1
|
Li W, Qu M, Zhang T, Li G, Wang R, Tian Y, Wang J, Yu B, Wu J, Wang C, Yu X. The host restriction factor SERINC5 inhibits HIV-1 transcription by negatively regulating NF-κB signaling. J Biol Chem 2024; 301:108058. [PMID: 39653243 DOI: 10.1016/j.jbc.2024.108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
Serine incorporator 5 (SER5) can be incorporated into HIV-1 virions to block viral entry by disrupting the envelope glycoprotein-mediated viral fusion to the plasma membrane. Recent studies suggest that SER5 also inhibits HIV-1 mRNA transcription and the subsequent progeny virion biogenesis. However, the underlying mechanisms through which SER5 antagonizes the viral transcription remain poorly understood. Here, we demonstrate that SER5 inhibits HIV-1 transcription by negatively regulating NF-κB signaling, which is mediated by the retinoic acid-inducible gene I-like receptors, MDA5 and RIG-I. By recruiting TRIM40 as the E3 ubiquitination ligase to promote K48-linked polyubiquitination and proteasomal degradation of MDA5 and RIG-I, SER5 impedes nuclear translocation of the p50/p65 dimer, resulting in repression of HIV-1 LTR-driven gene expression. Hence, our findings strongly support a role for SER5 in restricting HIV-1 replication through inhibition of NF-κB-mediated viral gene expression.
Collapse
Affiliation(s)
- Weiting Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tianxin Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Guoqing Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ruihong Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yinghui Tian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jialin Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Kmiec D, Kirchhoff F. Antiviral factors and their counteraction by HIV-1: many uncovered and more to be discovered. J Mol Cell Biol 2024; 16:mjae005. [PMID: 38318650 PMCID: PMC11334937 DOI: 10.1093/jmcb/mjae005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 02/04/2024] [Indexed: 02/07/2024] Open
Abstract
Extensive studies on HIV-1 have led to the discovery of a variety of structurally and functionally diverse innate defense factors that target various steps of the retroviral replication cycle. Some of them, such as APOBEC3, tetherin, and SERINC5, are well established. Their importance is evident from the fact that HIV-1 uses its accessory proteins Vif, Vpu, and Nef to counteract them. However, the list of antiviral factors is constantly increasing, and accumulating evidence suggests that innate defense mechanisms, which restrict HIV-1 and/or are counteracted by viral proteins, remain to be discovered. These antiviral factors are relevant to diseases other than HIV/AIDS, since they are commonly active against various viral pathogens. In this review, we provide an overview of recently reported antiretroviral factors and viral countermeasures, present the evidence suggesting that more innate defense mechanisms remain to be discovered, and discuss why this is a challenging but rewarding task.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
3
|
Sid Ahmed S, Bajak K, Fackler OT. Beyond Impairment of Virion Infectivity: New Activities of the Anti-HIV Host Cell Factor SERINC5. Viruses 2024; 16:284. [PMID: 38400059 PMCID: PMC10892966 DOI: 10.3390/v16020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Members of the serine incorporator (SERINC) protein family exert broad antiviral activity, and many viruses encode SERINC antagonists to circumvent these restrictions. Significant new insight was recently gained into the mechanisms that mediate restriction and antagonism. In this review, we summarize our current understanding of the mode of action and relevance of SERINC proteins in HIV-1 infection. Particular focus will be placed on recent findings that provided important new mechanistic insights into the restriction of HIV-1 virion infectivity, including the discovery of SERINC's lipid scramblase activity and its antagonism by the HIV-1 pathogenesis factor Nef. We also discuss the identification and implications of several additional antiviral activities by which SERINC proteins enhance pro-inflammatory signaling and reduce viral gene expression in myeloid cells. SERINC proteins emerge as versatile and multifunctional regulators of cell-intrinsic immunity against HIV-1 infection.
Collapse
Affiliation(s)
- Samy Sid Ahmed
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (S.S.A.); (K.B.)
| | - Kathrin Bajak
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (S.S.A.); (K.B.)
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 38124 Heidelberg, Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany; (S.S.A.); (K.B.)
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, 38124 Heidelberg, Germany
| |
Collapse
|
4
|
Wang XF, Zhang X, Ma W, Li J, Wang X. Host cell restriction factors of equine infectious anemia virus. Virol Sin 2023; 38:485-496. [PMID: 37419416 PMCID: PMC10436108 DOI: 10.1016/j.virs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an animal model for HIV/AIDS research. An attenuated EIAV vaccine, which was successfully developed in the 1970s by classical serial passage techniques, is the first and only lentivirus vaccine that has been widely used to date. Restriction factors are cellular proteins that provide an early line of defense against viral replication and spread by interfering with various critical steps in the viral replication cycle. However, viruses have evolved specific mechanisms to overcome these host barriers through adaptation. The battle between the viruses and restriction factors is actually a natural part of the viral replication process, which has been well studied in human immunodeficiency virus type 1 (HIV-1). EIAV has the simplest genome composition of all lentiviruses, making it an intriguing subject for understanding how the virus employs its limited viral proteins to overcome restriction factors. In this review, we summarize the current literature on the interactions between equine restriction factors and EIAV. The features of equine restriction factors and the mechanisms by which the EIAV counteract the restriction suggest that lentiviruses employ diverse strategies to counteract innate immune restrictions. In addition, we present our insights on whether restriction factors induce alterations in the phenotype of the attenuated EIAV vaccine.
Collapse
Affiliation(s)
- Xue-Feng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Weiwei Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
5
|
Ramdas P, Chande A. SERINC5 Mediates a Postintegration Block to HIV-1 Gene Expression in Macrophages. mBio 2023; 14:e0016623. [PMID: 36976020 PMCID: PMC10127607 DOI: 10.1128/mbio.00166-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
HIV-1 antagonizes SERINC5 by redundant mechanisms, primarily through Nef and additionally via envelope glycoprotein. Paradoxically, HIV-1 preserves Nef function to ensure the exclusion of SERINC5 from virion incorporation regardless of the availability of envelope that can confer resistance, suggesting additional roles of the virion-incorporated host factor. Here, we report an unusual mode of SERINC5 action in inhibiting viral gene expression. This inhibition is observed only in the myeloid lineage cells but not in the cells of epithelial or lymphoid origin. We found that SERINC5-bearing viruses induce the expression of RPL35 and DRAP1 in macrophages, and these host proteins intercept HIV-1 Tat from binding to and recruiting a mammalian capping enzyme (MCE1) to the HIV-1 transcriptional complex. As a result, uncapped viral transcripts are synthesized, leading to the inhibition of viral protein synthesis and subsequent progeny virion biogenesis. Cell-type-specific inhibition of HIV-1 gene expression thus exemplifies a novel antiviral function of virion-incorporated SERINC5. IMPORTANCE In addition to Nef, HIV-1 envelope glycoprotein has been shown to modulate SERINC5-mediated inhibition. Counterintuitively, Nef from the same isolates preserves the ability to prevent SERINC5 incorporation into virions, implying additional functions of the host protein. We identify that virion-associated SERINC5 can manifest an antiviral mechanism independent of the envelope glycoprotein to regulate HIV-1 gene expression in macrophages. This mechanism is exhibited by affecting the viral RNA capping and is plausibly adopted by the host to overcome the envelope glycoprotein-mediated resistance to SERINC5 restriction.
Collapse
Affiliation(s)
- Pavitra Ramdas
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
6
|
Cano-Ortiz L, Luedde T, Münk C. HIV-1 restriction by SERINC5. Med Microbiol Immunol 2023; 212:133-140. [PMID: 35333966 PMCID: PMC10085909 DOI: 10.1007/s00430-022-00732-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
Serine incorporator 5 (SERINC5 or SER5) is a multipass transmembrane protein with ill-defined cellular activities. SER5 was recently described as a human immunodeficiency virus 1 (HIV-1) restriction factor capable of inhibiting HIV-1 that does not express its accessory protein Nef (Δ Nef). SER5 incorporated into the viral membrane impairs the entry of HIV-1 by disrupting the fusion between the viral and the plasma membrane after envelope receptor interaction induced the first steps of the fusion process. The mechanisms of how SER5 prevents membrane fusion are not fully understood and viral envelope proteins were identified that escape the SER5-mediated restriction. Primate lentiviruses, such as HIV-1 and simian immunodeficiency viruses (SIVs), use their accessory protein Nef to downregulate SER5 from the plasma membrane by inducing an endocytic pathway. In addition to being directly antiviral, recent data suggest that SER5 is an important adapter protein in innate signaling pathways leading to the induction of inflammatory cytokines. This review discusses the current knowledge about HIV-1 restriction by SER5.
Collapse
Affiliation(s)
- Lucía Cano-Ortiz
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Building 23.12.U1.82, Moorenstr. 5, 40225, Düsseldorf, Germany
- Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Building 23.12.U1.82, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Building 23.12.U1.82, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
7
|
Affiliation(s)
- Uddhav Timilsina
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, New York, United States of America
| | - Spyridon Stavrou
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pagani I, Demela P, Ghezzi S, Vicenzi E, Pizzato M, Poli G. Host Restriction Factors Modulating HIV Latency and Replication in Macrophages. Int J Mol Sci 2022; 23:ijms23063021. [PMID: 35328442 PMCID: PMC8951319 DOI: 10.3390/ijms23063021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
In addition to CD4+ T lymphocytes, myeloid cells and, particularly, differentiated macrophages are targets of human immunodeficiency virus type-1 (HIV-1) infection via the interaction of gp120Env with CD4 and CCR5 or CXCR4. Both T cells and macrophages support virus replication, although with substantial differences. In contrast to activated CD4+ T lymphocytes, HIV-1 replication in macrophages occurs in nondividing cells and it is characterized by the virtual absence of cytopathicity both in vitro and in vivo. These general features should be considered in evaluating the role of cell-associated restriction factors aiming at preventing or curtailing virus replication in macrophages and T cells, particularly in the context of designing strategies to tackle the viral reservoir in infected individuals receiving combination antiretroviral therapy. In this regard, we will here also discuss a model of reversible HIV-1 latency in primary human macrophages and the role of host factors determining the restriction or reactivation of virus replication in these cells.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Pietro Demela
- Human Immuno-Virology Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy;
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Guido Poli
- Human Immuno-Virology Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy;
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina n. 58, 20132 Milano, Italy
- Correspondence: ; Tel.: +39-02-2643-4909
| |
Collapse
|
9
|
Cano-Ortiz L, Gu Q, de Sousa-Pereira P, Zhang Z, Chiapella C, Penda Twizerimana A, Lin C, Cláudia Franco A, VandeWoude S, Luedde T, Baldauf HM, Münk C. Feline Leukemia Virus-B Envelope together with its GlycoGag and Human Immunodeficiency Virus-1 Nef Mediate Resistance to Feline SERINC5. J Mol Biol 2021; 434:167421. [DOI: 10.1016/j.jmb.2021.167421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022]
|