1
|
Haas GD, Kowdle S, Schmitz KS, Azarm KD, Johnson KN, Klain WR, Freiberg AN, Cox RM, Plemper RK, Lee B. Tetracistronic minigenomes elucidate a functional promoter for Ghana virus and unveils Cedar virus replicase promiscuity for all henipaviruses. J Virol 2024; 98:e0080624. [PMID: 39345144 PMCID: PMC11495047 DOI: 10.1128/jvi.00806-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Batborne henipaviruses, such as Nipah and Hendra viruses, represent a major threat to global health due to their propensity for spillover, severe pathogenicity, and high mortality rate in human hosts. Coupled with the absence of approved vaccines or therapeutics, work with the prototypical species and uncharacterized, emergent species is restricted to high biocontainment facilities. There is a scarcity of such specialized spaces for research, and often, the scope and capacity of research, which can be conducted at BSL-4, is limited. Therefore, there is a pressing need for innovative life-cycle modeling systems to enable comprehensive research within lower biocontainment settings. This work showcases tetracistronic, transcription, and replication-competent minigenomes for the Nipah, Hendra, and Cedar viruses, which encode viral proteins facilitating budding, fusion, and receptor binding. We validate the functionality of all encoded viral proteins and demonstrate a variety of applications to interrogate the viral life cycle. Notably, we found that the Cedar virus replicase exhibits remarkable promiscuity, efficiently driving replication and transcription of minigenomes from all tested henipaviruses. We also apply this technology to Ghana virus (GhV), an emergent species that has so far not been isolated in culture. We demonstrate that the reported sequence of GhV is incomplete, but that this missing sequence can be substituted with analogous sequences from other henipaviruses. The use of our GhV system establishes the functionality of the GhV replicase and identifies two antivirals that are highly efficacious against the GhV polymerase. IMPORTANCE Henipaviruses are recognized as significant global health threats due to their high mortality rates and lack of effective vaccines or therapeutics. Due to the requirement for high biocontainment facilities, the scope of research which may be conducted on henipaviruses is limited. To address this challenge, we developed innovative tetracistronic, transcription, and replication-competent minigenomes. We demonstrate that these systems replicate key aspects of the viral life cycle, such as budding, fusion, and receptor binding, and are safe for use in lower biocontainment settings. Importantly, the application of this system to the Ghana virus revealed that its known sequence is incomplete; however, substituting the missing sequences with those from other henipaviruses allowed us to overcome this challenge. We demonstrate that the Ghana virus replicative machinery is functional and can identify two orally efficacious antivirals effective against it. Our research offers a versatile system for life-cycle modeling of highly pathogenic henipaviruses at low biocontainment.
Collapse
Affiliation(s)
- Griffin D. Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Kristopher D. Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kendra N. Johnson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William R. Klain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
3
|
Haas GD, Schmitz KS, Azarm KD, Johnson KN, Klain WR, Freiberg AN, Cox RM, Plemper RK, Lee B. Tetracistronic Minigenomes Elucidate a Functional Promoter for Ghana Virus and Unveils Cedar Virus Replicase Promiscuity for all Henipaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589704. [PMID: 38659760 PMCID: PMC11042316 DOI: 10.1101/2024.04.16.589704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Batborne henipaviruses, such as Nipah virus and Hendra virus, represent a major threat to global health due to their propensity for spillover, severe pathogenicity, and high mortality rate in human hosts. Coupled with the absence of approved vaccines or therapeutics, work with the prototypical species and uncharacterized, emergent species is restricted to high biocontainment facilities. There is a scarcity of such specialized spaces for research, and often the scope and capacity of research which can be conducted at BSL-4 is limited. Therefore, there is a pressing need for innovative life-cycle modeling systems to enable comprehensive research within lower biocontainment settings. This work showcases tetracistronic, transcription and replication competent minigenomes for Nipah virus, Hendra virus, Cedar virus, and Ghana virus, which encode viral proteins facilitating budding, fusion, and receptor binding. We validate the functionality of all encoded viral proteins and demonstrate a variety of applications to interrogate the viral life cycle. Notably, we found that the Cedar virus replicase exhibits remarkable promiscuity, efficiently rescuing minigenomes from all tested henipaviruses. We also apply this technology to GhV, an emergent species which has so far not been isolated in culture. We demonstrate that the reported sequence of GhV is incomplete, but that this missing sequence can be substituted with analogous sequences from other henipaviruses. Use of our GhV system establishes the functionality of the GhV replicase and identifies two antivirals which are highly efficacious against the GhV polymerase.
Collapse
Affiliation(s)
- Griffin D. Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Kristopher D. Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kendra N. Johnson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - William R. Klain
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
4
|
Feng C, Cross AS, Vasta GR. Galectin-1 mediates interactions between polymorphonuclear leukocytes and vascular endothelial cells, and promotes their extravasation during lipopolysaccharide-induced acute lung injury. Mol Immunol 2023; 156:127-135. [PMID: 36921487 PMCID: PMC10154945 DOI: 10.1016/j.molimm.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/29/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
The lung airway epithelial surface is heavily covered with sialic acids as the terminal carbohydrate on most cell surface glycoconjugates and can be removed by microbial neuraminidases or endogenous sialidases. By desialylating the lung epithelial surface, neuraminidase acts as an important virulence factor in many mucosal pathogens, such as influenza and S. pneumoniae. Desialylation exposes the subterminal galactosyl moieties - the binding glycotopes for galectins, a family of carbohydrate-recognition proteins playing important roles in various aspects of immune responses. Galectin-1 and galectin-3 have been extensively studied in their roles related to host immune responses, but some questions about their role(s) in leukocyte recruitment during lung bacterial infection remain unanswered. In this study, we found that both galectin-1 and galectin-3 bind to polymorphonuclear leukocytes (PMNs) and enhance the interaction of endothelial intercellular adhesion molecule-1 (ICAM-1) with PMNs, which is further increased by PMN desialylation. In addition, we observed that in vitro galectin-1 mediates the binding of PMNs, particularly desialylated PMNs, onto the endothelial cells. Finally, in a murine model for LPS-mediated acute lung injury, we observed that galectin-1 modulates PMN infiltration to the lung without altering the expression of chemoattractant cytokines. We conclude that galectins, particularly galectin-1, may function as adhesion molecules that mediate PMN-endothelial cell interactions, and modulate PMN infiltration during acute lung injury.
Collapse
Affiliation(s)
- Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
5
|
Yu X, Qian J, Ding L, Yin S, Zhou L, Zheng S. Galectin-1: A Traditionally Immunosuppressive Protein Displays Context-Dependent Capacities. Int J Mol Sci 2023; 24:ijms24076501. [PMID: 37047471 PMCID: PMC10095249 DOI: 10.3390/ijms24076501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Galectin–Carbohydrate interactions are indispensable to pathogen recognition and immune response. Galectin-1, a ubiquitously expressed 14-kDa protein with an evolutionarily conserved β-galactoside binding site, translates glycoconjugate recognition into function. That galectin-1 is demonstrated to induce T cell apoptosis has led to substantial attention to the immunosuppressive properties of this protein, such as inducing naive immune cells to suppressive phenotypes, promoting recruitment of immunosuppressing cells as well as impairing functions of cytotoxic leukocytes. However, only in recent years have studies shown that galectin-1 appears to perform a pro-inflammatory role in certain diseases. In this review, we describe the anti-inflammatory function of galectin-1 and its possible mechanisms and summarize the existing therapies and preclinical efficacy relating to these agents. In the meantime, we also discuss the potential causal factors by which galectin-1 promotes the progression of inflammation.
Collapse
|
6
|
Evidence for Different Virulence Determinants and Host Response after Infection of Turkeys and Chickens with Highly Pathogenic H7N1 Avian Influenza Virus. J Virol 2022; 96:e0099422. [PMID: 35993736 PMCID: PMC9472639 DOI: 10.1128/jvi.00994-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild birds are the reservoir for all avian influenza viruses (AIV). In poultry, the transition from low pathogenic (LP) AIV of H5 and H7 subtypes to highly pathogenic (HP) AIV is accompanied mainly by changing the hemagglutinin (HA) monobasic cleavage site (CS) to a polybasic motif (pCS). Galliformes, including turkeys and chickens, succumb with high morbidity and mortality to HPAIV infections, although turkeys appear more vulnerable than chickens. Surprisingly, the genetic determinants for virulence and pathogenesis of HPAIV in turkeys are largely unknown. Here, we determined the genetic markers for virulence and transmission of HPAIV H7N1 in turkeys, and we explored the host responses in this species compared to those of chickens. We found that recombinant LPAIV H7N1 carrying pCS was avirulent in chickens but exhibited high virulence in turkeys, indicating that virulence determinants vary in these two galliform species. A transcriptome analysis indicated that turkeys mount a different host response than do chickens, particularly from genes involved in RNA metabolism and the immune response. Furthermore, we found that the HA glycosylation at residue 123, acquired by LP viruses shortly after transmission from wild birds and preceding the transition from LP to HP, had a role in virus fitness and virulence in chickens, though it was not a prerequisite for high virulence in turkeys. Together, these findings indicate variable virulence determinants and host responses in two closely related galliformes, turkeys and chickens, after infection with HPAIV H7N1. These results could explain the higher vulnerability to HPAIV of turkeys compared to chickens. IMPORTANCE Infection with HPAIV in chickens and turkeys, two closely related galliform species, results in severe disease and death. Although the presence of a polybasic cleavage site (pCS) in the hemagglutinin of AIV is a major virulence determinant for the transition of LPAIV to HPAIV, there are knowledge gaps on the genetic determinants (including pCS) and the host responses in turkeys compared to chickens. Here, we found that the pCS alone was sufficient for the transformation of a LP H7N1 into a HPAIV in turkeys but not in chickens. We also noticed that turkeys exhibited a different host response to an HPAIV infection, namely, a widespread downregulation of host gene expression associated with protein synthesis and the immune response. These results are important for a better understanding of the evolution of HPAIV from LPAIV and of the different outcomes and the pathomechanisms of HPAIV infections in chickens and turkeys.
Collapse
|
7
|
Ferreira T, Kulkarni A, Bretscher C, Nazarov PV, Hossain JA, Ystaas LAR, Miletic H, Röth R, Niesler B, Marchini A. Oncolytic H-1 Parvovirus Hijacks Galectin-1 to Enter Cancer Cells. Viruses 2022; 14:1018. [PMID: 35632759 PMCID: PMC9146882 DOI: 10.3390/v14051018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical studies in glioblastoma and pancreatic carcinoma patients strongly support the further development of H-1 protoparvovirus (H-1PV)-based anticancer therapies. The identification of cellular factors involved in the H-1PV life cycle may provide the knowledge to improve H-1PV anticancer potential. Recently, we showed that sialylated laminins mediate H-1PV attachment at the cell membrane. In this study, we revealed that H-1PV also interacts at the cell surface with galectin-1 and uses this glycoprotein to enter cancer cells. Indeed, knockdown/out of LGALS1, the gene encoding galectin-1, strongly decreases the ability of H-1PV to infect and kill cancer cells. This ability is rescued by the re-introduction of LGALS1 into cancer cells. Pre-treatment with lactose, which is able to bind to galectins and modulate their cellular functions, decreased H-1PV infectivity in a dose dependent manner. In silico analysis reveals that LGALS1 is overexpressed in various tumours including glioblastoma and pancreatic carcinoma. We show by immunohistochemistry analysis of 122 glioblastoma biopsies that galectin-1 protein levels vary between tumours, with levels in recurrent glioblastoma higher than those in primary tumours or normal tissues. We also find a direct correlation between LGALS1 transcript levels and H-1PV oncolytic activity in 53 cancer cell lines from different tumour origins. Strikingly, the addition of purified galectin-1 sensitises poorly susceptible GBM cell lines to H-1PV killing activity by rescuing cell entry. Together, these findings demonstrate that galectin-1 is a crucial determinant of the H-1PV life cycle.
Collapse
Affiliation(s)
- Tiago Ferreira
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Amit Kulkarni
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
| | - Clemens Bretscher
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
| | - Petr V. Nazarov
- Bioinformatics Platform and Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Jubayer A. Hossain
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway; (J.A.H.); (L.A.R.Y.); (H.M.)
| | - Lars A. R. Ystaas
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway; (J.A.H.); (L.A.R.Y.); (H.M.)
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway; (J.A.H.); (L.A.R.Y.); (H.M.)
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Ralph Röth
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany; (R.R.); (B.N.)
- Department of Human Molecular Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, 69120 Heidelberg, Germany; (R.R.); (B.N.)
- Department of Human Molecular Genetics, University of Heidelberg, 69120 Heidelberg, Germany
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; (T.F.); (C.B.)
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, 84 Val Fleuri, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|
8
|
Ayona D, Zarza SM, Landemarre L, Roubinet B, Decloquement P, Raoult D, Fournier PE, Desnues B. Human galectin-1 and galectin-3 promote Tropheryma whipplei infection. Gut Microbes 2022; 13:1-15. [PMID: 33573443 PMCID: PMC7889132 DOI: 10.1080/19490976.2021.1884515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tropheryma whipplei, is an actinobacterium that causes different infections in humans, including Whipple's disease. The bacterium infects and replicates in macrophages, leading to a Th2-biased immune response. Previous studies have shown that T. whipplei harbors complex surface glycoproteins with evidence of sialylation. However, the exact contribution of these glycoproteins for infection and survival remains obscure. To address this, we characterized the bacterial glycoprofile and evaluated the involvement of human β-galactoside-binding lectins, Galectin-1 (Gal-1) and Galectin-3 (Gal-3) which are highly expressed by macrophages as receptors for bacterial glycans. Tropheryma whipplei glycoproteins harbor different sugars including glucose, mannose, fucose, β-galactose and sialic acid. Mass spectrometry identification revealed that these glycoproteins were membrane- and virulence-associated glycoproteins. Most of these glycoproteins are highly sialylated and N-glycosylated while some of them are rich in poly-N-acetyllactosamine (Poly-LAcNAc) and bind Gal-1 and Gal-3. In vitro, T. whipplei modulates the expression and cellular distribution of Gal-1 and Gal-3. Although both galectins promote T. whipplei infection by enhancing bacterial cell entry, only Gal-3 is required for optimal bacterial uptake. Finally, we found that serum levels of Gal-1 and Gal-3 were altered in patients with T. whipplei infections as compared to healthy individuals, suggesting that galectins are also involved in vivo. Among T. whipplei membrane-associated proteins, poly-LacNAc rich-glycoproteins promote infection through interaction with galectins. T. whipplei modulates the expression of Gal-1 and Gal-3 both in vitro and in vivo. Drugs interfering with galectin-glycan interactions may provide new avenues for the treatment and diagnosis of T. whipplei infections.
Collapse
Affiliation(s)
- Diyoly Ayona
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | - Sandra Madariaga Zarza
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | | | - Benoît Roubinet
- Glycodiag, Rue De Chartres, BP6759, 45067, Orléans cedex 2, France
| | - Philippe Decloquement
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- IHU-Méditerranée Infection, Marseille, France,Aix Marseille Univ, IRD, APHM, VITROME, Marseille, France,Pierre-Edouard Fournier Aix Marseille Univ, VITROME, IHU - Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France,IHU-Méditerranée Infection, Marseille, France,CONTACT Benoit Desnues MEPHI, IHU - Méditerranée Infection, Aix Marseille Univ, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
9
|
Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures. Biomolecules 2021; 11:biom11040595. [PMID: 33919637 PMCID: PMC8074145 DOI: 10.3390/biom11040595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Galectins bind various pathogens through recognition of distinct carbohydrate structures. In this work, we examined the binding of four human galectins to the Gram-negative bacteria Klebsiella pneumoniae (Kpn) and non-typeable Haemophilus influenzae (NTHi), which display different surface glycans. In particular, Kpn cells are covered by a polysaccharide capsule and display an O-chain-containing lipopolysaccharide (LPS), whereas NTHi is not capsulated and its LPS, termed lipooligosacccharide (LOS), does not contain O-chain. Binding assays to microarray-printed bacteria revealed that galectins-3, -4, and -8, but not galectin-1, bind to Kpn and NTHi cells, and confocal microscopy attested binding to bacterial cells in suspension. The three galectins bound to array-printed Kpn LPS. Moreover, analysis of galectin binding to mutant Kpn cells evidenced that the O-chain is the docking point for galectins on wild type Kpn. Galectins-3, -4, and -8 also bound the NTHi LOS. Microarray-assisted comparison of the binding to full-length and truncated LOSs, as well as to wild type and mutant cells, supported LOS involvement in galectin binding to NTHi. However, deletion of the entire LOS oligosaccharide chain actually increased binding to NTHi cells, indicating the availability of other ligands on the bacterial surface, as similarly inferred for Kpn cells devoid of both O-chain and capsule. Altogether, the results illustrate galectins’ versatility for recognizing different bacterial structures, and point out the occurrence of so far overlooked galectin ligands on bacterial surfaces.
Collapse
|
10
|
Wang WH, Lin CY, Chang MR, Urbina AN, Assavalapsakul W, Thitithanyanont A, Chen YH, Liu FT, Wang SF. The role of galectins in virus infection - A systemic literature review. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:925-935. [PMID: 31630962 DOI: 10.1016/j.jmii.2019.09.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Galectins are β-Galactose binding lectins expressed in numerous cells and play multiple roles in various physiological and cellular functions. However, few information is available regarding the role of galectins in virus infections. Here, we conducted a systemic literature review to analyze the role of galectins in human virus infection. METHODS This study uses a systematic method to identify and select eligible articles according to the PRISMA guidelines. References were selected from PubMed, Web of Science and Google Scholar database covering publication dated from August 1995 to December 2018. RESULTS Results indicate that galectins play multiple roles in regulation of virus infections. Galectin-1 (Gal-1), galectin-3 (Gal-3), galectin-8 (Gal-8), and galectin-9 (Gal-9) were found as the most predominant galectins reported to participate in virus infection. The regulatory function of galectins occurs by extracellularly binding to viral glycosylated envelope proteins, interacting with ligands or receptors on immune cells, or acting intracellularly with viral or cellular components in the cytoplasm. Several galectins express either positive or negative regulatory role, while some had dual regulatory capabilities on virus propagation based on the conditions and their localization. However, limited information about the endogenous function of galectins were found. Therefore, the endogenous effects of galectins in host-virus regulation remains valuable to investigate. CONCLUSIONS This study offers information regarding the various roles galectins shown in viral infection and suggest that galectins can potentially be used as viral therapeutic targets or antagonists.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chih-Yen Lin
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Max R Chang
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Aspiro Nayim Urbina
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Yen-Hsu Chen
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, 80145, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, 300, Taiwan.
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
11
|
Gayashani Sandamalika WM, Lee J. Quadruple domain-containing galectin from marine invertebrate disk abalone (Haliotis discus discus): Molecular perspectives in early development, immune expression, and potent antiviral responses. FISH & SHELLFISH IMMUNOLOGY 2020; 106:920-929. [PMID: 32931945 DOI: 10.1016/j.fsi.2020.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Galectins are well-known β-galactoside-binding proteins, which play vital roles in innate immune responses of both vertebrates and invertebrates. However, knowledge regarding invertebrate galectins is still in its infancy. With the intention of filling the knowledge gap, here we identified a quadruple domain-containing galectin from marine invertebrate disk abalone, Haliotis discus discus (AbGalec), and characterized it. AbGalec consisted of four distinct carbohydrate-recognition domains (CRDs) and lacked a signal peptide. Expression analysis revealed AbGalec to be ubiquitously expressed in all the examined early embryonic stages of abalone, with highest expression in the 16-cell stage, suggesting the importance of AbGalec in early developmental processes. Tissue distribution analysis revealed the highest expression of AbGalec in abalone mantle, followed by that in gills and hemocytes. Immune challenge experiments revealed significant upregulation of AbGalec at 24 h and 48 h post injection (p.i.) with bacterial and viral components. These results suggested the possible involvement of AbGalec in host defense mechanisms. Polyinosinic: polycytidylic acid (Poly I:C) and viral hemorrhagic septicemia virus (VHSV) injections were capable of inducing AbGalec transcript expression more prominently than bacterial stimulants, thus providing evidence for its role in viral infections. We determined the virus-neutralizing ability of a quadruple domain-containing galectin for the first time, by analyzing the downregulation of VHSV transcripts during the overexpression of AbGalec. Significant downregulation of VHSV transcripts was observed after 24 h and 48 h of post infection. Collectively, our findings reveal the potent antiviral responses of molluscan quadruple domain-containing galectin, AbGalec, along with its involvement in innate immunity.
Collapse
Affiliation(s)
- W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
12
|
Vasta GR, Wang JX. Galectin-mediated immune recognition: Opsonic roles with contrasting outcomes in selected shrimp and bivalve mollusk species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103721. [PMID: 32353466 DOI: 10.1016/j.dci.2020.103721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Galectins are a structurally conserved family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and of wide taxonomic distribution, from fungi to mammals. Their biological functions, initially described as key to embryogenesis and early development via recognition of endogenous ("self") carbohydrate moieties, are currently understood as also encompassing tissue repair, cancer metastasis, angiogenesis, adipogenesis, and regulation of immune homeostasis. More recently, however, numerous studies have contributed to establish a new paradigm by revealing that galectins can also bind to exogenous ("non-self") glycans on the surface of potentially pathogenic virus, bacteria, and eukaryotic parasites, and function both as pathogen recognition receptors (PRRs) and effector factors in innate immunity. Our studies on a galectin from the kuruma shrimp Marsupenaeus japonicus (MjGal), revealed that it functions as a typical PRR. Expression of MjGal is upregulated by infectious challenge, and can recognize both Gram (+) and Gram (-) bacteria. MjGal also recognizes carbohydrates on the shrimp hemocyte surface, and can cross-link microbial pathogens to the hemocytes, promoting their phagocytosis and clearance from circulation. Therefore, MjGal contributes to the shrimp's immune defense against infectious challenge both as a PRR and effector factor. Our studies on galectins from the bivalve mollusks, however, have shown that although they can function in immune defense as MjGal, protistan parasites take advantage of the recognition roles of the host galectins, for successful attachment and host infection. We identified in the eastern oyster Crassostrea virginica two galectins (CvGal1 and CvGal2) that not only recognize a large variety of bacterial species, but also the protozoan parasite Perkinsus marinus. Like the shrimp MjGal, both oyster galectins function as opsonins, and promote parasite adhesion and phagocytosis. However, P. marinus survives intrahemocytic oxidative killing and proliferates, eventually causing systemic infection and death of the oyster host. In the softshell clam Mya arenaria we identified a galectin (MaGal1) that displays carbohydrate specificity and recognition properties for sympatric Perkinsus species (P. marinus and P. chesapeaki), that are different from CvGal1 and CvGal2. Our results suggest that although galectins from bivalves can function as PRRs, Perkinsus parasites have co-evolved with their hosts to subvert the galectins' immune functions for host infection by acquisition of carbohydrate-based mimicry.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, Institute of Marine and Environmental Technology, Baltimore, MD, USA.
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Ayona D, Fournier PE, Henrissat B, Desnues B. Utilization of Galectins by Pathogens for Infection. Front Immunol 2020; 11:1877. [PMID: 32973776 PMCID: PMC7466766 DOI: 10.3389/fimmu.2020.01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Galectins are glycan-binding proteins which are expressed by many different cell types and secreted extracellularly. These molecules are well-known regulators of immune responses and involved in a broad range of cellular and pathophysiological functions. During infections, host galectins can either avoid or facilitate infections by interacting with host cells- and/or pathogen-derived glycoconjugates and less commonly, with proteins. Some pathogens also express self-produced galectins to interfere with host immune responses. This review summarizes pathogens which take advantage of host- or pathogen-produced galectins to establish the infection.
Collapse
Affiliation(s)
- Diyoly Ayona
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
- USC1408 Architecture et Fonction des Macromolécules Biologiques, Institut National de la Recherche Agronomique, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
14
|
Lo MK, Spengler JR, Krumpe LRH, Welch SR, Chattopadhyay A, Harmon JR, Coleman-McCray JD, Scholte FEM, Hotard AL, Fuqua JL, Rose JK, Nichol ST, Palmer KE, O'Keefe BR, Spiropoulou CF. Griffithsin Inhibits Nipah Virus Entry and Fusion and Can Protect Syrian Golden Hamsters From Lethal Nipah Virus Challenge. J Infect Dis 2020; 221:S480-S492. [PMID: 32037447 PMCID: PMC7199786 DOI: 10.1093/infdis/jiz630] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that causes fatal encephalitis and respiratory disease in humans. There is currently no approved therapeutic for human use against NiV infection. Griffithsin (GRFT) is high-mannose oligosaccharide binding lectin that has shown in vivo broad-spectrum activity against viruses, including severe acute respiratory syndrome coronavirus, human immunodeficiency virus 1, hepatitis C virus, and Japanese encephalitis virus. In this study, we evaluated the in vitro antiviral activities of GRFT and its synthetic trimeric tandemer (3mG) against NiV and other viruses from 4 virus families. The 3mG had comparatively greater potency than GRFT against NiV due to its enhanced ability to block NiV glycoprotein-induced syncytia formation. Our initial in vivo prophylactic evaluation of an oxidation-resistant GRFT (Q-GRFT) showed significant protection against lethal NiV challenge in Syrian golden hamsters. Our results warrant further development of Q-GRFT and 3mG as potential NiV therapeutics.
Collapse
Affiliation(s)
- Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lauren R H Krumpe
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Jessica R Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anne L Hotard
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joshua L Fuqua
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - John K Rose
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.,Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Bao J, Wang X, Liu S, Zou Q, Zheng S, Yu F, Chen Y. Galectin-1 Ameliorates Influenza A H1N1pdm09 Virus-Induced Acute Lung Injury. Front Microbiol 2020; 11:1293. [PMID: 32595629 PMCID: PMC7303544 DOI: 10.3389/fmicb.2020.01293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
Influenza remains one of the major epidemic diseases worldwide. Acute lung injury mainly caused by excessive pro-inflammatory host immune responses leads to high mortality rates in severe influenza patients. Galectin-1, an animal lectin ubiquitously expressed in mammalian tissues, is reported to play important roles in viral diseases. Here, we established murine and A549 cell models to explore the potential roles of galectin-1 treatment in H1N1pdm09-induced acute lung injury. We found that galectin-1 protein level was elevated in A549 cell culture supernatants and mouse BALF after H1N1pdm09 challenge. In vivo experiments showed recombinant galectin-1 treatment reduced wet/dry weight ratio, inflammatory cell infiltration in mouse lungs and mediated the expression of cytokines and chemokines including IL-1β, IL-6, IL-10, IL-12(p40), IL-12(p70), G-CSF, MCP-1, MIP-1α and RANTES in serum and BALF of infected mice. Reduced apoptosis and viral titers in mouse lungs were also found after galectin-1 treatment. As expected, galectin-1 treated mice performed reduced body weight loss and enhanced survival rate against H1N1pdm09 challenge. In addition, in vitro experiments showed that viral titers decreased in a dose-dependent manner and cell apoptosis in A549 cells reduced after recombinant galectin-1 treatment. Taken together, our findings indicate a potentially positive effect of Gal-1 treatment on ameliorating the progress of H1N1pdm09-induced acute lung injury and recombinant galectin-1 might serve as a new agent in treating influenza.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Xiaochen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Sijia Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianda Zou
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Shufa Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Yu
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Clinical in vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China.,Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Wienke J, Pachman LM, Morgan GA, Yeo JG, Amoruso MC, Hans V, Kamphuis SSM, Hoppenreijs EPAH, Armbrust W, van den Berg JM, Hissink Muller PCE, Gelderman KA, Arkachaisri T, van Wijk F, van Royen-Kerkhof A. Endothelial and Inflammation Biomarker Profiles at Diagnosis Reflecting Clinical Heterogeneity and Serving as a Prognostic Tool for Treatment Response in Two Independent Cohorts of Patients With Juvenile Dermatomyositis. Arthritis Rheumatol 2020; 72:1214-1226. [PMID: 32103637 PMCID: PMC7329617 DOI: 10.1002/art.41236] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Objective Juvenile dermatomyositis (DM) is a heterogeneous systemic immune‐mediated vasculopathy. This study was undertaken to 1) identify inflammation/endothelial dysfunction–related biomarker profiles reflecting disease severity at diagnosis, and 2) establish whether such biomarker profiles could be used for predicting the response to treatment in patients with juvenile DM. Methods In total, 39 biomarkers related to activation of endothelial cells, endothelial dysfunction, and inflammation were measured using multiplex technology in serum samples from treatment‐naive patients with juvenile DM from 2 independent cohorts (n = 30 and n = 29). Data were analyzed by unsupervised hierarchical clustering, nonparametric tests with correction for multiple comparisons, and Kaplan‐Meier tests with Cox proportional hazards models for analysis of treatment duration. Myositis‐specific antibodies (MSAs) were measured in the patients’ serum using line blot assays. Results Severe vasculopathy in patients with juvenile DM was associated with low serum levels of intercellular adhesion molecule 1 (Spearman's rho [rs] = 0.465, P = 0.0111) and high serum levels of endoglin (rs = −0.67, P < 0.0001). In the discovery cohort, unsupervised hierarchical clustering analysis of the biomarker profiles yielded 2 distinct patient clusters, of which the smaller cluster (cluster 1; n = 8) exhibited high serum levels of CXCL13, CCL19, galectin‐9, CXCL10, tumor necrosis factor receptor type II (TNFRII), and galectin‐1 (false discovery rate <0.0001), and this cluster had greater severity of muscle disease and global disease activity (each P < 0.05 versus cluster 2). In the validation cohort, correlations between the serum levels of galectin‐9, CXCL10, TNFRII, and galectin‐1 and the severity of global disease activity were confirmed (rs = 0.40–0.52, P < 0.05). Stratification of patients according to the 4 confirmed biomarkers identified a cluster of patients with severe symptoms (comprising 64.7% of patients) who were considered at high risk of requiring more intensive treatment in the first 3 months after diagnosis (P = 0.0437 versus other cluster). Moreover, high serum levels of galectin‐9, CXCL10, and TNFRII were predictive of a longer total treatment duration (P < 0.05). The biomarker‐based clusters were not evidently correlated with patients’ MSA serotypes. Conclusion Results of this study confirm the heterogeneity of new‐onset juvenile DM based on serum biomarker profiles. Patients with high serum levels of galectin‐9, CXCL10, TNFRII, and galectin‐1 may respond suboptimally to conventional treatment, and may therefore benefit from more intensive monitoring and/or treatment.
Collapse
Affiliation(s)
- Judith Wienke
- University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Lauren M Pachman
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, and the Cure JM Center of Excellence, Chicago, Illinois
| | - Gabrielle A Morgan
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, and the Cure JM Center of Excellence, Chicago, Illinois
| | - Joo Guan Yeo
- KK Women's and Children's Hospital, and Duke-NUS Medical School, Singapore, Singapore
| | - Maria C Amoruso
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, and the Cure JM Center of Excellence, Chicago, Illinois
| | - Victoria Hans
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, and the Cure JM Center of Excellence, Chicago, Illinois
| | - Sylvia S M Kamphuis
- Sophia Children's Hospital and Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Wineke Armbrust
- Beatrix Children's Hospital and University Medical Centre Groningen, Groningen, The Netherlands
| | - J Merlijn van den Berg
- Emma Children's Hospital and Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Petra C E Hissink Muller
- Sophia Children's Hospital and Erasmus University Medical Centre, Rotterdam, The Netherlands, and Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Femke van Wijk
- University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
17
|
Azarm KD, Lee B. Differential Features of Fusion Activation within the Paramyxoviridae. Viruses 2020; 12:v12020161. [PMID: 32019182 PMCID: PMC7077268 DOI: 10.3390/v12020161] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Paramyxovirus (PMV) entry requires the coordinated action of two envelope glycoproteins, the receptor binding protein (RBP) and fusion protein (F). The sequence of events that occurs during the PMV entry process is tightly regulated. This regulation ensures entry will only initiate when the virion is in the vicinity of a target cell membrane. Here, we review recent structural and mechanistic studies to delineate the entry features that are shared and distinct amongst the Paramyxoviridae. In general, we observe overarching distinctions between the protein-using RBPs and the sialic acid- (SA-) using RBPs, including how their stalk domains differentially trigger F. Moreover, through sequence comparisons, we identify greater structural and functional conservation amongst the PMV fusion proteins, as compared to the RBPs. When examining the relative contributions to sequence conservation of the globular head versus stalk domains of the RBP, we observe that, for the protein-using PMVs, the stalk domains exhibit higher conservation and find the opposite trend is true for SA-using PMVs. A better understanding of conserved and distinct features that govern the entry of protein-using versus SA-using PMVs will inform the rational design of broader spectrum therapeutics that impede this process.
Collapse
|
18
|
Galectins in Host-Pathogen Interactions: Structural, Functional and Evolutionary Aspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:169-196. [PMID: 32152947 DOI: 10.1007/978-981-15-1580-4_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galectins are a family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and evolutionary and structural conservation from fungi to invertebrates and vertebrates, including mammals. Their biological roles, initially understood as limited to recognition of endogenous ("self") carbohydrate ligands in embryogenesis and early development, dramatically expanded in later years by the discovery of their roles in tissue repair, cancer, adipogenesis, and regulation of immune homeostasis. In recent years, however, evidence has also accumulated to support the notion that galectins can bind ("non-self") glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Thus, this evidence has established a new paradigm by which galectins can function not only as pattern recognition receptors but also as effector factors, by binding to the microbial surface and inhibiting adhesion and/or entry into the host cell, directly killing the potential pathogen by disrupting its surface structures, or by promoting phagocytosis, encapsulation, autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacteria, and protistan parasites take advantage of the aforementioned recognition roles of the vector/host galectins, for successful attachment and invasion. These recent findings suggest that galectin-mediated innate immune recognition and effector mechanisms, which throughout evolution have remained effective for preventing or fighting viral, bacterial, and parasitic infection, have been "subverted" by certain pathogens by unique evolutionary adaptations of their surface glycome to gain host entry, and the acquisition of effective mechanisms to evade the host's immune responses.
Collapse
|
19
|
Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019; 1863:1480-1497. [PMID: 31121217 PMCID: PMC6686077 DOI: 10.1016/j.bbagen.2019.05.012] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification responsible for a multitude of crucial biological roles. As obligate parasites, viruses exploit host-cell machinery to glycosylate their own proteins during replication. Viral envelope proteins from a variety of human pathogens including HIV-1, influenza virus, Lassa virus, SARS, Zika virus, dengue virus, and Ebola virus have evolved to be extensively glycosylated. These host-cell derived glycans facilitate diverse structural and functional roles during the viral life-cycle, ranging from immune evasion by glycan shielding to enhancement of immune cell infection. In this review, we highlight the imperative and auxiliary roles glycans play, and how specific oligosaccharide structures facilitate these functions during viral pathogenesis. We discuss the growing efforts to exploit viral glycobiology in the development of anti-viral vaccines and therapies.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
20
|
Toudic C, Vargas A, Xiao Y, St-Pierre G, Bannert N, Lafond J, Rassart É, Sato S, Barbeau B. Galectin-1 interacts with the human endogenous retroviral envelope protein syncytin-2 and potentiates trophoblast fusion in humans. FASEB J 2019; 33:12873-12887. [PMID: 31499012 DOI: 10.1096/fj.201900107r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Syncytin (Syn)-2 is an important fusogenic protein that contributes to the formation of the placental syncytiotrophoblast. Galectin (Gal)-1, a soluble lectin, is also involved in trophoblast cell fusion and modulates the interaction of certain retroviral envelopes with their cellular receptor. This study aimed to investigate the association between Syn-2 and Gal-1 during human trophoblast cell fusion. This association was evaluated in vitro on primary villous cytotrophoblasts (vCTBs) and cell lines using recombinant Gal-1 and Syn-2-pseudotyped viruses. Using lactose, a Gal antagonist, and Gal-1-specific small interfering RNA (siRNA) transfections, we confirmed the implication of Gal-1 in vCTBs and BeWo cell fusion, although RT-PCR and ELISA analyses suggested that Gal-1 alone did not induce syncytialization. Infection assays showed a specific and significant effect of Gal-1 on the infectivity of Syn-2-pseudotyped viruses that depended on the expression of major facilitator superfamily domain-containing 2A (MFSD2a). Moreover, Gal-3, another placental Gal, did not modulate the infectivity of Syn-2-positive viruses, strengthening the specific association between Gal-1 and Syn-2. Interestingly, Gal-1 significantly reduced the infectivity of Syn-1-pseudotyped viruses, suggesting the opposite effects of Gal-1 on Syn-1 and -2. Finally, coimmunoprecipitation experiments showed a glycan-dependent interaction between Syn-2-bearing virions and Gal-1. We conclude that Gal-1 specifically interacts with Syn-2 and possibly regulates Syn-2/MFSD2a interaction during syncytialization of trophoblastic cells.-Toudic, C., Vargas, A., Xiao, Y., St-Pierre, G., Bannert, N., Lafond, J., Rassart, É., Sato, S., Barbeau, B. Galectin-1 interacts with the human endogenous retroviral envelope protein syncytin-2 and potentiates trophoblast fusion in humans.
Collapse
Affiliation(s)
- Caroline Toudic
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| | - Amandine Vargas
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| | - Yong Xiao
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| | - Guillaume St-Pierre
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | | | - Julie Lafond
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| | - Éric Rassart
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| | - Sachiko Sato
- Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Benoit Barbeau
- Département des Sciences Biologiques, Centre de Recherche BioMed, Université du Quebec à Montréal, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Machala EA, McSharry BP, Rouse BT, Abendroth A, Slobedman B. Gal power: the diverse roles of galectins in regulating viral infections. J Gen Virol 2019; 100:333-349. [PMID: 30648945 DOI: 10.1099/jgv.0.001208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses, as a class of pathogenic microbe, remain a significant health burden globally. Viral infections result in significant morbidity and mortality annually and many remain in need of novel vaccine and anti-viral strategies. The development of effective novel anti-viral therapeutics, in particular, requires detailed understanding of the mechanism of viral infection, and the host response, including the innate and adaptive arms of the immune system. In recent years, the role of glycans and lectins in pathogen-host interactions has become an increasingly relevant issue. This review focuses on the interactions between a specific lectin family, galectins, and the broad range of viral infections in which they play a role. Discussed are the diverse activities that galectins play in interacting directly with virions or the cells they infect, to promote or inhibit viral infection. In addition we describe how galectin expression is regulated both transcriptionally and post-transcriptionally by viral infections. We also compare the contribution of known galectin-mediated immune modulation, across a range of innate and adaptive immune anti-viral responses, to the outcome of viral infections.
Collapse
Affiliation(s)
- Emily A Machala
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Brian P McSharry
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Barry T Rouse
- 2Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Allison Abendroth
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
22
|
Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology 2019; 29:2-21. [PMID: 29878112 PMCID: PMC6291800 DOI: 10.1093/glycob/cwy053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/29/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Glycosylation is a biologically important protein modification process by which a carbohydrate chain is enzymatically added to a protein at a specific amino acid residue. This process plays roles in many cellular functions, including intracellular trafficking, cell-cell signaling, protein folding and receptor binding. While glycosylation is a common host cell process, it is utilized by many pathogens as well. Protein glycosylation is widely employed by viruses for both host invasion and evasion of host immune responses. Thus better understanding of viral glycosylation functions has potential applications for improved antiviral therapeutic and vaccine development. Here, we summarize our current knowledge on the broad biological functions of glycans for the Mononegavirales, an order of enveloped negative-sense single-stranded RNA viruses of high medical importance that includes Ebola, rabies, measles and Nipah viruses. We discuss glycobiological findings by genera in alphabetical order within each of eight Mononegavirales families, namely, the bornaviruses, filoviruses, mymonaviruses, nyamiviruses, paramyxoviruses, pneumoviruses, rhabdoviruses and sunviruses.
Collapse
Affiliation(s)
- Victoria Ortega
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jacquelyn A Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Erik M Contreras
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ronald M Iorio
- Department of Microbiology and Physiological Systems and Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Casals C, Campanero-Rhodes MA, García-Fojeda B, Solís D. The Role of Collectins and Galectins in Lung Innate Immune Defense. Front Immunol 2018; 9:1998. [PMID: 30233589 PMCID: PMC6131309 DOI: 10.3389/fimmu.2018.01998] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Different families of endogenous lectins use complementary defense strategies against pathogens. They may recognize non-self glycans typically found on pathogens and/or host glycans. The collectin and galectin families are prominent examples of these two lectin categories. Collectins are C-type lectins that contain a carbohydrate recognition domain and a collagen-like domain. Members of this group include surfactant protein A (SP-A) and D (SP-D), secreted by the alveolar epithelium to the alveolar fluid. Lung collectins bind to several microorganisms, which results in pathogen aggregation and/or killing, and enhances phagocytosis of pathogens by alveolar macrophages. Moreover, SP-A and SP-D influence macrophage responses, contributing to resolution of inflammation, and SP-A is essential for tissue-repair functions of macrophages. Galectins also function by interacting directly with pathogens or by modulating the immune system in response to the infection. Direct binding may result in enhanced or impaired infection of target cells, or can have microbicidal effects. Immunomodulatory effects of galectins include recruitment of immune cells to the site of infection, promotion of neutrophil function, and stimulation of the bactericidal activity of infected macrophages. Moreover, intracellular galectins can serve as danger receptors, promoting autophagy of the invading pathogen. This review will focus on the role of collectins and galectins in pathogen clearance and immune response activation in infectious diseases of the respiratory system.
Collapse
Affiliation(s)
- Cristina Casals
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - María A Campanero-Rhodes
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| | - Belén García-Fojeda
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Solís
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| |
Collapse
|
24
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
25
|
Glycosylation-dependent galectin-receptor interactions promote Chlamydia trachomatis infection. Proc Natl Acad Sci U S A 2018; 115:E6000-E6009. [PMID: 29891717 DOI: 10.1073/pnas.1802188115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chlamydia trachomatis (Ct) constitutes the most prevalent sexually transmitted bacterium worldwide. Chlamydial infections can lead to severe clinical sequelae including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. As an obligate intracellular pathogen, Ct has evolved multiple strategies to promote adhesion and invasion of host cells, including those involving both bacterial and host glycans. Here, we show that galectin-1 (Gal1), an endogenous lectin widely expressed in female and male genital tracts, promotes Ct infection. Through glycosylation-dependent mechanisms involving recognition of bacterial glycoproteins and N-glycosylated host cell receptors, Gal1 enhanced Ct attachment to cervical epithelial cells. Exposure to Gal1, mainly in its dimeric form, facilitated bacterial entry and increased the number of infected cells by favoring Ct-Ct and Ct-host cell interactions. These effects were substantiated in vivo in mice lacking Gal1 or complex β1-6-branched N-glycans. Thus, disrupting Gal1-N-glycan interactions may limit the severity of chlamydial infection by inhibiting bacterial invasion of host cells.
Collapse
|
26
|
Vasta GR, Feng C, González-Montalbán N, Mancini J, Yang L, Abernathy K, Frost G, Palm C. Functions of galectins as 'self/non-self'-recognition and effector factors. Pathog Dis 2018; 75:3753447. [PMID: 28449072 DOI: 10.1093/femspd/ftx046] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
Carbohydrate structures on the cell surface encode complex information that through specific recognition by carbohydrate-binding proteins (lectins) modulates interactions between cells, cells and the extracellular matrix, or mediates recognition of potential microbial pathogens. Galectins are a family of ß-galactoside-binding lectins, which are evolutionary conserved and have been identified in most organisms, from fungi to invertebrates and vertebrates, including mammals. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of endogenous carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their roles in tissue repair and regulation of immune homeostasis. More recently, evidence has accumulated to support the notion that galectins can also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity, thus establishing a new paradigm. Furthermore, some parasites 'subvert' the recognition roles of the vector/host galectins for successful attachment or invasion. These recent findings have revealed a striking functional diversification in this structurally conserved lectin family.
Collapse
Affiliation(s)
- Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Nuria González-Montalbán
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Lishi Yang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Kelsey Abernathy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Graeme Frost
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Cheyenne Palm
- Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
27
|
Sun J, Han Z, Qi T, Zhao R, Liu S. Chicken galectin-1B inhibits Newcastle disease virus adsorption and replication through binding to hemagglutinin-neuraminidase (HN) glycoprotein. J Biol Chem 2017; 292:20141-20161. [PMID: 28978647 DOI: 10.1074/jbc.m116.772897] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 09/11/2017] [Indexed: 01/15/2023] Open
Abstract
Galectin-1 is an important immunoregulatory factor and can mediate the host-pathogen interaction via binding glycans on the surface of various viruses. We previously reported that avian respiratory viruses, including lentogenic Newcastle disease virus (NDV), can induce up-regulation of chicken galectin (CG)-1B in the primary target organ. In this study, we investigated whether CG-1B participated in the infectious process of NDV in chickens. We demonstrated that velogenic NDV induced up-regulation of CG-1B in target organs. We also found that CG-1B directly bound to NDV virions and inhibited their hemagglutination activity in vitro We confirmed that CG-1B interacted with NDV hemagglutinin-neuraminidase (HN) glycoprotein, in which the specific G4 N-glycans significantly contributed to the interaction between CG-1B and HN glycoprotein. The presence of extracellular CG-1B, rather than the internalization process, inhibited adsorption of NDV. The interaction between intracellular CG-1B and NDV HN glycoproteins inhibited cell-surface expression of HN glycoprotein and reduced the titer of progeny virus in NDV-infected DF-1 cells. Significantly, the replication of parental and HN glycosylation mutant viruses in CG-1B knockdown and overexpression cells demonstrated that the replication of NDV was correlated with the expression of CG-1B in a specific glycan-dependent manner. Collectively, our results indicate that CG-1B has anti-NDV activity by binding to N-glycans on HN glycoprotein.
Collapse
Affiliation(s)
- Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Tianming Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Ran Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150001, the People's Republic of China.
| |
Collapse
|
28
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
29
|
Arthur CM, Patel SR, Mener A, Kamili NA, Fasano RM, Meyer E, Winkler AM, Sola-Visner M, Josephson CD, Stowell SR. Innate immunity against molecular mimicry: Examining galectin-mediated antimicrobial activity. Bioessays 2016; 37:1327-37. [PMID: 26577077 DOI: 10.1002/bies.201500055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adaptive immunity provides the unique ability to respond to a nearly infinite range of antigenic determinants. Given the inherent plasticity of the adaptive immune system, a series of tolerance mechanisms exist to reduce reactivity toward self. While this reduces the probability of autoimmunity, it also creates an important gap in adaptive immunity: the ability to recognize microbes that look like self. As a variety of microbes decorate themselves in self-like carbohydrate antigens and tolerance reduces the ability of adaptive immunity to react with self-like structures, protection against molecular mimicry likely resides within the innate arm of immunity. In this review, we will explore the potential consequences of microbial molecular mimicry, including factors within innate immunity that appear to specifically target microbes expressing self-like antigens, and therefore provide protection against molecular mimicry.
Collapse
Affiliation(s)
- Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Seema R Patel
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Mener
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Ross M Fasano
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Erin Meyer
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Annie M Winkler
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Cassandra D Josephson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
30
|
Thiemann S, Baum LG. Galectins and Immune Responses—Just How Do They Do Those Things They Do? Annu Rev Immunol 2016; 34:243-64. [DOI: 10.1146/annurev-immunol-041015-055402] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra Thiemann
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095; ,
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095; ,
| |
Collapse
|
31
|
Park A, Yun T, Vigant F, Pernet O, Won ST, Dawes BE, Bartkowski W, Freiberg AN, Lee B. Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent Pathway. PLoS Pathog 2016; 12:e1005659. [PMID: 27203423 PMCID: PMC4874542 DOI: 10.1371/journal.ppat.1005659] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
The budding of Nipah virus, a deadly member of the Henipavirus genus within the Paramyxoviridae, has been thought to be independent of the host ESCRT pathway, which is critical for the budding of many enveloped viruses. This conclusion was based on the budding properties of the virus matrix protein in the absence of other virus components. Here, we find that the virus C protein, which was previously investigated for its role in antagonism of innate immunity, recruits the ESCRT pathway to promote efficient virus release. Inhibition of ESCRT or depletion of the ESCRT factor Tsg101 abrogates the C enhancement of matrix budding and impairs live Nipah virus release. Further, despite the low sequence homology of the C proteins of known henipaviruses, they all enhance the budding of their cognate matrix proteins, suggesting a conserved and previously unknown function for the henipavirus C proteins. Nipah virus is a deadly pathogen (40–100% mortality) that has yearly outbreaks in Southeast Asia, resulting from spillover from its natural fruit bat reservoir. The viral C protein is one of only nine virus proteins, but its role in promoting virus replication is not fully understood. Here, we found that the C protein promotes the efficient release of budding Nipah virus from infected cells. It does so by recruiting an essential factor in the host ESCRT complex, Tsg101. The ESCRT complex has well-characterized functions in mediating membrane pinching off events that resemble virus budding. Further, we found that the C proteins of related viruses within the same genus (Henipavirus) also promote virus budding, suggesting that this previously unknown function of the henipavirus C proteins is conserved. This work illuminates the basic biology of henipaviruses with significant outbreak and public health concern, and opens the door to further lines of inquiry.
Collapse
Affiliation(s)
- Arnold Park
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tatyana Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Frederic Vigant
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Olivier Pernet
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
| | - Sohui T. Won
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Brian E. Dawes
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wojciech Bartkowski
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Benhur Lee
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Nita-Lazar M, Mancini J, Feng C, González-Montalbán N, Ravindran C, Jackson S, de Las Heras-Sánchez A, Giomarelli B, Ahmed H, Haslam SM, Wu G, Dell A, Ammayappan A, Vakharia VN, Vasta GR. The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:241-252. [PMID: 26429411 PMCID: PMC4684960 DOI: 10.1016/j.dci.2015.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
The infectious hematopoietic necrosis virus (IHNV; Rhabdoviridae, Novirhabdovirus) infects teleost fish, such as salmon and trout, and is responsible for significant losses in the aquaculture industry and in wild fish populations. Although IHNV enters the host through the skin at the base of the fins, the viral adhesion and entry mechanisms are not fully understood. In recent years, evidence has accumulated in support of the key roles played by protein-carbohydrate interactions between host lectins secreted to the extracellular space and virion envelope glycoproteins in modulating viral adhesion and infectivity. In this study, we assessed in vitro the potential role(s) of zebrafish (Danio rerio) proto type galectin-1 (Drgal1-L2) and a chimera galectin-3 (Drgal3-L1) in IHNV adhesion to epithelial cells. Our results suggest that the extracellular Drgal1-L2 and Drgal3-L1 interact directly and in a carbohydrate-dependent manner with the IHNV glycosylated envelope and glycans on the epithelial cell surface, significantly reducing viral adhesion.
Collapse
Affiliation(s)
- Mihai Nita-Lazar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Justin Mancini
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Núria González-Montalbán
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Chinnarajan Ravindran
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Shawn Jackson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Ana de Las Heras-Sánchez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Barbara Giomarelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Hafiz Ahmed
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| | - Stuart M Haslam
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Gang Wu
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Anne Dell
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London, UK
| | - Arun Ammayappan
- Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Vikram N Vakharia
- Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Stone JA, Nicola AV, Baum LG, Aguilar HC. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family. PLoS Pathog 2016; 12:e1005445. [PMID: 26867212 PMCID: PMC4750917 DOI: 10.1371/journal.ppat.1005445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/19/2016] [Indexed: 01/13/2023] Open
Abstract
O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.
Collapse
Affiliation(s)
- Jacquelyn A. Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Anthony V. Nicola
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, United States of America
| | - Hector C. Aguilar
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
34
|
Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus. Proc Natl Acad Sci U S A 2015; 112:E2156-65. [PMID: 25825759 DOI: 10.1073/pnas.1501690112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus-receptor interaction crystallographically. Compared with extant HNV-G-ephrinB2 structures, there was significant structural variation in the six-bladed β-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus-host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure-function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations.
Collapse
|