1
|
Tu T, McQuaid TJ, Jacobson IM. HBV-Induced Carcinogenesis: Mechanisms, Correlation With Viral Suppression, and Implications for Treatment. Liver Int 2025; 45:e16202. [PMID: 39720865 DOI: 10.1111/liv.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a common but underdiagnosed and undertreated health condition and is the leading cause of hepatocellular carcinoma (HCC) worldwide. HBV (rated a Grade 1 carcinogen by the International Agency for Research on Cancer) drives the transformation of hepatocytes in multiple ways by inducing viral DNA integrations, genetic dysregulation, chromosomal translocations, chronic inflammation, and oncogenic pathways facilitated by some HBV proteins. Importantly, these mechanisms are active throughout all phases of HBV infection. Nevertheless, most clinical guidelines for antiviral therapy recommend treatment based on a complex combination of HBV DNA levels, transaminasemia, liver histology, and demographic factors, rather than prompt treatment for all people with infection. AIMS To determine if current frameworks for antiviral treatment address the impacts of chronic HBV infection particularly preventing cancer development. MATERIALS AND METHODS We reviewed the recent data demonstrating pro-oncogenic factors acting throughout a chronic HBV infection can be inhibited by antiviral therapy. RESULTS We extensively reviewed Hepatitis B virology data and correlating clinical outcome data. From thi, we suggest that new findings support simplifying and expanding treatment initiation to reduce the incidence ofnew infections, progressive liver disease, and risk of hepatocellular carcinoma. We also consider lessons learned from other blood-borne pathogens, including the benefits of antiviral treatment in preventing transmission, reducing stigma, and reframing treatment as cancer prevention. CONCLUSION Incorporating these practice changes into treatment is likely to reduce the overall burden of chronic HBV infections and HCC. Through this, we may better achieve the World Health Organization's goal of eliminating viral hepatitis as a public health threat and minimise its impact on people's lives.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, Westmead Clinical School, Centre for Infectious Diseases and Microbiology and Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
2
|
Tavakolian S, Eshkiki ZS, Akbari A, Faghihloo E, Tabaeian SP. PTEN regulation in virus-associated cancers. Pathol Res Pract 2024; 266:155749. [PMID: 39642806 DOI: 10.1016/j.prp.2024.155749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Despite advancements in science, researchers still face challenges in curing patients with malignancies. This health issue is linked to various risk factors, including alcohol consumption, age, sex, and infectious diseases. Among these, viral agents play a significant role in cancer-related health problems and are currently a subject of ongoing research. In this review, we summarize how several viruses-such as herpesviruses, human papillomavirus, hepatitis B virus, hepatitis C virus, and adenovirus-impact cancer signaling pathways through their effects on the tumor suppressor PTEN.
Collapse
Affiliation(s)
- Shaian Tavakolian
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Contreras A, Sánchez SA, Rodríguez-Medina C, Botero JE. The role and impact of viruses on cancer development. Periodontol 2000 2024; 96:170-184. [PMID: 38641954 DOI: 10.1111/prd.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
This review focuses on three major aspects of oncoviruses' role in cancer development. To begin, we discuss their geographic distribution, revealing that seven oncoviruses cause 20% of all human cancers worldwide. Second, we investigate the primary carcinogenic mechanisms, looking at how these oncogenic viruses can induce cellular transformation, angiogenesis, and local and systemic inflammation. Finally, we investigate the possibility of SARS-CoV-2 infection reactivating latent oncoviruses, which could increase the risk of further disease. The development of oncovirus vaccines holds great promise for reducing cancer burden. Many unanswered questions about the host and environmental cofactors that contribute to cancer development and prevention remain, which ongoing research is attempting to address.
Collapse
Affiliation(s)
| | - Sandra Amaya Sánchez
- Advanced Periodontology Program, Escuela de Odontología, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
4
|
Shenk T, Kulp III JL, Chiang LW. Drugs Targeting Sirtuin 2 Exhibit Broad-Spectrum Anti-Infective Activity. Pharmaceuticals (Basel) 2024; 17:1298. [PMID: 39458938 PMCID: PMC11510315 DOI: 10.3390/ph17101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
Direct-acting anti-infective drugs target pathogen-coded gene products and are a highly successful therapeutic paradigm. However, they generally target a single pathogen or family of pathogens, and the targeted organisms can readily evolve resistance. Host-targeted agents can overcome these limitations. One family of host-targeted, anti-infective agents modulate human sirtuin 2 (SIRT2) enzyme activity. SIRT2 is one of seven human sirtuins, a family of NAD+-dependent protein deacylases. It is the only sirtuin that is found predominantly in the cytoplasm. Multiple, structurally distinct SIRT2-targeted, small molecules have been shown to inhibit the replication of both RNA and DNA viruses, as well as intracellular bacterial pathogens, in cell culture and in animal models of disease. Biochemical and X-ray structural studies indicate that most, and probably all, of these compounds act as allosteric modulators. These compounds appear to impact the replication cycles of intracellular pathogens at multiple levels to antagonize their replication and spread. Here, we review SIRT2 modulators reported to exhibit anti-infective activity, exploring their pharmacological action as anti-infectives and identifying questions in need of additional study as this family of anti-infective agents advances to the clinic.
Collapse
Affiliation(s)
- Thomas Shenk
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - John L. Kulp III
- Conifer Point Pharmaceuticals, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| | - Lillian W. Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| |
Collapse
|
5
|
Huang Y, He W, Zhang Y, Zou Z, Han L, Luo J, Wang Y, Tang X, Li Y, Bao Y, Huang Y, Long XD, Fu Y, He M. Targeting SIRT2 in Aging-Associated Fibrosis Pathophysiology. Aging Dis 2024:AD.202.0513. [PMID: 39226168 DOI: 10.14336/ad.202.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024] Open
Abstract
Aging is a complex biological process that involves multi-level structural and physiological changes. Aging is a major risk factor for many chronic diseases. The accumulation of senescent cells changes the tissue microenvironment and is closely associated with the occurrence and development of tissue and organ fibrosis. Fibrosis is the result of dysregulated tissue repair response in the development of chronic inflammatory diseases. Recent studies have clearly indicated that SIRT2 is involved in regulating the progression of fibrosis, making it a potential target for anti-fibrotic drugs. SIRT2 is a NAD+ dependent histone deacetylase, shuttling between nucleus and cytoplasm, and is highly expressed in liver, kidney and heart, playing an important role in the occurrence and development of aging and fibrosis. Therefore, we summarized the role of SIRT2 in liver, kidney and cardiac fibrosis during aging.
Collapse
Affiliation(s)
- Yongjiao Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, DeHong Vocational College, Dehong, Yunnan, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
- Toxicology Department, Sichuan Center For Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Zou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longchuan Han
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Yunqiu Wang
- Department of Biomedical Sciences and Synthetic Organic Chemistry, University College London, United Kingdom
| | - Xinxin Tang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Bao
- Department of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Dai Long
- Clinicopathological Diagnosis &;amp Research Center, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Yinkun Fu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
6
|
Jeong Y, Han J, Jang KL. Reactive Oxygen Species Induction by Hepatitis B Virus: Implications for Viral Replication in p53-Positive Human Hepatoma Cells. Int J Mol Sci 2024; 25:6606. [PMID: 38928309 PMCID: PMC11204012 DOI: 10.3390/ijms25126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis B virus (HBV) infects approximately 300 million people worldwide, causing chronic infections. The HBV X protein (HBx) is crucial for viral replication and induces reactive oxygen species (ROS), leading to cellular damage. This study explores the relationship between HBx-induced ROS, p53 activation, and HBV replication. Using HepG2 and Hep3B cell lines that express the HBV receptor NTCP, we compared ROS generation and HBV replication relative to p53 status. Results indicated that HBV infection significantly increased ROS levels in p53-positive HepG2-NTCP cells compared to p53-deficient Hep3B-NTCP cells. Knockdown of p53 reduced ROS levels and enhanced HBV replication in HepG2-NTCP cells, whereas p53 overexpression increased ROS and inhibited HBV replication in Hep3B-NTCP cells. The ROS scavenger N-acetyl-L-cysteine (NAC) reversed these effects. The study also found that ROS-induced degradation of the HBx is mediated by the E3 ligase Siah-1, which is activated by p53. Mutations in p53 or inhibition of its transcriptional activity prevented ROS-mediated HBx degradation and HBV inhibition. These findings reveal a p53-dependent negative feedback loop where HBx-induced ROS increases p53 levels, leading to Siah-1-mediated HBx degradation and HBV replication inhibition. This study offers insights into the molecular mechanisms of HBV replication and identifies potential therapeutic targets involving ROS and p53 pathways.
Collapse
Affiliation(s)
- Yuna Jeong
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
| | - Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (Y.J.); (J.H.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Han J, Jang KL. All-trans retinoic acid downregulates HBx levels via E6-associated protein-mediated proteasomal degradation to suppress hepatitis B virus replication. PLoS One 2024; 19:e0305350. [PMID: 38861553 PMCID: PMC11166335 DOI: 10.1371/journal.pone.0305350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
All-trans retinoic acid (ATRA), recognized as the principal and most biologically potent metabolite of vitamin A, has been identified for its inhibitory effects on hepatitis B virus (HBV) replication. Nevertheless, the underlying mechanism remains elusive. The present study reveals that ATRA induces E6-associated protein (E6AP)-mediated proteasomal degradation of HBx to suppress HBV replication in human hepatoma cells in a p53-dependent pathway. For this effect, ATRA induced promoter hypomethylation of E6AP in the presence of HBx, which resulted in the upregulation of E6AP levels in HepG2 but not in Hep3B cells, emphasizing the p53-dependent nature of this effect. As a consequence, ATRA augmented the interaction between E6AP and HBx, resulting in substantial ubiquitination of HBx and consequent reduction in HBx protein levels in both the HBx overexpression system and the in vitro HBV replication model. Additionally, the knockdown of E6AP under ATRA treatment reduced the interaction between HBx and E6AP and decreased the ubiquitin-dependent proteasomal degradation of HBx, which prompted a recovery of HBV replication in the presence of ATRA, as confirmed by increased levels of intracellular HBV proteins and secreted HBV levels. This study not only contributes to the understanding of the complex interactions between ATRA, p53, E6AP, and HBx but also provides an academic basis for the clinical employment of ATRA in the treatment of HBV infection.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
8
|
Kalaki NS, Ahmadzadeh M, Mansouri A, Saberiyan M, Karbalaie Niya MH. Identification of hub genes and pathways in hepatitis B virus-associated hepatocellular carcinoma: A comprehensive in silico study. Health Sci Rep 2024; 7:e2185. [PMID: 38895552 PMCID: PMC11183944 DOI: 10.1002/hsr2.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/11/2024] [Accepted: 05/04/2024] [Indexed: 06/21/2024] Open
Abstract
Background and Aim The hepatitis B virus (HBV) is one of the most common causes of liver cancer in the world. This study aims to provide a better understanding of the mechanisms involved in the development and progression of HBV-associated hepatocellular carcinoma (HCC) by identifying hub genes and the pathways related to their functions. Methods GSE83148 and GSE94660 were selected from the Gene Expression Omnibus (GEO) database, differentially expressed genes (DEGs) with an adjusted p-value < 0.05 and a |logFC| ≥1 were identified. Common DEGs of two data sets were identified using the GEO2R tool. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) databases were used to identify pathways. Protein-protein interactions (PPIs) analysis was performed by using the Cytoscap and Gephi. A Gene Expression Profiling Interactive Analysis (GEPIA) analysis was carried out to confirm the target genes. Results One hundred and ninety-eight common DEGs and 49 hub genes have been identified through the use of GEO and PPI, respectively. The GO and KEGG pathways analysis showed DEGs were enriched in the G1/S transition of cell cycle mitotic, cell cycle, spindle, and extracellular matrix structural constituent. The expression of four genes (TOP2A, CDK1, CCNA2, and CCNB2) with high scores in module 1 were more in tumor samples and have been identified by GEPIA analysis. Conclusion In this study, the hub genes and their related pathways involved in the development of HBV-associated HCC were identified. These genes, as potential diagnostic biomarkers, may provide a potent opportunity to detect HBV-associated HCC at the earliest stages, resulting in a more effective treatment.
Collapse
Affiliation(s)
- Niloufar Sadat Kalaki
- Department of Cellular and Molecular Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mozhgan Ahmadzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Atena Mansouri
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
- Department of Medical Genetics, School of Medical SciencesHormozgan University of Medical SciencesBandar AbbasIran
| | - Mohammad Hadi Karbalaie Niya
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Terzic M, Fayez S, Fahmy NM, Eldahshan OA, Uba AI, Ponniya SKM, Selvi S, Nilofar, Koyuncu I, Yüksekdağ Ö, Zengin G. Chemical characterization of three different extracts obtained from Chelidonium majus L. (Greater celandine) with insights into their in vitro, in silico and network pharmacological properties. Fitoterapia 2024; 174:105835. [PMID: 38301936 DOI: 10.1016/j.fitote.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Plant species C. majus, which is a very rich source of secondary metabolites, was used to obtain extracts, using a conventional extraction technique. For the extraction of bioactive molecules, three solvents were used: ethyl acetate, methanol and water, which differ from each other based on their polarity. The obtained extracts were examined in terms of chemical composition, antioxidant, enzyme inhibitory activity, and cytotoxic effects. The research results indicate that methanol was a better and more efficient extractant in the process of isolating bioactive compounds than ethyl acetate and water. The chemical composition of this solvent, i.e. its polarity, contributed the most to the extraction of alkaloids and flavonoids. The high content of total phenolic compounds in the methanol extract, as well as individual alkaloids, caused a very strong antioxidant activity, as well as a strong inhibitory power when it comes to inhibiting the excessive activity of cholinesterase and tyrosinase. Methanol and ethyl acetate extracts achieved very good cytotoxic activity against cancerous cells HGC-27 and HT-29 and did not exert a toxic effect on non-cancerous cell lines (HEK293). Extracts of plant species C. majus, especially methanol extract could be characterized as a very good starting plant material for the formulation of products intended for various branches of the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Milena Terzic
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey
| | | | - Selami Selvi
- Department of Plant and Animal Production, Altınoluk Vocational School, Balıkesir University, Balıkesir, Turkey
| | - Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey; Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100 Chieti, Italy
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Özgür Yüksekdağ
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey.
| |
Collapse
|
10
|
Khan S, Anwer A, Sevak JK, Trehanpati N, Kazim SN. Cytokines Expression Compared to the Determinants of Cellular Apoptosis Prominently Attributes to the Deleterious Effects of 'A' Determinant Surface Gene Mutations in HBV Transfected Hepatoma Cell Line. Immunol Invest 2024; 53:224-240. [PMID: 38095846 DOI: 10.1080/08820139.2023.2288841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
BACKGROUND Previous studies have explored the role of AKT protein in anti-apoptotic/proliferative activities. However, there has been a lack of information regarding the role of Akt in association with cytokines expression in HBV-related (wild type HBV and HBV with mutations of 'a' determinant region) studies either in the case of HBV infection or in transfected hepatoma cells. The present study tries to determine the role of Akt and cytokines expression in the presence of small surface gene mutants in the hepatoma cell line. METHODS Mutations of 'a' determinant region, viz. sA128V and sG145R, were created in wild-type pHBV1.3 by site-directed mutagenesis and transfected in hepatoma cell line. Secretory levels of HBsAg in the wild type as well as in both the mutants were analyzed by ELISA. Apoptotic analysis of transfected cells was studied by flow cytometry. Expression analysis of Akt and cytokines (TNF-alpha, IL-6, and IFN-gamma) was done by qPCR. RESULTS The presence of significantly more alive cells in sG145R than sA128V transfected cells may be due to the up-regulation of the Akt gene expression. Cytokines expression was nearly similar between sA128V and wild-type pHBV1.3 transfected cells. Presence of sG145R showed dramatically high cytokines expression than sA128V and wild-type pHBV1.3. CONCLUSION Cytokines expression predominantly contributes to the detrimental effects associated with the 'a' determinant region mutations particularly sG145R mutant. It may also be inferred that mechanisms associated with cellular apoptosis apparently do not play any major role to assign the 'a' determinant small surface gene mutation(s) for their pathological outcome.
Collapse
Affiliation(s)
- Saniya Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ayesha Anwer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jayesh Kumar Sevak
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
11
|
Chen NY, Lin CW, Lai TY, Wu CY, Liao PC, Hsu TL, Wong CH. Increased expression of SSEA-4 on TKI-resistant non-small cell lung cancer with EGFR-T790M mutation. Proc Natl Acad Sci U S A 2024; 121:e2313397121. [PMID: 38252815 PMCID: PMC10835044 DOI: 10.1073/pnas.2313397121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), a major life-threatening disease accounting for 85% of all lung cancer cases, has been treated with tyrosine kinase inhibitors (TKIs), but often resulted in drug resistance, and approximately 60% of TKI-resistant cases are due to acquired secondary (epithelial growth factor receptor) EGFR-T790M mutation. To identify alternative targets for TKI-resistant NSCLC with EGFR-T790M mutation, we found that the three globo-series glycosphingolipids are increasingly expressed on this type of NSCLC cell lines, and among them, the increase of stage-specific embryonic antigen-4 (SSEA-4) expression is the most significant. Compared to TKI-sensitive cell lines, SSEA-4 and the key enzyme β3GalT5 responsible for the synthesis of SSEA3 are more expressed in TKI-resistant NSCLC cell lines with EGFR-T790M mutation, and the expression levels strongly correlate with poor survival in patients with EGFR mutation. In addition, we demonstrated that a SSEA-4 targeted monoclonal antibody, especially the homogeneous glycoform with well-defined Fc glycan designed to improve effective functions, is highly effective against this subpopulation of NSCLC in cell-based and animal studies. These findings provide a direction for the prediction of tumor recurrence and treatment of TKI-resistant NSCLC with EGFR-T790M mutation.
Collapse
Affiliation(s)
- Nai-Yu Chen
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei11221, Taiwan
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung406040, Taiwan
| | - Ting-Yen Lai
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Pei-Chi Liao
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung406040, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei11529, Taiwan
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
12
|
Shojaeian A, Nakhaie M, Amjad ZS, Boroujeni AK, Shokri S, Mahmoudvand S. Leveraging metformin to combat hepatocellular carcinoma: its therapeutic promise against hepatitis viral infections. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2023.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is categorized among the most common primary malignant liver cancer and a primary global cause of death from cancer. HCC tends to affect males 2-4 times more than females in many nations. The main factors that raise the incidence of HCC are chronic liver diseases, hepatotropic viruses like hepatitis B (HBV) and C (HCV), non-alcoholic fatty liver disease, exposure to toxins like aflatoxin, and non-alcoholic steatohepatitis (NASH). Among these, hepatitis B and C are the most prevalent causes of chronic hepatitis globally. Metformin, which is made from a naturally occurring compound called galegine, derived from the plant Galega officinalis (G. officinalis ), has been found to exhibit antitumor effects in a wide range of malignancies, including HCC. In fact, compared to patients on sulphonylureas or insulin, studies have demonstrated that metformin treatment significantly lowers the risk of HCC in patients with chronic liver disease. This article will first describe the molecular mechanism of hepatitis B and C viruses in the development of HCC. Then, we will provide detailed explanations about metformin, followed by a discussion of the association between metformin and hepatocellular carcinoma caused by the viruses mentioned above.
Collapse
|
13
|
Yoon H, Lee HK, Jang KL. Hydrogen Peroxide Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation in Human Hepatoma Cells. Int J Mol Sci 2023; 24:13354. [PMID: 37686160 PMCID: PMC10488175 DOI: 10.3390/ijms241713354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The hepatitis B virus (HBV) is constantly exposed to significant oxidative stress characterized by elevated levels of reactive oxygen species (ROS), such as H2O2, during infection in hepatocytes of patients. In this study, we demonstrated that H2O2 inhibits HBV replication in a p53-dependent fashion in human hepatoma cell lines expressing sodium taurocholate cotransporting polypeptide. Interestingly, H2O2 failed to inhibit the replication of an HBV X protein (HBx)-null HBV mutant, but this defect was successfully complemented by ectopic expression of HBx. Additionally, H2O2 upregulated p53 levels, leading to increased expression of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induced the ubiquitination-dependent proteasomal degradation of HBx. The inhibitory effect of H2O2 was nearly abolished not only by treatment with a representative antioxidant, N-acetyl-L-cysteine but also by knockdown of either p53 or Siah-1 using specific short hairpin RNA, confirming the role of p53 and Siah-1 in the inhibition of HBV replication by H2O2. The present study provides insights into the mechanism that regulates HBV replication under conditions of oxidative stress in patients.
Collapse
Affiliation(s)
- Hyunyoung Yoon
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
| | - Hye-Kyoung Lee
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea; (H.Y.); (H.-K.L.)
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
14
|
Todorova VK, Byrum SD, Mackintosh SG, Jamshidi-Parsian A, Gies AJ, Washam CL, Jenkins SV, Spiva T, Bowman E, Reyna NS, Griffin RJ, Makhoul I. Exosomal MicroRNA and Protein Profiles of Hepatitis B Virus-Related Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:13098. [PMID: 37685904 PMCID: PMC10487651 DOI: 10.3390/ijms241713098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Infection with hepatitis B virus (HBV) is a main risk factor for hepatocellular carcinoma (HCC). Extracellular vesicles, such as exosomes, play an important role in tumor development and metastasis, including regulation of HBV-related HCC. In this study, we have characterized exosome microRNA and proteins released in vitro from hepatitis B virus (HBV)-related HCC cell lines SNU-423 and SNU-182 and immortalized normal hepatocyte cell lines (THLE2 and THLE3) using microRNA sequencing and mass spectrometry. Bioinformatics, including functional enrichment and network analysis, combined with survival analysis using data related to HCC in The Cancer Genome Atlas (TCGA) database, were applied to examine the prognostic significance of the results. More than 40 microRNAs and 200 proteins were significantly dysregulated (p < 0.05) in the exosomes released from HCC cells in comparison with the normal liver cells. The functional analysis of the differentially expressed exosomal miRNAs (i.e., mir-483, mir-133a, mir-34a, mir-155, mir-183, mir-182), their predicted targets, and exosomal differentially expressed proteins (i.e., POSTN, STAM, EXOC8, SNX9, COL1A2, IDH1, FN1) showed correlation with pathways associated with HBV, virus activity and invasion, exosome formation and adhesion, and exogenous protein binding. The results from this study may help in our understanding of the role of HBV infection in the development of HCC and in the development of new targets for treatment or non-invasive predictive biomarkers of HCC.
Collapse
Affiliation(s)
- Valentina K. Todorova
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Allen J. Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Timothy Spiva
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Emily Bowman
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Nathan S. Reyna
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Issam Makhoul
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
15
|
Zheng L. Analysis of hepatocellular carcinoma associated with hepatitis B virus. J Cell Mol Med 2023; 27:2271-2277. [PMID: 37517004 PMCID: PMC10424288 DOI: 10.1111/jcmm.17867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
The hepatitis B virus (HBV) is considered one of the main driving forces in the development of hepatocellular carcinoma (HCC). Human HBV is a partially double-stranded DNA (dsDNA) virus consisting of approximately 3.2 kbp. HBV predominantly infects hepatocytes via the receptor sodium taurocholate cotransporting polypeptide (NTCP) and coreceptor hepatic proteoglycan. The replication of HBV in hepatocytes leads to apoptosis while simultaneously leading to cirrhosis and cancer. Although the integration of dsDNA into the hepatocyte genome seems to be the main cause of mutation, since the discovery of their function, viral proteins have been shown to regulate the P53 pathway or P13K/AKT pathway to prevent host cell apoptosis, causing uncontrolled proliferation of liver cells leading to the formation of solid tumours. The most common treatments involve nucleo(s)tide analogue (NA) and polyethylene glycol (PEG)ylated interferon-alpha (PegIFN-α). NA treatment has been found to be effective for the majority of patients and induces few side effects. Nevertheless, the rate of seroconversion is relatively low. PegIFN treatment is contraindicated during pregnancy and leads to a higher morbidity rate, but the seroconversion rate is high. Since medicines and vaccines have been developed, the incidence and mortality of HBV related to HCC have profoundly decreased compared to those in 2000. This review investigates what can be the potential mechanism that HBV can cause HBV and the treatment used in chronic and acute infection.
Collapse
|
16
|
Han J, Jang KL. All- trans Retinoic Acid Inhibits Hepatitis B Virus Replication by Downregulating HBx Levels via Siah-1-Mediated Proteasomal Degradation. Viruses 2023; 15:1456. [PMID: 37515144 PMCID: PMC10386411 DOI: 10.3390/v15071456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to abolish the potential of HBx to downregulate the levels of p14, p16, and p21 and to stimulate cell growth during hepatitis B virus (HBV) infection, contributing to its chemopreventive and therapeutic effects against HBV-associated hepatocellular carcinoma. Here, we demonstrated that ATRA antagonizes HBx to inhibit HBV replication. For this effect, ATRA individually or in combination with HBx upregulated p53 levels, resulting in upregulation of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induces ubiquitination and proteasomal degradation of HBx in the presence of ATRA. The ability of ATRA to induce Siah-1-mediated HBx degradation and the subsequent inhibition of HBV replication was proven in an in vitro HBV replication model. The effects of ATRA became invalid when either p53 or Siah-1 was knocked down by a specific shRNA, providing direct evidence for the role of p53 and Siah-1 in the negative regulation of HBV replication by ATRA.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Integrated Biological Science, The Graduate School, Pusan National University, Busan 46241, Republic of Korea
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
17
|
Yousefpoor N, Mahdavian M, Pourbagher Z, Ahmadi Ghezeldasht S, Mosavat A, Ziaee M, Bahreini M, Soleimanpour S, Sharifmoghadam MR, Valizadeh N, Asghari A, Tabarraie A, Rezaee SA. Role of host immunity and HBx among inactive chronic hepatitis B patients in a highly endemic region. Microb Pathog 2023:106170. [PMID: 37257667 DOI: 10.1016/j.micpath.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
The hepatitis B virus (HBV) infection has a wide range, from fulminant hepatitis to inactive chronic hepatitis B (ICB) infection. The present study evaluated critical factors in the outcomes of HBV infection in a highly endemic region of Iran (approximately 12% HBV positive). The expression of seven genes involved in host immunity (Foxp3, T-bet, ROR-γt, AKT, CREB, IL-28/or IFN-λ2, and IL-28R) and HBx for viral activities were evaluated using real-time PCR, TaqMan method. A total of 58 subjects were randomly chosen, including 28 ICB and 30 healthy controls (HCs) from the Esfandiar district, South Khorasan province, Iran. The expression index of Foxp3 and ROR-γt was moderately up-regulated in ICBs but did not statistically significant. T-bet expression in ICB patients was significantly higher than in HCs (p = 0.004). Furthermore, evaluating two signalling pathways in Th activation and cell survival showed that the CREB pathway was significantly up-regulated in ICB patients compared to HCs (p = 0.006), but the AKT did not differ. In innate immune responses, the IL-28/or IFN-λ2 expression in ICB patients was significantly higher than in the HCs (p = 0.02). Surprisingly, only one ICB patient disclosed HBx expression, which shows deficient virus activity in these patients. The ICB condition seems to result from host immune pressure on HBV activities, up-regulation of T-bet and IFN-λ. The high expression of CREB may prevent Kupffer's pro-inflammatory reactions in the liver. Whereas the absence of HBx expression in ICB patients and, consequently, the inactivity of HBV may also confirm such immune pressure.
Collapse
Affiliation(s)
- Nafise Yousefpoor
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Malihe Mahdavian
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zohre Pourbagher
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Masood Ziaee
- Birjand Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoumeh Bahreini
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Narges Valizadeh
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghvan Asghari
- Birjand Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Alijan Tabarraie
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Zhang H, Xu Z, Gao H, Zhang Q. Systematic analysis on the mechanism of Zhizi-Bopi decoction against hepatitis B via network pharmacology and molecular docking. Biotechnol Lett 2023; 45:463-478. [PMID: 36807721 DOI: 10.1007/s10529-023-03359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/21/2023]
Abstract
PURPOSE Zhizi-Bopi decoction (ZZBPD) is a classic herbal formula with wide clinical applications in treating liver diseases including hepatitis B. However, the mechanism needs to be elucidated. METHODS Chemical components of ZZBPD were identified by ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry (UHPLC-TOF-MS). Then we used network pharmacology to identify their potential targets. Network construction, coupled with protein-protein interaction and enrichment analysis was used to identify representative components and core targets. Finally, molecular docking simulation was conducted to further refine the drug-target interaction. RESULTS One hundred and forty-eight active compounds were identified in ZZBPD, targeting 779 genes/proteins, among which 174 were related to hepatitis B. ZZBPD mainly influences the progression of hepatitis B through the hepatitis B pathway (hsa05161) via core anti-HBV targets (AKT1, PIK3CA, PIK3R1, SRC, TNF, MAPK1, and MAPK3). Enrichment analysis indicated that ZZBPD can also potentially regulate lipid metabolism and enhance cell survival. Molecular docking suggested that the representative active compounds can bind to the core anti-HBV targets with high affinity. CONCLUSION The potential molecular mechanisms of ZZBPD in hepatitis B treatment were identified using network pharmacology and molecular docking approaches. The results serve as an important basis for the modernization of ZZBPD.
Collapse
Affiliation(s)
- He Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, University Road, Changqing District, Ji'nan, 250355, Shandong Province, China
| | - Zhouyi Xu
- School of Aerospace Engineering, Xiamen University, Xiamen, 361000, China
| | - Haojun Gao
- New Zhonglu Traditional Chinese Medicine Hospital, Ji'nan, 250011, China
| | - Qinyuan Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, No. 4655, University Road, Changqing District, Ji'nan, 250355, Shandong Province, China.
| |
Collapse
|
19
|
Choi YM, Kim DH, Jang J, Choe WH, Kim BJ. rt269L-Type hepatitis B virus (HBV) in genotype C infection leads to improved mitochondrial dynamics via the PERK-eIF2α-ATF4 axis in an HBx protein-dependent manner. Cell Mol Biol Lett 2023; 28:26. [PMID: 36997871 PMCID: PMC10064691 DOI: 10.1186/s11658-023-00440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND In our previous report, the rt269I type versus the rt269L type in genotype C2 infection led to poor clinical outcomes and enhanced mitochondrial stress in infected hepatocytes. Here, we sought to investigate differences between the rt269L and rt269I types in mitochondrial functionality in hepatitis B virus (HBV) genotype C2 infection, mainly focusing on endoplasmic reticulum (ER) stress-mediated autophagy induction as an upstream signal. METHODS Mitochondrial functionality, ER stress signaling, autophagy induction, and apoptotic cell death between rt269L-type and rt269I-type groups were investigated via in vitro and in vivo experiments. Serum samples were collected from 187 chronic hepatitis patients who visited Konkuk or Seoul National University Hospital. RESULTS Our data revealed that genotype C rt269L versus rt269I infection led to improved mitochondrial dynamics and enhanced autophagic flux, mainly due to the activation of the PERK-eIF2α-ATF4 axis. Furthermore, we demonstrated that the traits found in genotype C rt269L infection were mainly due to increased stability of the HBx protein after deubiquitination. In addition, clinical data using patient sera from two independent Korean cohorts showed that, compared with rt269I, rt269L in infection led to lower 8-OHdG levels, further supporting its improved mitochondrial quality control. CONCLUSION Our data showed that, compared with the rt269I type, the rt269L type, which presented exclusively in HBV genotype C infection, leads to improved mitochondrial dynamics or bioenergetics, mainly due to autophagy induction via activation of the PERK-eIF2α-ATF4 axis in an HBx protein-dependent manner. This suggests that HBx stability and cellular quality control in the rt269L type predominating in genotype C endemic areas could at least partly contribute to some distinctive traits of genotype C infection, such as higher infectivity or longer duration of the hepatitis B e antigen (HBeAg) positive stage.
Collapse
Affiliation(s)
- Yu-Min Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Junghwa Jang
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Won Hyeok Choe
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Korea.
- Seoul National University Medical Research Center (SNUMRC), Seoul, 03080, Korea.
| |
Collapse
|
20
|
Mishra AK, Hossain MM, Sata TN, Yadav AK, Zadran S, Sah AK, Nayak B, Shalimar, Venugopal SK. Hepatitis B Virus X Protein Inhibits the Expression of Barrier To Autointegration factor1 via Upregulating miR-203 Expression in Hepatic Cells. Microbiol Spectr 2023; 11:e0123522. [PMID: 36519846 PMCID: PMC9927095 DOI: 10.1128/spectrum.01235-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) infection targets host restriction factors that inhibit its replication and survival. Previous studies have shown that barriers to autointegration factor1 (BANF1) inhibited the replication of herpes simplex virus and vaccinia virus by binding to phosphate backbone of dsDNA. To date, no reports are available for the interplay between BANF1 and HBV. In this study, we elucidated the mechanisms by which HBV inhibit BANF1. First, the effect of HBV on BANF1 was observed in Huh-7, Hep G2, and Hep G2.2.15 cells. Huh-7 cells were transfected with pHBV1.3 or HBx plasmids. The results showed that there was a decreased expression of BANF1 in Hep G2.2.15 cells (P ≤ 0.005) or in HBV/HBx expressing Huh-7 cells (P ≤ 0.005), whereas BANF1 overexpression decreased viral replication (P ≤ 0.05). To study whether phosphorylation/dephosphorylation of BANF1 was responsible for antiviral activity, mutants were created, and it was found that inhibition due to mutants was less significant compared to BANF1 wild type. Previous studies have shown that HBV, at least in part, could regulate the expression of host miRNAs via HBx. It was found that miR-203 expression was high in Hep G2.2.15 cells (P ≤ 0.005) compared to Hep G2 cells. Next, the effect of HBx on miR-203 expression was studied and result showed that HBx upregulated miR-203 expression (P ≤ 0.005). Overexpression of miR-203 downregulated BANF1 expression (P ≤ 0.05) and viral titer was upregulated (P ≤ 0.05), while inhibition of miR-203, reversed these changes. In conclusion, BANF1 downregulated HBV, whereas HBV inhibited BANF1, at least in part, via HBx-mediated miR-203 upregulation in hepatic cells. IMPORTANCE In this study, for the first time, we found that BANF1 inhibited HBV replication and restricted the viral load. However, as previously reported for other viruses, the results in this study showed that BAF1 phosphorylation/dephosphorylation is not involved in its antiviral activity against HBV. HBV infection inhibited the intracellular expression of BANF1, via HBx-mediated upregulation of miR-203 expression. Overexpression of miR-203 downregulated BANF1 and increased the viral titer, while inhibition of miR-203 reversed these changes. This study helped us to understand the molecular mechanisms by which HBV survives and replicates in the host cells.
Collapse
Affiliation(s)
- Amit Kumar Mishra
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Md Musa Hossain
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Teja Naveen Sata
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Ajay K. Yadav
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Shahidullah Zadran
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Amrendra Kumar Sah
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Baibaswata Nayak
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shalimar
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Senthil Kumar Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| |
Collapse
|
21
|
Modulation of mitochondria by viral proteins. Life Sci 2023; 313:121271. [PMID: 36526048 DOI: 10.1016/j.lfs.2022.121271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria are dynamic cellular organelles with diverse functions including energy production, calcium homeostasis, apoptosis, host innate immune signaling, and disease progression. Several viral proteins specifically target mitochondria to subvert host defense as mitochondria stand out as the most suitable target for the invading viruses. They have acquired the capability to control apoptosis, metabolic state, and evade immune responses in host cells, by targeting mitochondria. In this way, the viruses successfully allow the spread of viral progeny and thus the infection. Viruses employ their proteins to alter mitochondrial dynamics and their specific functions by a modulation of membrane potential, reactive oxygen species, calcium homeostasis, and mitochondrial bioenergetics to help them achieve a state of persistent infection. A better understanding of such viral proteins and their impact on mitochondrial forms and functions is the main focus of this review. We also attempt to emphasize the importance of exploring the role of mitochondria in the context of SARS-CoV2 pathogenesis and identify host-virus protein interactions.
Collapse
|
22
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
23
|
Tumor Suppressor p53 Inhibits Hepatitis B Virus Replication by Downregulating HBx via E6AP-Mediated Proteasomal Degradation in Human Hepatocellular Carcinoma Cell Lines. Viruses 2022; 14:v14102313. [PMID: 36298868 PMCID: PMC9609658 DOI: 10.3390/v14102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
HBx, a multifunctional regulatory protein, plays an essential role in the replication and pathogenesis of the hepatitis B virus (HBV). In this study, we found that in human hepatoma cells, the tumor suppressor p53 downregulates HBx via ubiquitin-dependent proteasomal degradation. p53 transcriptional activity that results from HBV infection was not essential for this effect. This was shown by treatment with a potent p53 inhibitor, pifithrin-α. Instead, we found that p53 facilitated the binding of E6-associated protein (E6AP), which is an E3 ligase, to HBx and induced E6AP-mediated HBx ubiquitination in a ternary complex of p53, E6AP, and HBx. The ability of p53 to induce E6AP-mediated downregulation of HBx and inhibit HBV replication was demonstrated in an in vitro HBV infection system. This study may provide insights into the regulation of HBx and HBV replication, especially with respect to p53 status, which may also help in understanding HBV-associated tumorigenesis in patients.
Collapse
|
24
|
Zhao M, Yang S, Su X, Hung TC, Liu Y, Zheng W. Hepatitis B Virus Infection and Increased Risk of Gestational Diabetes Regardless of Liver Function Status: A Xiamen Area Population-Based Study. Front Physiol 2022; 13:938149. [PMID: 35899024 PMCID: PMC9309327 DOI: 10.3389/fphys.2022.938149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background & Aims: Hepatitis B virus (HBV) infection is a significant cause of liver function damage. However, previous studies on HBV mainly aimed at ordinary people, and there is a lack of consensus on the relationship between HBV infection and gestational diabetes mellitus (GDM) and whether HBV-infected pregnant women should undergo antiviral treatment. In addition, systematic studies on the impact of HBV infection on GDM have rarely been studied directly. Therefore, the overall goal of this study was to pursue the association between HBV infection, liver function, and GDM using Xiamen area gestational big data.Methods: Using the Xiamen Primary Health Information System-maternal and child health information system, the data on participants (138,867 in total) expected confinement between 2008 and 2018 were included. Using univariate and multivariate logistic regressions, we constructed models to determine the role of HBV infection and liver function status in GDM. In addition, an analysis of variance tests was performed to study whether the relationship between HBsAg and GDM differed in the normal liver function and the abnormal liver function subgroups.Results: HBsAg's positive status showed a substantial correlation with GDM onset in univariate and multivariate logistic regressions (p < 0.001). Subgroup analysis among HBsAg, liver function, and GDM suggests that both HBsAg and liver function affect the onset of GDM and have the highest prevalence of both abnormalities. Furthermore, ANOVA was used to investigate the association of HBsAg positive (p < 0.001), abnormal liver function (p < 0.001), and their interaction (p = 0.302) on the onset of GDM. This result showed that HBsAg is an independent factor of GDM pathogenesis, regardless of liver function status.Conclusion: HBsAg and liver function are independent factors in GDM. Therefore, regarding these results, while clinicians consider the traditional risk factors of GDM, it is necessary to consider the HBV infection status. Conducting a dietary intervention for HBsAg-positive pregnant women at the early stage of pregnancy is conducive to reducing the adverse effects.
Collapse
Affiliation(s)
- Min Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Computer Management Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- *Correspondence: Min Zhao,
| | - Shuyu Yang
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaojie Su
- Computer Management Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Tzu-Chieh Hung
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | | | - Wenjie Zheng
- Computer Management Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Chu Q, Li J, Chen J, Yuan Z. HBV induced the discharge of intrinsic antiviral miRNAs in HBV-replicating hepatocytes via extracellular vesicles to facilitate its replication. J Gen Virol 2022; 103. [PMID: 35604380 DOI: 10.1099/jgv.0.001744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV), which can cause chronic hepatitis B, has sophisticated machinery to establish persistent infection. Here, we report a novel mechanism whereby HBV changed miRNA packaging into extracellular vesicles (EVs) to facilitate replication. Disruption of the miRNA machinery in hepatocytes enhanced HBV replication, indicating an intrinsic miRNA-mediated antiviral state. Interference with EV release only decreased HBV replication if there was normal miRNA biogenesis, suggesting a possible link between HBV replication and EV-associated miRNAs. Microarray and qPCR analyses revealed that HBV replication changed miRNA expression in EVs. EV incubation, transfection of miRNA mimics and inhibitors, and functional pathway and network analyses showed that EV miRNAs are associated with antiviral function, suggesting that to promote survival HBV coopts EVs to excrete anti-HBV intracellular miRNAs. These data suggest a novel mechanism by which HBV maintains its replication, which has therapeutic implications.
Collapse
Affiliation(s)
- Qiaofang Chu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, PR China
| |
Collapse
|
26
|
Zhang C, Xie Y, Lai R, Wu J, Guo Z. Nonsynonymous C1653T Mutation of Hepatitis B Virus X Gene Enhances Malignancy of Hepatocellular Carcinoma Cells. J Hepatocell Carcinoma 2022; 9:367-377. [PMID: 35535232 PMCID: PMC9078866 DOI: 10.2147/jhc.s348690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Cuifang Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Oncology, The Pingshan County People’s Hospital, Shijiazhuang, People’s Republic of China
| | - Ying Xie
- Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Ruixue Lai
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhanjun Guo
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Correspondence: Zhanjun Guo, Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, People’s Republic of China, Tel + 86 311 8609 5734, Fax + 86 311 8609 5237, Email
| |
Collapse
|
27
|
Sun Y, Teng Y, Wang L, Zhang Z, Chen C, Wang Y, Zhang X, Xiang P, Song X, Lu J, Li N, Gao L, Liang X, Xia Y, Wu Z, Ma C. LINC01431 Promotes Histone H4R3 Methylation to Impede HBV Covalently Closed Circular DNA Transcription by Stabilizing PRMT1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103135. [PMID: 35398991 PMCID: PMC9165498 DOI: 10.1002/advs.202103135] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Covalently closed circular DNA (cccDNA) is the transcriptional template of hepatitis B virus (HBV), which interacts with both host and viral proteins to form minichromosome in the nucleus and is resistant to antiviral agents. Identification of host factors involved in cccDNA transcriptional regulation is expected to prove a new venue for HBV therapy. Recent evidence suggests the involvement of long noncoding RNAs (lncRNAs) in mediating the interaction of host factors with various viruses, however, lncRNAs that HBV targets and represses cccDNA transcription have not been fully elucidated. Here, the authors identified LINC01431 as a novel host restriction factor for HBV transcription. Mechanically, LINC01431 competitively bound with type I protein arginine methyltransferase (PRMT1) to block the HBx-mediated PRMT1 ubiquitination and degradation. Consequently, LINC01431 increased the occupancy of PRMT1 on cccDNA, leading to enhanced H4R3me2a modification and reduced acetylation of cccDNA-bound histones, thereby repressing cccDNA transcription. In turn, to facilitate viral replication, HBV transcriptionally repressed LINC01431 expression by HBx-mediated repression of transcription factor Zinc fingers and homeoboxes 2 (ZHX2). Collectively, the study demonstrates LINC01431 as a novel epigenetic regulator of cccDNA minichromosome and highlights a feedback loop of HBx-LINC01431-PRMT1 in HBV replication, which provides potential therapeutic targets for HBV treatment.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and ImmunologyInstitute of Medical VirologySchool of Basic Medical SciencesWuhan UniversityWuhanHubei430072China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Zhaoying Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - ChaoJia Chen
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaodong Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Peng Xiang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Jinghui Lu
- Department of Hepatobiliary SurgeryQilu Hospital of Shandong University, JinanShandong250012China
| | - Nailin Li
- Karolinska InstituteDepartment of Medicine‐SolnaClinical Pharmacology GroupStockholm17176Sweden
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and ImmunologyInstitute of Medical VirologySchool of Basic Medical SciencesWuhan UniversityWuhanHubei430072China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of ImmunologySchool of Basic Medical SciencesCheeloo Medical CollegeShandong UniversityJinanShandong250012China
| |
Collapse
|
28
|
Boulahtouf Z, Virzì A, Baumert TF, Verrier ER, Lupberger J. Signaling Induced by Chronic Viral Hepatitis: Dependence and Consequences. Int J Mol Sci 2022; 23:ijms23052787. [PMID: 35269929 PMCID: PMC8911453 DOI: 10.3390/ijms23052787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.
Collapse
Affiliation(s)
- Zakaria Boulahtouf
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Alessia Virzì
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Service d’Hépato-Gastroentérologie, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Eloi R. Verrier
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Université de Strasbourg, Inserm, F-67000 Strasbourg, France; (Z.B.); (A.V.); (T.F.B.); (E.R.V.)
- Correspondence:
| |
Collapse
|
29
|
Yan Y, Qiu Y, Davgadorj C, Zheng C. Novel Molecular Therapeutics Targeting Signaling Pathway to Control Hepatitis B Viral Infection. Front Cell Infect Microbiol 2022; 12:847539. [PMID: 35252042 PMCID: PMC8894711 DOI: 10.3389/fcimb.2022.847539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous canonical cellular signaling pathways modulate hepatitis B virus (HBV) replication. HBV genome products are known to play a significant role in regulating these cellular pathways for the liver’s viral-related pathology and physiology and have been identified as the main factor in hepatocarcinogenesis. Signaling changes during viral replication ultimately affect cellular persistence, multiplication, migration, genome instability, and genome damage, leading to proliferation, evasion of apoptosis, block of differentiation, and immortality. Recent studies have documented that numerous signaling pathway agonists or inhibitors play an important role in reducing HBV replication in vitro and in vivo, and some have been used in phase I or phase II clinical trials. These optional agents as molecular therapeutics target cellular pathways that could limit the replication and transcription of HBV or inhibit the secretion of the small surface antigen of HBV in a signaling-independent manner. As principle-based available information, a combined strategy including antiviral therapy and immunomodulation will be needed to control HBV infection effectively. In this review, we summarize recent findings on interventions of molecular regulators in viral replication and the interactions of HBV proteins with the components of the various targeting cellular pathways, which may assist in designing novel agents to modulate signaling pathways to prevent HBV replication or carcinogenesis.
Collapse
Affiliation(s)
- Yan Yan
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
- *Correspondence: Yan Yan, ; Chunfu Zheng,
| | - Yuanwang Qiu
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chantsalmaa Davgadorj
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Yan Yan, ; Chunfu Zheng,
| |
Collapse
|
30
|
Interaction between the Hepatitis B Virus and Cellular FLIP Variants in Viral Replication and the Innate Immune System. Viruses 2022; 14:v14020373. [PMID: 35215970 PMCID: PMC8874586 DOI: 10.3390/v14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
During viral evolution and adaptation, many viruses have utilized host cellular factors and machinery as their partners. HBx, as a multifunctional viral protein encoded by the hepatitis B virus (HBV), promotes HBV replication and greatly contributes to the development of HBV-associated hepatocellular carcinoma (HCC). HBx interacts with several host factors in order to regulate HBV replication and evolve carcinogenesis. The cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) is a major factor that functions in a variety of cellular pathways and specifically in apoptosis. It has been shown that the interaction between HBx and c-FLIP determines HBV fate. In this review, we provide a comprehensive and detailed overview of the interplay between c-FLIP and HBV in various environmental circumstances. We describe strategies adapted by HBV to establish its chronic infection. We also summarize the conventional roles of c-FLIP and highlight the functional outcome of the interaction between c-FLIP and HBV or other viruses in viral replication and the innate immune system.
Collapse
|
31
|
Zhang X, Ming Y, Fu X, Niu Y, Lin Q, Liang H, Luo X, Liu L, Li N. PI3K/AKT/p53 pathway inhibits infectious spleen and kidney necrosis virus infection by regulating autophagy and immune responses. FISH & SHELLFISH IMMUNOLOGY 2022; 120:648-657. [PMID: 34968710 DOI: 10.1016/j.fsi.2021.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The PI3K/AKT/p53 signaling pathway is activated by various types of cellular stimuli or pathogenic infection, and then regulates fundamental cellular functions to combat these stimulations. Here, we studied the meaningful roles of PI3K/AKT/p53 in regulating cellular machine such as autophagy, immune responses, as well as antiviral activity in Chinese perch brain (CPB) cells infected by infectious spleen and kidney necrosis virus (ISKNV), which is an agent caused devastating losses in mandarin fish (Siniperca chuatsi) industry. We found that ISKNV infection induced up-regulation of host PI3K/AKT/p53 axis, but inhibited autophagy in CPB cells. Interestingly, activation of PI3K/AKT/p53 axis factors trough agonists or overexpression dramatically decreased host autophagy level, inhibited ISKNV replication, and elevated the expression of immune-related genes in CPB cells. In contrast, suppression of PI3K/AKT/p53 pathway by inhibitors or small interfering RNA (siRNA)-mediated gene silence increased the autophagy and ISKNV replication, but down-regulated immune responses in CPB cells. All these results indicate that PI3K/AKT/p53 pathway plays an important role in anti-ISKNV infection and can be used as a new target for controlling ISKNV disease.
Collapse
Affiliation(s)
- Xiaoting Zhang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Yue Ming
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Yinjie Niu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Hongru Liang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Xia Luo
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Lihui Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510380, China.
| |
Collapse
|
32
|
Svicher V, Salpini R, Piermatteo L, Carioti L, Battisti A, Colagrossi L, Scutari R, Surdo M, Cacciafesta V, Nuccitelli A, Hansi N, Ceccherini Silberstein F, Perno CF, Gill US, Kennedy PTF. Whole exome HBV DNA integration is independent of the intrahepatic HBV reservoir in HBeAg-negative chronic hepatitis B. Gut 2021; 70:2337-2348. [PMID: 33402415 PMCID: PMC8588301 DOI: 10.1136/gutjnl-2020-323300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The involvement of HBV DNA integration in promoting hepatocarcinogenesis and the extent to which the intrahepatic HBV reservoir modulates liver disease progression remains poorly understood. We examined the intrahepatic HBV reservoir, the occurrence of HBV DNA integration and its impact on the hepatocyte transcriptome in hepatitis B 'e' antigen (HBeAg)-negative chronic hepatitis B (CHB). DESIGN Liver tissue from 84 HBeAg-negative patients with CHB with low (n=12), moderate (n=25) and high (n=47) serum HBV DNA was analysed. Covalently closed circular DNA (cccDNA), pregenomic RNA (pgRNA) were evaluated by quantitative PCR, whole exome and transcriptome sequencing was performed by Illumina, and the burden of HBV DNA integrations was evaluated by digital droplet PCR. RESULTS Patients with low and moderate serum HBV DNA displayed comparable intrahepatic cccDNA and pgRNA, significantly lower than in patients with high HBV DNA, while hepatitis B core-related antigen correlated strongly with the intrahepatic HBV reservoir, reflecting cccDNA quantity. Whole exome integration was detected in a significant number of patients (55.6%, 14.3% and 25% in high, moderate and low viraemic patients, respectively), at a frequency ranging from 0.5 to 157 integrations/1000 hepatocytes. Hepatitis B surface antigen >5000 IU/mL predicted integration within the exome and these integrations localised in genes involved in hepatocarcinogenesis, regulation of lipid/drug metabolism and antiviral/inflammatory responses. Transcript levels of specific genes, including the proto-oncogene hRAS, were higher in patients with HBV DNA integration, supporting an underlying oncogenic risk in patients with low-level to moderate-level viraemia. CONCLUSIONS HBV DNA integration occurs across all HBeAg-negative patients with CHB, including those with a limited HBV reservoir; localising in genes involved in carcinogenesis and altering the hepatocyte transcriptome.
Collapse
Affiliation(s)
- Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Luca Carioti
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Arianna Battisti
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy,Barts Liver Cente, Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Luna Colagrossi
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy,Department of Microbiology and Virology, University of Milan, Milano, Lombardia, Italy
| | - Rossana Scutari
- Department of Experimental Medicine, University of Rome Tor Vergata, Roma, Lazio, Italy
| | - Matteo Surdo
- Molecular Genetics Laboratory, Eurofins GENOMA, Roma, Lazio, Italy
| | | | | | - Navjyot Hansi
- Barts Liver Cente, Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | | | - Carlo Federico Perno
- Department of Oncology and Haematooncology, University of Milan, Milano, Lombardia, Italy
| | - Upkar S Gill
- Barts Liver Cente, Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Patrick T F Kennedy
- Barts Liver Cente, Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Joechle K, Guenzle J, Hellerbrand C, Strnad P, Cramer T, Neumann UP, Lang SA. Role of mammalian target of rapamycin complex 2 in primary and secondary liver cancer. World J Gastrointest Oncol 2021; 13:1632-1647. [PMID: 34853640 PMCID: PMC8603445 DOI: 10.4251/wjgo.v13.i11.1632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) acts in two structurally and functionally distinct protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Upon deregulation, activated mTOR signaling is associated with multiple processes involved in tumor growth and metastasis. Compared with mTORC1, much less is known about mTORC2 in cancer, mainly because of the unavailability of a selective inhibitor. However, existing data suggest that mTORC2 with its two distinct subunits Rictor and mSin1 might play a more important role than assumed so far. It is one of the key effectors of the PI3K/AKT/mTOR pathway and stimulates cell growth, cell survival, metabolism, and cytoskeletal organization. It is not only implicated in tumor progression, metastasis, and the tumor microenvironment but also in resistance to therapy. Rictor, the central subunit of mTORC2, was found to be upregulated in different kinds of cancers and is associated with advanced tumor stages and a bad prognosis. Moreover, AKT, the main downstream regulator of mTORC2/Rictor, is one of the most highly activated proteins in cancer. Primary and secondary liver cancer are major problems for current cancer therapy due to the lack of specific medical treatment, emphasizing the need for further therapeutic options. This review, therefore, summarizes the role of mTORC2/Rictor in cancer, with special focus on primary liver cancer but also on liver metastases.
Collapse
Affiliation(s)
- Katharina Joechle
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Jessica Guenzle
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Ulf Peter Neumann
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Sven Arke Lang
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| |
Collapse
|
34
|
Han J, Kim H, Jeong H, Yoon H, Jang KL. Proteasomal activator 28 gamma stabilizes hepatitis B virus X protein by competitively inhibiting the Siah-1-mediated proteasomal degradation. Biochem Biophys Res Commun 2021; 578:97-103. [PMID: 34555669 DOI: 10.1016/j.bbrc.2021.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022]
Abstract
Proteasomal activator 28 gamma (PA28γ) upregulates the levels of HBx, a regulatory protein of hepatitis B virus (HBV) to stimulate HBV replication; however, the detailed mechanism remains unknown. Here, we found that PA28γ impaired the ability of seven in absentia homolog 1 (Siah-1) as an E3 ubiquitin ligase of HBx. PA28γ competitively inhibited the binding of Siah-1 to HBx in human hepatoma cells. Accordingly, PA28γ increased the stability of HBx and decreased HBx ubiquitination, abolishing the potential of Siah-1 to downregulate HBx levels. PA28γ also executed its role as an antagonist of Siah-1 during HBV replication, as demonstrated by an in vitro HBV replication system. The present study may provide insights into the mechanisms underlying the regulation of HBV replication.
Collapse
Affiliation(s)
- Jiwoo Han
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Haeji Kim
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyerin Jeong
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyunyoung Yoon
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan, 46241, Republic of Korea; Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
35
|
Kong F, Li Q, Zhang F, Li X, You H, Pan X, Zheng K, Tang R. Sirtuins as Potential Therapeutic Targets for Hepatitis B Virus Infection. Front Med (Lausanne) 2021; 8:751516. [PMID: 34708060 PMCID: PMC8542665 DOI: 10.3389/fmed.2021.751516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/15/2021] [Indexed: 01/15/2023] Open
Abstract
Sirtuins (SIRTs) are well-known histone deacetylases that are capable of modulating various cellular processes in numerous diseases, including the infection of hepatitis B virus (HBV), which is one of the primary pathogenic drivers of liver cirrhosis and hepatocellular carcinoma. Mounting evidence reveals that HBV can alter the expression levels of all SIRT proteins. In turn, all SIRTs regulate HBV replication via a cascade of molecular mechanisms. Furthermore, several studies suggest that targeting SIRTs using suitable drugs is a potential treatment strategy for HBV infection. Here, we discuss the molecular mechanisms associated with SIRT-mediated upregulation of viral propagation and the recent advances in SIRT-targeted therapy as potential therapeutic modalities against HBV infection.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Qi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- Laboratory Department, The People's Hospital of Funing, Yancheng, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
36
|
Van Damme E, Vanhove J, Severyn B, Verschueren L, Pauwels F. The Hepatitis B Virus Interactome: A Comprehensive Overview. Front Microbiol 2021; 12:724877. [PMID: 34603251 PMCID: PMC8482013 DOI: 10.3389/fmicb.2021.724877] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of a prophylactic vaccine, chronic hepatitis B (CHB) caused by the hepatitis B virus (HBV) is a major health problem affecting an estimated 292 million people globally. Current therapeutic goals are to achieve functional cure characterized by HBsAg seroclearance and the absence of HBV-DNA after treatment cessation. However, at present, functional cure is thought to be complicated due to the presence of covalently closed circular DNA (cccDNA) and integrated HBV-DNA. Even if the episomal cccDNA is silenced or eliminated, it remains unclear how important the high level of HBsAg that is expressed from integrated HBV DNA is for the pathology. To identify therapies that could bring about high rates of functional cure, in-depth knowledge of the virus' biology is imperative to pinpoint mechanisms for novel therapeutic targets. The viral proteins and the episomal cccDNA are considered integral for the control and maintenance of the HBV life cycle and through direct interaction with the host proteome they help create the most optimal environment for the virus whilst avoiding immune detection. New HBV-host protein interactions are continuously being identified. Unfortunately, a compendium of the most recent information is lacking and an interactome is unavailable. This article provides a comprehensive review of the virus-host relationship from viral entry to release, as well as an interactome of cccDNA, HBc, and HBx.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jolien Vanhove
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium.,Early Discovery Biology, Charles River Laboratories, Beerse, Belgium
| | - Bryan Severyn
- Janssen Research & Development, Janssen Pharmaceutical Companies, Springhouse, PA, United States
| | - Lore Verschueren
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| |
Collapse
|
37
|
Lin Y, Liu Y, Xu D, Guo F, Zhang W, Zhang Y, Bai G. HBxAg promotes HBV replication and EGFR activation in human placental trophoblasts. Exp Ther Med 2021; 22:1211. [PMID: 34584556 PMCID: PMC8422389 DOI: 10.3892/etm.2021.10645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a global epidemic. The main transmission route of chronic HBV infection is from mother to child, yet the mechanisms underlying HBV intrauterine infection remain unclear. In the present study, the effect and the mechanism underlying hepatitis B virus X antigen (HBxAg) on HBV replication and EGFR activation in trophoblasts was investigated. Serum samples from pregnant women with HBV infection were used to infect trophoblasts and HBxAg expression was detected using ELISA. HBV plasmids carrying either full length hepatitis B virus X (HBx) or HBx with a deletion mutation (ΔHBx) were transfected into trophoblasts and expression levels of HBV DNA, hepatitis B e-antigen and pregenomic (pg)RNA, and structural maintenance of chromosomes (Smc) 5/6 were assessed. The association between HBx and EGFR promoters was characterized using a luciferase reporter assay and EGFR/PI3K/phosphorylated (p)-AKT expression and apoptosis rate were also monitored. The results of the present study indicated that HBxAg expression increased with the increasing titre of HBV DNA (P<0.05). Compared with the wild-type group, the amount of HBV DNA in the supernatant and cells was significantly reduced (P<0.05) in the ΔHBx group and the intracellular HBeAg and pgRNA levels were also significantly decreased (P<0.05). In addition, Smc5/6 expression was also significantly decreased (P<0.05) when the intracellular HBx protein was expressed compared with mock-transfected cells. Co-transfection of HBx and EGFR promoter plasmids in JEG-3 and HTR-8 cells significantly elevated EGFR promoter driven luciferase expression relative to the control group (P<0.01). In EGFR overexpressing cells, the expression of PI3K/p-AKT was significantly increased, whereas the apoptosis rate was significantly decreased (P<0.05). These results were reversed in the EGFR-knockdown group. In conclusion, the present study demonstrated that HBx promotes HBV replication in trophoblasts via downregulation of Smc5/6, activates the EGFR promoter and inhibits trophoblast apoptosis via the PI3K/p-AKT downstream signalling pathway, thereby increasing the risk of HBV intrauterine infection.
Collapse
Affiliation(s)
- Yayun Lin
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Liu
- Institute of Infectious Diseases, 5th Medical Center of Chinese PLA General Hospital, Beijing 100141, P.R. China
| | - Dongping Xu
- Institute of Infectious Diseases, 5th Medical Center of Chinese PLA General Hospital, Beijing 100141, P.R. China
| | - Fanfan Guo
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wentao Zhang
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yidan Zhang
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guiqin Bai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
38
|
Wang X, Wei Z, Jiang Y, Meng Z, Lu M. mTOR Signaling: The Interface Linking Cellular Metabolism and Hepatitis B Virus Replication. Virol Sin 2021; 36:1303-1314. [PMID: 34580816 PMCID: PMC8692646 DOI: 10.1007/s12250-021-00450-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that includes mTOR complex (mTORC) 1 and mTORC2. The mTOR pathway is activated in viral hepatitis, including hepatitis B virus (HBV) infection-induced hepatitis. Currently, chronic HBV infection remains one of the most serious public health issues worldwide. The unavailability of effective therapeutic strategies for HBV suggests that clarification of the pathogenesis of HBV infection is urgently required. Increasing evidence has shown that HBV infection can activate the mTOR pathway, indicating that HBV utilizes or hijacks the mTOR pathway to benefit its own replication. Therefore, the mTOR signaling pathway might be a crucial target for controlling HBV infection. Here, we summarize and discuss the latest findings from model biology research regarding the interaction between the mTOR signaling pathway and HBV replication.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China. .,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
39
|
Das P, Dudley JP. How Viruses Use the VCP/p97 ATPase Molecular Machine. Viruses 2021; 13:1881. [PMID: 34578461 PMCID: PMC8473244 DOI: 10.3390/v13091881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses are obligate intracellular parasites that are dependent on host factors for their replication. One such host protein, p97 or the valosin-containing protein (VCP), is a highly conserved AAA ATPase that facilitates replication of diverse RNA- and DNA-containing viruses. The wide range of cellular functions attributed to this ATPase is consistent with its participation in multiple steps of the virus life cycle from entry and uncoating to viral egress. Studies of VCP/p97 interactions with viruses will provide important information about host processes and cell biology, but also viral strategies that take advantage of these host functions. The critical role of p97 in viral replication might be exploited as a target for development of pan-antiviral drugs that exceed the capability of virus-specific vaccines or therapeutics.
Collapse
Affiliation(s)
- Poulami Das
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jaquelin P. Dudley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA;
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
40
|
McBrearty N, Arzumanyan A, Bichenkov E, Merali S, Merali C, Feitelson M. Short chain fatty acids delay the development of hepatocellular carcinoma in HBx transgenic mice. Neoplasia 2021; 23:529-538. [PMID: 33945993 PMCID: PMC8111251 DOI: 10.1016/j.neo.2021.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is a major risk factor for the development of hepatocellular carcinoma (HCC). The HBV encoded oncoprotein, HBx, alters the expression of host genes and the activity of multiple signal transduction pathways that contribute to the pathogenesis of HCC by multiple mechanisms independent of HBV replication. However, it is not clear which pathways are the most relevant therapeutic targets in hepatocarcinogenesis. Short chain fatty acids (SCFAs) have strong anti-inflammatory and anti-neoplastic properties, suggesting that they may block the progression of chronic liver disease (CLD) to HCC, thereby identifying the mechanisms relevant to HCC development. This hypothesis was tested in HBx transgenic (HBxTg) mice fed SCFAs. Groups of HBxTg mice were fed with SCFAs or vehicle from 6 to 9 months of age and then assessed for dysplasia, and from 9 to 12 months of age and then assessed for HCC. Livers from 12 month old mice were then analyzed for changes in gene expression by mass spectrometry-based proteomics. SCFA-fed mice had significantly fewer dysplastic and HCC nodules compared to controls at 9 and 12 months, respectively. Pathway analysis of SCFA-fed mice showed down-regulation of signaling pathways altered by HBx in human CLD and HCC, including those involved in inflammation, phosphatidylinositol 3-kinase, epidermal growth factor, and Ras. SCFA treatment promoted increased expression of the tumor suppressor, disabled homolog 2 (DAB2). DAB2 depresses Ras pathway activity, which is constitutively activated by HBx. SCFAs also reduced cell viability in HBx-transfected cell lines in a dose-dependent manner while the viability of primary human hepatocytes was unaffected. These unique findings demonstrate that SCFAs delay the pathogenesis of CLD and development of HCC, and provide insight into some of the underlying mechanisms that are relevant to pathogenesis in that they are responsive to treatment.
Collapse
Affiliation(s)
- Noreen McBrearty
- Department of Biology, College of Science and Technology, Philadelphia, PA, USA
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Philadelphia, PA, USA
| | - Eugene Bichenkov
- Department of Biology, College of Science and Technology, Philadelphia, PA, USA
| | - Salim Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Carmen Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Mark Feitelson
- Department of Biology, College of Science and Technology, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Yuan S, Tanzeel Y, Tian X, Zheng D, Wajeeha N, Xu J, Ke Y, Zhang Z, Peng X, Lu L, Sun G, Guo D, Wang M. Global analysis of HBV-mediated host proteome and ubiquitylome change in HepG2.2.15 human hepatoblastoma cell line. Cell Biosci 2021; 11:75. [PMID: 33865438 PMCID: PMC8052555 DOI: 10.1186/s13578-021-00588-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major health issue worldwide and the leading cause of cirrhosis and hepatocellular carcinoma (HCC). It has been reported previously that HBV invasion can extensively alter transcriptome, the proteome of exosomes and host cell lipid rafts. The impact of HBV on host proteins through regulating their global post-translational modifications (PTMs), however, is not well studied. Viruses have been reported to exploit cellular processes by enhancing or inhibiting the ubiquitination of specific substrates. Nevertheless, host cell physiology in terms of global proteome and ubiquitylome has not been addressed yet. Here by using HBV-integrated HepG2.2.15 model cell line we first report that HBV significantly modify the host global ubiquitylome. As currently the most widely used HBV cell culture model, HepG2.2.15 can be cultivated for multiple generations for protein labeling, and can replicate HBV, express HBV proteins and secrete complete HBV Dane particles, which makes it a suitable cell line for ubiquitylome analysis to study HBV replication, hepatocyte immune response and HBV-related HCC progression. Our previous experimental results showed that the total ubiquitination level of HepG2.2.15 cell line was significantly higher than that of the corresponding parental HepG2 cell line. By performing a Ubiscan quantification analysis based on stable isotope labeling of amino acids in cell culture (SILAC) of HepG2.2.15 and HepG2 cell lines, we identified a total of 7188 proteins and the protein levels of nearly 19% of them were changed over 2-folds. We further identified 3798 ubiquitinated Lys sites in 1476 host proteins with altered ubiquitination in response to HBV. Our results also showed that the global proteome and ubiquitylome were negatively correlated, indicating that ubiquitination might be involved in the degradation of host proteins upon HBV integration. We first demonstrated the ubiquitination change of VAMP3, VAMP8, DNAJB6, RAB8A, LYN, VDAC2, OTULIN, SLC1A4, SLC1A5, HGS and TOLLIP. In addition, we described 5 novel host factors SLC1A4, SLC1A5, EIF4A1, TOLLIP and BRCC36 that efficiently reduced the amounts of secreted HBsAg and HBeAg. Overall, the HBV-mediated host proteome and ubiquitylome change we reported will provide a valuable resource for further investigation of HBV pathogenesis and host-virus interaction networks.
Collapse
Affiliation(s)
- Sen Yuan
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yousaf Tanzeel
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xuezhang Tian
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Dandan Zheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Naz Wajeeha
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jiaqi Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yujia Ke
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Zuopeng Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Xiaojun Peng
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, People's Republic of China
| | - Long Lu
- School of Information Management, Wuhan University, Wuhan, People's Republic of China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China. .,Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, People's Republic of China.
| | - Deyin Guo
- School of Medicine, Sun Yat-Sen University, Shenzhen, People's Republic of China.
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
42
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
43
|
Zhao X, Fan H, Chen X, Zhao X, Wang X, Feng Y, Liu M, Li S, Tang H. Hepatitis B Virus DNA Polymerase Restrains Viral Replication Through the CREB1/HOXA Distal Transcript Antisense RNA Homeobox A13 Axis. Hepatology 2021; 73:503-519. [PMID: 32314410 DOI: 10.1002/hep.31284] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 02/20/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs (lncRNAs) have been associated with infection and hepatitis B virus (HBV)-related diseases, though the underlying mechanisms remain unclear. APPROACH AND RESULTS We obtained HBV-HCC lncRNA profiles by deep sequencing and found HOXA distal transcript antisense RNA (HOTTIP) to be significantly up-regulated. RT-qPCR indicated that HOTTIP is highly expressed in HBV-positive hepatoma tissue and induced by HBV in vitro. Virological experiments showed that HOTTIP significantly suppresses the generation of hepatitis B viral surface antigen, hepatitis B viral e antigen and HBV replication. Homeobox A13 (HOXA13), a downstream factor of HOTTIP, was found to bind to HBV enhancer I and X promotor to repress the production of HBV pregenome RNA (pgRNA) and total RNA as well as HBV replication, suggesting that HOXA13 mediates HOTTIP-induced suppression of HBV replication. More interestingly, HBV DNA polymerase (DNA pol) binds to and stabilizes cAMP-responsive element-binding protein 1 (CREB1) mRNA to facilitate translation of the protein, which, in turn, binds to the regulatory element of HOTTIP to promote its expression. CONCLUSIONS Our findings demonstrate that HBV DNA pol attenuates HBV replication through activation of the CREB1-HOTTIP-HOXA13 axis. These findings shed light on the mechanism by which HBV restrains replication to contribute to persistent infection.
Collapse
Affiliation(s)
- Xiaopei Zhao
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hongxia Fan
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xi Chen
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xiaoqing Zhao
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xu Wang
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yujie Feng
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Min Liu
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Shengping Li
- State Key Laboratory of Oncology in Southern ChinaDepartment of Hepatobiliary OncologySun Yat-sen UniversityCancer CenterGuangzhouChina
| | - Hua Tang
- Tianjin Life Science Research CenterTianjin Key Laboratory of Inflammation BiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsDepartment of Pathogen BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
44
|
Bortolami M, Comparato A, Benna C, Errico A, Maretto I, Pucciarelli S, Cillo U, Farinati F. Gene and protein expression of mTOR and LC3 in hepatocellular carcinoma, colorectal liver metastasis and "normal" liver tissues. PLoS One 2020; 15:e0244356. [PMID: 33362215 PMCID: PMC7757890 DOI: 10.1371/journal.pone.0244356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The physiological role of autophagy in the progression of liver diseases is still debated. To understand the clinical relevance of autophagy in primary e secondary hepatic tumors, we analyzed the expression of mTOR (mammalian target of rapamycin), a key regulator of autophagy; Raptor (regulatory-associated protein of mTOR); ULK1 (Unc-51 like kinase 1) determinant in the autophagy initiation; LC3 (microtubule-associated protein 1A/1B-light chain 3), a specific marker of autophagosomes; and p62, a selective autophagy receptor. Samples from subjects with chronic hepatitis (n.58), cirrhosis (n.12), hepatocellular carcinoma (HCC, n.56), metastases (n.48) from colorectal cancer and hyperplasia or gallbladder stones (n.7), the latter considered as controls, were examined. Gene expression analysis was carried out in n.213 tissues by absolute q-PCR, while protein expression by Western Blot in n.191 lysates, including tumoral, surrounding tumoral and normal tissues. Nonparametric statistical tests were used for comparing expression levels in the above-mentioned groups. Subgroup analysis was performed considering viral infection and chemotherapy treatment. The mTOR transcriptional level was significantly lower in metastases compared to HCC (P = 0.0001). p-mTOR(Ser2448) and LC3II/LC3I protein levels were significantly higher in metastases compared to HCC (P = 0.008 and P<0.0001, respectively). ULK(Ser757) levels were significantly higher in HCC compared to metastases (P = 0.0002) while the HCV- and HBV- related HCC showed the highest p62 levels. Chemotherapy induced a down-regulation of the p-mTOR(Ser2448) in metastases and in non-tumor surrounding tissues in treated patients compared to untreated (P = 0.001 and P = 0.005, respectively). Conclusions: the different expression of proteins considered, owning their interaction and diverse tissue microenvironment, indicate an impairment of the autophagy flux in primary liver tumors that is critical for the promotion of tumorigenesis process and a coexistence of autophagy inhibition and activation mechanisms in secondary liver tumors. Differences in mTOR and LC3 transcripts emerged in tumor-free tissues, therefore particular attention should be considered in selecting the control group.
Collapse
Affiliation(s)
- Marina Bortolami
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Gastroenterology Unit, University of Padova, Padova, Italy
| | - Alessandra Comparato
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Gastroenterology Unit, University of Padova, Padova, Italy
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Surgical Unit, University of Padova, Padova, Italy
| | - Andrea Errico
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Gastroenterology Unit, University of Padova, Padova, Italy
| | - Isacco Maretto
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Surgical Unit, University of Padova, Padova, Italy
| | - Salvatore Pucciarelli
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Surgical Unit, University of Padova, Padova, Italy
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Surgical Unit, University of Padova, Padova, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, DISCOG, School of Medicine, Gastroenterology Unit, University of Padova, Padova, Italy
| |
Collapse
|
45
|
Lin Y, Zhao Z, Huang A, Lu M. Interplay between Cellular Autophagy and Hepatitis B Virus Replication: A Systematic Review. Cells 2020; 9:cells9092101. [PMID: 32942717 PMCID: PMC7563265 DOI: 10.3390/cells9092101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy, a conserved process in which cells break down and destroy old, damaged, or abnormal proteins and other substances in the cytoplasm through lysosomal degradation, occurs via autophagosome formation and aids in the maintenance of intracellular homeostasis. Autophagy is closely associated with hepatitis B virus (HBV) replication and assembly. Currently, HBV infection is still one of the most serious public health issues worldwide. The unavailability of satisfactory therapeutic strategies for chronic HBV infection indicates an urgent need to elucidate the mechanisms underlying the pathogenesis of HBV infection. Increasing evidence has shown that HBV not only possesses the ability to induce incomplete autophagy but also evades autophagic degradation, indicating that HBV utilizes or hijacks the autophagy machinery for its own replication. Therefore, autophagy might be a crucial target pathway for controlling HBV infection. The definite molecular mechanisms underlying the association between cellular autophagy and HBV replication require further clarification. In this review, we have summarized and discussed the latest findings on the interplay between autophagy and HBV replication.
Collapse
Affiliation(s)
- Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
- Correspondence: (Y.L.); (M.L.); Tel./Fax: +86-236-848-6780 (Y.L.); Tel.: +49-2017233530 (M.L.); +49-2017235929 (M.L.)
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Correspondence: (Y.L.); (M.L.); Tel./Fax: +86-236-848-6780 (Y.L.); Tel.: +49-2017233530 (M.L.); +49-2017235929 (M.L.)
| |
Collapse
|
46
|
Mani SKK, Yan B, Cui Z, Sun J, Utturkar S, Foca A, Fares N, Durantel D, Lanman N, Merle P, Kazemian M, Andrisani O. Restoration of RNA helicase DDX5 suppresses hepatitis B virus (HBV) biosynthesis and Wnt signaling in HBV-related hepatocellular carcinoma. Theranostics 2020; 10:10957-10972. [PMID: 33042264 PMCID: PMC7532671 DOI: 10.7150/thno.49629] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Rationale: RNA helicase DDX5 is downregulated during hepatitis B virus (HBV) replication, and poor prognosis HBV-related hepatocellular carcinoma (HCC). The aim of this study is to determine the mechanism and significance of DDX5 downregulation for HBV-driven HCC, and identify biologics to prevent DDX5 downregulation. Methods: Molecular approaches including immunoblotting, qRT-PCR, luciferase transfections, hepatosphere assays, Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), and RNA-seq were used with cellular models of HBV replication, HBV infection, and HBV-related liver tumors, as well as bioinformatic analyses of liver cancer cells from two independent cohorts. Results: We demonstrate that HBV infection induces expression of the proto-oncogenic miR17~92 and miR106b~25 clusters which target the downregulation of DDX5. Increased expression of these miRNAs is also detected in HBV-driven HCCs exhibiting reduced DDX5 mRNA. Stable DDX5 knockdown (DDX5KD) in HBV replicating hepatocytes increased viral replication, and resulted in hepatosphere formation, drug resistance, Wnt activation, and pluripotency gene expression. ATAC-seq of DDX5KD compared to DDX5 wild-type (WT) cells identified accessible chromatin regions enriched in regulation of Wnt signaling genes. RNA-seq analysis comparing WT versus DDX5KD cells identified enhanced expression of multiple genes involved in Wnt pathway. Additionally, expression of Disheveled, DVL1, a key regulator of Wnt pathway activation, was significantly higher in liver cancer cells with low DDX5 expression, from two independent cohorts. Importantly, inhibitors (antagomirs) to miR17~92 and miR106b~25 restored DDX5 levels, reduced DVL1 expression, and suppressed both Wnt activation and viral replication. Conclusion : DDX5 is a negative regulator of Wnt signaling and hepatocyte reprogramming in HCCs. Restoration of DDX5 levels by miR17~92 / miR106b~25 antagomirs in HBV-infected patients can be explored as both antitumor and antiviral strategy.
Collapse
|
47
|
Goto K, Nishitsuji H, Sugiyama M, Nishida N, Mizokami M, Shimotohno K. Orchestration of Intracellular Circuits by G Protein-Coupled Receptor 39 for Hepatitis B Virus Proliferation. Int J Mol Sci 2020; 21:ijms21165661. [PMID: 32784555 PMCID: PMC7460832 DOI: 10.3390/ijms21165661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV), a highly persistent pathogen causing hepatocellular carcinoma (HCC), takes full advantage of host machinery, presenting therapeutic targets. Here we aimed to identify novel druggable host cellular factors using the reporter HBV we have recently generated. In an RNAi screen of G protein-coupled receptors (GPCRs), GPCR39 (GPR39) appeared as the top hit to facilitate HBV proliferation. Lentiviral overexpression of active GPR39 proteins and an agonist enhanced HBV replication and transcriptional activities of viral promoters, inducing the expression of CCAAT/enhancer binding protein (CEBP)-β (CEBPB). Meanwhile, GPR39 was uncovered to activate the heat shock response, upregulating the expression of proviral heat shock proteins (HSPs). In addition, glioma-associated oncogene homologue signaling, a recently reported target of GPR39, was suggested to inhibit HBV replication and eventually suppress expression of CEBPB and HSPs. Thus, GPR39 provirally governed intracellular circuits simultaneously affecting the carcinopathogenetic gene functions. GPR39 and the regulated signaling networks would serve as antiviral targets, and strategies with selective inhibitors of GPR39 functions can develop host-targeted antiviral therapies preventing HCC.
Collapse
Affiliation(s)
- Kaku Goto
- Correspondence: ; Tel.: +81-47-372-3501; Fax: +81-47-375-4766
| | | | | | | | | | | |
Collapse
|
48
|
Zeng M, Liu W, Hu Y, Fu N. Sumoylation in liver disease. Clin Chim Acta 2020; 510:347-353. [PMID: 32710938 DOI: 10.1016/j.cca.2020.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Small ubiquitin-like modifiers (SUMO) are highly conserved post-translational modification proteins that are present in eukaryotic cells. They are extensively expressed in diverse tissues, including the heart, liver, kidney, and lungs. SUMOylation, a crucial post-translational modification, exhibits a strong effect on DNA repair, transcriptional regulation, protein stability and cell cycle progression. Increasing evidence has demonstrated that SUMOylation is closely related to the development of liver disease. Therefore, the effects of SUMOylation in liver diseases, such as Hepatocellular carcinoma (HCC), viral hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis and primary biliary cirrhosis (PBC) were reviewed in this study. Specifically, SUMO1 was found to promote the invasion and metastasis of HCC and may promote hypoxia-mediated P65 nuclear transport while accelerating the progression of HCC. In addition, SUMO1-modified centrosomal P4.1-associated protein (CAPA) was observed to be overexpressed in Hepatitis B virus (HBV)-related HCC in response to TNF-α stimulation. Furthermore, SUMOylated CAPA was found to induce HBX-triggered NF-κB activation. Considering the diversity and significance of SUMOylation, targeting of the SUMOylation pathway may serve as an effective approach in the treatment of liver diseases.
Collapse
Affiliation(s)
- Min Zeng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Wenhui Liu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Yang Hu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.
| | - Nian Fu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
49
|
Sartorius K, Swadling L, An P, Makarova J, Winkler C, Chuturgoon A, Kramvis A. The Multiple Roles of Hepatitis B Virus X Protein (HBx) Dysregulated MicroRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) and Immune Pathways. Viruses 2020; 12:v12070746. [PMID: 32664401 PMCID: PMC7412373 DOI: 10.3390/v12070746] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, the treatment of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) [HBV-HCC] relies on blunt tools that are unable to offer effective therapy for later stage pathogenesis. The potential of miRNA to treat HBV-HCC offer a more targeted approach to managing this lethal carcinoma; however, the complexity of miRNA as an ancillary regulator of the immune system remains poorly understood. This review examines the overlapping roles of HBx-dysregulated miRNA in HBV-HCC and immune pathways and seeks to demonstrate that specific miRNA response in immune cells is not independent of their expression in hepatocytes. This interplay between the two pathways may provide us with the possibility of using candidate miRNA to manipulate this interaction as a potential therapeutic option.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
- UKZN Gastrointestinal Cancer Research Centre, Durban 4041, South Africa
- Correspondence:
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E6BT, UK;
| | - Ping An
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Julia Makarova
- National Research University Higher School of Economics, Faculty of Biology and Biotechnology, 10100 Moscow, Russia;
| | - Cheryl Winkler
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Anil Chuturgoon
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa;
| |
Collapse
|
50
|
Zhang Y, Xi H, Nie X, Zhang P, Lan N, Lu Y, Liu J, Yuan W. Assessment of miR-212 and Other Biomarkers in the Diagnosis and Treatment of HBV-infection-related Liver Diseases. Curr Drug Metab 2020; 20:785-798. [PMID: 31608838 DOI: 10.2174/1389200220666191011120434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Our study aims to detect the sensitivity of the new biomarker miR-212 existing in serum exosomes along with other hepatocellular carcinoma biomarkers such as AFP (alpha-fetoprotein), CA125 (carbohydrate antigen-ca125), and Hbx protein in the diagnosis of HBV-related liver diseases. We also aim to study the roles of these biomarkers in the progression of chronic hepatitis B and provide scientific data to show the clinical value of these biomarkers. METHODS We selected 200 patients with HBV-infection (58 cases of chronic hepatitis B, 47 cases of hepatocellular carcinoma, 30 cases of compensatory phase cirrhosis, and 65 cases of decompensatory phase cirrhosis), 31 patients with primary liver cancer without HBV infection, and 70 healthy individuals as the control group. The expression level of serum AFP and CA125 was detected with electrochemiluminescence immunoassay. The expression level of the Hbx protein was detected with ELISA. Meanwhile, the expression level of miR-212 in serum was analyzed with RT-qPCR. We collected patients' clinical information following the Child-Pugh classification and MELD score criterion, and statistical analysis was made between the expression level of miR-212 and the collected clinical indexes. Lastly, we predicted the target genes of the miR-212 and its functions using bioinformatics methods such as cluster analysis and survival prediction. RESULTS Compared to the control group, the expression level of miR-212 in HBV infected patients was remarkably increased (P<0.05), especially between the HBV-infection Hepatocellular carcinoma group and the non-HBVinfection liver cancer group (P<0.05). The expression of miR-212 was increased in patients' Child-Pugh classification, MELD score, and TNM staging. Moreover, the sensitivity and specificity of miR-212 were superior to AFP, CA125, and HBx protein. CONCLUSION There is a linear relationship between disease progression and expression level of miR-212 in the serum of HBV infected patients. This demonstrates that miR-212 plays a significant role in liver diseases. miR-212 is expected to be a new biomarker used for the diagnosis and assessment of patients with HBV-infection-related liver diseases.
Collapse
Affiliation(s)
- Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Huaze Xi
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Xin Nie
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Ning Lan
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Ying Lu
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Jinrong Liu
- School of Life Science, Lanzhou University, 730000, Lanzhou, China
| | - Wenzhen Yuan
- The Department of Surgical Oncology, the First Hospital of Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|