1
|
Fang Z, Yu P, Zhu W. Development of mRNA rabies vaccines. Hum Vaccin Immunother 2024; 20:2382499. [PMID: 39069645 PMCID: PMC11290775 DOI: 10.1080/21645515.2024.2382499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Rabies, primarily transmitted to humans by dogs (accounting for 99% of cases). Once rabies occurs, its mortality rate is approximately 100%. Post-exposure prophylaxis (PEP) is critical for preventing the onset of rabies after exposure to rabid animals, and vaccination is a pivotal element of PEP. However, high costs and complex immunization protocols have led to poor adherence to rabies vaccinations. Consequently, there is an urgent need to develop new rabies vaccines that are safe, highly immunogenic, and cost-effective to improve compliance and effectively prevent rabies. In recent years, mRNA vaccines have made significant progress in the structural modification and optimization of delivery systems. Various mRNA vaccines are currently undergoing clinical trials, positioning them as viable alternatives to the traditional rabies vaccines. In this article, we discuss a novel mRNA rabies vaccine currently undergoing clinical and preclinical testing, and evaluate its potential to replace existing vaccines.
Collapse
Affiliation(s)
- Zixin Fang
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| | - Pengcheng Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| | - Wuyang Zhu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Phadke VK, Gromer DJ, Rebolledo PA, Graciaa DS, Wiley Z, Sherman AC, Scherer EM, Leary M, Girmay T, McCullough MP, Min JY, Capone S, Sommella A, Vitelli A, Retallick J, Seetahal J, Koller M, Tsong R, Neill-Gubitz H, Mulligan MJ, Rouphael NG. Safety and immunogenicity of a ChAd155-vectored rabies vaccine compared with inactivated, purified chick embryo cell rabies vaccine in healthy adults. Vaccine 2024; 42:126441. [PMID: 39418686 DOI: 10.1016/j.vaccine.2024.126441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Rabies is a zoonotic viral encephalitis that is endemic in many countries and confers a high mortality. Licensed vaccines require several doses to ensure efficacy. To investigate a logistically favorable approach, we assessed the safety and immunogenicity of ChAd155-RG, a novel investigational rabies vaccine using a replication-defective chimpanzee adenovirus vector. METHODS We conducted a first-in-human, phase 1, randomized, double-blind, dose-escalation trial comparing ChAd155-RG with a licensed inactivated vaccine (RabAvert) in healthy adults. Participants received either RabAvert at standard dosing or ChAd155-RG at a low dose for one immunization or a high dose for one or two immunizations. To assess safety, we evaluated reactogenicity, unsolicited adverse events, and thrombotic events. To measure immunogenicity, we measured rabies viral neutralizing antibody (VNA) titers and anti-ChAd155 neutralizing antibodies. RESULTS Mild to moderate systemic reactogenicity and transient lymphopenia and neutropenia were more common among recipients of ChAd155-RG compared with those who received RabAvert. No thrombotic events or serious adverse events were reported. Only the groups receiving RabAvert or two doses of high-dose ChAd155-RG achieved 100 % seroconversion, and seroprotection was most durable in the RabAvert group. Most participants had preexisting anti-vector antibodies, which were boosted by ChAd155-RG. Baseline and post-vaccination anti-vector antibody titers were negatively associated with post-vaccination rabies VNA titers. CONCLUSIONS In this phase 1 clinical trial, a novel rabies vaccine using a simian adenovirus vector was safe and tolerable, but generated lower, less durable rabies VNA titers than a standard inactivated rabies virus vaccine, which may be due to preexisting, anti-vector immunity.
Collapse
Affiliation(s)
- Varun K Phadke
- Hope Clinic, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| | - Daniel J Gromer
- Hope Clinic, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Paulina A Rebolledo
- Hope Clinic, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel S Graciaa
- Hope Clinic, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Zanthia Wiley
- Hope Clinic, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Amy C Sherman
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin M Scherer
- Hope Clinic, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Maranda Leary
- Hope Clinic, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Tigisty Girmay
- Hope Clinic, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Michele P McCullough
- Hope Clinic, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | - Jamie Retallick
- Rabies Laboratory, Kansas State Veterinary Diagnostic Laboratory (KSVDL), Kansas State University, Manhattan, KS, USA
| | - Janine Seetahal
- Rabies Laboratory, Kansas State Veterinary Diagnostic Laboratory (KSVDL), Kansas State University, Manhattan, KS, USA
| | - Mark Koller
- Rabies Laboratory, Kansas State Veterinary Diagnostic Laboratory (KSVDL), Kansas State University, Manhattan, KS, USA
| | | | | | - Mark J Mulligan
- New York University Grossman School of Medicine and New York University Vaccine Center, NY, New York, USA
| | - Nadine G Rouphael
- Hope Clinic, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Davis C, Singh D, Anderson K, Vardeu A, Kopycinski J, Bridges-Webb A, Trickett A, O’Brien S, Downs M, Kaur R, Kolenovska R, Bussey L, Rutkowski K, Sebastian S, Cargill T, Barnes E, Evans TG, Cicconi P. Effect of Prior ChAdOx1 COVID-19 Immunisation on T-Cell Responses to ChAdOx1-HBV. Vaccines (Basel) 2024; 12:644. [PMID: 38932373 PMCID: PMC11209196 DOI: 10.3390/vaccines12060644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
There are varying data concerning the effect of prior anti-vector immunity on the T-cell response induced by immunisation with an identical vectored vaccine containing a heterologous antigen insert. To determine whether prior exposure to ChAdOx1-SARS-CoV2 immunisation (Vaxzevria®) impacts magnitudes of antigen-specific T-cell responses elicited by subsequent administration of the same viral vector (encoding HBV antigens, ChAdOx1-HBV), healthy volunteers that had received Vaxzevria® (n = 15) or the Pfizer or Moderna mRNA COVID-19 vaccine (n = 11) between 10 and 18 weeks prior were recruited to receive a single intramuscular injection of ChAdOx1-HBV. Anti-ChAdOx1-neutralising antibody titers were determined, and vector or insert-specific T-cell responses were measured by a gamma-interferon ELISpot and intracellular cytokine staining (ICS) assay using multiparameter flow cytometry. Participants were followed for three months after the ChAdOx1-HBV injection, which was well-tolerated, and no dropouts occurred. The baseline ChAdOx1 neutralisation titers were higher in the Vaxzevria® cohort (median of 848) than in the mRNA cohort (median of 25). T-cell responses to HBV antigens, measured by ELISpot, were higher on day 28 in the mRNA group (p = 0.013) but were similar between groups on day 84 (p = 0.441). By ICS, these differences persisted at the last time point. There was no clear correlation between the baseline responses to the adenoviral hexon and the subsequent ELISpot responses. As vaccination within 3 months using the same viral vector backbone affected the insert-specific T-cell responses, a greater interval after prior adenoviral immunisation using heterologous antigens may be warranted in settings in which these cells play critical roles.
Collapse
Affiliation(s)
- Charlotte Davis
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Dave Singh
- Medicines Evaluation Unit Ltd., Manchester M23 9QZ, UK;
| | - Katie Anderson
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Antonella Vardeu
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Jakub Kopycinski
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | | | - Alice Trickett
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Susanne O’Brien
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Matthew Downs
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Randip Kaur
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Radka Kolenovska
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Louise Bussey
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Kathryn Rutkowski
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Sarah Sebastian
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Tamsin Cargill
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK (E.B.)
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK (E.B.)
| | - Thomas G. Evans
- Barinthus Biotherapeutics, Harwell, Didcot OX11 0DF, UK (A.V.); (M.D.)
| | - Paola Cicconi
- Centre for Clinical Vaccinology and Tropical Medicine (CCVTM), University of Oxford, Oxford OX1 2JD, UK;
| |
Collapse
|
4
|
Sood S, Matar MM, Kim J, Kinsella M, Rayavara K, Signer O, Henderson J, Rogers J, Chawla B, Narvaez B, Van Ry A, Kar S, Arnold A, Rice JS, Smith AM, Su D, Sparks J, Le Goff C, Boyer JD, Anwer K. Strong immunogenicity & protection in mice with PlaCCine: A COVID-19 DNA vaccine formulated with a functional polymer. Vaccine 2024; 42:1300-1310. [PMID: 38302336 DOI: 10.1016/j.vaccine.2024.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
DNA- based vaccines have demonstrated the potential as a safe and effective modality. PlaCCine, a DNA-based vaccine approach described subsequently relies on a synthetic DNA delivery system and is independent of virus or device. The synthetic functionalized polymer combined with DNA demonstrated stability over 12 months at 4C and for one month at 25C. Transfection efficiency compared to naked DNA increased by 5-15-fold in murine skeletal muscle. Studies of DNA vaccines expressing spike proteins from variants D614G (pVAC15), Delta (pVAC16), or a D614G + Delta combination (pVAC17) were conducted. Mice immunized intramuscular injection (IM) with pVAC15, pVAC16 or pVAC17 formulated with functionalized polymer and adjuvant resulted in induction of spike-specific humoral and cellular responses. Antibody responses were observed after one immunization. And endpoint IgG titers increased to greater than 1x 105 two weeks after the second injection. Neutralizing antibodies as determined by a pseudovirus competition assay were observed following vaccination with pVAC15, pVAC16 or pVAC17. Spike specific T cell immune responses were also observed following vaccination and flow cytometry analysis demonstrated the cellular immune responses included both CD4 and CD8 spike specific T cells. The immune responses in vaccinated mice were maintained for up to 14 months after vaccination. In an immunization and challenge study of K18 hACE2 transgenic mice pVAC15, pVAC16 and pVAC17 induced immune responses lead to decreased lung viral loads by greater than 90 % along with improved clinical score. These findings suggest that PlaCCine DNA vaccines are effective and stable and further development against emerging SARS-CoV-2 variants is warranted.
Collapse
Affiliation(s)
| | | | - Jessica Kim
- Imunon Inc., Lawrenceville, NJ, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | - Daishui Su
- Imunon Inc., Lawrenceville, NJ, United States
| | - Jeff Sparks
- Imunon Inc., Lawrenceville, NJ, United States
| | | | | | | |
Collapse
|
5
|
Manfrini N, Notarbartolo S, Grifantini R, Pesce E. SARS-CoV-2: A Glance at the Innate Immune Response Elicited by Infection and Vaccination. Antibodies (Basel) 2024; 13:13. [PMID: 38390874 PMCID: PMC10885122 DOI: 10.3390/antib13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to almost seven million deaths worldwide. SARS-CoV-2 causes infection through respiratory transmission and can occur either without any symptoms or with clinical manifestations which can be mild, severe or, in some cases, even fatal. Innate immunity provides the initial defense against the virus by sensing pathogen-associated molecular patterns and triggering signaling pathways that activate the antiviral and inflammatory responses, which limit viral replication and help the identification and removal of infected cells. However, temporally dysregulated and excessive activation of the innate immune response is deleterious for the host and associates with severe COVID-19. In addition to its defensive role, innate immunity is pivotal in priming the adaptive immune response and polarizing its effector function. This capacity is relevant in the context of both SARS-CoV-2 natural infection and COVID-19 vaccination. Here, we provide an overview of the current knowledge of the innate immune responses to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Samuele Notarbartolo
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- CheckmAb Srl, 20122 Milan, Italy
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
6
|
Soni M, Tulsian K, Barot P, Vyas VK. Recent Advances in Therapeutic Approaches Against Ebola Virus Infection. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:276-299. [PMID: 38279760 DOI: 10.2174/0127724344267452231206061944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Ebola virus (EBOV) is a genus of negative-strand RNA viruses belonging to the family Filoviradae that was first described in 1976 in the present-day Democratic Republic of the Congo. It has intermittently affected substantial human populations in West Africa and presents itself as a global health menace due to the high mortality rate of patients, high transmission rate, difficult patient management, and the emergence of complicated autoimmune disease-like conditions post-infection. OBJECTIVE EBOV or other EBOV-like species as a biochemical weapon pose a significant risk; hence, the need to develop both prophylactic and therapeutic medications to combat the virus is unquestionable. METHODS In this review work, we have compiled the literature pertaining to transmission, pathogenesis, immune response, and diagnosis of EBOV infection. We included detailed structural details of EBOV along with all the available therapeutics against EBOV disease. We have also highlighted current developments and recent advances in therapeutic approaches against Ebola virus disease (EVD). DISCUSSION The development of preventive vaccines against the virus is proving to be a successful effort as of now; however, problems concerning logistics, product stability, multi- dosing, and patient tracking are prominent in West Africa. Monoclonal antibodies that target EBOV proteins have also been developed and approved in the clinic; however, no small drug molecules that target these viral proteins have cleared clinical trials. An understanding of clinically approved vaccines and their shortcomings also serves an important purpose for researchers in vaccine design in choosing the right vector, antigen, and particular physicochemical properties that are critical for the vaccine's success against the virus across the world. CONCLUSION Our work brings together a comprehensive review of all available prophylactic and therapeutic medications developed and under development against the EBOV, which will serve as a guide for researchers in pursuing the most promising drug discovery strategies against the EBOV and also explore novel mechanisms of fighting against EBOV infection.
Collapse
Affiliation(s)
- Molisha Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Kartik Tulsian
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Parv Barot
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Wang S, Qin M, Xu L, Mu T, Zhao P, Sun B, Wu Y, Song L, Wu H, Wang W, Liu X, Li Y, Yang F, Xu K, He Z, Klein M, Wu K. Aerosol Inhalation of Chimpanzee Adenovirus Vectors (ChAd68) Expressing Ancestral or Omicron BA.1 Stabilized Pre-Fusion Spike Glycoproteins Protects Non-Human Primates against SARS-CoV-2 Infection. Vaccines (Basel) 2023; 11:1427. [PMID: 37766104 PMCID: PMC10535855 DOI: 10.3390/vaccines11091427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Current COVID-19 vaccines are effective countermeasures to control the SARS-CoV-2 virus pandemic by inducing systemic immune responses through intramuscular injection. However, respiratory mucosal immunization will be needed to elicit local sterilizing immunity to prevent virus replication in the nasopharynx, shedding, and transmission. In this study, we first compared the immunoprotective ability of a chimpanzee replication-deficient adenovirus-vectored COVID-19 vaccine expressing a stabilized pre-fusion spike glycoprotein from the ancestral SARS-CoV-2 strain Wuhan-Hu-1 (BV-AdCoV-1) administered through either aerosol inhalation, intranasal spray, or intramuscular injection in cynomolgus monkeys and rhesus macaques. Compared with intranasal administration, aerosol inhalation of BV-AdCoV-1 elicited stronger humoral and mucosal immunity that conferred excellent protection against SARS-CoV-2 infection in rhesus macaques. Importantly, aerosol inhalation induced immunity comparable to that obtained by intramuscular injection, although at a significantly lower dose. Furthermore, to address the problem of immune escape variants, we evaluated the merits of heterologous boosting with an adenovirus-based Omicron BA.1 vaccine (C68-COA04). Boosting rhesus macaques vaccinated with two doses of BV-AdCoV-1 with either the homologous or the heterologous C68-COA04 vector resulted in cross-neutralizing immunity against WT, Delta, and Omicron subvariants, including BA.4/5 stronger than that obtained by administering a bivalent BV-AdCoV-1/C68-COA04 vaccine. These results demonstrate that the administration of BV-AdCoV-1 or C68-COA04 via aerosol inhalation is a promising approach to prevent SARS-CoV-2 infection and transmission and curtail the pandemic spread.
Collapse
Affiliation(s)
- Shen Wang
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.)
| | - Mian Qin
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (M.Q.); (L.X.)
| | - Long Xu
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (M.Q.); (L.X.)
| | - Ting Mu
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (B.S.)
| | - Ping Zhao
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Bing Sun
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (B.S.)
| | - Yue Wu
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Lingli Song
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.)
| | - Han Wu
- Quality Control Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Weicheng Wang
- Pilot Production Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Xingwen Liu
- Quality Assurance Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China;
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650000, China; (Y.L.); (Z.H.)
| | - Michel Klein
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| | - Ke Wu
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| |
Collapse
|
8
|
Preclinical development of a vaccine-based immunotherapy regimen (VBIR) that induces potent and durable T cell responses to tumor-associated self-antigens. Cancer Immunol Immunother 2023; 72:287-300. [PMID: 35829790 DOI: 10.1007/s00262-022-03245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/16/2022] [Indexed: 01/26/2023]
Abstract
The development of therapeutic cancer vaccines remains an active area, although previous approaches have yielded disappointing results. We have built on lessons from previous cancer vaccine approaches and immune checkpoint inhibitor research to develop VBIR, a vaccine-based immunotherapy regimen. Assessment of various technologies led to selection of a heterologous vaccine using chimpanzee adenovirus (AdC68) for priming followed by boosts with electroporation of DNA plasmid to deliver T cell antigens to the immune system. We found that priming with AdC68 rapidly activates and expands antigen-specific T cells and does not encounter pre-existing immunity as occurs with the use of a human adenovirus vaccine. The AdC68 vector does, however, induce new anti-virus immune responses, limiting its use for boosting. To circumvent this, boosting with DNA encoding the same antigens can be done repetitively to augment and maintain vaccine responses. Using mouse and monkey models, we found that the activation of both CD4 and CD8 T cells was amplified by combination with anti-CTLA-4 and anti-PD-1 antibodies. These antibodies were administered subcutaneously to target their distribution to vaccination sites and to reduce systemic exposure which may improve their safety. VBIR can break tolerance and activate T cells recognizing tumor-associated self-antigens. This activation lasts more than a year after completing treatment in monkeys, and inhibits tumor growth to a greater degree than is observed using the individual components in mouse cancer models. These results have encouraged the testing of this combination regimen in cancer patients with the aim of increasing responses beyond current therapies.
Collapse
|
9
|
Gillot C, Favresse J, Maloteau V, Mathieux V, Dogné JM, Mullier F, Douxfils J. Resistance towards ChadOx1 nCoV-19 in an 83 Years Old Woman Experiencing Vaccine Induced Thrombosis with Thrombocytopenia Syndrome. Vaccines (Basel) 2022; 10:vaccines10122056. [PMID: 36560466 PMCID: PMC9781243 DOI: 10.3390/vaccines10122056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND in this report, we describe the case of an 83-year-old woman vaccinated with ChadOx1 nCoV-19 who developed a so-called vaccine-induced thrombosis with thrombocytopenia syndrome and who did not develop any antibodies against the spike protein of SARS-CoV-2 at 30 days following the administration of her first dose of ChadOx1 nCoV-19. Experimental section: two serum samples from the patient and 5 serum samples from 5 control individuals having received the two-dose regimen vaccination with ChadOx1 nCoV-19 were evaluated. In order to investigate the lack of response to the vaccination, a cell model was developed. This model permits to evaluate the interaction between responsive cells (A549) possessing the Coxsackievirus and Adenovirus Receptor (CAR), a defined concentration of ChadOx1 nCoV-19 and serial dilution of the patient or the control serum. The aim was to assess the impact of these sera on the production of the spike (S) protein induced by the transfection of the genetic material of ChadOx1 nCoV-19 into the A549 cells. The S protein is measured in the supernatant using an ELISA technique. RESULTS interestingly, the serum from the patient who developed the vaccine-induced thrombosis with thrombocytopenia syndrome impaired the production of S protein by the A549 cells transfected with ChadOx1 nCoV-19. This was not observed with the controls who did not interfere with the transfection of ChadOx1 nCoV-19 into A549 cells since the S protein is retrieved in the supernatant fraction. CONCLUSION based on the data coming from the clinical and the cell model information, we found a possible explanation on the absence of antibody response in our patient. She has, or has developed, characteristics that prevent the production of the S protein in contrast to control subjects. We were not able to investigate the entire mechanism behind this resistance which deserve further investigations. A link between this resistance and the development of the thrombosis with thrombocytopenia syndrome following vaccination with ChadOx1 nCoV-19 cannot be excluded.
Collapse
Affiliation(s)
- Constant Gillot
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
| | - Julien Favresse
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
- Department of Laboratory Medicine, Clinique St-Luc Bouge, B-5000 Namur, Belgium
| | - Vincent Maloteau
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
| | - Valérie Mathieux
- Service d’Hématologie, CHU UCL NAMUR-Site Sainte Elisabeth, Namur Thrombosis and Hemostasis Center, B-5000 Namur, Belgium
| | - Jean-Michel Dogné
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
| | - François Mullier
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
- Université Catholique de Louvain, CHU UCL NAMUR, Department of Laboratory Medicine, B-5300 Yvoir, Belgium
| | - Jonathan Douxfils
- Department of Pharmacy, Namur Research Institute for Life Sciences, Namur Thrombosis and Hemostasis Center, University of Namur, B-5000 Namur, Belgium
- Qualiblood sa, Research and Development Department, B-5000 Namur, Belgium
- Correspondence: ; Tel.: +32-81-72-43-91
| |
Collapse
|
10
|
Khan S, Salisch NC, Gil AI, Boedhoe S, Boer KFD, Serroyen J, Schuitemaker H, Zahn RC. Sequential use of Ad26-based vaccine regimens in NHP to induce immunity against different disease targets. NPJ Vaccines 2022; 7:146. [PMID: 36379957 PMCID: PMC9664441 DOI: 10.1038/s41541-022-00567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
The adenovirus (Ad)26 serotype–based vector vaccine Ad26.COV2.S has been used in millions of subjects for the prevention of COVID-19, but potentially elicits persistent anti-vector immunity. We investigated if vaccine-elicited immunity to Ad26 vector–based vaccines significantly influences antigen-specific immune responses induced by a subsequent vaccination with Ad26 vector–based vaccine regimens against different disease targets in non-human primates. A homologous Ad26 vector–based vaccination regimen or heterologous regimens (Ad26/Ad35 or Ad26/Modified Vaccinia Ankara [MVA]) induced target pathogen–specific immunity in animals, but also persistent neutralizing antibodies and T-cell responses against the vectors. However, subsequent vaccination (interval, 26–57 weeks) with homologous and heterologous Ad26 vector–based vaccine regimens encoding different target pathogen immunogens did not reveal consistent differences in humoral or cellular immune responses against the target pathogen, as compared to responses in naïve animals. These results support the sequential use of Ad26 vector–based vaccine regimens targeting different diseases.
Collapse
|
11
|
Khan MS, Kim E, McPherson A, Weisel FJ, Huang S, Kenniston TW, Percivalle E, Cassaniti I, Baldanti F, Meisel M, Gambotto A. Adenovirus-vectored SARS-CoV-2 vaccine expressing S1-N fusion protein. Antib Ther 2022; 5:177-191. [PMID: 35967905 PMCID: PMC9372896 DOI: 10.1093/abt/tbac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Additional COVID-19 vaccines that are safe and immunogenic are needed for global vaccine equity. Here, we developed a recombinant type 5 adenovirus vector encoding for the SARS-CoV-2 S1 subunit antigen and nucleocapsid as a fusion protein (Ad5.SARS-CoV-2-S1N). A single subcutaneous immunization with Ad5.SARS-CoV-2-S1N induced a similar humoral response, along with a significantly higher S1-specific cellular response, as a recombinant type 5 adenovirus vector encoding for S1 alone (Ad5.SARS-CoV-2-S1). Immunogenicity was improved by homologous prime-boost vaccination, and further improved through intramuscular heterologous prime-boost vaccination using subunit recombinant S1 protein. Priming with low dose (1 × 1010 v.p.) of Ad5.SARS-CoV-2-S1N and boosting with either wild-type recombinant rS1 or B.1.351 recombinant rS1 induced a robust neutralizing response, which was sustained against Beta and Gamma SARS-CoV-2 variants. This novel Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity in mice and supports the further development of COVID-19-based vaccines incorporating the nucleoprotein as a target antigen.
Collapse
Affiliation(s)
- Muhammad S Khan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Eun Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alex McPherson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Florian J Weisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shaohua Huang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Thomas W Kenniston
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Division of Infectious Disease, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Abstract
Cancer is one of the leading causes of death in the world, which is the second after heart diseases. Adenoviruses (Ads) have become the promise of new therapeutic strategy for cancer treatment. The objective of this review is to discuss current advances in the applications of adenoviral vectors in cancer therapy. Adenoviral vectors can be engineered in different ways so as to change the tumor microenvironment from cold tumor to hot tumor, including; 1. by modifying Ads to deliver transgenes that codes for tumor suppressor gene (p53) and other proteins whose expression result in cell cycle arrest 2. Ads can also be modified to express tumor specific antigens, cytokines, and other immune-modulatory molecules. The other strategy to use Ads in cancer therapy is to use oncolytic adenoviruses, which directly kills tumor cells. Gendicine and Advexin are replication-defective recombinant human p53 adenoviral vectors that have been shown to be effective against several types of cancer. Gendicine was approved for treatment of squamous cell carcinoma of the head and neck by the Chinese Food and Drug Administration (FDA) agency in 2003 as a first-ever gene therapy product. Oncorine and ONYX-015 are oncolytic adenoviral vectors that have been shown to be effective against some types of cancer. The Chiness FDA agency has also approved Oncorin for the treatment of head and neck cancer. Ads that were engineered to express immune-stimulatory cytokines and other immune-modulatory molecules such as TNF-α, IL-2, BiTE, CD40L, 4-1BBL, GM-CSF, and IFN have shown promising outcome in treatment of cancer. Ads can also improve therapeutic efficacy of immune checkpoint inhibitors and adoptive cell therapy (Chimeric Antigen Receptor T Cells). In addition, different replication-deficient adenoviral vectors (Ad5-CEA, Ad5-PSA, Ad-E6E7, ChAdOx1-MVA and Ad-transduced Dendritic cells) that were tested as anticancer vaccines have been demonstrated to induce strong antitumor immune response. However, the use of adenoviral vectors in gene therapy is limited by several factors such as pre-existing immunity to adenoviral vectors and high immunogenicity of the viruses. Thus, innovative strategies must be continually developed so as to overcome the obstacles of using adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Sintayehu Tsegaye Tseha
- Lecturer of Biomedical Sciences, Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Gutiérrez-Álvarez J, Honrubia JM, Sanz-Bravo A, González-Miranda E, Fernández-Delgado R, Rejas MT, Zúñiga S, Sola I, Enjuanes L. Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice. Proc Natl Acad Sci U S A 2021; 118:e2111075118. [PMID: 34686605 PMCID: PMC8639359 DOI: 10.1073/pnas.2111075118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Defective Viruses/genetics
- Defective Viruses/immunology
- Female
- Gene Deletion
- Genes, env
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- RNA, Viral/administration & dosage
- RNA, Viral/genetics
- RNA, Viral/immunology
- Replicon
- Vaccines, DNA
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virulence/genetics
- Virulence/immunology
Collapse
Affiliation(s)
- J Gutiérrez-Álvarez
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - J M Honrubia
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - A Sanz-Bravo
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - E González-Miranda
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - R Fernández-Delgado
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - M T Rejas
- Electron Microscopy Service, Centro de Biología Molecular "Severo Ochoa" (CBMSO-CSIC-UAM), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - S Zúñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - I Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain
| | - L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Universidad Autónoma de Madrid 28049 Madrid, Spain;
| |
Collapse
|
14
|
Heinz FX, Stiasny K. Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. NPJ Vaccines 2021; 6:104. [PMID: 34400651 PMCID: PMC8368295 DOI: 10.1038/s41541-021-00369-6] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 vaccines were developed with an unprecedented pace since the beginning of the pandemic. Several of them have reached market authorization and mass production, leading to their global application on a large scale. This enormous progress was achieved with fundamentally different vaccine technologies used in parallel. mRNA, adenoviral vector as well as inactivated whole-virus vaccines are now in widespread use, and a subunit vaccine is in a final stage of authorization. They all rely on the native viral spike protein (S) of SARS-CoV-2 for inducing potently neutralizing antibodies, but the presentation of this key antigen to the immune system differs substantially between the different categories of vaccines. In this article, we review the relevance of structural modifications of S in different vaccines and the different modes of antigen expression after vaccination with genetic adenovirus-vector and mRNA vaccines. Distinguishing characteristics and unknown features are highlighted in the context of protective antibody responses and reactogenicity of vaccines.
Collapse
Affiliation(s)
- Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Vaccine Design and Vaccination Strategies against Rickettsiae. Vaccines (Basel) 2021; 9:vaccines9080896. [PMID: 34452021 PMCID: PMC8402588 DOI: 10.3390/vaccines9080896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
Rickettsioses are febrile, potentially lethal infectious diseases that are a serious health threat, especially in poor income countries. The causative agents are small obligate intracellular bacteria, rickettsiae. Rickettsial infections are emerging worldwide with increasing incidence and geographic distribution. Nonetheless, these infections are clearly underdiagnosed because methods of diagnosis are still limited and often not available. Another problem is that the bacteria respond to only a few antibiotics, so delayed or wrong antibiotic treatment often leads to a more severe outcome of the disease. In addition to that, the development of antibiotic resistance is a serious threat because alternative antibiotics are missing. For these reasons, prophylactic vaccines against rickettsiae are urgently needed. In the past years, knowledge about protective immunity against rickettsiae and immunogenic determinants has been increasing and provides a basis for vaccine development against these bacterial pathogens. This review provides an overview of experimental vaccination approaches against rickettsial infections and perspectives on vaccination strategies.
Collapse
|
16
|
Antigen Presentation of mRNA-Based and Virus-Vectored SARS-CoV-2 Vaccines. Vaccines (Basel) 2021; 9:vaccines9080848. [PMID: 34451973 PMCID: PMC8402319 DOI: 10.3390/vaccines9080848] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which has reached pandemic proportions. A number of effective vaccines have been produced, including mRNA vaccines and viral vector vaccines, which are now being implemented on a large scale in order to control the pandemic. The mRNA vaccines are composed of viral Spike S1 protein encoding mRNA incorporated in a lipid nanoparticle and stabilized by polyethylene glycol (PEG). The mRNA vaccines are novel in many respects, including cellular uptake and the intracellular routing, processing, and secretion of the viral protein. Viral vector vaccines have incorporated DNA sequences, encoding the SARS-CoV-2 Spike protein into (attenuated) adenoviruses. The antigen presentation routes in MHC class I and class II, in relation to the induction of virus-neutralizing antibodies and cytotoxic T-lymphocytes, will be reviewed. In rare cases, mRNA vaccines induce unwanted immune mediated side effects. The mRNA-based vaccines may lead to an anaphylactic reaction. This reaction may be triggered by PEG. The intracellular routing of PEG and potential presentation in the context of CD1 will be discussed. Adenovirus vector-based vaccines have been associated with thrombocytopenic thrombosis events. The anti-platelet factor 4 antibodies found in these patients could be generated due to conformational changes of relevant epitopes presented to the immune system.
Collapse
|
17
|
Li M, Guo J, Lu S, Zhou R, Shi H, Shi X, Cheng L, Liang Q, Liu H, Wang P, Wang N, Wang Y, Fu L, Xing M, Wang R, Ju B, Liu L, Lau SY, Jia W, Tong X, Yuan L, Guo Y, Qi H, Zhang Q, Huang Z, Chen H, Zhang Z, Chen Z, Peng X, Zhou D, Zhang L. Single-Dose Immunization With a Chimpanzee Adenovirus-Based Vaccine Induces Sustained and Protective Immunity Against SARS-CoV-2 Infection. Front Immunol 2021; 12:697074. [PMID: 34262569 PMCID: PMC8273614 DOI: 10.3389/fimmu.2021.697074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
The development of a safe and effective vaccine against SARS-CoV-2, the causative agent of pandemic coronavirus disease-2019 (COVID-19), is a global priority. Here, we aim to develop novel SARS-CoV-2 vaccines based on a derivative of less commonly used rare adenovirus serotype AdC68 vector. Three vaccine candidates were constructed expressing either the full-length spike (AdC68-19S) or receptor-binding domain (RBD) with two different signal sequences (AdC68-19RBD and AdC68-19RBDs). Single-dose intramuscular immunization induced robust and sustained binding and neutralizing antibody responses in BALB/c mice up to 40 weeks after immunization, with AdC68-19S being superior to AdC68-19RBD and AdC68-19RBDs. Importantly, immunization with AdC68-19S induced protective immunity against high-dose challenge with live SARS-CoV-2 in a golden Syrian hamster model of SARS-CoV-2 infection. Vaccinated animals demonstrated dramatic decreases in viral RNA copies and infectious virus in the lungs, as well as reduced lung pathology compared to the control animals. Similar protective effects were also found in rhesus macaques. Taken together, these results confirm that AdC68-19S can induce protective immune responses in experimental animals, meriting further development toward a human vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Mingxi Li
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Jingao Guo
- University of Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, Shanghai, China
| | - Shuaiyao Lu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Runhong Zhou
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongyang Shi
- University of Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences, Shanghai, China
| | - Xuanling Shi
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Qingtai Liang
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Hongqi Liu
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nan Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yifeng Wang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lili Fu
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ruoke Wang
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Li Liu
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Siu-Ying Lau
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenxu Jia
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China.,Teaching Center for Writing and Communication, Tsinghua University, Beijing, China
| | - Xin Tong
- Walvax Biotechnology Co., Ltd., Kunming, China
| | - Lin Yuan
- Walvax Biotechnology Co., Ltd., Kunming, China
| | - Yong Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China.,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Qi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Zhen Huang
- Walvax Biotechnology Co., Ltd., Kunming, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaozhong Peng
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.,State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Linqi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Daussy CF, Pied N, Wodrich H. Understanding Post Entry Sorting of Adenovirus Capsids; A Chance to Change Vaccine Vector Properties. Viruses 2021; 13:1221. [PMID: 34202573 PMCID: PMC8310329 DOI: 10.3390/v13071221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
Adenovirus vector-based genetic vaccines have emerged as a powerful strategy against the SARS-CoV-2 health crisis. This success is not unexpected because adenoviruses combine many desirable features of a genetic vaccine. They are highly immunogenic and have a low and well characterized pathogenic profile paired with technological approachability. Ongoing efforts to improve adenovirus-vaccine vectors include the use of rare serotypes and non-human adenoviruses. In this review, we focus on the viral capsid and how the choice of genotypes influences the uptake and subsequent subcellular sorting. We describe how understanding capsid properties, such as stability during the entry process, can change the fate of the entering particles and how this translates into differences in immunity outcomes. We discuss in detail how mutating the membrane lytic capsid protein VI affects species C viruses' post-entry sorting and briefly discuss if such approaches could have a wider implication in vaccine and/or vector development.
Collapse
Affiliation(s)
| | | | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France; (C.F.D.); (N.P.)
| |
Collapse
|
19
|
Stephens LM, Varga SM. Considerations for a Respiratory Syncytial Virus Vaccine Targeting an Elderly Population. Vaccines (Basel) 2021; 9:vaccines9060624. [PMID: 34207770 PMCID: PMC8228432 DOI: 10.3390/vaccines9060624] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is most commonly associated with acute lower respiratory tract infections in infants and children. However, RSV also causes a high disease burden in the elderly that is often under recognized. Adults >65 years of age account for an estimated 80,000 RSV-associated hospitalizations and 14,000 deaths in the United States annually. RSV infection in aged individuals can result in more severe disease symptoms including pneumonia and bronchiolitis. Given the large disease burden caused by RSV in the aged, this population remains an important target for vaccine development. Aging results in lowered immune responsiveness characterized by impairments in both innate and adaptive immunity. This immune senescence poses a challenge when developing a vaccine targeting elderly individuals. An RSV vaccine tailored towards an elderly population will need to maximize the immune response elicited in order to overcome age-related defects in the immune system. In this article, we review the hurdles that must be overcome to successfully develop an RSV vaccine for use in the elderly, and discuss the vaccine candidates currently being tested in this highly susceptible population.
Collapse
Affiliation(s)
- Laura M. Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
20
|
COVID-19 Vaccines Based on Adenovirus Vectors. Trends Biochem Sci 2021; 46:429-430. [PMID: 33810926 PMCID: PMC7955943 DOI: 10.1016/j.tibs.2021.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
|
21
|
Xiao P, Dienger-Stambaugh K, Chen X, Wei H, Phan S, Beavis AC, Singh K, Adhikary NRD, Tiwari P, Villinger F, He B, Spearman P. Parainfluenza Virus 5 Priming Followed by SIV/HIV Virus-Like-Particle Boosting Induces Potent and Durable Immune Responses in Nonhuman Primates. Front Immunol 2021; 12:623996. [PMID: 33717130 PMCID: PMC7946978 DOI: 10.3389/fimmu.2021.623996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/13/2021] [Indexed: 11/26/2022] Open
Abstract
The search for a preventive vaccine against HIV infection remains an ongoing challenge, indicating the need for novel approaches. Parainfluenza virus 5 (PIV5) is a paramyxovirus replicating in the upper airways that is not associated with any animal or human pathology. In animal models, PIV5-vectored vaccines have shown protection against influenza, RSV, and other human pathogens. Here, we generated PIV5 vaccines expressing HIV envelope (Env) and SIV Gag and administered them intranasally to macaques, followed by boosting with virus-like particles (VLPs) containing trimeric HIV Env. Moreover, we compared the immune responses generated by PIV5-SHIV prime/VLPs boost regimen in naïve vs a control group in which pre-existing immunity to the PIV5 vector was established. We demonstrate for the first time that intranasal administration of PIV5-based HIV vaccines is safe, well-tolerated and immunogenic, and that boosting with adjuvanted trimeric Env VLPs enhances humoral and cellular immune responses. The PIV5 prime/VLPs boost regimen induced robust and durable systemic and mucosal Env-specific antibody titers with functional activities including ADCC and neutralization. This regimen also induced highly polyfunctional antigen-specific T cell responses. Importantly, we show that diminished responses due to PIV5 pre-existing immunity can be overcome in part with VLP protein boosts. Overall, these results establish that PIV5-based HIV vaccine candidates are promising and warrant further investigation including moving on to primate challenge studies.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Cattle
- Cell Line
- Gene Products, gag/administration & dosage
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- HIV-1/genetics
- HIV-1/immunology
- Host-Pathogen Interactions
- Immunity, Cellular
- Immunity, Humoral
- Immunity, Mucosal
- Immunogenicity, Vaccine
- Macaca mulatta
- Male
- Nasal Mucosa/immunology
- Nasal Mucosa/virology
- Parainfluenza Virus 5/genetics
- Parainfluenza Virus 5/immunology
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Virion/genetics
- Virion/immunology
- env Gene Products, Human Immunodeficiency Virus/administration & dosage
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Krista Dienger-Stambaugh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| | - Xuemin Chen
- Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Huiling Wei
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Shannon Phan
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Ashley C. Beavis
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Karnail Singh
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| | - Nihar R. Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Pooja Tiwari
- Wallace H Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States
| | - Biao He
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Paul Spearman
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
22
|
Mellet J, Pepper MS. A COVID-19 Vaccine: Big Strides Come with Big Challenges. Vaccines (Basel) 2021; 9:vaccines9010039. [PMID: 33440895 PMCID: PMC7827578 DOI: 10.3390/vaccines9010039] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/29/2023] Open
Abstract
As of 8 January 2021, there were 86,749,940 confirmed coronavirus disease 2019 (COVID-19) cases and 1,890,342 COVID-19-related deaths worldwide, as reported by the World Health Organization (WHO). In order to address the COVID-19 pandemic by limiting transmission, an intense global effort is underway to develop a vaccine against SARS-CoV-2. The development of a safe and effective vaccine usually requires several years of pre-clinical and clinical stages of evaluation and requires strict regulatory approvals before it can be manufactured in bulk and distributed. Since the global impact of COVID-19 is unprecedented in the modern era, the development and testing of a new vaccine are being expedited. Given the high-level of attrition during vaccine development, simultaneous testing of multiple candidates increases the probability of finding one that is effective. Over 200 vaccines are currently in development, with over 60 candidate vaccines being tested in clinical trials. These make use of various platforms and are at different stages of development. This review discusses the different phases of vaccine development and the various platforms in use for candidate COVID-19 vaccines, including their progress to date. The potential challenges once a vaccine becomes available are also addressed.
Collapse
|
23
|
Agnolon V, Kiseljak D, Wurm MJ, Wurm FM, Foissard C, Gallais F, Wehrle S, Muñoz-Fontela C, Bellanger L, Correia BE, Corradin G, Spertini F. Designs and Characterization of Subunit Ebola GP Vaccine Candidates: Implications for Immunogenicity. Front Immunol 2020; 11:586595. [PMID: 33250896 PMCID: PMC7672190 DOI: 10.3389/fimmu.2020.586595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
The humoral responses of Ebola virus (EBOV) survivors mainly target the surface glycoprotein GP, and anti-GP neutralizing antibodies have been associated with protection against EBOV infection. In order to elicit protective neutralizing antibodies through vaccination a native-like conformation of the antigen is required. We therefore engineered and expressed in CHO cells several GP variants from EBOV (species Zaire ebolavirus, Mayinga variant), including a soluble GP ΔTM, a mucin-like domain-deleted GP ΔTM-ΔMUC, as well as two GP ΔTM-ΔMUC variants with C-terminal trimerization motifs in order to favor their native trimeric conformation. Inclusion of the trimerization motifs resulted in proteins mimicking GP metastable trimer and showing increased stability. The mucin-like domain appeared not to be critical for the retention of the native conformation of the GP protein, and its removal unmasked several neutralizing epitopes, especially in the trimers. The soluble GP variants inhibited mAbs neutralizing activity in a pseudotype transduction assay, further confirming the proteins' structural integrity. Interestingly, the trimeric GPs, a native-like GP complex, showed stronger affinity for antibodies raised by natural infection in EBOV disease survivors rather than for antibodies raised in volunteers that received the ChAd3-EBOZ vaccine. These results support our hypothesis that neutralizing antibodies are preferentially induced when using a native-like conformation of the GP antigen. The soluble trimeric recombinant GP proteins we developed represent a novel and promising strategy to develop prophylactic vaccines against EBOV and other filoviruses.
Collapse
Affiliation(s)
- Valentina Agnolon
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | | | - Florian M Wurm
- ExcellGene SA, Monthey, Switzerland.,Faculty of Life Sciences, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - Charlotte Foissard
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Fabrice Gallais
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Sarah Wehrle
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - César Muñoz-Fontela
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research (DZIF), Partner site Hamburg, Hamburg, Germany
| | - Laurent Bellanger
- Université Paris Saclay, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Bruno Emanuel Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Switzerland
| | - Giampietro Corradin
- Department of Biochemistry, Université de Lausanne (UNIL), Epalinges, Switzerland
| | - François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
24
|
Investigating the Effect of Encapsulation Processing Parameters on the Viability of Therapeutic Viruses in Electrospraying. Pharmaceutics 2020; 12:pharmaceutics12040388. [PMID: 32344667 PMCID: PMC7238258 DOI: 10.3390/pharmaceutics12040388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
The ability of viruses to introduce genetic material into cells can be usefully exploited in a variety of therapies and also vaccination. Encapsulating viruses to limit inactivation by the immune system before reaching the desired target and allowing for controlled release is a promising strategy of delivery. Conventional encapsulation methods, however, can significantly reduce infectivity. The aim of this study was to investigate electrospraying as an alternative encapsulation technique. Two commonly used therapeutic viruses, adenovirus (Ad) and modified vaccinia Ankara (MVA), were selected. First, solutions containing the viruses were electrosprayed in a single needle configuration at increasing voltages to examine the impact of the electric field. Second, the effect of exposing the viruses to pure organic solvents was investigated and compared to that occurring during coaxial electrospraying. Infectivity was determined by measuring the luminescence produced from lysed A549 cells after incubation with treated virus. Neither Ad nor MVA exhibited any significant loss in infectivity when electrosprayed within the range of electrospraying parameters relevant for encapsulation. A significant decrease in infectivity was only observed when MVA was electrosprayed at the highest voltage, 24 kV, and when MVA and Ad were exposed to selected pure organic solvents. Thus, it was concluded that electrospraying would be a viable method for virus encapsulation.
Collapse
|
25
|
Bliss CM, Parsons AJ, Nachbagauer R, Hamilton JR, Cappuccini F, Ulaszewska M, Webber JP, Clayton A, Hill AV, Coughlan L. Targeting Antigen to the Surface of EVs Improves the In Vivo Immunogenicity of Human and Non-human Adenoviral Vaccines in Mice. Mol Ther Methods Clin Dev 2020; 16:108-125. [PMID: 31934599 PMCID: PMC6953706 DOI: 10.1016/j.omtm.2019.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022]
Abstract
Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pre-existing immunity to commonly used human adenovirus serotype 5 (Ad5), vectors based on rare species or non-human Ads are being developed. However, these vectors often exhibit reduced potency compared with Ad5, necessitating the use of innovative approaches to augment the immunogenicity of the encoded antigen (Ag). To achieve this, we engineered model Ag, enhanced green fluorescent protein (EGFP), for targeting to the surface of host-derived extracellular vesicles (EVs), namely exosomes. Exosomes are nano-sized EVs that play important roles in cell-to-cell communication and in regulating immune responses. Directed targeting of Ag to the surface of EVs/exosomes is achieved by "exosome display," through fusion of Ag to the C1C2 domain of lactadherin, a protein highly enriched in exosomes. Herein, we engineered chimpanzee adenovirus ChAdOx1 and Ad5-based vaccines encoding EGFP, or EGFP targeted to EVs (EGFP_C1C2), and compared vaccine immunogenicity in mice. We determined that exosome display substantially increases Ag-specific humoral immunity following intramuscular and intranasal vaccination, improving the immunological potency of both ChAdOx1 and Ad5. We propose that this Ag-engineering approach could increase the immunogenicity of diverse Ad vectors that exhibit desirable manufacturing characteristics, but currently lack the potency of Ad5.
Collapse
Affiliation(s)
- Carly M. Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrea J. Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jennifer R. Hamilton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Federica Cappuccini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Jason P. Webber
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 2XN, UK
| | - Aled Clayton
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 2XN, UK
| | - Adrian V.S. Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
26
|
Matchett WE, Malewana GBR, Mudrick H, Medlyn MJ, Barry MA. Genetic Adjuvants in Replicating Single-Cycle Adenovirus Vectors Amplify Systemic and Mucosal Immune Responses against HIV-1 Envelope. Vaccines (Basel) 2020; 8:E64. [PMID: 32024265 PMCID: PMC7158672 DOI: 10.3390/vaccines8010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Most infections occur at mucosal surfaces. Providing a barrier of protection at these surfaces may be a useful strategy to combat the earliest events in infection when there are relatively few pathogens to address. The majority of vaccines are delivered systemically by the intramuscular (IM) route. While IM vaccination can drive mucosal immune responses, mucosal immunization at intranasal (IN) or oral sites can lead to better immune responses at mucosal sites of viral entry. In macaques, IN immunization with replicating single-cycle adenovirus (SC-Ads) and protein boosts generated favorable mucosal immune responses. However, there was an apparent "distance effect" in generating mucosal immune responses. IN immunization generated antibodies against HIV envelope (env) nearby in the saliva, but weaker responses in samples collected from the distant vaginal samples. To improve on this, we tested here if SC-Ads expressing genetic adjuvants could be used to amplify antibody responses in distant vaginal samples when they are codelivered with SC-Ads expressing clade C HIV env immunogen. SC-Ads env 1157 was coadministered with SC-Ads expressing 4-1BBL, granulocyte macrophage colony-stimulating factor (GMCSF), IL-21, or Clostridoides difficile (C. diff.) toxin fragments by IN or IM routes. These data show that vaginal antibody responses were markedly amplified after a single immunization by the IN or IM routes, with SC-Ad expressing HIV env if this vaccine is complemented with SC-Ads expressing genetic adjuvants. Furthermore, the site and combination of adjuvants appear to "tune" these antibody responses towards an IgA or IgG isotype bias. Boosting these priming SC-Ad responses with another SC-Ad or with SOSIP native-like env proteins markedly amplifies env antibody levels in vaginal washes. Together, this data may be useful in informing the choice of route of delivery adenovirus and peptide vaccines against HIV-1.
Collapse
Affiliation(s)
- William E. Matchett
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics (MPET) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Flies AS, Flies EJ, Fox S, Gilbert A, Johnson SR, Liu GS, Lyons AB, Patchett AL, Pemberton D, Pye RJ. An oral bait vaccination approach for the Tasmanian devil facial tumor diseases. Expert Rev Vaccines 2020; 19:1-10. [PMID: 31971036 DOI: 10.1080/14760584.2020.1711058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The Tasmanian devil (Sarcophilus harrisii) is the largest extant carnivorous marsupial. Since 1996, its population has declined by 77% primarily due to a clonal transmissible tumor, known as devil facial tumor (DFT1) disease. In 2014, a second transmissible devil facial tumor (DFT2) was discovered. DFT1 and DFT2 are nearly 100% fatal.Areas covered: We review DFT control approaches and propose a rabies-style oral bait vaccine (OBV) platform for DFTs. This approach has an extensive safety record and was a primary tool in large-scale rabies virus elimination from wild carnivores across diverse landscapes. Like rabies virus, DFTs are transmitted by oral contact, so immunizing the oral cavity and stimulating resident memory cells could be advantageous. Additionally, exposing infected devils that already have tumors to OBVs could serve as an oncolytic virus immunotherapy. The primary challenges may be identifying appropriate DFT-specific antigens and optimization of field delivery methods.Expert opinion: DFT2 is currently found on a peninsula in southern Tasmania, so an OBV that could eliminate DFT2 should be the priority for this vaccine approach. Translation of an OBV approach to control DFTs will be challenging, but the approach is feasible for combatting ongoing and future disease threats.
Collapse
Affiliation(s)
- Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Emily J Flies
- School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Sandy Bay, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, DPIPWE, Hobart, Australia.,Toledo Zoo, Toledo, OH, USA
| | - Amy Gilbert
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, Fort Collins, CO, USA
| | - Shylo R Johnson
- National Wildlife Research Center, USDA, APHIS, Wildlife Services, Fort Collins, CO, USA
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - A Bruce Lyons
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Amanda L Patchett
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | | | - Ruth J Pye
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
28
|
Neukirch L, Fougeroux C, Andersson AMC, Holst PJ. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Rev Vaccines 2020; 19:25-41. [PMID: 31889453 DOI: 10.1080/14760584.2020.1711054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Despite their appeal as vaccine vectors, adenoviral vectors are yet unable to induce protective immune responses against some weakly immunogenic antigens. Additionally, the maximum doses of adenovirus-based vaccines are limited by vector-induced toxicity, causing vector elimination and diminished immune responses against the target antigen. In order to increase immune responses to the transgene, while maintaining a moderate vector dose, new technologies for improved transgene presentation have been developed for adenoviral vaccine vectors.Areas covered: This review provides an overview of different genetic-fusion adjuvants that aim to improve antigen presentation in the context of adenoviral vector-based vaccines. The influence on both T cell and B cell responses are discussed, with a main focus on two technologies: MHC class II-associated invariant chain and virus-like-vaccines.Expert opinion: Different strategies have been tested to improve adenovirus-based vaccinations with varying degrees of success. The reviewed genetic adjuvants were designed to increase antigen processing and MHC presentation, or promote humoral immune responses with an improved conformational antigen display. While none of the introduced technologies is universally applicable, this review shall give an overview to identify potential improvements for future vaccination approaches.
Collapse
Affiliation(s)
- Lasse Neukirch
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Carola Andersson
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
29
|
Xu J, Jia W, Wang P, Zhang S, Shi X, Wang X, Zhang L. Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerg Microbes Infect 2019; 8:841-856. [PMID: 31169078 PMCID: PMC6567157 DOI: 10.1080/22221751.2019.1624482] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV) has spread through 27 countries and infected more than 2,200 people since its first outbreak in Saudi Arabia in 2012. The high fatality rate (35.4%) of this novel coronavirus and its persistent wide spread infectiousness in animal reservoirs have generated tremendous global public health concern. However, no licensed therapeutic agents or vaccines against MERS-CoV are currently available and only a limited few have entered clinical trials. Among all the potential targets of MERS-CoV, the spike glycoprotein (S) has been the most well-studied due to its critical role in mediating viral entry and in inducing a protective antibody response in infected individuals. The most notable studies include the recent discoveries of monoclonal antibodies and development of candidate vaccines against the S glycoprotein. Structural characterization of MERS-CoV S protein bound with these monoclonal antibodies has provided insights into the mechanisms of humoral immune responses against MERS-CoV infection. The current review aims to highlight these developments and discuss possible hurdles and strategies to translate these discoveries into ultimate medical interventions against MERS-CoV infection.
Collapse
Affiliation(s)
- Jiuyang Xu
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Wenxu Jia
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Pengfei Wang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Senyan Zhang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Xuanling Shi
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| | - Xinquan Wang
- b Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy , Tsinghua University School of Life Sciences , Beijing , People's Republic of China
| | - Linqi Zhang
- a Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences , Tsinghua University School of Medicine , Beijing , People's Republic of China
| |
Collapse
|
30
|
Foss S, Bottermann M, Jonsson A, Sandlie I, James LC, Andersen JT. TRIM21-From Intracellular Immunity to Therapy. Front Immunol 2019; 10:2049. [PMID: 31555278 PMCID: PMC6722209 DOI: 10.3389/fimmu.2019.02049] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Tripartite motif containing-21 (TRIM21) is a cytosolic ubiquitin ligase and antibody receptor that provides a last line of defense against invading viruses. It does so by acting as a sensor that intercepts antibody-coated viruses that have evaded extracellular neutralization and breached the cell membrane. Upon engagement of the Fc of antibodies bound to viruses, TRIM21 triggers a coordinated effector and signaling response that prevents viral replication while at the same time inducing an anti-viral cellular state. This dual effector function is tightly regulated by auto-ubiquitination and phosphorylation. Therapeutically, TRIM21 has been shown to be detrimental in adenovirus based gene therapy, while it may be favorably utilized to prevent tau aggregation in neurodegenerative disorders. In addition, TRIM21 may synergize with the complement system to block viral replication as well as transgene expression. TRIM21 can also be utilized as a research tool to deplete specific proteins in cells and zebrafish embryos. Here, we review our current biological understanding of TRIM21 in light of its versatile functions.
Collapse
Affiliation(s)
- Stian Foss
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Department of Immunology, Centre for Immune Regulation, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Bottermann
- Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Medical Research Council, Cambridge, United Kingdom
| | - Alexandra Jonsson
- Department of Immunology, Centre for Immune Regulation, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.,Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Medical Research Council, Cambridge, United Kingdom
| | - Inger Sandlie
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway.,Department of Immunology, Centre for Immune Regulation, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Leo C James
- Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Medical Research Council, Cambridge, United Kingdom
| | - Jan Terje Andersen
- Department of Immunology, Centre for Immune Regulation, Rikshospitalet, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Matchett WE, Anguiano-Zarate SS, Nehete PN, Shelton K, Nehete BP, Yang G, Dorta-Estremera S, Barnette P, Xiao P, Byrareddy SN, Villinger F, Hessell AJ, Haigwood NL, Sastry KJ, Barry MA. Divergent HIV-1-Directed Immune Responses Generated by Systemic and Mucosal Immunization with Replicating Single-Cycle Adenoviruses in Rhesus Macaques. J Virol 2019; 93:e02016-18. [PMID: 30842321 PMCID: PMC6498041 DOI: 10.1128/jvi.02016-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Most human immunodeficiency virus type 1 (HIV-1) infections begin at mucosal surfaces. Providing a barrier of protection at these may assist in combating the earliest events in infection. Systemic immunization by intramuscular (i.m.) injection can drive mucosal immune responses, but there are data suggesting that mucosal immunization can better educate these mucosal immune responses. To test this, rhesus macaques were immunized with replicating single-cycle adenovirus (SC-Ad) vaccines expressing clade B HIV-1 gp160 by the intranasal (i.n.) and i.m. routes to compare mucosal and systemic routes of vaccination. SC-Ad vaccines generated significant circulating antibody titers against Env after a single i.m. immunization. Switching the route of second immunization with the same SC-Ad serotype allowed a significant boost in these antibody levels. When these animals were boosted with envelope protein, envelope-binding antibodies were amplified 100-fold, but qualitatively different immune responses were generated. Animals immunized by only the i.m. route had high peripheral T follicular helper (pTfh) cell counts in blood but low Tfh cell counts in lymph nodes. Conversely, animals immunized by the i.n. route had high Tfh cell counts in lymph nodes but low pTfh cell counts in the blood. Animals immunized by only the i.m. route had lower antibody-dependent cellular cytotoxicity (ADCC) antibody activity, whereas animals immunized by the mucosal i.n. route had higher ADCC antibody activity. When these Env-immunized animals were challenged rectally with simian-human immunodeficiency virus (SHIV) strain SF162P3 (SHIVSF162P3), they all became infected. However, mucosally SC-Ad-immunized animals had lower viral loads in their gastrointestinal tracts. These data suggest that there may be benefits in educating the immune system at mucosal sites during HIV vaccination.IMPORTANCE HIV-1 infections usually start at a mucosal surface after sexual contact. Creating a barrier of protection at these mucosal sites may be a good strategy for to protect against HIV-1 infections. While HIV-1 enters at mucosa, most vaccines are not delivered here. Most are instead injected into the muscle, a site well distant and functionally different than mucosal tissues. This study tested if delivering HIV vaccines at mucosa or in the muscle makes a difference in the quality, quantity, and location of immune responses against the virus. These data suggest that there are indeed advantages to educating the immune system at mucosal sites with an HIV-1 vaccine.
Collapse
Affiliation(s)
- William E Matchett
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Pramod N Nehete
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Kathryn Shelton
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Bharti P Nehete
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Guojun Yang
- Department of Oncology Research for Biologics and Immunotherapy Translation, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Stephanie Dorta-Estremera
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
| | - Philip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Peng Xiao
- Department of Biology, New Iberia Research Center, Lafayette, Louisiana, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Francois Villinger
- Department of Biology, New Iberia Research Center, Lafayette, Louisiana, USA
| | - Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nancy L Haigwood
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - K Jagannadha Sastry
- Department of Comparative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- Department of Oncology Research for Biologics and Immunotherapy Translation, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston and Bastrop, Texas, USA
- The University of Texas M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Michael A Barry
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
32
|
Yusuf Y, Yoshii T, Iyori M, Yoshida K, Mizukami H, Fukumoto S, Yamamoto DS, Alam A, Emran TB, Amelia F, Islam A, Otsuka H, Takashima E, Tsuboi T, Yoshida S. Adeno-Associated Virus as an Effective Malaria Booster Vaccine Following Adenovirus Priming. Front Immunol 2019; 10:730. [PMID: 31024558 PMCID: PMC6460511 DOI: 10.3389/fimmu.2019.00730] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
An ideal malaria vaccine platform should potently induce protective immune responses and block parasite transmission from mosquito to human, and it should maintain these effects for an extended period. Here, we have focused on vaccine development based on adeno-associated virus serotype 1 (AAV1), a viral vector widely studied in the field of clinical gene therapy that is able to induce long-term transgene expression without causing toxicity in vivo. Our results show the potential utility of AAV1 vectors as an extremely potent booster vaccine to induce durable immunity when combined with an adenovirus-priming vaccine in a rodent malaria model. We generated a series of recombinant AAV1s and human adenovirus type 5 (AdHu5) expressing either Plasmodium falciparum circumsporozoite protein (PfCSP) or P25 (Pfs25) protein. Heterologous two-dose immunization with an AdHu5-prime and AAV1-boost (AdHu5-AAV1) elicited robust and durable PfCSP- or Pfs25-specific functional antibodies over 280 days. Regarding protective efficacy, AdHu5-AAV1 PfCSP achieved high sterile protection (up to 80% protection rate) against challenge with transgenic Plasmodium berghei sporozoites expressing PfCSP. When examining transmission-blocking (TB) efficacy, we found that immunization with AdHu5-AAV1 Pfs25 maintained TB activity in vivo against transgenic P. berghei expressing Pfs25 for 287 days (99% reduction in oocyst intensity, 85% reduction in oocyst prevalence). Our data indicate that AAV1-based malaria vaccines can confer potent and durable protection as well as TB efficacy when administered following an AdHu5 priming vaccine, supporting the further evaluation of this regimen in clinical trials as a next-generation malaria vaccine platform.
Collapse
Affiliation(s)
- Yenni Yusuf
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
- Department of Parasitology, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Tatsuya Yoshii
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Kunitaka Yoshida
- Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Mizukami
- Division of Gene therapy, Jichi Medical University, Shimotsuke, Japan
| | - Shinya Fukumoto
- National Research Centre for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke S. Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Asrar Alam
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Talha Bin Emran
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Fitri Amelia
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Ashekul Islam
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Hiromu Otsuka
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
33
|
Mooney R, Majid AA, Batalla-Covello J, Machado D, Liu X, Gonzaga J, Tirughana R, Hammad M, Lesniak MS, Curiel DT, Aboody KS. Enhanced Delivery of Oncolytic Adenovirus by Neural Stem Cells for Treatment of Metastatic Ovarian Cancer. MOLECULAR THERAPY-ONCOLYTICS 2018; 12:79-92. [PMID: 30719498 PMCID: PMC6350263 DOI: 10.1016/j.omto.2018.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022]
Abstract
Oncolytic virotherapy is a promising approach for treating recurrent and/or drug-resistant ovarian cancer. However, its successful application in the clinic has been hampered by rapid immune-mediated clearance or neutralization of the virus, which reduces viral access to tumor foci. To overcome this barrier, patient-derived mesenchymal stem cells have been used to deliver virus to tumors, but variability associated with autologous cell isolations prevents this approach from being broadly clinically applicable. Here, we demonstrate the ability of an allogeneic, clonal neural stem cell (NSC) line (HB1.F3.CD21) to protect oncolytic viral cargo from neutralizing antibodies within patient ascites fluid and to deliver it to tumors within preclinical peritoneal ovarian metastases models. The viral payload used is a conditionally replication-competent adenovirus driven by the survivin promoter (CRAd-S-pk7). Because the protein survivin is highly expressed in ovarian cancer, but not in normal differentiated cells, viral replication should occur selectively in ovarian tumor cells. We found this viral agent was effective against cisplatin-resistant ovarian tumors and could be used as an adjunct treatment with cisplatin to decrease tumor burden without increasing toxicity. Collectively, our data suggest NSC-delivered CRAd-S-pk7 virotherapy holds promise for improving clinical outcome, reducing toxicities, and improving quality of life for patients with advanced ovarian cancer.
Collapse
Affiliation(s)
- Rachael Mooney
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Asma Abdul Majid
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jennifer Batalla-Covello
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Diana Machado
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Xueli Liu
- Department of Information Sciences, Division of Biostatistics at the Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Joanna Gonzaga
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Revathiswari Tirughana
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Mohamed Hammad
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - David T Curiel
- Division of Cancer Biology and Biologic Therapeutic Center, Department of Radiation Oncology, School of Medicine, Washington University, 660 South Euclid Avenue, Campus Box 8224, St. Louis, MO 63110, USA
| | - Karen S Aboody
- Department of Stem Cell & Developmental Biology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.,Division of Neurosurgery, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
34
|
Tian X, Fan Y, Liu Z, Zhang L, Liao J, Zhou Z, Li X, Liu T, Liu W, Qiu H, Zhou R. Broadly neutralizing monoclonal antibodies against human adenovirus types 55, 14p, 7, and 11 generated with recombinant type 11 fiber knob. Emerg Microbes Infect 2018; 7:206. [PMID: 30531794 PMCID: PMC6286715 DOI: 10.1038/s41426-018-0197-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/07/2018] [Accepted: 10/31/2018] [Indexed: 12/02/2022]
Abstract
The re-emerging human adenovirus types HAdV7, HAdV14, and HAdV55 of species B have caused severe lower respiratory tract diseases and even deaths during recent outbreaks. However, no adenovirus vaccine or therapeutic has been approved for general use. These adenoviruses attach to host cells via the knob domain of the fiber, using human desmoglein 2 as the primary cellular receptor. In this study, a recombinant HAdV11 fiber knob trimer (HAdV11FK) expressed in E. coli was shown to induce broadly neutralizing antibodies against HAdV11, -7, -14p1, and -55 in mice. Using HAdV11FK as an antigen, three monoclonal antibodies, 6A7, 3F11, and 3D8, with high neutralizing activity were generated. More importantly, the results of in vitro neutralization assays demonstrated that 3F11 and 3D8 cross-neutralized HAdV11, -7, and -55, but not HAdV14p1. The amino acids 251KE252 within the F-G loop may be the crucial amino acids in the conformational epitope recognized by 3F11, which is common to HAdV11, -7, -14p, and -55, but is not present in HAdV14p1 and HAdV3. A two-amino-acid deletion in the HAdV14p1 structure breaks the short alpha helix (248SREKE252) that is present in the HAdV7, -11, -55, and -14p fiber knob structures. Our findings add to the knowledge of adenovirus fiber structure and antibody responses and are important for the design of adenovirus vaccines and antiviral drugs with broad activity.
Collapse
Affiliation(s)
- Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhenwei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ling Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Medical Genetics, Liuzhou Maternal and Child Health Hospital, Liuzhou, Guangxi, China
| | - Jiayi Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Tiantian Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hongling Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
35
|
TRIM21 mediates antibody inhibition of adenovirus-based gene delivery and vaccination. Proc Natl Acad Sci U S A 2018; 115:10440-10445. [PMID: 30209217 PMCID: PMC6187179 DOI: 10.1073/pnas.1806314115] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral-based delivery vectors have huge potential in the treatment of human disease. Adenoviral vectors specifically have proven highly efficacious in delivering corrected genes, as part of gene therapy, and vaccine epitopes for treating cancer and infectious disease. A principal obstacle to their widespread use is that antibodies potently neutralize them, limiting treatment to naïve patients. How antibodies block adenovirus-based transduction has long remained a mystery because, even though they prevent transgene expression, they do not prevent transgene delivery into target tissue. Here we show that the cytosolic antibody receptor TRIM21 is responsible for intercepting adenoviral gene therapy and vaccine vectors and neutralizing them. Gene KO of TRIM21 or a single-antibody mutation that prevents interaction is sufficient to restore transgene expression. Adenovirus has enormous potential as a gene-therapy vector, but preexisting immunity limits its widespread application. What is responsible for this immune block is unclear because antibodies potently inhibit transgene expression without impeding gene transfer into target cells. Here we show that antibody prevention of adenoviral gene delivery in vivo is mediated by the cytosolic antibody receptor TRIM21. Genetic KO of TRIM21 or a single-antibody point mutation is sufficient to restore transgene expression to near-naïve immune levels. TRIM21 is also responsible for blocking cytotoxic T cell induction by vaccine vectors, preventing a protective response against subsequent influenza infection and an engrafted tumor. Furthermore, adenoviral preexisting immunity can lead to an augmented immune response upon i.v. administration of the vector. Transcriptomic analysis of vector-transduced tissue reveals that TRIM21 is responsible for the specific up-regulation of hundreds of immune genes, the majority of which are components of the intrinsic or innate response. Together, these data define a major mechanism underlying the preimmune block to adenovirus gene therapy and demonstrate that TRIM21 efficiently blocks gene delivery in vivo while simultaneously inducing a rapid program of immune transcription.
Collapse
|
36
|
Kurupati RK, Zhou X, Xiang Z, Keller LH, Ertl HCJ. Safety and immunogenicity of a potential checkpoint blockade vaccine for canine melanoma. Cancer Immunol Immunother 2018; 67:1533-1544. [PMID: 30051333 PMCID: PMC7080056 DOI: 10.1007/s00262-018-2201-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/06/2018] [Indexed: 12/13/2022]
Abstract
Human immunotherapy with checkpoint blockades has achieved significant breakthroughs in recent years. In this study, a checkpoint blockade vaccine for canine melanoma was tested for safety and immunogenicity. Five healthy adult dogs received a mixture of three replication-defective chimpanzee-derived adenoviral vectors, one expressing mouse fibroblast-associated protein (mFAP) and the others expressing canine melanoma-associated antigens Trp-1 or Trp-2 fused into Herpes Simplex-1 glycoprotein D, a checkpoint inhibitor of herpes virus entry mediator (HVEM) pathways. The vaccine mixture was shown to be well tolerated and increased frequencies of canineTrp-1-specific activated CD8+ and CD4+ T cells secreting interferon-(IFN)-γ, tumor necrosis factor (TNF)-α, or interleukin (IL)-2 alone or in combinations in four and five out of five dogs, respectively. To avoid excessive bleeds, responses to cTrp-2 were not analyzed. All dogs responded with increased frequencies of mFAP-specific activated CD8+ and CD4+ T cells. The results of this safety/immunogenicity trial invite further testing of this checkpoint blockade vaccine combination in dogs with melanoma.
Collapse
Affiliation(s)
- Raj K Kurupati
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiangyang Zhou
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Zhiquan Xiang
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | | |
Collapse
|
37
|
Improved Induction of Anti-Melanoma T Cells by Adenovirus-5/3 Fiber Modification to Target Human DCs. Vaccines (Basel) 2018; 6:vaccines6030042. [PMID: 30022005 PMCID: PMC6161112 DOI: 10.3390/vaccines6030042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
To mount a strong anti-tumor immune response, non T cell inflamed (cold) tumors may require combination treatment encompassing vaccine strategies preceding checkpoint inhibition. In vivo targeted delivery of tumor-associated antigens (TAA) to dendritic cells (DCs), relying on the natural functions of primary DCs in situ, represents an attractive vaccination strategy. In this study we made use of a full-length MART-1 expressing C/B-chimeric adenoviral vector, consisting of the Ad5 capsid and the Ad3 knob (Ad5/3), which we previously showed to selectively transduce DCs in human skin and lymph nodes. Our data demonstrate that chimeric Ad5/3 vectors encoding TAA, and able to target human DCs in situ, can be used to efficiently induce expansion of functional tumor-specific CD8+ effector T cells, either from a naïve T cell pool or from previously primed T cells residing in the melanoma-draining sentinel lymph nodes (SLN). These data support the use of Ad3-knob containing viruses as vaccine vehicles for in vivo delivery. “Off-the-shelf” DC-targeted Ad vaccines encoding TAA could clearly benefit future immunotherapeutic approaches.
Collapse
|
38
|
Matchett WE, Anguiano-Zarate SS, Barry MA. Comparison of systemic and mucosal immunization with replicating Single cycle Adenoviruses. ACTA ACUST UNITED AC 2018; 3. [PMID: 30740532 PMCID: PMC6368267 DOI: 10.15761/gvi.1000128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV-1 infections occur during sexual contact at mucosal surfaces. Vaccines need to provide mucosal barrier protection and stimulate systemic immune responses to control HIV spread. Most vaccines are delivered by systemic immunization via intramuscular (IM) injection route. While this can drive systemic and mucosal immune responses, there are data show that mucosal immunization may be superior at driving responses at mucosal barriers. To explore this question, we immunized mice with replicating single-cycle adenovirus (SC Ad) vaccines expressing clade B HIV-1 envelope (Env) by intramuscular (IM), intranasal (IN), or intravaginal (IVAG) routes to compare vaccine responses. SC-Ads generated significant antibodies against Env after only a single immunization by the IN route, but not the other routes. These animals were boosted by the same route or by the mucosal IVAG routes. IM and IN primed animals generated strong antibody responses regardless of the boosting route. In contrast, IVAG primed animals failed to generate robust antibodies whether they were boosted by the IVAG or IM routes. These data suggest there may be benefits in first educating the immune system at mucosal sites during HIV vaccination. IN and IM prime-boost were then compared in Syrian hamsters which support SC-Ad DNA replication. In this case, IN immunization again was the only route that generated significant Env antibodies after a single immunization. Following a boost by IN or IM routes, IN primed animals had significantly higher antibody responses than the IM primed animals. Env antibodies could still be detected one year after immunization, but only in animals that received at least one mucosal IN immunization. These data suggest that there is merit in vaccination by mucosal routes.
Collapse
Affiliation(s)
- William E Matchett
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Stephanie S Anguiano-Zarate
- Clinical and Translational Science Graduate Program, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Division of Infectious Diseases, Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
39
|
Altenburg AF, van Trierum SE, de Bruin E, de Meulder D, van de Sandt CE, van der Klis FRM, Fouchier RAM, Koopmans MPG, Rimmelzwaan GF, de Vries RD. Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines. Sci Rep 2018; 8:6474. [PMID: 29692427 PMCID: PMC5915537 DOI: 10.1038/s41598-018-24820-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
The replication-deficient orthopoxvirus modified vaccinia virus Ankara (MVA) is a promising vaccine vector against various pathogens and has an excellent safety record. However, pre-existing vector-specific immunity is frequently suggested to be a drawback of MVA-based vaccines. To address this issue, mice were vaccinated with MVA-based influenza vaccines in the presence or absence of orthopoxvirus-specific immunity. Importantly, protective efficacy of an MVA-based influenza vaccine against a homologous challenge was not impaired in the presence of orthopoxvirus-specific pre-existing immunity. Nonetheless, orthopoxvirus-specific pre-existing immunity reduced the induction of antigen-specific antibodies under specific conditions and completely prevented induction of antigen-specific T cell responses by rMVA-based vaccination. Notably, antibodies induced by vaccinia virus vaccination, both in mice and humans, were not capable of neutralizing MVA. Thus, when using rMVA-based vaccines it is important to consider the main correlate of protection induced by the vaccine, the vaccine dose and the orthopoxvirus immune status of vaccine recipients.
Collapse
Affiliation(s)
- Arwen F Altenburg
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Stella E van Trierum
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Erwin de Bruin
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Carolien E van de Sandt
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control (Cib), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Rory D de Vries
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
40
|
Li P, Feng F, Pan E, Fan X, Yang Q, Guan M, Chen L, Sun C. Scavenger receptor-mediated Ad5 entry and acLDL accumulation in monocytes/macrophages synergistically trigger innate responses against viral infection. Virology 2018; 519:86-98. [PMID: 29680370 DOI: 10.1016/j.virol.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/29/2018] [Accepted: 04/10/2018] [Indexed: 01/12/2023]
Abstract
Adenovirus serotype 5 (Ad5) is a common cause of respiratory tract infection, and populations worldwide have high prevalence of anti-Ad5 antibodies, implying extensively prior infection. Ad5 infection potently activates the host innate defense and inflammation, but the molecular mechanisms are not completely clarified. We report here that monocytes from Ad5-seropositive subjects upregulates the expression of scavenger receptor A (SR-A), and the increased SR-A promote the susceptibility of Ad5 entry and subsequent innate signaling activation. SR-A is also known as major receptor for lipid uptake, we therefore observed that monocytes from Ad5-seropositive subjects accumulated the acetylated low-density lipoprotein (acLDL) and had the elevated cellular stress to induce the activation of monocyte/macrophages. These findings demonstrate that SR-A-mediated Ad5 entry, innate signaling activation and acLDL accumulation synergistically trigger the robust antiviral innate and inflammatory responses, which are helpful to our understanding of the pathogenesis of adenovirus infection.
Collapse
Affiliation(s)
- Pingchao Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Fengling Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Enxiang Pan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Xiaozhen Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Qing Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Min Guan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China.
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
41
|
Abstract
INTRODUCTION Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. AREAS COVERED This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. EXPERT COMMENTARY The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.
Collapse
Affiliation(s)
- Michael Barry
- a Division of Infectious Diseases, Department of Medicine, Department of Immunology, Department of Molecular Medicine , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
42
|
Xing M, Wang X, Chi Y, Zhou D. Gene therapy for colorectal cancer using adenovirus-mediated full-length antibody, cetuximab. Oncotarget 2017; 7:28262-72. [PMID: 27058423 PMCID: PMC5053725 DOI: 10.18632/oncotarget.8596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Cetuximab is a chimeric monoclonal antibody, approved to treat patients with metastatic colorectal cancer (mCRC), head and neck squamous cell carcinoma (HNSCC), non-small-cell lung cancer (NSCLC) for years. It functions by blocking the epidermal growth factor receptor (EGFR) from receiving signals or interacting with other proteins. Although the demand for cetuximab for the treatment of cancer patients in clinics is increasing, the complicated techniques involved and its high cost limit its wide applications. Here, a new, cheaper form of cetuximab was generated for cancer gene therapy. This was achieved by cloning the full-length cetuximab antibody into two serotypes of adenoviral vectors, termed as AdC68-CTB and Hu5-CTB. In vivo studies showed that a single dose of AdC68-CTB or Hu5-CTB induced sustained cetuximab expression and dramatically suppressed tumor growth in NCI-H508– or DiFi-inoculated nude mice. In conclusion, gene therapy using adenovirus expressing full-length cetuximab could be a novel alternative method for the effective treatment of colorectal cancer.
Collapse
Affiliation(s)
- Man Xing
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai, China
| | - Xiang Wang
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai, China
| | - Yudan Chi
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
43
|
Wee EG, Ondondo B, Berglund P, Archer J, McMichael AJ, Baltimore D, Ter Meulen JH, Hanke T. HIV-1 Conserved Mosaics Delivered by Regimens with Integration-Deficient DC-Targeting Lentiviral Vector Induce Robust T Cells. Mol Ther 2017; 25:494-503. [PMID: 28153096 PMCID: PMC5368423 DOI: 10.1016/j.ymthe.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022] Open
Abstract
To be effective against HIV type 1 (HIV-1), vaccine-induced T cells must selectively target epitopes, which are functionally conserved (present in the majority of currently circulating and reactivated HIV-1 strains) and, at the same time, beneficial (responses to which are associated with better clinical status and control of HIV-1 replication), and rapidly reach protective frequencies upon exposure to the virus. Heterologous prime-boost regimens using virally vectored vaccines are currently the most promising vaccine strategies; nevertheless, induction of robust long-term memory remains challenging. To this end, lentiviral vectors induce high frequencies of memory cells due to their low-inflammatory nature, while typically inducing only low anti-vector immune responses. Here, we describe construction of novel candidate vaccines ZVex.tHIVconsv1 and ZVex.tHIVconsv2, which are based on an integration-deficient lentiviral vector platform with preferential transduction of human dendritic cells and express a bivalent mosaic of conserved-region T cell immunogens with a high global HIV-1 match. Each of the two mosaic vaccines was individually immunogenic. When administered together in heterologous prime-boost regimens with chimpanzee adenovirus and/or poxvirus modified vaccinia virus Ankara (MVA) vaccines to BALB/c and outbred CD1-Swiss mice, they induced a median frequency of over 6,000 T cells/106 splenocytes, which were plurifunctional, broadly specific, and cross-reactive. These results support further development of this vaccine concept.
Collapse
Affiliation(s)
- Edmund G Wee
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
44
|
Crank MC, Wilson EMP, Novik L, Enama ME, Hendel CS, Gu W, Nason MC, Bailer RT, Nabel GJ, McDermott AB, Mascola JR, Koup RA, Ledgerwood JE, Graham BS. Safety and Immunogenicity of a rAd35-EnvA Prototype HIV-1 Vaccine in Combination with rAd5-EnvA in Healthy Adults (VRC 012). PLoS One 2016; 11:e0166393. [PMID: 27846256 PMCID: PMC5112788 DOI: 10.1371/journal.pone.0166393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND VRC 012 was a Phase I study of a prototype recombinant adenoviral-vector serotype-35 (rAd35) HIV vaccine, the precursor to two recently published clinical trials, HVTN 077 and 083. On the basis of prior evaluation of multiclade rAd5 HIV vaccines, Envelope A (EnvA) was selected as the standard antigen for a series of prototype HIV vaccines to compare various vaccine platforms. In addition, prior studies of rAd5-vectored vaccines suggested pre-existing human immunity may be a confounding factor in vaccine efficacy. rAd35 is less seroprevalent across human populations and was chosen for testing alone and in combination with a rAd5-EnvA vaccine in the present two-part phase I study. METHODS First, five subjects each received a single injection of 109, 1010, or 1011 particle units (PU) of rAd35-EnvA in an open-label, dose-escalation study. Next, 20 Ad5/Ad35-seronegative subjects were randomized to blinded, heterologous prime-boost schedules combining rAd5-EnvA and rAd35-EnvA with a three month interval. rAd35-EnvA was given at 1010 or 1011 PU to ten subjects each; all rAd5-EnvA injections were 1010 PU. EnvA-specific immunogenicity was assessed four weeks post-injection. Solicited reactogenicity and clinical safety were followed after each injection. RESULTS Vaccinations were well tolerated at all dosages. Antibody responses measured by ELISA were detected at 4 weeks in 30% and 50% of subjects after single doses of 1010 or 1011 PU rAd35, respectively, and in 89% after a single rAd5-EnvA 1010 PU injection. EnvA-specific IFN-γ ELISpot responses were detected at four weeks in 0%, 70%, and 50% of subjects after the respective rAd35-EnvA dosages compared to 89% of subjects after rAd5. T cell responses were higher after a single rAd5-EnvA 1010 PU injection than after a single rAd35-EnvA 1010 PU injection, and humoral responses were low after a single dose of either vector. Of those completing the vaccine schedule, 100% of rAd5-EnvA recipients and 90% of rAd35-EnvA recipients had both T cell and humoral responses after boosting with the heterologous vector. ELISpot response magnitude was similar in both regimens and comparable to a single dose of rAd5. A trend toward more robust CD8 T cell responses using rAd5-EnvA prime and rAd35-EnvA boost was observed. Humoral response magnitude was also similar after either heterologous regimen, but was several fold higher than after a single dose of rAd5. Adverse events (AEs) related to study vaccines were in general mild and limited to one episode of hematuria, Grade two. Activated partial thromboplastin time (aPTT) AEs were consistent with an in vitro effect on the laboratory assay for aPTT due to a transient induction of anti-phospholipid antibody, a phenomenon that has been reported in other adenoviral vector vaccine trials. CONCLUSIONS Limitations of the rAd vaccine vectors, including the complex interactions among pre-existing adenoviral immunity and vaccine-induced immune responses, have prompted investigators to include less seroprevalent vectors such as rAd35-EnvA in prime-boost regimens. The rAd35-EnvA vaccine described here was well tolerated and immunogenic. While it effectively primed and boosted antibody responses when given in a reciprocal prime-boost regimen with rAd5-EnvA using a three-month interval, it did not significantly improve the frequency or magnitude of T cell responses above a single dose of rAd5. The humoral and cellular immunogenicity data reported here may inform future vaccine and study design. TRIAL REGISTRATION ClinicalTrials.gov NCT00479999.
Collapse
Affiliation(s)
- Michelle C. Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eleanor M. P. Wilson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mary E. Enama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cynthia S. Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wenjuan Gu
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick, Frederick, Maryland, 21702, United States of America
| | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gary J. Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | |
Collapse
|
45
|
Cheng T, Wang X, Song Y, Tang X, Zhang C, Zhang H, Jin X, Zhou D. Chimpanzee adenovirus vector-based avian influenza vaccine completely protects mice against lethal challenge of H5N1. Vaccine 2016; 34:4875-4883. [DOI: 10.1016/j.vaccine.2016.08.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/03/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023]
|
46
|
Martins KA, Jahrling PB, Bavari S, Kuhn JH. Ebola virus disease candidate vaccines under evaluation in clinical trials. Expert Rev Vaccines 2016; 15:1101-12. [PMID: 27160784 PMCID: PMC5026048 DOI: 10.1080/14760584.2016.1187566] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Filoviruses are the etiological agents of two human illnesses: Ebola virus disease and Marburg virus disease. Until 2013, medical countermeasure development against these afflictions was limited to only a few research institutes worldwide as both infections were considered exotic due to very low case numbers. Together with the high case-fatality rate of both diseases, evaluation of any candidate countermeasure in properly controlled clinical trials seemed impossible. However, in 2013, Ebola virus was identified as the etiological agent of a large disease outbreak in Western Africa including almost 30,000 infections and more than 11,000 deaths, including case exportations to Europe and North America. These large case numbers resulted in medical countermeasure development against Ebola virus disease becoming a global public-health priority. This review summarizes the status quo of candidate vaccines against Ebola virus disease, with a focus on those that are currently under evaluation in clinical trials.
Collapse
Affiliation(s)
- Karen A. Martins
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
47
|
Influence of adenovirus and MVA vaccines on the breadth and hierarchy of T cell responses. Vaccine 2016; 34:4470-4474. [PMID: 27484012 PMCID: PMC5009894 DOI: 10.1016/j.vaccine.2016.07.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
Abstract
Viral-vectored vaccines are in clinical development for several infectious diseases where T-cell responses can mediate protection, and responses to sub-dominant epitopes is needed. Little is known about the influence of MVA or adenoviral vectors on the hierarchy of the dominant and sub-dominant T-cell epitopes. We investigated this aspect in mice using a malaria immunogen. Our results demonstrate that the T-cell hierarchy is influenced by the timing of analysis, rather than by the vector after a single immunization, with hierarchy changing over time. Repeated homologous immunization reduced the breadth of responses, while heterologous prime-boost induced the strongest response to the dominant epitope, albeit with only modest response to the sub-dominant epitopes.
Collapse
|
48
|
Fonseca JA, Cabrera-Mora M, Kashentseva EA, Villegas JP, Fernandez A, Van Pelt A, Dmitriev IP, Curiel DT, Moreno A. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine. PLoS One 2016; 11:e0154819. [PMID: 27128437 PMCID: PMC4851317 DOI: 10.1371/journal.pone.0154819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022] Open
Abstract
A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity and protective efficacy of adenoviral based malaria vaccines.
Collapse
Affiliation(s)
- Jairo Andres Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Elena A. Kashentseva
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Paul Villegas
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Alejandra Fernandez
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amelia Van Pelt
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Igor P. Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
First identified in 2012, Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is listed as a new Category C Priority Pathogen. While the high mortality of MERS-CoV infection is further intensified by potential human-to-human transmissibility, no MERS vaccines are available for human use. This review explains immune responses resulting from MERS-CoV infection, describes MERS vaccine criteria, and presents available small animal models to evaluate the efficacy of MERS vaccines. Current advances in vaccine development are summarized, focusing on specific applications and limitations of each vaccine category. Taken together, this review provides valuable guidelines toward the development of an effective and safe MERS vaccine. This article is written for a Special Focus Issue of Expert Review of Vaccines on 'Vaccines for Biodefence'.
Collapse
Affiliation(s)
- Lanying Du
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA
| | - Wanbo Tai
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,b State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Yusen Zhou
- b State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Shibo Jiang
- a Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY , USA.,c Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences , Fudan University , Shanghai , China
| |
Collapse
|
50
|
Li LL, Wang HR, Zhou ZY, Luo J, Xiao XQ, Wang XL, Li JT, Zhou YB, Zeng Y. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice. Antiviral Res 2016; 128:20-7. [PMID: 26821205 DOI: 10.1016/j.antiviral.2016.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 01/30/2023]
Abstract
Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections.
Collapse
Affiliation(s)
- Li-Li Li
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, NO.100, YingXin Street, XiCheng District, Beijing 100032, China
| | - He-Rong Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Zhi-Yi Zhou
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jing Luo
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xiang-Qian Xiao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xiao-Li Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Jin-Tao Li
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yu-Bai Zhou
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-Engineering, Beijing University of Technology, No.100, Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Yi Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory for Infectious Disease Prevention and Control, NO.100, YingXin Street, XiCheng District, Beijing 100032, China.
| |
Collapse
|