of SIVcpz remains unclear. By using novel SIVcpz reporter viruses, we identified that human APOBEC3B (A3B) and APOBEC3H (A3H) haplotype II strongly reduced the infectivity of SIVcpz, because both of them are resistant to SIVcpz Vifs. We further demonstrated that human A3H inhibited SIVcpz by deaminase dependent as well independent mechanisms. In addition, other stably expressed human A3H haplotypes and splice variants showed strong antiviral activity against SIVcpz. Moreover, most SIV and HIV lineage Vif proteins could degrade chimpanzee A3H, but no Vifs from SIVcpz and SIV of gorilla (SIVgor) lineages antagonized human A3H haplotype II. Expression of human A3H hapII in human T cells efficiently blocked the spreading replication of SIVcpz. The spreading replication of SIVcpz was also restricted by stable A3H in human PBMCs. Thus, we speculate that stably expressed human A3H protects humans against the cross-species transmission of SIVcpz and that SIVcpz spillover to humans may have started in individuals that harbor haplotypes of unstable A3H proteins.
Collapse
Affiliation(s)
- Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Qinyong Gu
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | - Tomas Marques-Bonet
- Institut Biologia Evolutiva (Universitat Pompeu Fabra/CSIC) ICREA, Barcelona, Spain
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
26
|
Rupp S, Ambata P, Narat V, Giles-Vernick T. Beyond the Cut Hunter: A Historical Epidemiology of HIV Beginnings in Central Africa. ECOHEALTH 2016; 13:661-671. [PMID: 27718030 DOI: 10.1007/s10393-016-1189-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
In the absence of direct evidence, an imagined "cut hunter" stands in for the index patient of pandemic HIV/AIDS. During the early years of colonial rule, this explanation goes, a hunter was cut or injured from hunting or butchering a chimpanzee infected with simian immunodeficiency virus, resulting in the first sustained human infection with the virus that would emerge as HIV-1M. We argue here that the "cut hunter" relies on a historical misunderstanding and ecological oversimplification of human-chimpanzee (Pan Troglodytes troglodytes) interactions that facilitated pathogenic transmission. This initial host shift cannot explain the beginnings of the HIV/AIDS pandemic. Instead, we must understand the processes by which the virus became transmissible, possibly between Sangha basin inhabitants and ultimately reached Kinshasa. A historical epidemiology of the late nineteenth and twentieth centuries, provides a much-needed corrective to the major shortcomings of the cut hunter. Based on 62 oral historical interviews conducted in southeastern Cameroon and archival research, we show that HIV emerged from ecological, economic, and socio-political transformations of the late nineteenth and twentieth centuries. The gradual imposition of colonial rule built on and reoriented ecologies and economies, and altered older patterns of mobility and sociality. Certain changes may have contributed to the initial viral host shift, but more importantly, facilitated the adaptation of HIV-1M to human-to-human transmission. Our evidence suggests that the most critical changes occurred after 1920. This argument has important implications for public health policy, underscoring recent work emphasizing alternative pathways for zoonotic spillovers into human beings.
Collapse
Affiliation(s)
- Stephanie Rupp
- Department of Anthropology, City University of New York - Lehman College, New York, NY, USA
| | - Philippe Ambata
- Ministry of Agriculture and Rural Development, Yaoundé, Cameroon
| | - Victor Narat
- Emerging Diseases Epidemiology Unit, Institut Pasteur-Paris, 25-28 Rue du Docteur Roux, 75724, Paris Cedex, France
| | - Tamara Giles-Vernick
- Emerging Diseases Epidemiology Unit, Institut Pasteur-Paris, 25-28 Rue du Docteur Roux, 75724, Paris Cedex, France.
- Canadian Institute for Advanced Studies, Toronto, Canada.
| |
Collapse
|
27
|
Garcia-Tellez T, Huot N, Ploquin MJ, Rascle P, Jacquelin B, Müller-Trutwin M. Non-human primates in HIV research: Achievements, limits and alternatives. INFECTION GENETICS AND EVOLUTION 2016; 46:324-332. [PMID: 27469027 DOI: 10.1016/j.meegid.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
An ideal model for HIV-1 research is still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) recapitulates most virological, immunological and clinical hallmarks of HIV infection in humans. It has become the most suitable model to study the mechanisms of transmission and physiopathology of HIV/AIDS. On the other hand, natural hosts of SIV, such as African green monkeys and sooty mangabeys that when infected do not progress to AIDS, represent an excellent model to elucidate the mechanisms involved in the capacity of controlling inflammation and disease progression. The use of NHP-SIV models has indeed enriched our knowledge in the fields of: i) viral transmission and viral reservoirs, ii) early immune responses, iii) host cell-virus interactions in tissues, iv) AIDS pathogenesis, v) virulence factors, vi) prevention and vii) drug development. The possibility to control many variables during experimental SIV infection, together with the resemblance between SIV and HIV infections, make the NHP model the most appropriate, so far, for HIV/AIDS research. Nonetheless, some limitations in using these models have to be considered. Alternative models for HIV/AIDS research, such as humanized mice and recombinant forms of HIV-SIV viruses (SHIV) for NHP infection, have been developed. The improvement of SHIV viruses that mimic even better the natural history of HIV infection and of humanized mice that develop a greater variety of human immune cell lineages, is ongoing. None of these models is perfect, but they allow contributing to the progress in managing or preventing HIV infection.
Collapse
Affiliation(s)
- Thalía Garcia-Tellez
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| | - Mickaël J Ploquin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
28
|
The well-tempered SIV infection: Pathogenesis of SIV infection in natural hosts in the wild, with emphasis on virus transmission and early events post-infection that may contribute to protection from disease progression. INFECTION GENETICS AND EVOLUTION 2016; 46:308-323. [PMID: 27394696 DOI: 10.1016/j.meegid.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV.
Collapse
|
29
|
Abstract
Zoonotic diseases are the main contributor to emerging infectious diseases (EIDs) and present a major threat to global public health. Bushmeat is an important source of protein and income for many African people, but bushmeat-related activities have been linked to numerous EID outbreaks, such as Ebola, HIV, and SARS. Importantly, increasing demand and commercialization of bushmeat is exposing more people to pathogens and facilitating the geographic spread of diseases. To date, these linkages have not been systematically assessed. Here we review the literature on bushmeat and EIDs for sub-Saharan Africa, summarizing pathogens (viruses, fungi, bacteria, helminths, protozoan, and prions) by bushmeat taxonomic group to provide for the first time a comprehensive overview of the current state of knowledge concerning zoonotic disease transmission from bushmeat into humans. We conclude by drawing lessons that we believe are applicable to other developing and developed regions and highlight areas requiring further research to mitigate disease risk.
Collapse
|
30
|
Barbian HJ, Li Y, Ramirez M, Klase Z, Lipende I, Mjungu D, Moeller AH, Wilson ML, Pusey AE, Lonsdorf EV, Bushman FD, Hahn BH. Destabilization of the gut microbiome marks the end-stage of simian immunodeficiency virus infection in wild chimpanzees. Am J Primatol 2015; 80. [PMID: 26676710 DOI: 10.1002/ajp.22515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/20/2015] [Accepted: 12/01/2015] [Indexed: 12/17/2022]
Abstract
Enteric dysbiosis is a characteristic feature of progressive human immunodeficiency virus type 1 (HIV-1) infection but has not been observed in simian immunodeficiency virus (SIVmac)-infected macaques, including in animals with end-stage disease. This has raised questions concerning the mechanisms underlying the HIV-1 associated enteropathy, with factors other than virus infection, such as lifestyle and antibiotic use, implicated as playing possible causal roles. Simian immunodeficiency virus of chimpanzees (SIVcpz) is also associated with increased mortality in wild-living communities, and like HIV-1 and SIVmac, can cause CD4+ T cell depletion and immunodeficiency in infected individuals. Given the central role of the intestinal microbiome in mammalian health, we asked whether gut microbial constituents could be identified that are indicative of SIVcpz status and/or disease progression. Here, we characterized the gut microbiome of SIVcpz-infected and -uninfected chimpanzees in Gombe National Park, Tanzania. Subjecting a small number of fecal samples (N = 9) to metagenomic (shotgun) sequencing, we found bacteria of the family Prevotellaceae to be enriched in SIVcpz-infected chimpanzees. However, 16S rRNA gene sequencing of a larger number of samples (N = 123) failed to show significant differences in both the composition and diversity (alpha and beta) of gut bacterial communities between infected (N = 24) and uninfected (N = 26) chimpanzees. Similarly, chimpanzee stool-associated circular virus (Chi-SCV) and chimpanzee adenovirus (ChAdV) identified by metagenomic sequencing were neither more prevalent nor more abundant in SIVcpz-infected individuals. However, fecal samples collected from SIVcpz-infected chimpanzees within 5 months before their AIDS-related death exhibited significant compositional changes in their gut bacteriome. These data indicate that SIVcpz-infected chimpanzees retain a stable gut microbiome throughout much of their natural infection course, with a significant destabilization of bacterial (but not viral) communities observed only in individuals with known immunodeficiency within the last several months before their death. Am. J. Primatol. 80:e22515, 2018. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannah J Barbian
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Miguel Ramirez
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zachary Klase
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania
| | | | - Deus Mjungu
- Gombe Stream Research Center, Kigoma, Tanzania
| | - Andrew H Moeller
- Department of Integrative Biology, University of California, Berkeley, California.,Miller Institute for Basic Research, University of California, Berkeley, California
| | - Michael L Wilson
- Department of Anthropology, University of Minnesota, Minneapolis, Minnesota.,Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Elizabeth V Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Troncoso LL, Muniz CP, Siqueira JD, Curty G, Schrago CG, Augusto A, Fedullo L, Soares MA, Santos AF. Characterization and comparative analysis of a simian foamy virus complete genome isolated from Brazilian capuchin monkeys. Virus Res 2015; 208:1-6. [DOI: 10.1016/j.virusres.2015.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 05/25/2015] [Indexed: 12/28/2022]
|
32
|
Barbian HJ, Decker JM, Bibollet-Ruche F, Galimidi RP, West AP, Learn GH, Parrish NF, Iyer SS, Li Y, Pace CS, Song R, Huang Y, Denny TN, Mouquet H, Martin L, Acharya P, Zhang B, Kwong PD, Mascola JR, Verrips CT, Strokappe NM, Rutten L, McCoy LE, Weiss RA, Brown CS, Jackson R, Silvestri G, Connors M, Burton DR, Shaw GM, Nussenzweig MC, Bjorkman PJ, Ho DD, Farzan M, Hahn BH. Neutralization properties of simian immunodeficiency viruses infecting chimpanzees and gorillas. mBio 2015; 6:e00296-15. [PMID: 25900654 PMCID: PMC4453581 DOI: 10.1128/mbio.00296-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Broadly cross-reactive neutralizing antibodies (bNabs) represent powerful tools to combat human immunodeficiency virus type 1 (HIV-1) infection. Here, we examined whether HIV-1-specific bNabs are capable of cross-neutralizing distantly related simian immunodeficiency viruses (SIVs) infecting central (Pan troglodytes troglodytes) (SIVcpzPtt) and eastern (Pan troglodytes schweinfurthii) (SIVcpzPts) chimpanzees (n = 11) as well as western gorillas (Gorilla gorilla gorilla) (SIVgor) (n = 1). We found that bNabs directed against the CD4 binding site (n = 10), peptidoglycans at the base of variable loop 3 (V3) (n = 5), and epitopes at the interface of surface (gp120) and membrane-bound (gp41) envelope glycoproteins (n = 5) failed to neutralize SIVcpz and SIVgor strains. In addition, apex V2-directed bNabs (n = 3) as well as llama-derived (heavy chain only) antibodies (n = 6) recognizing both the CD4 binding site and gp41 epitopes were either completely inactive or neutralized only a fraction of SIVcpzPtt strains. In contrast, one antibody targeting the membrane-proximal external region (MPER) of gp41 (10E8), functional CD4 and CCR5 receptor mimetics (eCD4-Ig, eCD4-Ig(mim2), CD4-218.3-E51, and CD4-218.3-E51-mim2), as well as mono- and bispecific anti-human CD4 (iMab and LM52) and CCR5 (PRO140, PRO140-10E8) receptor antibodies neutralized >90% of SIVcpz and SIVgor strains with low-nanomolar (0.13 to 8.4 nM) potency. Importantly, the latter antibodies blocked virus entry not only in TZM-bl cells but also in Cf2Th cells expressing chimpanzee CD4 and CCR5 and neutralized SIVcpz in chimpanzee CD4(+) T cells, with 50% inhibitory concentrations (IC50s) ranging from 3.6 to 40.5 nM. These findings provide new insight into the protective capacity of anti-HIV-1 bNabs and identify candidates for further development to combat SIVcpz infection. IMPORTANCE SIVcpz is widespread in wild-living chimpanzees and can cause AIDS-like immunopathology and clinical disease. HIV-1 infection of humans can be controlled by antiretroviral therapy; however, treatment of wild-living African apes with current drug regimens is not feasible. Nonetheless, it may be possible to curb the spread of SIVcpz in select ape communities using vectored immunoprophylaxis and/or therapy. Here, we show that antibodies and antibody-like inhibitors developed to combat HIV-1 infection in humans are capable of neutralizing genetically diverse SIVcpz and SIVgor strains with considerable breadth and potency, including in primary chimpanzee CD4(+) T cells. These reagents provide an important first step toward translating intervention strategies currently developed to treat and prevent AIDS in humans to SIV-infected apes.
Collapse
Affiliation(s)
- Hannah J Barbian
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie M Decker
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frederic Bibollet-Ruche
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel P Galimidi
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - Anthony P West
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - Gerald H Learn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas F Parrish
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shilpa S Iyer
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yingying Li
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Ruijiang Song
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Loic Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif-sur-Yvette, France
| | - Priyamvada Acharya
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Nika M Strokappe
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Lucy Rutten
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Laura E McCoy
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | | | - Guido Silvestri
- Yerkes Regional Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, USA
| | - Michael Farzan
- Department of Immunology and Microbial Science, The Scripps Research Institute, Jupiter, Florida, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
33
|
Seimon TA, Olson SH, Lee KJ, Rosen G, Ondzie A, Cameron K, Reed P, Anthony SJ, Joly DO, McAloose D, Lipkin WI. Adenovirus and herpesvirus diversity in free-ranging great apes in the Sangha region of the Republic Of Congo. PLoS One 2015; 10:e0118543. [PMID: 25781992 PMCID: PMC4362762 DOI: 10.1371/journal.pone.0118543] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/20/2015] [Indexed: 12/30/2022] Open
Abstract
Infectious diseases have caused die-offs in both free-ranging gorillas and chimpanzees. Understanding pathogen diversity and disease ecology is therefore critical for conserving these endangered animals. To determine viral diversity in free-ranging, non-habituated gorillas and chimpanzees in the Republic of Congo, genetic testing was performed on great-ape fecal samples collected near Odzala-Kokoua National Park. Samples were analyzed to determine ape species, identify individuals in the population, and to test for the presence of herpesviruses, adenoviruses, poxviruses, bocaviruses, flaviviruses, paramyxoviruses, coronaviruses, filoviruses, and simian immunodeficiency virus (SIV). We identified 19 DNA viruses representing two viral families, Herpesviridae and Adenoviridae, of which three herpesviruses had not been previously described. Co-detections of multiple herpesviruses and/or adenoviruses were present in both gorillas and chimpanzees. Cytomegalovirus (CMV) and lymphocryptovirus (LCV) were found primarily in the context of co-association with each other and adenoviruses. Using viral discovery curves for herpesviruses and adenoviruses, the total viral richness in the sample population of gorillas and chimpanzees was estimated to be a minimum of 23 viruses, corresponding to a detection rate of 83%. These findings represent the first description of DNA viral diversity in feces from free-ranging gorillas and chimpanzees in or near the Odzala-Kokoua National Park and form a basis for understanding the types of viruses circulating among great apes in this region.
Collapse
Affiliation(s)
- Tracie A. Seimon
- Zoological Health Program, Wildlife Conservation Society, Bronx, New York, United States of America
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | - Sarah H. Olson
- Wildlife Health and Health Policy Program, Wildlife Conservation Society, Bronx, New York, United States of America
- Center for Sustainability and the Global Environment, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kerry Jo Lee
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | - Gail Rosen
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | - Alain Ondzie
- Wildlife Health and Health Policy Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Kenneth Cameron
- Wildlife Health and Health Policy Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Patricia Reed
- Wildlife Health and Health Policy Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Simon J. Anthony
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | - Damien O. Joly
- Wildlife Health and Health Policy Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Denise McAloose
- Zoological Health Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| |
Collapse
|
34
|
Origin of the HIV-1 group O epidemic in western lowland gorillas. Proc Natl Acad Sci U S A 2015; 112:E1343-52. [PMID: 25733890 DOI: 10.1073/pnas.1502022112] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1, the cause of AIDS, is composed of four phylogenetic lineages, groups M, N, O, and P, each of which resulted from an independent cross-species transmission event of simian immunodeficiency viruses (SIVs) infecting African apes. Although groups M and N have been traced to geographically distinct chimpanzee communities in southern Cameroon, the reservoirs of groups O and P remain unknown. Here, we screened fecal samples from western lowland (n = 2,611), eastern lowland (n = 103), and mountain (n = 218) gorillas for gorilla SIV (SIVgor) antibodies and nucleic acids. Despite testing wild troops throughout southern Cameroon (n = 14), northern Gabon (n = 16), the Democratic Republic of Congo (n = 2), and Uganda (n = 1), SIVgor was identified at only four sites in southern Cameroon, with prevalences ranging from 0.8-22%. Amplification of partial and full-length SIVgor sequences revealed extensive genetic diversity, but all SIVgor strains were derived from a single lineage within the chimpanzee SIV (SIVcpz) radiation. Two fully sequenced gorilla viruses from southwestern Cameroon were very closely related to, and likely represent the source population of, HIV-1 group P. Most of the genome of a third SIVgor strain, from central Cameroon, was very closely related to HIV-1 group O, again pointing to gorillas as the immediate source. Functional analyses identified the cytidine deaminase APOBEC3G as a barrier for chimpanzee-to-gorilla, but not gorilla-to-human, virus transmission. These data indicate that HIV-1 group O, which spreads epidemically in west central Africa and is estimated to have infected around 100,000 people, originated by cross-species transmission from western lowland gorillas.
Collapse
|
35
|
Moeller AH, Peeters M, Ayouba A, Ngole EM, Esteban A, Hahn BH, Ochman H. Stability of the gorilla microbiome despite simian immunodeficiency virus infection. Mol Ecol 2015; 24:690-7. [PMID: 25545295 DOI: 10.1111/mec.13057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 01/04/2023]
Abstract
Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV-1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV-1-infected humans and SIVcpz-infected chimpanzees, SIVgor-infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf-based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla-specific enterotype was enabled by lowered immune system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV-1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority.
Collapse
Affiliation(s)
- Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Xu H, Wang X, Veazey RS. Simian Immunodeficiency Virus Infection and Mucosal Immunity. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
|
38
|
Abstract
The feline immunodeficiency virus (FIV) shares genomic organization, receptor usage, lymphocyte tropism, and induction of immunodeficiency and increased susceptibility to cancer with the human immunodeficiency virus (HIV). Global distribution, marked heterogeneity and variable host adaptation are also properties of both viruses. These features render the FIV-cat model suitable to explore many aspects of lentivirus-host interaction and adaptation, and to explore treatment and prevention of infection. Examples of fundamental discoveries that have emerged from study in the FIV-cat model concern two-receptor entrance strategies that target memory T-lymphocytes, host factors that restrict retroviral infection, viral strategies for replication in non-dividing cells, and identification of correlates of immunity to the virus. This article provides a brief overview of strengths and limitations of the FIV-cat model for comparative biology and medicine.
Collapse
Affiliation(s)
- Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
39
|
Abstract
The AIDS pandemic that started in the early 1980s is due to human immunodeficiency virus type 1 (HIV-1) group M (HIV-M), but apart from this major group, many divergent variants have been described (HIV-1 groups N, O, and P and HIV-2). The four HIV-1 groups arose from independent cross-species transmission of the simian immunodeficiency viruses (SIVs) SIVcpz, infecting chimpanzees, and SIVgor, infecting gorillas. This, together with human adaptation, accounts for their genomic, phylogenetic, and virological specificities. Nevertheless, the natural course of non-M HIV infection seems similar to that of HIV-M. The virological monitoring of infected patients is now possible with commercial kits, but their therapeutic management remains complex. All non-M variants were principally described for patients linked to Cameroon, where HIV-O accounts for 1% of all HIV infections; only 15 cases of HIV-N infection and 2 HIV-P infections have been reported. Despite improvements in our knowledge, many fascinating questions remain concerning the origin, genetic evolution, and slow spread of these variants. Other variants may already exist or may arise in the future, calling for close surveillance. This review provides a comprehensive, up-to-date summary of the current knowledge on these pathogens, including the historical background of their discovery; the latest advances in the comprehension of their origin and spread; and clinical, therapeutic, and laboratory aspects that may be useful for the management and the treatment of patients infected with these divergent viruses.
Collapse
|
40
|
Peeters M, Jung M, Ayouba A. The origin and molecular epidemiology of HIV. Expert Rev Anti Infect Ther 2014; 11:885-96. [DOI: 10.1586/14787210.2013.825443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Moeller AH, Peeters M, Ndjango JB, Li Y, Hahn BH, Ochman H. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res 2013; 23:1715-20. [PMID: 23804402 PMCID: PMC3787267 DOI: 10.1101/gr.154773.113] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
Abstract
The gut microbial communities within great apes have been shown to reflect the phylogenetic history of their hosts, indicating codiversification between great apes and their gut microbiota over evolutionary timescales. But because the great apes examined to date represent geographically isolated populations whose diets derive from different sources, it is unclear whether this pattern of codiversification has resulted from a long history of coadaptation between microbes and hosts (heritable factors) or from the ecological and geographic separation among host species (environmental factors). To evaluate the relative influences of heritable and environmental factors on the evolution of the great ape gut microbiota, we assayed the gut communities of sympatric and allopatric populations of chimpanzees, bonobos, and gorillas residing throughout equatorial Africa. Comparisons of these populations revealed that the gut communities of different host species can always be distinguished from one another but that the gut communities of sympatric chimpanzees and gorillas have converged in terms of community composition, sharing on average 53% more bacterial phylotypes than the gut communities of allopatric hosts. Host environment, independent of host genetics and evolutionary history, shaped the distribution of bacterial phylotypes across the Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria, the four most common phyla of gut bacteria. Moreover, the specific patterns of phylotype sharing among hosts suggest that chimpanzees living in sympatry with gorillas have acquired bacteria from gorillas. These results indicate that geographic isolation between host species has promoted the evolutionary differentiation of great ape gut bacterial communities.
Collapse
Affiliation(s)
- Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Martine Peeters
- Institut de Recherche pour le Développement (IRD) and University of Montpellier 1, 34394 Montpellier Cedex 5, France
| | - Jean-Basco Ndjango
- Faculties of Sciences, University of Kisangani, Kisangani, BP 2012, Democratic Republic of the Congo
| | - Yingying Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Howard Ochman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
42
|
Vif proteins from diverse primate lentiviral lineages use the same binding site in APOBEC3G. J Virol 2013; 87:11861-71. [PMID: 23986590 DOI: 10.1128/jvi.01944-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
APOBEC3G (A3G) is a cytidine deaminase that restricts human immunodeficiency virus type 1 (HIV-1) and other lentiviruses. Most of these viruses encode a Vif protein that directly binds A3G and leads to its proteasomal degradation. Both Vif proteins of HIV-1 and African green monkey simian immunodeficiency virus (SIVagm) bind residue 128 of A3G. However, this position does not control the A3G degradation by Vif variants derived from HIV-2 and SIVmac, which both originated from SIV of sooty mangabey monkeys (SIVsmm), suggesting that the A3G binding site for Vif proteins of the SIVsmm/HIV-2 lineage differs from that of HIV-1. To map the SIVsmm Vif binding site of A3G, we performed immunoprecipitations of individual A3G domains, Vif/A3G degradation assays and a detailed mutational analysis of human A3G. We show that A3G residue 129, but not the adjacent position 128, confers susceptibility to degradation by SIVsmm Vif. An artificial A3G mutant, the P129D mutant, was resistant to degradation by diverse Vifs from HIV-1, HIV-2, SIVagm, and chimpanzee SIV (SIVcpz), suggesting a conserved lentiviral Vif binding site. Gorilla A3G naturally contains a glutamine (Q) at position 129, which makes its A3G resistant to Vifs from diverse lineages. We speculate that gorilla A3G serves as a barrier against SIVcpz strains. In summary, we show that Vif proteins from distinct lineages bind to the same A3G loop, which includes positions 128 and 129. The multiple adaptations within this loop among diverse primates underscore the importance of counteracting A3G in lentiviral evolution.
Collapse
|
43
|
de Groot NG, Bontrop RE. The HIV-1 pandemic: does the selective sweep in chimpanzees mirror humankind's future? Retrovirology 2013; 10:53. [PMID: 23705941 PMCID: PMC3667106 DOI: 10.1186/1742-4690-10-53] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/04/2013] [Indexed: 12/31/2022] Open
Abstract
An HIV-1 infection progresses in most human individuals sooner or later into AIDS, a devastating disease that kills more than a million people worldwide on an annual basis. Nonetheless, certain HIV-1-infected persons appear to act as long-term non-progressors, and elite control is associated with the presence of particular MHC class I allotypes such as HLA-B*27 or -B*57. The HIV-1 pandemic in humans arose from the cross-species transmission of SIVcpz originating from chimpanzees. Chimpanzees, however, appear to be relatively resistant to developing AIDS after HIV-1/SIVcpz infection. Mounting evidence illustrates that, in the distant past, chimpanzees experienced a selective sweep resulting in a severe reduction of their MHC class I repertoire. This was most likely caused by an HIV-1/SIV-like retrovirus, suggesting that chimpanzees may have experienced long-lasting host-virus relationships with SIV-like viruses. Hence, if natural selection is allowed to follow its course, prospects for the human population may look grim, thus underscoring the desperate need for an effective vaccine.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands.
| | | |
Collapse
|
44
|
Abstract
Acquired immunodeficiency syndrome (AIDS) of humans is caused by two lentiviruses, human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2). Here, we describe the origins and evolution of these viruses, and the circumstances that led to the AIDS pandemic. Both HIVs are the result of multiple cross-species transmissions of simian immunodeficiency viruses (SIVs) naturally infecting African primates. Most of these transfers resulted in viruses that spread in humans to only a limited extent. However, one transmission event, involving SIVcpz from chimpanzees in southeastern Cameroon, gave rise to HIV-1 group M-the principal cause of the AIDS pandemic. We discuss how host restriction factors have shaped the emergence of new SIV zoonoses by imposing adaptive hurdles to cross-species transmission and/or secondary spread. We also show that AIDS has likely afflicted chimpanzees long before the emergence of HIV. Tracing the genetic changes that occurred as SIVs crossed from monkeys to apes and from apes to humans provides a new framework to examine the requirements of successful host switches and to gauge future zoonotic risk.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | | |
Collapse
|
45
|
Kluge SF, Sauter D, Vogl M, Peeters M, Li Y, Bibollet-Ruche F, Hahn BH, Kirchhoff F. The transmembrane domain of HIV-1 Vpu is sufficient to confer anti-tetherin activity to SIVcpz and SIVgor Vpu proteins: cytoplasmic determinants of Vpu function. Retrovirology 2013; 10:32. [PMID: 23514615 PMCID: PMC3621411 DOI: 10.1186/1742-4690-10-32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The acquisition of effective Vpu-mediated anti-tetherin activity to promote virion release following transmission of SIVcpzPtt from central chimpanzees (Pan troglodytes troglodytes) to humans distinguishes pandemic HIV-1 group M strains from non-pandemic group N, O and P viruses and may have been a prerequisite for their global spread. Some functional motifs in the cytoplasmic region of HIV-1 M Vpus proposed to be important for anti-tetherin activity are more frequently found in the Vpu proteins of SIVcpzPtt than in those of SIVcpzPts infecting eastern chimpanzees (P. t. schweinfurthii), that have not been detected in humans, and SIVgor from gorillas, which is closely related to HIV-1 O and P. Thus, SIVcpzPtt strains may require fewer adaptive changes in Vpu than SIVcpzPts or SIVgor strains to counteract human tetherin. RESULTS To examine whether SIVcpzPtt may only need changes in the transmembrane domain (TMD) of Vpu to acquire anti-tetherin activity, whereas SIVcpzPts and SIVgor may also require changes in the cytoplasmic region, we analyzed chimeras between the TMD of an HIV-1 M Vpu and the cytoplasmic domains of SIVcpzPtt (n = 2), SIVcpzPts (n = 2) and SIVgor (n = 2) Vpu proteins. Unexpectedly, all of these chimeras were capable of counteracting human tetherin to enhance virion release, irrespective of the presence or absence of the putative adaptor protein binding sites and the DSGxxS β-TrCP binding motif reported to be critical for effective anti-tetherin activity of M Vpus. It was also surprising that in three of the six chimeras the gain of anti-tetherin function was associated with a loss of the CD4 degradation activity since this function was conserved among all parental HIV-1, SIVcpz and SIVgor Vpu proteins. CONCLUSIONS Our results show that changes in the TMD of SIVcpzPtt, SIVcpzPts and SIVgor Vpus are sufficient to render them active against human tetherin. Thus, several previously described domains in the extracellular region of Vpu are not absolutely essential for tetherin antagonism but may be required for other Vpu functions.
Collapse
Affiliation(s)
- Silvia F Kluge
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Heterogeneity in neutralization sensitivities of viruses comprising the simian immunodeficiency virus SIVsmE660 isolate and vaccine challenge stock. J Virol 2013; 87:5477-92. [PMID: 23468494 DOI: 10.1128/jvi.03419-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sooty mangabey-derived simian immunodeficiency virus (SIV) strain E660 (SIVsmE660) is a genetically heterogeneous, pathogenic isolate that is commonly used as a vaccine challenge strain in the nonhuman primate (NHP) model of human immunodeficiency virus type 1 (HIV-1) infection. Though it is often employed to assess antibody-based vaccine strategies, its sensitivity to antibody-mediated neutralization has not been well characterized. Here, we utilize single-genome sequencing and infectivity assays to analyze the neutralization sensitivity of the uncloned SIVsmE660 isolate, individual viruses comprising the isolate, and transmitted/founder (T/F) viruses arising from low-dose mucosal inoculation of macaques with the isolate. We found that the SIVsmE660 isolate overall was highly sensitive to neutralization by SIV-infected macaque plasma samples (50% inhibitory concentration [IC50] < 10(-5)) and monoclonal antibodies targeting V3 (IC50 < 0.01 μg/ml), CD4-induced (IC50 < 0.1 μg/ml), CD4 binding site (IC50 ~ 1 μg/ml), and V4 (IC50, ~5 μg/ml) epitopes. In comparison, SIVmac251 and SIVmac239 were highly resistant to neutralization by these same antibodies. Differences in neutralization sensitivity between SIVsmE660 and SIVmac251/239 were not dependent on the cell type in which virus was produced or tested. These findings indicate that in comparison to SIVmac251/239 and primary HIV-1 viruses, SIVsmE660 generally exhibits substantially less masking of antigenically conserved Env epitopes. Interestingly, we identified a minor population of viruses (~10%) in both the SIVsmE660 isolate and T/F viruses arising from it that were substantially more resistant (>1,000-fold) to antibody neutralization and another fraction (~20%) that was intermediate in neutralization resistance. These findings may explain the variable natural history and variable protection afforded by heterologous Env-based vaccines in rhesus macaques challenged by high-dose versus low-dose SIVsmE660 inoculation regimens.
Collapse
|
47
|
Souquière S, Makuwa M, Sallé B, Kazanji M. New strain of simian immunodeficiency virus identified in wild-born chimpanzees from central Africa. PLoS One 2012; 7:e44298. [PMID: 22984489 PMCID: PMC3440395 DOI: 10.1371/journal.pone.0044298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/01/2012] [Indexed: 12/27/2022] Open
Abstract
Studies of primate lentiviruses continue to provide information about the evolution of simian immunodeficiency viruses (SIVs) and the origin and emergence of HIV since chimpanzees in west–central Africa (Pan troglodytes troglodytes) were recognized as the reservoir of SIVcpzPtt viruses, which have been related phylogenetically to HIV-1. Using in-house peptide ELISAs to study SIV prevalence, we tested 104 wild-born captive chimpanzees from Gabon and Congo. We identified two new cases of SIVcpz infection in Gabon and characterized a new SIVcpz strain, SIVcpzPtt-Gab4. The complete sequence (9093 bp) was obtained by a PCR-based ‘genome walking’ approach to generate 17 overlapping fragments. Phylogenetic analyses of separated genes (gag, pol-vif and env-nef) showed that SIVcpzPtt-Gab4 is closely related to SIVcpzPtt-Gab1 and SIVcpzPtt-Gab2. No significant variation in viral load was observed during 3 years of follow-up, but a significantly lower CD4+ T cells count was found in infected than in uninfected chimpanzees (p<0.05). No clinical symptoms of SIV infection were observed in the SIV-positive chimpanzees. Further field studies with non-invasive methods are needed to determine the prevalence, geographic distribution, species association, and natural history of SIVcpz strains in the chimpanzee habitat in Gabon.
Collapse
Affiliation(s)
- Sandrine Souquière
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Maria Makuwa
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Bettina Sallé
- Centre de Primatologie, Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Mirdad Kazanji
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Institut Pasteur de Bangui, Réseau International des Instituts Pasteur, Bangui, Central African Republic
- * E-mail:
| |
Collapse
|
48
|
Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J Virol 2012; 86:10776-91. [PMID: 22837215 DOI: 10.1128/jvi.01498-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chimpanzees in west central Africa (Pan troglodytes troglodytes) are endemically infected with simian immunodeficiency viruses (SIVcpzPtt) that have crossed the species barrier to humans and gorillas on at least five occasions, generating pandemic and nonpandemic forms of human immunodeficiency virus type 1 (HIV-1) as well as gorilla SIV (SIVgor). Chimpanzees in east Africa (Pan troglodytes schweinfurthii) are also infected with SIVcpz; however, their viruses (SIVcpzPts) have never been found in humans. To examine whether this is due to a paucity of natural infections, we used noninvasive methods to screen wild-living eastern chimpanzees in the Democratic Republic of the Congo (DRC), Uganda, and Rwanda. We also screened bonobos (Pan paniscus) in the DRC, a species not previously tested for SIV in the wild. Fecal samples (n = 3,108) were collected at 50 field sites, tested for species and subspecies origin, and screened for SIVcpz antibodies and nucleic acids. Of 2,565 samples from eastern chimpanzees, 323 were antibody positive and 92 contained viral RNA. The antibody-positive samples represented 76 individuals from 19 field sites, all sampled north of the Congo River in an area spanning 250,000 km(2). In this region, SIVcpzPts was common and widespread, with seven field sites exhibiting infection rates of 30% or greater. The overall prevalence of SIVcpzPts infection was 13.4% (95% confidence interval, 10.7% to 16.5%). In contrast, none of the 543 bonobo samples from six sites was antibody positive. All newly identified SIVcpzPts strains clustered in strict accordance to their subspecies origin; however, they exhibited considerable genetic diversity, especially in protein domains known to be under strong host selection pressure. Thus, the absence of SIVcpzPts zoonoses cannot be explained by an insufficient primate reservoir. Instead, greater adaptive hurdles may have prevented the successful colonization of humans by P. t. schweinfurthii viruses.
Collapse
|
49
|
Soleimani P, Barzegar A, Movafeghi A. Phylogenetic study of SIVcpz MT145 virus based on proteome and genome analysis. J Biomol Struct Dyn 2012; 30:328-37. [DOI: 10.1080/07391102.2012.680032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Noninvasive follow-up of simian immunodeficiency virus infection in wild-living nonhabituated western lowland gorillas in Cameroon. J Virol 2012; 86:9760-72. [PMID: 22740419 DOI: 10.1128/jvi.01186-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency viruses infecting western lowland gorillas (SIVgor) are closely related to HIV-1 and are most likely the ancestors of HIV-1 groups O and P. At present, limited data are available on genetic diversity, transmission, viral evolution, and pathogenicity of SIVgor in its natural host. Between 2004 and 2011, 961 putative gorilla fecal samples were collected at the Campo Ma'an National Park, Cameroon. Among them, 16% cross-reacted with HIV-1 antibodies, corresponding to at least 34 infected gorillas. Combining host genotyping and field data, we identified four social groups composed of 7 to 15 individuals each, with SIV rates ranging from 13% to 29%. Eleven SIVgor-infected gorillas were sampled multiple times; two most likely seroconverted during the study period, showing that SIVgor continues to spread. Phylogenetic analysis of partial env and pol sequences revealed cocirculation of closely related and divergent strains among gorillas from the same social group, indicating SIVgor transmissions within and between groups. Parental links could be inferred for some gorillas infected with closely related strains, suggesting vertical transmission, but horizontal transmission by sexual or aggressive behavior was also suspected. Intrahost molecular evolution in one gorilla over a 5-year period showed viral adaptations characteristic of escape mutants, i.e., V1V2 loop elongation and an increased number of glycosylation sites. Here we show for the first time the feasibility of noninvasive monitoring of nonhabituated gorillas to study SIVgor infection over time at both the individual and population levels. This approach can also be applied more generally to study other pathogens in wildlife.
Collapse
|