1
|
Das PK, Kielian M. Rubella virus assembly requirements and evolutionary relationships with novel rubiviruses. mBio 2024; 15:e0196524. [PMID: 39207105 PMCID: PMC11481484 DOI: 10.1128/mbio.01965-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Rubella virus (RuV) is an enveloped virus that usually causes mild disease in children, but can produce miscarriage or severe congenital birth defects. While in nature RuV only infects humans, the discovery of the related Ruhugu (RuhV) and Rustrela (RusV) viruses highlights the spillover potential of mammalian rubiviruses to humans. RuV buds into the Golgi, but its assembly and exit are not well understood. We identified a potential late domain motif 278PPAY281 at the C-terminus of the RuV E2 envelope protein. Such late domain motifs can promote virus budding by recruiting the cellular ESCRT machinery. An E2 Y281A mutation reduced infectious virus production by >3 logs and inhibited virus particle production. However, RuV was insensitive to inhibition by dominant-negative VPS4, and thus appeared ESCRT-independent. The E2 Y281A mutation did not significantly inhibit the production of the viral structural proteins capsid (Cp), E2, and E1, or dimerization, glycosylation, Golgi transport, and colocalization of E2 and E1. However, E2 Y281A significantly reduced glycoprotein-Cp colocalization and interaction, and inhibited Cp localization to the Golgi. Revertants of the E2 Y281A mutant contained an E2 281V substitution or the second site mutations [E2 N277I + Cp D215A]. These mutations promoted virus growth, particle production, E2/Cp colocalization and Cp-Golgi localization. Both the E2 substitutions 281V and 277I were found at the corresponding positions in the RuhV E2 protein. Taken together, our data identify a key interaction of the RuV E2 endodomain with the Cp during RuV biogenesis, and support the close evolutionary relationship between human and animal rubiviruses. IMPORTANCE Rubella virus (RuV) is an enveloped virus that only infects humans, where transplacental infection can cause miscarriage or congenital birth defects. We identified a potential late domain, 278PPAY281, at the C terminus of the E2 envelope protein. However, rather than this domain recruiting the cellular ESCRT machinery as predicted, our data indicate that E2 Y281 promotes a critical interaction of the E2 endodomain with the capsid protein, leading to capsid's localization to the Golgi where virus budding occurs. Revertant analysis demonstrated that two substitutions on the E2 protein could partially rescue virus growth and Cp-Golgi localization. Both residues were found at the corresponding positions in Ruhugu virus E2, supporting the close evolutionary relationship between RuV and Ruhugu virus, a recently discovered rubivirus from bats.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Alshiban NM, Aleyiydi MS, Nassar MS, Alhumaid NK, Almangour TA, Tawfik YM, Damiati LA, Almutairi AS, Tawfik EA. Epidemiologic and clinical updates on viral infections in Saudi Arabia. Saudi Pharm J 2024; 32:102126. [PMID: 38966679 PMCID: PMC11223122 DOI: 10.1016/j.jsps.2024.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
In the past two decades, the world has witnessed devastating pandemics affecting the global healthcare infrastructure and disrupting society and the economy worldwide. Among all pathogens, viruses play a critical role that is associated with outbreaks due to their wide range of species, involvement of animal hosts, easily transmitted to humans, and increased rates of infectivity. Viral disease outbreaks threaten public health globally due to the challenges associated with controlling and eradicating them. Implementing effective viral disease control programs starts with ongoing surveillance data collection and analyses to detect infectious disease trends and patterns, which is critical for maintaining public health. Viral disease control strategies include improved hygiene and sanitation facilities, eliminating arthropod vectors, vaccinations, and quarantine. The Saudi Ministry of Health (MOH) and the Public Health Authority (also known as Weqayah) in Saudi Arabia are responsible for public health surveillance to control and prevent infectious diseases. The notifiable viral diseases based on the Saudi MOH include hepatitis diseases, viral hemorrhagic fevers, respiratory viral diseases, exanthematous viral diseases, neurological viral diseases, and conjunctivitis. Monitoring trends and detecting changes in these viral diseases is essential to provide proper interventions, evaluate the established prevention programs, and develop better prevention strategies. Therefore, this review aims to highlight the epidemiological updates of the recently reported viral infections in Saudi Arabia and to provide insights into the recent clinical treatment and prevention strategies.
Collapse
Affiliation(s)
- Noura M. Alshiban
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Munirah S. Aleyiydi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Majed S. Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Nada K. Alhumaid
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yahya M.K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila A. Damiati
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | | | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| |
Collapse
|
3
|
Das PK, Gonzalez PA, Jangra RK, Yin P, Kielian M. A single-point mutation in the rubella virus E1 glycoprotein promotes rescue of recombinant vesicular stomatitis virus. mBio 2024; 15:e0237323. [PMID: 38334805 PMCID: PMC10936182 DOI: 10.1128/mbio.02373-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Rubella virus (RuV) is an enveloped plus-sense RNA virus and a member of the Rubivirus genus. RuV infection in pregnant women can lead to miscarriage or an array of severe birth defects known as congenital rubella syndrome. Novel rubiviruses were recently discovered in various mammals, highlighting the spillover potential of other rubiviruses to humans. Many features of the rubivirus infection cycle remain unexplored. To promote the study of rubivirus biology, here, we generated replication-competent recombinant VSV-RuV (rVSV-RuV) encoding the RuV transmembrane glycoproteins E2 and E1. Sequencing of rVSV-RuV showed that the RuV glycoproteins acquired a single-point mutation W448R in the E1 transmembrane domain. The E1 W448R mutation did not detectably alter the intracellular expression, processing, glycosylation, colocalization, or dimerization of the E2 and E1 glycoproteins. Nonetheless, the mutation enhanced the incorporation of RuV E2/E1 into VSV particles, which bud from the plasma membrane rather than the RuV budding site in the Golgi. Neutralization by E1 antibodies, calcium dependence, and cell tropism were comparable between WT-RuV and either rVSV-RuV or RuV containing the E1 W448R mutation. However, the E1 W448R mutation strongly shifted the threshold for the acid pH-triggered virus fusion reaction, from pH 6.2 for the WT RuV to pH 5.5 for the mutant. These results suggest that the increased resistance of the mutant RuV E1 to acidic pH promotes the ability of viral envelope proteins to generate infectious rVSV and provide insights into the regulation of RuV fusion during virus entry and exit.IMPORTANCERubella virus (RuV) infection in pregnant women can cause miscarriage or severe fetal birth defects. While a highly effective vaccine has been developed, RuV cases are still a significant problem in areas with inadequate vaccine coverage. In addition, related viruses have recently been discovered in mammals, such as bats and mice, leading to concerns about potential virus spillover to humans. To facilitate studies of RuV biology, here, we generated and characterized a replication-competent vesicular stomatitis virus encoding the RuV glycoproteins (rVSV-RuV). Sequence analysis of rVSV-RuV identified a single-point mutation in the transmembrane region of the E1 glycoprotein. While the overall properties of rVSV-RuV are similar to those of WT-RuV, the mutation caused a marked shift in the pH dependence of virus membrane fusion. Together, our studies of rVSV-RuV and the identified W448R mutation expand our understanding of rubivirus biology and provide new tools for its study.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Rohit K. Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Reef SE, Icenogle JP, Plotkin SA. The path to eradication of rubella. Vaccine 2023; 41:7525-7531. [PMID: 37973510 DOI: 10.1016/j.vaccine.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Since 1969, rubella and its harmful effect on fetuses infected in utero can be prevented by rubella vaccine, usually given in combination with measles vaccine. The rubella vaccine is highly protective both in children and in adults including women intending to become pregnant. Owing to the use of combined measles and rubella vaccines, congenital rubella infection has been eliminated from the Western Hemisphere and nearly all of Europe. Such combined vaccination is now being applied throughout the world, posing the possibility of eventual rubella eradication. The existence of viruses of animals related to rubella does not appear to be a barrier to eradication of the human virus. However, persistent rubella virus in infants infected in utero and of immunosuppressed patients with granulomas may pose a problem for eradication. Nevertheless, this review posits that eradication of rubella is now feasible if routine vaccination of infants and surveillance for chronic infection are correctly applied.
Collapse
Affiliation(s)
| | | | - Stanley A Plotkin
- University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, USA.
| |
Collapse
|
5
|
Abstract
There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA;
| | - Amanda E Ward
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Tosheva II, Saygan KS, Mijnhardt SM, Russell CJ, Fraaij PLA, Herfst S. Hemagglutinin stability as a key determinant of influenza A virus transmission via air. Curr Opin Virol 2023; 61:101335. [PMID: 37307646 DOI: 10.1016/j.coviro.2023.101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/14/2023]
Abstract
To cause pandemics, zoonotic respiratory viruses need to adapt to replication in and spread between humans, either via (indirect or direct) contact or through the air via droplets and aerosols. To render influenza A viruses transmissible via air, three phenotypic viral properties must change, of which receptor-binding specificity and polymerase activity have been well studied. However, the third adaptive property, hemagglutinin (HA) acid stability, is less understood. Recent studies show that there may be a correlation between HA acid stability and virus survival in the air, suggesting that a premature conformational change of HA, triggered by low pH in the airways or droplets, may render viruses noninfectious before they can reach a new host. We here summarize available data from (animal) studies on the impact of HA acid stability on airborne transmission and hypothesize that the transmissibility of other respiratory viruses may also be impacted by an acidic environment in the airways.
Collapse
Affiliation(s)
- Ilona I Tosheva
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kain S Saygan
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Suzanne Ma Mijnhardt
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pieter LA Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands.
| |
Collapse
|
7
|
Ejaz H, Zeeshan HM, Iqbal A, Ahmad S, Ahmad F, Abdalla AE, Anwar N, Junaid K, Younas S, Sadiq A, Atif M, Bukhari SNA. Rubella Virus Infections: A Bibliometric Analysis of the Scientific Literature from 2000 to 2021. Healthcare (Basel) 2022; 10:2562. [PMID: 36554085 PMCID: PMC9778829 DOI: 10.3390/healthcare10122562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Rubella virus (RuV) generally causes a mild infection, but it can sometimes lead to systemic abnormalities. This study aimed to conduct a bibliometric analysis of over two decades of RuV research. Medical studies published from 2000 to 2021 were analyzed to gain insights into and identify research trends and outputs in RuV. R and VOSviewer were used to conduct a bibliometric investigation to determine the globally indexed RuV research output. The Dimensions database was searched with RuV selected as the subject, and 2500 published documents from the preceding two decades were reviewed. The number of publications on RuV has increased since 2003, reaching its peak in 2020. There were 12,072 authors and 16,769 author appearances; 88 publications were single-authored and 11,984 were multi-authored. The United States was the most influential contributor to RuV research, in terms of publications and author numbers. The number of RuV-related articles has continued to increase over the past few years due to the significant rubella burden in low-income nations. This study will aid in formulating plans and policies to control and prevent RuV infections.
Collapse
Affiliation(s)
- Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hafiz Muhammad Zeeshan
- Department of Computer Sciences, National College of Business Administration and Economics, Lahore 54700, Pakistan
| | - Abid Iqbal
- Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Shakil Ahmad
- Prince Sultan University, Riyadh 11586, Saudi Arabia
| | | | - Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Naeem Anwar
- Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq 32038, Bahrain
| | - Kashaf Junaid
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Sonia Younas
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ashina Sadiq
- Department of Computer Science, Lahore Leads University, Lahore 54000, Pakistan
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
8
|
Rubella Virus Triggers Type I Interferon Antiviral Response in Cultured Human Neural Cells: Involvement in the Control of Viral Gene Expression and Infectious Progeny Production. Int J Mol Sci 2022; 23:ijms23179799. [PMID: 36077193 PMCID: PMC9456041 DOI: 10.3390/ijms23179799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The type I interferon (IFN) response is one of the primary defense systems against various pathogens. Although rubella virus (RuV) infection is known to cause dysfunction of various organs and systems, including the central nervous system, little is known about how human neural cells evoke protective immunity against RuV infection, leading to controlling RuV replication. Using cultured human neural cells experimentally infected with RuV RA27/3 strain, we characterized the type I IFN immune response against the virus. RuV infected cultured human neural cell lines and induced IFN-β production, leading to the activation of signal transducer and activator of transcription 1 (STAT1) and the increased expression of IFN-stimulated genes (ISGs). Melanoma-differentiation-associated gene 5 (MDA5), one of the cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors, is required for the RuV-triggered IFN-β mRNA induction in U373MG cells. We also showed that upregulation of RuV-triggered ISGs was attenuated by blocking IFN-α/β receptor subunit 2 (IFNAR2) using an IFNAR2-specific neutralizing antibody or by repressing mitochondrial antiviral signaling protein (MAVS) expression using MAVS-targeting short hairpin RNA (shRNA). Furthermore, treating RuV-infected cells with BX-795, a TANK-binding kinase 1 (TBK1)/I kappa B kinase ε (IKKε) inhibitor, robustly reduced STAT1 phosphorylation and expression of ISGs, enhancing viral gene expression and infectious virion production. Overall, our findings suggest that the RuV-triggered type I IFN-mediated antiviral response is essential in controlling RuV gene expression and viral replication in human neural cells.
Collapse
|
9
|
Pham NTK, Trinh QD, Takada K, Komine-Aizawa S, Hayakawa S. Low Susceptibility of Rubella Virus in First-Trimester Trophoblast Cell Lines. Viruses 2022; 14:1169. [PMID: 35746641 PMCID: PMC9228130 DOI: 10.3390/v14061169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
We recently published an article about myelin oligodendrocyte glycoprotein-independent rubella infection of keratinocytes in vitro, in which first-trimester trophoblast cells were shown as rubella virus (RuV)-resistant. Given an incident rate as high as 90% of congenital rubella syndrome in the first eight weeks of pregnancy, the RuV infection of first-trimester trophoblasts is considered key to opening the gate to transplacental transmission mechanisms. Therefore, with this study, we aimed to verify the susceptibility/resistance of first-trimester trophoblast cell lines, HTR-8/SVneo and Swan.71, against RuV. Cells cultured on multi-well plates were challenged with a RuV clinical strain at a multiplicity of infection from 5 to 10 for 3 h. The infectivity was investigated by immunofluorescence (IF) assay and flow cytometry (FCM) analysis. Supernatants collected during the post-infection period were used to determine virus-progeny production. The scattered signaling of RuV infection of these cells was noted by IF assay, and the FCM analysis showed an average of 4-5% of gated cells infected with RuV. In addition, a small but significant production of virus progeny was also observed. In conclusion, by employing appropriate approaches, we determined the low infectivity of RuV in first-trimester trophoblast cell lines but not resistance as in our previous report.
Collapse
Affiliation(s)
| | - Quang Duy Trinh
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (N.T.K.P.); (K.T.); (S.K.-A.)
| | | | | | - Satoshi Hayakawa
- Department of Pathology and Microbiology, Division of Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan; (N.T.K.P.); (K.T.); (S.K.-A.)
| |
Collapse
|
10
|
Abstract
Rustrela virus (RusV; species Rubivirus strelense) is a recently discovered relative of rubella virus (RuV) that has been detected in cases of encephalitis in diverse mammals. Here, we diagnosed two additional cases of fatal RusV-associated meningoencephalitis in a South American coati (Nasua nasua) and a Eurasian or European otter (Lutra lutra) that were detected in a zoological garden with history of prior RusV infections. Both animals showed abnormal movement or unusual behavior and their brains tested positive for RusV using specific reverse transcription quantitative PCR (RT-qPCR) and RNA in situ hybridization. As previous sequencing of the RusV genome proved to be very challenging, we employed a sophisticated target-specific capture enrichment with specifically designed RNA baits to generate complete RusV genome sequences from both detected encephalitic animals and apparently healthy wild yellow-necked field mice (Apodemus flavicollis). Furthermore, the technique was used to revise three previously published RusV genomes from two encephalitic animals and a wild yellow-necked field mouse. When comparing the newly generated RusV sequences to the previously published RusV genomes, we identified a previously undetected stretch of 309 nucleotides predicted to represent the intergenic region and the sequence encoding the N terminus of the capsid protein. This indicated that the original RusV sequence was likely incomplete due to misassembly of the genome at a region with an exceptionally high G+C content of >80 mol%. The new sequence data indicate that RusV has an overall genome length of 9,631 nucleotides with the longest intergenic region (290 nucleotides) and capsid protein-encoding sequence (331 codons) within the genus Rubivirus. IMPORTANCE The detection of rustrela virus (RusV)-associated encephalitis in two carnivoran mammal species further extends the knowledge on susceptible species. Furthermore, we provide clinical and pathological data for the two new RusV cases, which were until now limited to the initial description of this fatal encephalitis. Using a sophisticated enrichment method prior to sequencing of the viral genome, we markedly improved the virus-to-background sequence ratio compared to that of standard procedures. Consequently, we were able to resolve and update the intergenic region and the coding region for the N terminus of the capsid protein of the initial RusV genome sequence. The updated putative capsid protein now resembles those of rubella and ruhugu virus in size and harbors a predicted RNA-binding domain that had not been identified in the initial RusV genome version. The newly determined complete RusV genomes strongly improve our knowledge of the genome structure of this novel rubivirus.
Collapse
|
11
|
Abstract
Rubella is an acute illness caused by rubella virus and characterised by fever and rash. Although rubella is a clinically mild illness, primary rubella virus infection in early pregnancy can result in congenital rubella syndrome, which has serious medical and public health consequences. WHO estimates that approximately 100 000 congenital rubella syndrome cases occur per year. Rubella virus is transmitted through respiratory droplets and direct contact. 25-50% of people infected with rubella virus are asymptomatic. Clinical disease often results in mild, self-limited illness characterised by fever, a generalised erythematous maculopapular rash, and lymphadenopathy. Complications include arthralgia, arthritis, thrombocytopenic purpura, and encephalitis. Common presenting signs and symptoms of congenital rubella syndrome include cataracts, sensorineural hearing impairment, congenital heart disease, jaundice, purpura, hepatosplenomegaly, and microcephaly. Rubella and congenital rubella syndrome can be prevented by rubella-containing vaccines, which are commonly administered in combination with measles vaccine. Although global rubella vaccine coverage reached only 70% in 2020 global rubella eradiation remains an ambitious but achievable goal.
Collapse
Affiliation(s)
- Amy K Winter
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens GA, USA
| | - William J Moss
- International Vaccine Access Center, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Ihunwo AO, Perego J, Martino G, Vicenzi E, Panina-Bordignon P. Neurogenesis and Viral Infection. Front Immunol 2022; 13:826091. [PMID: 35251006 PMCID: PMC8891128 DOI: 10.3389/fimmu.2022.826091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Neural stem cells (NSCs) are multipotent stem cells that reside in the fetal and adult mammalian brain, which can self-renew and differentiate into neurons and supporting cells. Intrinsic and extrinsic cues, from cells in the local niche and from distant sites, stringently orchestrates the self-renewal and differentiation competence of NSCs. Ample evidence supports the important role of NSCs in neuroplasticity, aging, disease, and repair of the nervous system. Indeed, activation of NSCs or their transplantation into injured areas of the central nervous system can lead to regeneration in animal models. Viral invasion of NSCs can negatively affect neurogenesis and synaptogenesis, with consequent cell death, impairment of cell cycle progression, early differentiation, which cause neural progenitors depletion in the cortical layer of the brain. Herein, we will review the current understanding of Zika virus (ZIKV) infection of the fetal brain and the NSCs, which are the preferential population targeted by ZIKV. Furthermore, the potential neurotropic properties of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which may cause direct neurological damage, will be discussed.
Collapse
Affiliation(s)
- Amadi Ogonda Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jessica Perego
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Vita-Salute University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Vita-Salute University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Disesases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Paola Panina-Bordignon
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Vita-Salute University and IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|