1
|
Kim K, Moon SY, Kim S, Ouh IO, Lee Y, Lim H. Immunogenicity Analysis of Chikungunya Virus DNA Vaccine Based on Mutated Putative N-Linked Glycosylation Sites of the Envelope Protein. Vaccines (Basel) 2024; 12:1097. [PMID: 39460264 PMCID: PMC11511311 DOI: 10.3390/vaccines12101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Chikungunya fever is a mosquito-borne infectious disease caused by the chikungunya virus (CHIKV). Recently, CHIKV has spread rapidly worldwide, raising global concerns. However, there is only one approved vaccine is available to prevent CHIKV infection; therefore, different platform vaccines development is a public health priority. The CHIKV genome encodes four non-structural polyproteins (nsP1-4) and one structural polyprotein (capsid, envelope 3, envelope 2, 6 K, and envelope 1). Previous studies have shown that N-linked glycans in viral proteins play important roles in regulating immune responses. Accordingly, in this study, we designed four CHIKV DNA vaccine candidates with mutated N-glycosylation sites in the full-length E and E I/II proteins. Our results indicated that immunization of mice with the vaccine elevated the cytokines levels, including IFN-γ, associated with T cell immune response. Furthermore, the truncated E protein with a deleted E III domain (E I/II) exhibited better immunogenicity than the full-length E protein, and N-linked glycosylation of E I/II protein induced a higher cell-mediated immune response. Overall, our study demonstrates that N-linked glycosylation of the E I/II proteins of CHIKV significantly enhances cell-mediated immune responses, laying the foundation for the development of potential vaccination strategies against CHIKV.
Collapse
Affiliation(s)
| | | | | | | | | | - Heeji Lim
- Division of Vaccine Development Coordination, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si 28159, Chungcheongbuk-do, Republic of Korea; (K.K.); (S.Y.M.); (S.K.); (I.-O.O.); (Y.L.)
| |
Collapse
|
2
|
Liu Y, Qin Y, Hu Y, Chen W, Han Z, Yi C, Bi J, Huang H, Li Y, Zhang X, Lan T, Zheng M, Sun W. Epidemiological and evolutionary analysis of canine circovirus from 1996 to 2023. BMC Vet Res 2024; 20:328. [PMID: 39033103 PMCID: PMC11264901 DOI: 10.1186/s12917-024-04186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Canine circovirus (CanineCV), a non-enveloped virus with a circular DNA genome, has been identified in various avian and mammalian species, including domestic and wild canids. This study aimed to comprehensively analyze the prevalence of CanineCV across diverse animal species in 11 provinces of China. RESULTS A total of 1,666 serum samples were collected, revealing a 5.82% prevalence of CanineCV in dogs, with the highest rates being observed in southern and eastern China. Phylogenetic analysis of 266 global CanineCV genomes sourced from the NCBI identified six distinct genotypes, elucidating the complex dynamics of their evolution. Evidence suggested a potential bat origin for CanineCV, with positive selection and high rates of evolution being observed. Recombination analysis revealed dynamic genetic exchange, highlighting the intricate nature of CanineCV evolution. Mutational analysis identified key amino acid substitutions likely to influence the virus's adaptation. Additionally, glycosylation, palmitoylation, and SUMOylation sites were predicted, shedding light on crucial functional properties of the virus. CONCLUSIONS This study provides a global perspective on the origin, genetic diversity, and evolutionary dynamics of CanineCV. Understanding these factors is crucial for elucidating its epidemiology and potential health risks.
Collapse
Affiliation(s)
- Yumeng Liu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yan Qin
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Yanqing Hu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Wei Chen
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Zhixiao Han
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chizhe Yi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jingshan Bi
- Guangxi Centre for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Haixin Huang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Yuying Li
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - XinYu Zhang
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Tian Lan
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China.
| | - Min Zheng
- Guangxi Centre for Animal Disease Control and Prevention, Nanning, 530001, China.
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Rowland RR, Brandariz-Nuñez A. Role of N-linked glycosylation in porcine reproductive and respiratory syndrome virus (PRRSV) infection. J Gen Virol 2024; 105:001994. [PMID: 38776134 PMCID: PMC11165596 DOI: 10.1099/jgv.0.001994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 05/24/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.
Collapse
Affiliation(s)
- Raymond R.R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
4
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
5
|
Westcott CE, Qazi S, Maiocco AM, Mukhopadhyay S, Sokoloski KJ. Binding of hnRNP I-vRNA Regulates Sindbis Virus Structural Protein Expression to Promote Particle Infectivity. Viruses 2022; 14:v14071423. [PMID: 35891402 PMCID: PMC9318202 DOI: 10.3390/v14071423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Alphaviruses cause significant outbreaks of febrile illness and debilitating multi-joint arthritis for prolonged periods after initial infection. We have previously reported that several host hnRNP proteins bind to the Sindbis virus (SINV) RNAs, and disrupting the sites of these RNA-protein interactions results in decreased viral titers in tissue culture models of infection. Intriguingly, the primary molecular defect associated with the disruption of the hnRNP interactions is enhanced viral structural protein expression; however, the precise underlying mechanisms spurring the enhanced gene expression remain unknown. Moreover, our previous efforts were unable to functionally dissect whether the observed phenotypes were due to the loss of hnRNP binding or the incorporation of polymorphisms into the primary nucleotide sequence of SINV. To determine if the loss of hnRNP binding was the primary cause of attenuation or if the disruption of the RNA sequence itself was responsible for the observed phenotypes, we utilized an innovative protein tethering approach to restore the binding of the hnRNP proteins in the absence of the native interaction site. Specifically, we reconstituted the hnRNP I interaction by incorporating the 20nt bovine immunodeficiency virus transactivation RNA response (BIV-TAR) at the site of the native hnRNP I interaction sequence, which will bind with high specificity to proteins tagged with a TAT peptide. The reestablishment of the hnRNP I-vRNA interaction via the BIV-TAR/TAT tethering approach restored the phenotype back to wild-type levels. This included an apparent decrease in structural protein expression in the absence of the native primary nucleotide sequences corresponding to the hnRNP I interaction site. Collectively, the characterization of the hnRNP I interaction site elucidated the role of hnRNPs during viral infection.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Shefah Qazi
- Department of Biology, Indiana University—Bloomington, Bloomington, IN 47405, USA; (S.Q.); (S.M.)
| | - Anna M. Maiocco
- Center for Predictive Medicine and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University—Bloomington, Bloomington, IN 47405, USA; (S.Q.); (S.M.)
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Center for Predictive Medicine and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Correspondence: ; Tel.: +1-(502)-852-1249
| |
Collapse
|
6
|
Structure of infective Getah virus at 2.8 Å resolution determined by cryo-electron microscopy. Cell Discov 2022; 8:12. [PMID: 35149682 PMCID: PMC8832435 DOI: 10.1038/s41421-022-00374-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
Getah virus (GETV), a member of the genus alphavirus, is a mosquito-borne pathogen that can cause pyrexia and reproductive losses in animals. Although antibodies to GETV have been found in over 10% of healthy people, there are no reports of clinical symptoms associated with GETV. The biological and pathological properties of GETV are largely unknown and antiviral or vaccine treatments against GETV are still unavailable due to a lack of knowledge of the structure of the GETV virion. Here, we present the structure of infective GETV at a resolution of 2.8 Å with the atomic models of the capsid protein and the envelope glycoproteins E1 and E2. We have identified numerous glycosylation and S-acylation sites in E1 and E2. The surface-exposed glycans indicate a possible impact on viral immune evasion and host cell invasion. The S-acylation sites might be involved in stabilizing the transmembrane assembly of E1 and E2. In addition, a cholesterol and a phospholipid molecule are observed in a transmembrane hydrophobic pocket, together with two more cholesterols surrounding the pocket. The cholesterol and phospholipid stabilize the hydrophobic pocket in the viral envelope membrane. The structural information will assist structure-based antiviral and vaccine screening, design, and optimization.
Collapse
|
7
|
Structural Insights into Alphavirus Assembly Revealed by the Cryo-EM Structure of Getah Virus. Viruses 2022; 14:v14020327. [PMID: 35215918 PMCID: PMC8876998 DOI: 10.3390/v14020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Getah virus (GETV) is a member of the alphavirus genus, and it infects a variety of animal species, including horses, pigs, cattle, and foxes. Human infection with this virus has also been reported. The structure of GETV has not yet been determined. In this study, we report the cryo-EM structure of GETV at a resolution of 3.5 Å. This structure reveals conformational polymorphism of the envelope glycoproteins E1 and E2 at icosahedral 3-fold and quasi-3-fold axes, which is believed to be a necessary organization in forming a curvature surface of virions. In our density map, three extra densities are identified, one of which is believed a “pocket factor”; the other two are located by domain D of E2, and they may maintain the stability of E1/E2 heterodimers. We also identify three N-glycosylations at E1 N141, E2 N200, and E2 N262, which might be associated with receptor binding and membrane fusion. The resolving of the structure of GETV provides new insights into the structure and assembly of alphaviruses and lays a basis for studying the differences of biology and pathogenicity between arthritogenic and encephalitic alphaviruses.
Collapse
|
8
|
Abstract
Arboviruses are medically important arthropod-borne viruses that cause a range of diseases in humans from febrile illness to arthritis, encephalitis and hemorrhagic fever. Given their transmission cycles, these viruses face the challenge of replicating in evolutionarily divergent organisms that can include ticks, flies, mosquitoes, birds, rodents, reptiles and primates. Furthermore, their cell attachment receptor utilization may be affected by the opposing needs for generating high and sustained serum viremia in vertebrates such that virus particles are efficiently collected during a hematophagous arthropod blood meal but they must also bind sufficiently to cellular structures on divergent organisms such that productive infection can be initiated and viremia generated. Sulfated polysaccharides of the glycosaminoglycan (GAG) groups, primarily heparan sulfate (HS), have been identified as cell attachment moieties for many arboviruses. Original identification of GAG binding as a phenotype of arboviruses appeared to involve this attribute arising solely as a consequence of adaptation of virus isolates to growth in cell culture. However, more recently, naturally circulating strains of at least one arbovirus, eastern equine encephalitis, have been shown to bind HS efficiently and the GAG binding phenotype continues to be associated with arbovirus infection in published studies. If GAGs are attachment receptors for many naturally circulating arboviruses, this could lead to development of broad-spectrum antiviral therapies through blocking of the virus-GAG interaction. This review summarizes the available data for GAG/HS binding as a phenotype of naturally circulating arbovirus strains emphasizing the importance of avoiding tissue culture amplification and artifactual phenotypes during their isolation.
Collapse
Affiliation(s)
- Maria D H Alcorn
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William B Klimstra
- Center for Vaccine Research, Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
9
|
Shi N, Zhu X, Qiu X, Cao X, Jiang Z, Lu H, Jin N. Origin, genetic diversity, adaptive evolution and transmission dynamics of Getah virus. Transbound Emerg Dis 2021; 69:e1037-e1050. [PMID: 34812572 DOI: 10.1111/tbed.14395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
As a member of the Alphavirus, Getah virus (GETV) was becoming more serious and posing a serious threat to animal safety and public health. However, the circulation, distribution and evolution of GETV is not well understood. Hence, we integrated a variety of bioinformatic methodologies, from genomic alterations to systematic analysis, phylogeography, selection, adaptive analysis, prediction of protein modification, structural biology and molecular dynamics simulations to understand the characteristics of GETV. The results of phylogeography and molecular evolution show that due to the lack of vaccine, GETV is rapidly expanding its host range and geographical distribution at a high evolutionary rate. We also predicted the important modification sites, and identified the adaptive and active selection sites. Finally, the analysis of spatial structure and function showed that six adaptive sites may be related to the structural stability, receptor binding ability, immunogenicity and immune evasion of the virus, respectively. The data from this study have important implications for the understanding of ongoing GETV outbreaks worldwide and will guide future efforts to develop effective preventive and control measures against GETV. In particular, biosafety measures should be strengthened immediately to prevent GETV from becoming a pandemic, especially in China, South Korea and Japan.
Collapse
Affiliation(s)
- Ning Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Xiangyu Zhu
- Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Xiangshu Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Xinyu Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Zhenyan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Huijun Lu
- Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| | - Ningyi Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Chinese Academy of Agricultural Sciences, Changchun Veterinary Research Institute, Changchun, Jilin, China
| |
Collapse
|
10
|
Borgio JF, Alsuwat HS, Alamoudi W, Hegazi FM, Al Otaibi WM, M Ibrahim A, Almandil NB, Al-Amodi AM, Alyousef YM, AlShwaimi E, Almasoud N, Kamaraj B, Sayed A. Exome array identifies functional exonic biomarkers for pediatric dental caries. Comput Biol Med 2021; 141:105019. [PMID: 34749984 DOI: 10.1016/j.compbiomed.2021.105019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pediatric dental caries is common among Arab children, however we are still searching for possible genes and molecular mechanisms that influence caries development. AIM To identity genetic predispositions of dental caries among Saudi children with high DMFT (Decayed, Missing, and Filled Teeth). DESIGN This case-control study analysed putative functional exonic-variants (n = 243,345) to study the molecular genetics of pediatric caries with high dmft index, 8.75 ± 4.16 on Arab-ancestry subjects with primary dentition (n = 111; 76 cases, dmft>5 and 35 controls, dmft = 0). RESULTS Pediatric caries is significantly associated with single nucleotide polymorphisms (SNP) in the GRIN2B-rs4764039C (p-value = 2.03 × 10-08) and CFH-rs1065489G (p-value = 8.26 × 10-08) genes, even after Bonferroni correction. Irregular tooth brushing habits (p = 0.0404) and irregular dental visits (p = 0.0050) are significantly associated with caries. Functional enrichment analysis of significant genes is associated with calcium-activated chloride channel, Staphylococcus aureus infection, and N-linked glycosylation. CONCLUSION Genetic predispositions are found to be significantly associated with the high prevalence of pediatric caries, which is a disorder of multigene-environment interaction. The significant functional exonic variants identified can be biomarkers for the early diagnosis of pediatric dental caries in Arabs.
Collapse
Affiliation(s)
- J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hind Saleh Alsuwat
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Widyan Alamoudi
- Departments of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatma Mohammed Hegazi
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Waad Mohammed Al Otaibi
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdallah M Ibrahim
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Department of Fundamentals of Nursing, College of Nursing, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amani M Al-Amodi
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yousef M Alyousef
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Emad AlShwaimi
- Department of Restorative Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naif Almasoud
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - AbdulAzeez Sayed
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
11
|
Alphavirus Virulence Determinants. Pathogens 2021; 10:pathogens10080981. [PMID: 34451445 PMCID: PMC8401390 DOI: 10.3390/pathogens10080981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 11/17/2022] Open
Abstract
Alphaviruses are important pathogens that continue to cause outbreaks of disease in humans and animals worldwide. Diseases caused by alphavirus infections include acute symptoms of fever, rash, and nausea as well as chronic arthritis and severe-to-fatal conditions including myocarditis and encephalitis. Despite their prevalence and the significant public health threat they pose, there are currently no effective antiviral treatments or vaccines against alphaviruses. Various genetic determinants of alphavirus virulence, including genomic RNA elements and specific protein residues and domains, have been described by researchers to play key roles in the development of disease, the immune response to infection, and virus transmissibility. Here, we focus on the determinants that are currently described in the literature. Understanding how these molecular determinants shape viral infections can lead to new strategies for the development of therapies and vaccines to combat these viruses.
Collapse
|
12
|
Hasan SS, Dey D, Singh S, Martin M. The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat. Pathogens 2021; 10:pathogens10080973. [PMID: 34451437 PMCID: PMC8400090 DOI: 10.3390/pathogens10080973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Alphaviruses are arboviruses that cause arthritis and encephalitis in humans. Eastern Equine Encephalitis Virus (EEEV) is a mosquito-transmitted alphavirus that is implicated in severe encephalitis in humans with high mortality. However, limited insights are available into the fundamental biology of EEEV and residue-level details of its interactions with host proteins. In recent years, outbreaks of EEEV have been reported mainly in the United States, raising concerns about public safety. This review article summarizes recent advances in the structural biology of EEEV based mainly on single-particle cryogenic electron microscopy (cryoEM) structures. Together with functional analyses of EEEV and related alphaviruses, these structural investigations provide clues to how EEEV interacts with host proteins, which may open avenues for the development of therapeutics.
Collapse
Affiliation(s)
- S. Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St., Baltimore, MD 21201, USA
- Correspondence:
| | - Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| | - Matthew Martin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA; (D.D.); (S.S.); (M.M.)
| |
Collapse
|
13
|
Aksnes I, Braaen S, Markussen T, Åkesson CP, Villoing S, Rimstad E. Genetically modified attenuated salmonid alphavirus: A potential strategy for immunization of Atlantic salmon. JOURNAL OF FISH DISEASES 2021; 44:923-937. [PMID: 33591590 DOI: 10.1111/jfd.13352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Pancreas disease (PD) is a serious challenge in European salmonid aquaculture caused by salmonid alphavirus (SAV). In this study, we report the effect of immunization of Atlantic salmon with three attenuated infectious SAV3 strains with targeted mutations in a glycosylation site of the envelope E2 protein and/or in a nuclear localization signal in the capsid protein. In a pilot experiment, it was shown that the mutated viral strains replicated in fish, transmitted to naïve cohabitants and that the transmission had not altered the sequences. In the main experiment, the fish were immunized with the strains and challenged with SAV3 eight weeks after immunization. Immunization resulted in infection both in injected fish and 2 weeks later in the cohabitant fish, followed by a persistent but declining load of the mutated virus variants in the hearts. The immunized fish developed clinical signs and pathology consistent with PD prior to challenge. However, fish injected with the virus mutated in both E2 and capsid showed little clinical signs and had higher average weight gain than the groups immunized with the single mutated variants. The SAV strain used for challenge was not detected in the immunized fish indicating that these fish were protected against superinfection with SAV during the 12 weeks of the experiment.
Collapse
Affiliation(s)
- Ida Aksnes
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Stine Braaen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Turhan Markussen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Espen Rimstad
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
14
|
Aksnes I, Markussen T, Braaen S, Rimstad E. Mutation of N-glycosylation Sites in Salmonid Alphavirus (SAV) Envelope Proteins Attenuate the Virus in Cell Culture. Viruses 2020; 12:v12101071. [PMID: 32987930 PMCID: PMC7650630 DOI: 10.3390/v12101071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Salmonid alphavirus (SAV) is the cause of pancreas disease and sleeping disease in farmed salmonid fish in Europe. The spread of these diseases has been difficult to control with biosecurity and current vaccination strategies, and increased understanding of the viral pathogenesis could be beneficial for the development of novel vaccine strategies. N-glycosylation of viral envelope proteins may be crucial for viral virulence and a possible target for its purposed attenuation. In this study, we mutated the N-glycosylation consensus motifs of the E1 and E2 glycoproteins of a SAV3 infectious clone using site-directed mutagenesis. Mutation of the glycosylation motif in E1 gave a complete inactivation of the virus as no viral replication could be detected in cell culture and infectious particles could not be rescued. In contrast, infectious virus particles could be recovered from the SAV3 E2 mutants (E2319Q, E2319A), but not if they were accompanied by lack of N-glycosylation in E1. Compared to the non-mutated infectious clone, the SAV3-E2319Q and SAV3-E2319A recombinant viruses produced less cytopathic effects in cell culture and lower amounts of infectious viral particles. In conclusion, the substitution in the N-linked glycosylation site in E2 attenuated SAV3 in cell culture. The findings could be useful for immunization strategies using live attenuated vaccines and testing in fish will be desirable to study the clone’s properties in vivo.
Collapse
|
15
|
Long KC, Sulca J, Bazan I, Astete H, Jaba HL, Siles C, Kocher C, Vilcarromero S, Schwarz J, Escobedo-Vargas KS, Castro-Llanos F, Angulo L, Flores G, Ramal-Asayag C, Halsey ES, Hontz RD, Paz-Soldan VA, Scott TW, Lambrechts L, Morrison AC. Feasibility of feeding Aedes aegypti mosquitoes on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Negl Trop Dis 2019; 13:e0007116. [PMID: 30753180 PMCID: PMC6388938 DOI: 10.1371/journal.pntd.0007116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/25/2019] [Accepted: 12/26/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transmission of dengue virus (DENV) from humans to mosquitoes represents a critical component of dengue epidemiology. Examinations of this process have generally been hampered by a lack of methods that adequately represent natural acquisition of DENV by mosquitoes from humans. In this study, we assessed artificial and natural blood feeding methods based on rates of DENV infection and dissemination within mosquitoes for use in a field-based epidemiological cohort study in Iquitos, Peru. METHODOLOGY/PRINCIPAL FINDINGS Our study was implemented, stepwise, between 2011 and 2015. Participants who were 5 years and older with 5 or fewer days of fever were enrolled from ongoing clinic- and neighborhood-based studies on dengue in Iquitos. Wild type, laboratory-reared Aedes aegypti were fed directly on febrile individuals or on blood collected from participants that was either untreated or treated with EDTA. Mosquitoes were tested after approximately 14 days of extrinsic incubation for DENV infection and dissemination. A total of 58 participants, with viremias ranging from 1.3 × 10(2) to 2.9 × 10(6) focus-forming units per mL of serum, participated in one or more feeding methods. DENV infection and dissemination rates were not significantly different following direct and indirect-EDTA feeding; however, they were significantly lower for mosquitoes that fed indirectly on blood with no additive. Relative to direct feeding, infection rates showed greater variation following indirect-EDTA than indirect-no additive feeding. Dissemination rates were similar across all feeding methods. No differences were detected in DENV infection or dissemination rates in mosquitoes fed directly on participants with different dengue illness severity. CONCLUSIONS/SIGNIFICANCE Our study demonstrates the feasibility of using direct and indirect feeding methods for field-based studies on vector competence. Direct mosquito feeding is preferable in terms of logistical ease, biosecurity, and reliability.
Collapse
Affiliation(s)
- Kanya C. Long
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Juan Sulca
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Isabel Bazan
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Helvio Astete
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Hugo L. Jaba
- Entomology Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Crystyan Siles
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Claudine Kocher
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Stalin Vilcarromero
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Julia Schwarz
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Karin S. Escobedo-Vargas
- Entomology Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Fanny Castro-Llanos
- Entomology Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Leslye Angulo
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Guadalupe Flores
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Cesar Ramal-Asayag
- Department of Internal Medicine, Loreto Regional Hospital “Felipe Santiago Arriola Iglesias,” Punchana, Iquitos, Peru
- School of Medicine, Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Eric S. Halsey
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Robert D. Hontz
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Valerie A. Paz-Soldan
- Global Community Health and Behavioral Sciences Department, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2000, Paris, France
| | - Amy C. Morrison
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Morrison AC, Schwarz J, Long KC, Cordova J, Rios JE, Quiroz WL, Vizcarra SA, Hontz RD, Scott TW, Lambrechts L, Paz Soldan VA. Acceptability of Aedes aegypti blood feeding on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Negl Trop Dis 2019; 13:e0007090. [PMID: 30742621 PMCID: PMC6386403 DOI: 10.1371/journal.pntd.0007090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/22/2019] [Accepted: 12/18/2018] [Indexed: 12/03/2022] Open
Abstract
As part of a study to investigate drivers of dengue virus (DENV) transmission dynamics, this qualitative study explored whether DENV-infected residents of Iquitos, Peru, considered it acceptable (1) to participate in direct mosquito feeding experiments (lab-reared Aedes aegypti mosquitoes fed directly on human volunteers) and (2) to provide blood meals indirectly (Ae. aegypti fed on blood drawn from participants by venipuncture). Twelve focus group discussions (FGDs; 94 participants: 82 females and 12 males) were conducted in January 2014 to explore six themes: (1) concerns and preferences regarding direct mosquito feeds and blood draws, (2) comprehension of and misconceptions about study procedures, (3) motivating factors for participation, (4) acceptability of children's participation, (5) willingness to provide multiple samples over several days, and (6) preference for direct feedings in homes versus the study laboratory. Results of FGDs, including one with 5 of 53 past direct mosquito feed participants, indicated that mosquito feeding procedures are acceptable to Iquitos residents when they are provided with information and a few key messages are properly reinforced. FGD participants' concerns focused primarily on safety issues rather than discomfort associated with mosquito bites. A video explaining the study dramatically increased comprehension of the study procedures. The majority of participants expressed a preference for mosquito feeding over venipuncture. Adults supported child participation if the children themselves assented. For most participants, home feedings were preferred over those in a laboratory. A major impetus for participation was the idea that results would contribute to an improved understanding of DENV transmission in Iquitos. Findings from our study will support future large-scale studies that employ direct mosquito feeding, a low-risk, non-invasive procedure that is experimentally superior to artificial mosquito feeding methods.
Collapse
Affiliation(s)
- Amy C. Morrison
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Julia Schwarz
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kanya C. Long
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Jhonny Cordova
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Jennifer E. Rios
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - W. Lorena Quiroz
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - S. Alfonso Vizcarra
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Robert D. Hontz
- Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Washington DC, Lima and Iquitos, Peru
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, Davis, California, United States of America
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
| | - Valerie A. Paz Soldan
- Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
17
|
Encapsidated Host Factors in Alphavirus Particles Influence Midgut Infection of Aedes aegypti. Viruses 2018; 10:v10050263. [PMID: 29772674 PMCID: PMC5977256 DOI: 10.3390/v10050263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Abstract
Transmission of mosquito-borne viruses requires the efficient infection of both a permissive vertebrate host and a competent mosquito vector. The infectivity of Sindbis virus (SINV), the type species of the Alphavirus genus, is influenced by both the original and new host cell. We have shown that infection of vertebrate cells by SINV, chikungunya virus (CHIKV), and Ross River virus (RRV) produces two subpopulations of virus particles separable based on density. In contrast, a single population of viral particles is produced by mosquito cells. Previous studies demonstrated that the denser vertebrate-derived particles and the mosquito-derived particles contain components of the small subunit of the host cell ribosome, whereas the less dense vertebrate-derived particles do not. Infection of mice with RRV showed that both particle subpopulations are produced in an infected vertebrate, but in a tissue specific manner with serum containing only the less dense version of the virus particles. Previous infectivity studies using SINV particles have shown that the denser particles (SINVHeavy) and mosquito derived particles SINVC6/36 are significantly more infectious in vertebrate cells than the less dense vertebrate derived particles (SINVLight). The current study shows that SINVLight particles, initiate the infection of the mosquito midgut more efficiently than SINVHeavy particles and that this enhanced infectivity is associated with an exacerbated immune response to SINVLight infection in midgut tissues. The enhanced infection of SINVLight is specific to the midgut as intrathoracically injected virus do not exhibit the same fitness advantage. Together, our data indicate a biologically significant role for the SINVLight subpopulation in the efficient transmission from infected vertebrates to the mosquito vector.
Collapse
|
18
|
Chikungunya Virus Strains Show Lineage-Specific Variations in Virulence and Cross-Protective Ability in Murine and Nonhuman Primate Models. mBio 2018; 9:mBio.02449-17. [PMID: 29511072 PMCID: PMC5844994 DOI: 10.1128/mbio.02449-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging arbovirus capable of causing explosive outbreaks of febrile illness, polyarthritis, and polyarthralgia, inflicting severe morbidity on affected populations. CHIKV can be genetically classified into 3 major lineages: West African (WA); East, Central, and South African (ECSA); Indian Ocean (IOL); and Asian. Additionally, the Indian Ocean (IOL) sublineage emerged within the ECSA clade and the Asian/American sublineage emerged within the Asian clade. While differences in epidemiological and pathological characteristics among outbreaks involving different CHIKV lineages and sublineages have been suggested, few targeted investigations comparing lineage virulence levels have been reported. We compared the virulence levels of CHIKV isolates representing all major lineages and sublineages in the type I interferon receptor-knockout A129 mouse model and found lineage-specific differences in virulence. We also evaluated the cross-protective efficacy of the IOL-derived, live-attenuated vaccine strain CHIKV/IRESv1 against the Asian/American CHIKV isolate YO123223 in both murine and nonhuman primate models, as well as the WA strain SH2830 in a murine model. The CHIKV/IRES vaccine provided protection both in mice and in nonhuman primate cohorts against Caribbean strain challenge and protected mice against WA challenge. Taken together, our data suggest that Asian/American CHIKV strains are less virulent than those in the Asian, ECSA, and WA lineages and that despite differences in virulence, IOL-based vaccine strains offer robust cross-protection against strains from other lineages. Further research is needed to elucidate the genetic basis for variation in CHIKV virulence in the A129 mouse model and to corroborate this variation with human pathogenicity. Chikungunya virus (CHIKV) is a reemerging human pathogen capable of causing debilitating and disfiguring polyarthritis, which can last for months to years after initial fever has resolved. There are four major genetic lineages of CHIKV, as well as two recently emerged sublineages, none of which have been evaluated for differences in virulence. Moreover, the ability of chikungunya vaccines to cross-protect against heterologous CHIKV lineages has not been explored. Therefore, we sought to compare the virulence levels among CHIKV lineages, as well as to evaluate the cross-protective efficacy of the CHIKV/IRESv1 vaccine candidate, in two different models of CHIKV infection. Our results suggest that, although significant differences in virulence were observed among CHIKV lineages, the CHIKV/IRESv1 vaccine elicits cross-lineage protective immunity. These findings provide valuable information for predicting the severity of CHIKV-associated morbidity in future outbreaks, as well as vaccine development considerations.
Collapse
|
19
|
Sharma R, Kesari P, Kumar P, Tomar S. Structure-function insights into chikungunya virus capsid protein: Small molecules targeting capsid hydrophobic pocket. Virology 2018; 515:223-234. [DOI: 10.1016/j.virol.2017.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
|
20
|
Murray JM. An icosahedral virus as a fluorescent calibration standard: a method for counting protein molecules in cells by fluorescence microscopy. J Microsc 2017; 267:193-213. [PMID: 28328099 DOI: 10.1111/jmi.12559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
The ability to replace genes coding for cellular proteins with DNA that codes for fluorescent protein-tagged versions opens the way to counting the number of molecules of each protein component of macromolecular assemblies in vivo by measuring fluorescence microscopically. Converting fluorescence to absolute numbers of molecules requires a fluorescent standard whose molecular composition is known precisely. In this report, the construction, properties and mode of using a set of fluorescence calibration standards are described. The standards are based on an icosahedral virus engineered to contain exactly 240 copies of one of seven different fluorescent proteins. Two applications of the fluorescent standards to counting molecules in the human parasite Toxoplasma gondii are described. Methods for improving the preciseness of the measurements and minimizing potential inaccuracies are emphasized.
Collapse
Affiliation(s)
- John M Murray
- Department of Biology, Indiana University, Bloomington, Indiana, U.S.A
| |
Collapse
|
21
|
Griffin DE. Alphavirus Encephalomyelitis: Mechanisms and Approaches to Prevention of Neuronal Damage. Neurotherapeutics 2016; 13:455-60. [PMID: 27114366 PMCID: PMC4965404 DOI: 10.1007/s13311-016-0434-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mosquito-borne viruses are important causes of death and long-term neurologic disability due to encephalomyelitis. Studies of mice infected with the alphavirus Sindbis virus have shown that outcome is dependent on the age and genetic background of the mouse and virulence of the infecting virus. Age-dependent susceptibility reflects the acquisition by neurons of resistance to virus replication and virus-induced cell death with maturation. In mature mice, the populations of neurons most susceptible to infection are in the hippocampus and anterior horn of the spinal cord. Hippocampal infection leads to long-term memory deficits in mice that survive, while motor neuron infection can lead to paralysis and death. Neuronal death is immune-mediated, rather than a direct consequence of virus infection, and associated with entry and differentiation of pathogenic T helper 17 cells in the nervous system. To modulate glutamate excitotoxicity, mice were treated with an N-methyl-D-aspartate receptor antagonist, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonists or a glutamine antagonist. The N-methyl-D-aspartate receptor antagonist MK-801 protected hippocampal neurons but not motor neurons, and mice still became paralyzed and died. α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonists GYKI-52466 and talampanel protected both hippocampal and motor neurons and prevented paralysis and death. Glutamine antagonist 6-diazo-5-l-norleucine protected hippocampal neurons and improved memory generation in mice surviving infection with an avirulent virus. Surprisingly, in all cases protection was associated with inhibition of the antiviral immune response, reduced entry of inflammatory cells into the central nervous system, and delayed virus clearance, emphasizing the importance of treatment approaches that include prevention of immunopathologic damage.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
22
|
Nelson MA, Herrero LJ, Jeffery JAL, Hoehn M, Rudd PA, Supramaniam A, Kay BH, Ryan PA, Mahalingam S. Role of envelope N-linked glycosylation in Ross River virus virulence and transmission. J Gen Virol 2016; 97:1094-1106. [PMID: 26813162 DOI: 10.1099/jgv.0.000412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With an expanding geographical range and no specific treatments, human arthritogenic alphaviral disease poses a significant problem worldwide. Previous in vitro work with Ross River virus (RRV) demonstrated that alphaviral N-linked glycosylation contributes to type I IFN (IFN-αβ) induction in myeloid dendritic cells. This study further evaluated the role of alphaviral N-linked glycans in vivo, assessing the effect of glycosylation on pathogenesis in a mouse model of RRV-induced disease and on viral infection and dissemination in a common mosquito vector, Aedes vigilax. A viral mutant lacking the E1-141 glycosylation site was attenuated for virus-induced disease, with reduced myositis and higher levels of IFN-γ induction at peak disease contributing to improved viral clearance, suggesting that glycosylation of the E1 glycoprotein plays a major role in the pathogenesis of RRV. Interestingly, RRV lacking E2-200 glycan had significantly reduced replication in the mosquito vector A. vigilax, whereas loss of either of the E1 or E2-262 glycans had little effect on the competence of the mosquito vector. Overall, these results indicate that glycosylation of the E1 and E2 glycoproteins of RRV provides important determinants of viral virulence and immunopathology in the mammalian host and replication in the mosquito vector.
Collapse
Affiliation(s)
- Michelle A Nelson
- Faculty of Applied Science, University of Canberra, Canberra, ACT 2601, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Jason A L Jeffery
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Marion Hoehn
- Faculty of Applied Science, University of Canberra, Canberra, ACT 2601, Australia.,Department of Conservation Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Aroon Supramaniam
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Brian H Kay
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Peter A Ryan
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia.,School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Suresh Mahalingam
- Faculty of Applied Science, University of Canberra, Canberra, ACT 2601, Australia.,Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
23
|
Acharya D, Paul AM, Anderson JF, Huang F, Bai F. Loss of Glycosaminoglycan Receptor Binding after Mosquito Cell Passage Reduces Chikungunya Virus Infectivity. PLoS Negl Trop Dis 2015; 9:e0004139. [PMID: 26484530 PMCID: PMC4615622 DOI: 10.1371/journal.pntd.0004139] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 09/14/2015] [Indexed: 12/17/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause fever and chronic arthritis in humans. CHIKV that is generated in mosquito or mammalian cells differs in glycosylation patterns of viral proteins, which may affect its replication and virulence. Herein, we compare replication, pathogenicity, and receptor binding of CHIKV generated in Vero cells (mammal) or C6/36 cells (mosquito) through a single passage. We demonstrate that mosquito cell-derived CHIKV (CHIKVmos) has slower replication than mammalian cell-derived CHIKV (CHIKVvero), when tested in both human and murine cell lines. Consistent with this, CHIKVmos infection in both cell lines produce less cytopathic effects and reduced antiviral responses. In addition, infection in mice show that CHIKVmos produces a lower level of viremia and less severe footpad swelling when compared with CHIKVvero. Interestingly, CHIKVmos has impaired ability to bind to glycosaminoglycan (GAG) receptors on mammalian cells. However, sequencing analysis shows that this impairment is not due to a mutation in the CHIKV E2 gene, which encodes for the viral receptor binding protein. Moreover, CHIKVmos progenies can regain GAG receptor binding capability and can replicate similarly to CHIKVvero after a single passage in mammalian cells. Furthermore, CHIKVvero and CHIKVmos no longer differ in replication when N-glycosylation of viral proteins was inhibited by growing these viruses in the presence of tunicamycin. Collectively, these results suggest that N-glycosylation of viral proteins within mosquito cells can result in loss of GAG receptor binding capability of CHIKV and reduction of its infectivity in mammalian cells. Chikungunya virus (CHIKV) is a chronic arthritis-causing pathogen in humans, for which no licensed vaccine or specific antiviral drug is currently available. Due to the global spread of its mosquito vectors, CHIKV is now becoming a public health threat worldwide. CHIKV can replicate in both mammalian and mosquito cells, however it does not cause apparent damage to mosquito cells, yet it rapidly kills mammalian cells within a day after infection. In addition, mosquito and mammalian cells have different mechanism of protein glycosylation, which can result in different glycan structures of viral glycoproteins. In this study, we report that mosquito cell-generated CHIKV has lower infectivity in cell culture and causes less severe disease in mice, when compared to mammalian cell-generated CHIKV. We demonstrate that only mammalian cell-generated CHIKV, but not mosquito-cell generated CHIKV, binds to mammalian cell surface glycosaminoglycan receptors. Interestingly, mosquito-cell generated CHIKV can re-acquire glycosaminoglycan receptor binding capability after a single passage in mammalian cells and replicate at similar levels with mammalian cell-generated CHIKV, suggesting that passage of CHIKV in mosquito cells can reduce its infectivity.
Collapse
Affiliation(s)
- Dhiraj Acharya
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Amber M. Paul
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - John F. Anderson
- Department of Entomology, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Fengwei Bai
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
24
|
Lévy C, Verhoeyen E, Cosset FL. Surface engineering of lentiviral vectors for gene transfer into gene therapy target cells. Curr Opin Pharmacol 2015; 24:79-85. [DOI: 10.1016/j.coph.2015.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/09/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
|
25
|
Heberle FA, Myles DAA, Katsaras J. Biomembranes research using thermal and cold neutrons. Chem Phys Lipids 2015; 192:41-50. [PMID: 26241882 DOI: 10.1016/j.chemphyslip.2015.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 01/26/2023]
Abstract
In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: "whatever the radiation from Be may be, it has most remarkable properties." Where it concerns hydrogen-rich biological materials, the "most remarkable" property is the neutron's differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. This article describes recent biomembranes research using a variety of neutron scattering techniques.
Collapse
Affiliation(s)
- F A Heberle
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge, TN, 37831, United States; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - D A A Myles
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge, TN, 37831, United States
| | - J Katsaras
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge, TN, 37831, United States; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|
26
|
Shytuhina A, Pristatsky P, He J, Casimiro DR, Schwartz RM, Hoang VM, Ha S. Development and application of a reversed-phase high-performance liquid chromatographic method for quantitation and characterization of a Chikungunya virus-like particle vaccine. J Chromatogr A 2014; 1364:192-7. [PMID: 25234500 DOI: 10.1016/j.chroma.2014.05.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 11/19/2022]
Abstract
To effectively support the development of a Chikungunya (CHIKV) virus-like particle (VLP) vaccine, a sensitive and robust high-performance liquid chromatography (HPLC) method that can quantitate CHIKV VLPs and monitor product purity throughout the manufacturing process is needed. We developed a sensitive reversed-phase HPLC (RP-HPLC) method that separates capsid, E1, and E2 proteins in CHIKV VLP vaccine with good resolution. Each protein component was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry (MS). The post-translational modifications on the viral glycoproteins E1 and E2 were further identified by intact protein mass measurements with liquid chromatography-mass spectrometry (LC-MS). The RP-HPLC method has a linear range of 0.51-12 μg protein, an accuracy of 96-106% and a precision of 12% RSD, suitable for vaccine product release testing. In addition, we demonstrated that the RP-HPLC method is useful for characterizing viral glycoprotein post-translational modifications, monitoring product purity during process development and assessing product stability during formulation development.
Collapse
Affiliation(s)
- Anastasija Shytuhina
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States
| | - Pavlo Pristatsky
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States
| | - Jian He
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States
| | - Danilo R Casimiro
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States
| | - Richard M Schwartz
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg, MD 20878, United States
| | - Van M Hoang
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States
| | - Sha Ha
- Vaccine Bioprocess Research & Development, Merck Research Laboratories, West Point, PA, 19486, United States.
| |
Collapse
|
27
|
Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells. Mol Ther 2013; 22:575-587. [PMID: 24419083 DOI: 10.1038/mt.2013.278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/01/2013] [Indexed: 11/08/2022] Open
Abstract
As sentinels of the immune system, dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients, Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform, termed ID-VP02, utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx, a SIVmac viral accessory protein, to achieve efficient targeting and transduction of human DCs. In addition, ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here, we describe the characteristics that allow ID-VP02 to specifically transduce human DCs, and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.
Collapse
|
28
|
Goh LY, Hobson-Peters J, Prow NA, Gardner J, Bielefeldt-Ohmann H, Pyke AT, Suhrbier A, Hall RA. Neutralizing monoclonal antibodies to the E2 protein of chikungunya virus protects against disease in a mouse model. Clin Immunol 2013; 149:487-97. [DOI: 10.1016/j.clim.2013.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/26/2022]
|
29
|
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for recent epidemic outbreaks of debilitating disease in humans. Alphaviruses are known to interact with members of the C-type lectin receptor family of pattern recognition proteins, and given that the dendritic cell immunoreceptor (DCIR) is known to act as a negative regulator of the host inflammatory response and has previously been associated with rheumatoid arthritis, we evaluated DCIR's role in response to CHIKV infection. Although we observed an increase in the proportion of dendritic cells at the site of CHIKV infection at 24 to 36 h postinfection, these cells showed decreased cell surface DCIR, suggestive of DCIR triggering and internalization. In vitro, bone marrow-derived dendritic cells from DCIR-deficient (DCIR(-/-)) mice exhibited altered cytokine expression following exposure to CHIKV. DCIR(-/-) mice exhibited more severe disease signs than wild-type C57BL6/J mice following CHIKV infection, including a more rapid and more severe onset of virus-induced edema and enhanced weight loss. Histological examination revealed that DCIR-deficient animals exhibited increased inflammation and damage in both the fascia of the inoculated foot and the ankle joint, and DCIR deficiency skewed the CHIKV-induced cytokine response at the site of infection at multiple times postinfection. Early differences in virus-induced disease between C57BL6/J and DCIR(-/-) mice were independent of viral replication, while extended viral replication correlated with enhanced foot swelling and tissue inflammation and damage in DCIR(-/-) compared to C57BL6/J mice at 6 to 7 days postinfection. These results suggest that DCIR plays a protective role in limiting the CHIKV-induced inflammatory response and subsequent tissue and joint damage.
Collapse
|
30
|
Sokoloski KJ, Hayes CA, Dunn MP, Balke JL, Hardy RW, Mukhopadhyay S. Sindbis virus infectivity improves during the course of infection in both mammalian and mosquito cells. Virus Res 2012; 167:26-33. [PMID: 22484152 DOI: 10.1016/j.virusres.2012.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/18/2022]
Abstract
Alphaviruses are enveloped, single-stranded positive sense RNA viruses that are transmitted by an arthropod vector to a wide host range, including avian and mammalian species. Arthropods and vertebrates have different cellular environments and this may cause the different cellular pathologies that are observed between the invertebrate vector and vertebrate hosts in both whole organisms and cultured cell lines. In this report, we used Sindbis virus and examined mosquito and mammalian cell lines for their ability to produce progeny virus particles. Total particles produced, viral titers, and overall infectivity (or the ratio of total particles-to-infectious particles) was investigated. Our results show (1) Sindbis infectivity is more a function of the host cell used in titering the virus rather than the cell line used to produce the virus, (2) the number of total and infectious particles produced is cell line dependent, and (3) the infectivity of released virus particles improves during the course of infection in both cells that have cytolytic infections and persistent infections.
Collapse
Affiliation(s)
- Kevin J Sokoloski
- Department of Biology, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405, United States
| | | | | | | | | | | |
Collapse
|
31
|
Metz SW, Geertsema C, Martina BE, Andrade P, Heldens JG, van Oers MM, Goldbach RW, Vlak JM, Pijlman GP. Functional processing and secretion of Chikungunya virus E1 and E2 glycoproteins in insect cells. Virol J 2011; 8:353. [PMID: 21762510 PMCID: PMC3162542 DOI: 10.1186/1743-422x-8-353] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/15/2011] [Indexed: 12/16/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is a mosquito-borne, arthrogenic Alphavirus that causes large epidemics in Africa, South-East Asia and India. Recently, CHIKV has been transmitted to humans in Southern Europe by invading and now established Asian tiger mosquitoes. To study the processing of envelope proteins E1 and E2 and to develop a CHIKV subunit vaccine, C-terminally his-tagged E1 and E2 envelope glycoproteins were produced at high levels in insect cells with baculovirus vectors using their native signal peptides located in CHIKV 6K and E3, respectively. Results Expression in the presence of either tunicamycin or furin inhibitor showed that a substantial portion of recombinant intracellular E1 and precursor E3E2 was glycosylated, but that a smaller fraction of E3E2 was processed by furin into mature E3 and E2. Deletion of the C-terminal transmembrane domains of E1 and E2 enabled secretion of furin-cleaved, fully processed E1 and E2 subunits, which could then be efficiently purified from cell culture fluid via metal affinity chromatography. Confocal laser scanning microscopy on living baculovirus-infected Sf21 cells revealed that full-length E1 and E2 translocated to the plasma membrane, suggesting similar posttranslational processing of E1 and E2, as in a natural CHIKV infection. Baculovirus-directed expression of E1 displayed fusogenic activity as concluded from syncytia formation. CHIKV-E2 was able to induce neutralizing antibodies in rabbits. Conclusions Chikungunya virus glycoproteins could be functionally expressed at high levels in insect cells and are properly glycosylated and cleaved by furin. The ability of purified, secreted CHIKV-E2 to induce neutralizing antibodies in rabbits underscores the potential use of E2 in a subunit vaccine to prevent CHIKV infections.
Collapse
Affiliation(s)
- Stefan W Metz
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Das PB, Vu HLX, Dinh PX, Cooney JL, Kwon B, Osorio FA, Pattnaik AK. Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery, receptor interaction, and immune response. Virology 2011; 410:385-94. [PMID: 21195444 DOI: 10.1016/j.virol.2010.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/24/2010] [Accepted: 12/03/2010] [Indexed: 02/07/2023]
Abstract
The role of N-glycosylation of the three minor envelope glycoproteins (GP2, GP3, and GP4) of porcine reproductive and respiratory syndrome virus (PRRSV) on infectious virus production, interactions with the receptor CD163, and neutralizing antibody production in infected pigs was examined. By mutation of the glycosylation sites in these proteins, the studies show that glycan addition at N184 of GP2, N42, N50 and N131 of GP3 is necessary for infectious virus production. Although single-site mutants of GP4 led to infectious virus production, mutation of any two sites in GP4 was lethal. Furthermore, the glycosylation of GP2 and GP4 was important for efficient interaction with CD163. Unlike PRRSVs encoding hypoglycosylated form of GP5 that induced significantly higher levels of neutralizing antibodies in infected piglets, PRRSVs encoding hypoglycosylated forms of GP2, GP3 or GP4 did not. These studies reveal the importance of glycosylation of these minor GPs in the biology of PRRSV.
Collapse
Affiliation(s)
- Phani B Das
- School of Veterinary Medicine and Biomedical Sciences, and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0900, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Host alternation of chikungunya virus increases fitness while restricting population diversity and adaptability to novel selective pressures. J Virol 2010; 85:1025-35. [PMID: 21047966 DOI: 10.1128/jvi.01918-10] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which RNA arboviruses, including chikungunya virus (CHIKV), evolve and maintain the ability to infect vertebrate and invertebrate hosts are poorly understood. To understand how host specificity shapes arbovirus populations, we studied CHIKV populations passaged alternately between invertebrate and vertebrate cells (invertebrate ↔ vertebrate) to simulate natural alternation and contrasted the results with those for populations that were artificially released from cycling by passage in single cell types. These CHIKV populations were characterized by measuring genetic diversity, changes in fitness, and adaptability to novel selective pressures. The greatest fitness increases were observed in alternately passaged CHIKV, without drastic changes in population diversity. The greatest increases in genetic diversity were observed after serial passage and correlated with greater adaptability. These results suggest an evolutionary trade-off between maintaining fitness for invertebrate ↔ vertebrate cell cycling, where maximum adaptability is possible only via enhanced population diversity and extensive exploration of sequence space.
Collapse
|
34
|
Redirecting lentiviral vectors pseudotyped with Sindbis virus-derived envelope proteins to DC-SIGN by modification of N-linked glycans of envelope proteins. J Virol 2010; 84:6923-34. [PMID: 20484510 DOI: 10.1128/jvi.00435-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Redirecting the tropism of viral vectors enables specific transduction of selected cells by direct administration of vectors. We previously developed targeting lentiviral vectors by pseudotyping with modified Sindbis virus envelope proteins. These modified Sindbis virus envelope proteins have mutations in their original receptor-binding regions to eliminate their natural tropisms, and they are conjugated with targeting proteins, including antibodies and peptides, to confer their tropisms on target cells. We investigated whether our targeting vectors interact with DC-SIGN, which traps many types of viruses and gene therapy vectors by binding to the N-glycans of their envelope proteins. We found that these vectors do not interact with DC-SIGN. When these vectors were produced in the presence of deoxymannojirimycin, which alters the structures of N-glycans from complex to high mannose, these vectors used DC-SIGN as their receptor. Genetic analysis demonstrated that the N-glycans at E2 amino acid (aa) 196 and E1 aa 139 mediate binding to DC-SIGN, which supports the results of a previous report of cryoelectron microscopy analysis. In addition, we investigated whether modification of the N-glycan structures could activate serum complement activity, possibly by the lectin pathway of complement activation. DC-SIGN-targeted transduction occurs in the presence of human serum complement, demonstrating that high-mannose structure N-glycans of the envelope proteins do not activate human serum complement. These results indicate that the strategy of redirecting viral vectors according to alterations of their N-glycan structures would enable the vectors to target specific cells types expressing particular types of lectins.
Collapse
|
35
|
He L, Piper A, Meilleur F, Myles DAA, Hernandez R, Brown DT, Heller WT. The structure of Sindbis virus produced from vertebrate and invertebrate hosts as determined by small-angle neutron scattering. J Virol 2010; 84:5270-6. [PMID: 20219936 PMCID: PMC2863847 DOI: 10.1128/jvi.00044-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 02/25/2010] [Indexed: 01/14/2023] Open
Abstract
The complex natural cycle of vectored viruses that transition between host species, such as between insects and mammals, makes understanding the full life cycle of the virus an incredibly complex problem. Sindbis virus, an arbovirus and prototypic alphavirus having an inner protein shell and an outer glycoprotein coat separated by a lipid membrane, is one example of a vectored virus that transitions between vertebrate and insect hosts. While evidence of host-specific differences in Sindbis virus has been observed, no work has been performed to characterize the impact of the host species on the structure of the virus. Here, we report the first study of the structural differences between Sindbis viruses grown in mammalian and insect cells, which were determined by small-angle neutron scattering (SANS), a nondestructive technique that did not decrease the infectivity of the Sindbis virus particles studied. The scattering data and modeling showed that, while the radial position of the lipid bilayer did not change significantly, it was possible to conclude that it did have significantly more cholesterol when the virus was grown in mammalian cells. Additionally, the outer protein coat was found to be more extended in the mammalian Sindbis virus. The SANS data also demonstrated that the RNA and nucleocapsid protein share a closer interaction in the mammalian-cell-grown virus than in the virus from insect cells.
Collapse
Affiliation(s)
- Lilin He
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Amanda Piper
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Flora Meilleur
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Dean A. A. Myles
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Raquel Hernandez
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Dennis T. Brown
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - William T. Heller
- Center for Structural Molecular Biology and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
36
|
Zhu W, Wang L, Yang Y, Jia J, Fu S, Feng Y, He Y, Li JP, Liang G. Interaction of E2 glycoprotein with heparan sulfate is crucial for cellular infection of Sindbis virus. PLoS One 2010; 5:e9656. [PMID: 20300181 PMCID: PMC2836379 DOI: 10.1371/journal.pone.0009656] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 02/15/2010] [Indexed: 12/23/2022] Open
Abstract
Cell culture-adapted strains of Sindbis virus (SINV) initially attach to cells by the ability to interact with heparan sulfate (HS) through selective mutation for positively charged amino acid (aa) scattered in E2 glycoprotein (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72: 7357-7366, 1998). Here we have further confirmed that interaction of E2 protein with HS is crucial for cellular infection of SINV based on the reverse genetic system of XJ-160 virus, a Sindbis-like virus (SINLV). Both SINV YN87448 and SINLV XJ-160 displayed similar infectivity on BHK-21, Vero, or C6/36 cells, but XJ-160 failed to infect mouse embryonic fibroblast (MEF) cells. The molecular mechanisms underlying the selective infectivity of XJ-160 were approached by substituting the E1, E2, or both genes of XJ-160 with that of YN87448, and the chimeric virus was denominated as XJ-160/E1, XJ-160/E2, or XJ-160/E1E2, respectively. In contrast to the parental XJ-160, all chimeric viruses became infectious to wild-type MEF cells (MEF-wt). While MEF-Ext(-/-) cells, producing shortened HS chains, were resistant not only to XJ-160, but also to YN87448 as well as the chimeric viruses, indicating that the inability of XJ-160 to infect MEF-wt cells likely due to its incompetent discrimination of cellular HS. Treatment with heparin or HS-degrading enzyme resulted in a substantial decrease in plaque formation by YN87448, XJ-160/E2, and XJ-160/E1E2, but had marginal effect on XJ-160 and XJ-160/E1, suggesting that E2 glycoprotein from YN87448 plays a more important role than does E1 in mediating cellular HS-related cell infection. In addition, the peptide containing 145-150 aa from E2 gene of YN87448 specifically bound to heparin, while the corresponding peptide from the E2 gene of XJ-160 essentially showed no binding to heparin. As a new dataset, these results clearly confirm an essential role of E2 glycoprotein, especially the domain of 145-150 aa, in SINV cellular infection through the interaction with HS.
Collapse
Affiliation(s)
- Wuyang Zhu
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Lihua Wang
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Yiliang Yang
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Juan Jia
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Shihong Fu
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Yun Feng
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Ying He
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Guodong Liang
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
- * E-mail:
| |
Collapse
|
37
|
Jose J, Snyder JE, Kuhn RJ. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol 2009; 4:837-56. [PMID: 19722838 DOI: 10.2217/fmb.09.59] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alphaviruses are small, spherical, enveloped, positive-sense ssRNA viruses responsible for a considerable number of human and animal diseases. Alphavirus members include Chikungunya virus, Sindbis virus, Semliki Forest virus, the western, eastern and Venezuelan equine encephalitis viruses, and the Ross River virus. Alphaviruses can cause arthritic diseases and encephalitis in humans and animals and continue to be a worldwide threat. The viruses are transmitted by blood-sucking arthropods, and replicate in both arthropod and vertebrate hosts. Alphaviruses form spherical particles (65-70 nm in diameter) with icosahedral symmetry and a triangulation number of four. The icosahedral structures of alphaviruses have been defined to very high resolutions by cryo-electron microscopy and crystallographic studies. In this review, we summarize the major events in alphavirus infection: entry, replication, assembly and budding. We focus on data acquired from structural and functional studies of the alphaviruses. These structural and functional data provide a broader perspective of the virus lifecycle and structure, and allow additional insight into these important viruses.
Collapse
Affiliation(s)
- Joyce Jose
- Department of Biological Sciences, Bindley Bioscience Center, Lilly Hall of Life Sciences, 915 West State St., Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|