1
|
Domingo E, Witzany G. Quasispecies productivity. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:11. [PMID: 38372790 DOI: 10.1007/s00114-024-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
The quasispecies theory is a helpful concept in the explanation of RNA virus evolution and behaviour, with a relevant impact on methods used to fight viral diseases. It has undergone some adaptations to integrate new empirical data, especially the non-deterministic nature of mutagenesis, and the variety of behavioural motifs in cooperation, competition, communication, innovation, integration, and exaptation. Also, the consortial structure of quasispecies with complementary roles of memory genomes of minority populations better fits the empirical data than did the original concept of a master sequence and its mutant spectra. The high productivity of quasispecies variants generates unique sequences that never existed before and will never exist again. In the present essay, we underline that such sequences represent really new ontological entities, not just error copies of previous ones. Their primary unique property, the incredible variant production, is suggested here as quasispecies productivity, which replaces the error-replication narrative to better fit into a new relationship between mankind and living nature in the twenty-first century.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | |
Collapse
|
2
|
Martínez-González B, Gallego I, Gregori J, Soria ME, Somovilla P, de Ávila AI, García-Crespo C, Durán-Pastor A, Briones C, Gómez J, Quer J, Domingo E, Perales C. Fitness-Dependent, Mild Mutagenic Activity of Sofosbuvir for Hepatitis C Virus. Antimicrob Agents Chemother 2023; 67:e0039423. [PMID: 37367486 PMCID: PMC10353389 DOI: 10.1128/aac.00394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
The concept of a mild mutagen was coined to describe a minor mutagenic activity exhibited by some nucleoside analogues that potentiated their efficacy as antiretroviral agents. In the present study, we report the mild mutagen activity of sofosbuvir (SOF) for hepatitis C virus (HCV). Serial passages of HCV in human hepatoma cells, in the presence of SOF at a concentration well below its cytotoxic concentration 50 (CC50) led to pre-extinction populations whose mutant spectra exhibited a significant increase of C→U transitions, relative to populations passaged in the absence of SOF. This was reflected in an increase in several diversity indices that were used to characterize viral quasispecies. The mild mutagenic activity of SOF was largely absent when it was tested with isogenic HCV populations that displayed high replicative fitness. Thus, SOF can act as a mild mutagen for HCV, depending on HCV fitness. Possible mechanisms by which the SOF mutagenic activity may contribute to its antiviral efficacy are discussed.
Collapse
Affiliation(s)
- Brenda Martínez-González
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Josep Gregori
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - María Eugenia Soria
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antoni Durán-Pastor
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Jordi Gómez
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Celia Perales
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
3
|
Ortega-del Campo S, Díaz-Martínez L, Moreno P, García-Rosado E, Alonso MC, Béjar J, Grande-Pérez A. The genetic variability and evolution of red-spotted grouper nervous necrosis virus quasispecies can be associated with its virulence. Front Microbiol 2023; 14:1182695. [PMID: 37396376 PMCID: PMC10308047 DOI: 10.3389/fmicb.2023.1182695] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Nervous necrosis virus, NNV, is a neurotropic virus that causes viral nervous necrosis disease in a wide range of fish species, including European sea bass (Dicentrarchus labrax). NNV has a bisegmented (+) ssRNA genome consisting of RNA1, which encodes the RNA polymerase, and RNA2, encoding the capsid protein. The most prevalent NNV species in sea bass is red-spotted grouper nervous necrosis virus (RGNNV), causing high mortality in larvae and juveniles. Reverse genetics studies have associated amino acid 270 of the RGNNV capsid protein with RGNNV virulence in sea bass. NNV infection generates quasispecies and reassortants able to adapt to various selective pressures, such as host immune response or switching between host species. To better understand the variability of RGNNV populations and their association with RGNNV virulence, sea bass specimens were infected with two RGNNV recombinant viruses, a wild-type, rDl956, highly virulent to sea bass, and a single-mutant virus, Mut270Dl965, less virulent to this host. Both viral genome segments were quantified in brain by RT-qPCR, and genetic variability of whole-genome quasispecies was studied by Next Generation Sequencing (NGS). Copies of RNA1 and RNA2 in brains of fish infected with the low virulent virus were 1,000-fold lower than those in brains of fish infected with the virulent virus. In addition, differences between the two experimental groups in the Ts/Tv ratio, recombination frequency and genetic heterogeneity of the mutant spectra in the RNA2 segment were found. These results show that the entire quasispecies of a bisegmented RNA virus changes as a consequence of a single point mutation in the consensus sequence of one of its segments. Sea bream (Sparus aurata) is an asymptomatic carrier for RGNNV, thus rDl965 is considered a low-virulence isolate in this species. To assess whether the quasispecies characteristics of rDl965 were conserved in another host showing different susceptibility, juvenile sea bream were infected with rDl965 and analyzed as above described. Interestingly, both viral load and genetic variability of rDl965 in seabream were similar to those of Mut270Dl965 in sea bass. This result suggests that the genetic variability and evolution of RGNNV mutant spectra may be associated with its virulence.
Collapse
Affiliation(s)
- Sergio Ortega-del Campo
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Luis Díaz-Martínez
- Centro de Supercomputación y Bioinnovación (SCBI), Universidad de Málaga, Málaga, Spain
| | - Patricia Moreno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul, IBYDA, Universidad de Málaga, Málaga, Spain
| | - Esther García-Rosado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul, IBYDA, Universidad de Málaga, Málaga, Spain
| | - M. Carmen Alonso
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul, IBYDA, Universidad de Málaga, Málaga, Spain
| | - Julia Béjar
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Biotecnología y Desarrollo Azul, IBYDA, Universidad de Málaga, Málaga, Spain
| | - Ana Grande-Pérez
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga- Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
4
|
García-Crespo C, Francisco-Recuero I, Gallego I, Camblor-Murube M, Soria ME, López-López A, de Ávila AI, Madejón A, García-Samaniego J, Domingo E, Sánchez-Pacheco A, Perales C. Hepatitis C virus fitness can influence the extent of infection-mediated epigenetic modifications in the host cells. Front Cell Infect Microbiol 2023; 13:1057082. [PMID: 36992689 PMCID: PMC10040758 DOI: 10.3389/fcimb.2023.1057082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionCellular epigenetic modifications occur in the course of viral infections. We previously documented that hepatitis C virus (HCV) infection of human hepatoma Huh-7.5 cells results in a core protein-mediated decrease of Aurora kinase B (AURKB) activity and phosphorylation of Serine 10 in histone H3 (H3Ser10ph) levels, with an affectation of inflammatory pathways. The possible role of HCV fitness in infection-derived cellular epigenetic modifications is not known.MethodsHere we approach this question using HCV populations that display a 2.3-fold increase in general fitness (infectious progeny production), and up to 45-fold increase of the exponential phase of intracellular viral growth rate, relative to the parental HCV population.ResultsWe show that infection resulted in a HCV fitness-dependent, average decrease of the levels of H3Ser10ph, AURKB, and histone H4 tri-methylated at Lysine 20 (H4K20m3) in the infected cell population. Remarkably, the decrease of H4K20m3, which is a hallmark of cellular transformation, was significant upon infection with high fitness HCV but not upon infection with basal fitness virus.DiscussionHere we propose two mechanisms ─which are not mutually exclusive─ to explain the effect of high viral fitness: an early advance in the number of infected cells, or larger number of replicating RNA molecules per cell. The implications of introducing HCV fitness as an influence in virus-host interactions, and for the course of liver disease, are warranted. Emphasis is made in the possibility that HCV-mediated hepatocellular carcinoma may be favoured by prolonged HCV infection of a human liver, a situation in which viral fitness is likely to increase.
Collapse
Affiliation(s)
- Carlos García-Crespo
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Francisco-Recuero
- Department de Biochemistry, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Isabel Gallego
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Camblor-Murube
- Department de Biochemistry, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - María Eugenia Soria
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Ana López-López
- Department de Biochemistry, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Ana Isabel de Ávila
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Madejón
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Hepatology Unit Hospital Universitario La Paz/Carlos III, Instituto de Investigación Sanitaria “La Paz”, Madrid, Spain
| | - Javier García-Samaniego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Hepatology Unit Hospital Universitario La Paz/Carlos III, Instituto de Investigación Sanitaria “La Paz”, Madrid, Spain
| | - Esteban Domingo
- Department of Interactions with the Environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Esteban Domingo, ; Aurora Sánchez-Pacheco, ; Celia Perales,
| | - Aurora Sánchez-Pacheco
- Department de Biochemistry, UAM, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- *Correspondence: Esteban Domingo, ; Aurora Sánchez-Pacheco, ; Celia Perales,
| | - Celia Perales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Esteban Domingo, ; Aurora Sánchez-Pacheco, ; Celia Perales,
| |
Collapse
|
5
|
Atypical Mutational Spectrum of SARS-CoV-2 Replicating in the Presence of Ribavirin. Antimicrob Agents Chemother 2023; 67:e0131522. [PMID: 36602354 PMCID: PMC9872624 DOI: 10.1128/aac.01315-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.
Collapse
|
6
|
Delgado MS, López-Galíndez C, Moran F. Viral Fitness Landscapes Based on Self-organizing Maps. Curr Top Microbiol Immunol 2023; 439:95-119. [PMID: 36592243 DOI: 10.1007/978-3-031-15640-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The creation of fitness maps from viral populations especially in the case of RNA viruses, with high mutation rates producing quasispecies, is complex since the mutant spectrum is in a very high-dimensional space. In this work, a new approach is presented using a class of neural networks, Self-Organized Maps (SOM), to represent realistic fitness landscapes in two RNA viruses: Human Immunodeficiency Virus type 1 (HIV-1) and Hepatitis C Virus (HCV). This methodology has proven to be very effective in the classification of viral quasispecies, using as criterium the mutant sequences in the population. With HIV-1, the fitness landscapes are constructed by representing the experimentally determined fitness on the sequence map. This approach permitted the depiction of the evolutionary paths of the variants subjected to processes of fitness loss and gain in cell culture. In the case of HCV, the efficiency was measured as a function of the frequency of each haplotype in the population by ultra-deep sequencing. The fitness landscapes obtained provided information on the efficiency of each variant in the quasispecies environment, that is, in relation to the entire spectrum of mutants. With the SOM maps, it is possible to determine the evolutionary dynamics of the different haplotypes.
Collapse
Affiliation(s)
- M Soledad Delgado
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos (ETSISI), Universidad Politécnica de Madrid, 28031, Madrid, Spain.
| | - Cecilio López-Galíndez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Federico Moran
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28040, Madrid, Spain
| |
Collapse
|
7
|
Domingo E, García-Crespo C, Soria ME, Perales C. Viral Fitness, Population Complexity, Host Interactions, and Resistance to Antiviral Agents. Curr Top Microbiol Immunol 2023; 439:197-235. [PMID: 36592247 DOI: 10.1007/978-3-031-15640-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fitness of viruses has become a standard parameter to quantify their adaptation to a biological environment. Fitness determinations for RNA viruses (and some highly variable DNA viruses) meet with several uncertainties. Of particular interest are those that arise from mutant spectrum complexity, absence of population equilibrium, and internal interactions among components of a mutant spectrum. Here, concepts, fitness measurements, limitations, and current views on experimental viral fitness landscapes are discussed. The effect of viral fitness on resistance to antiviral agents is covered in some detail since it constitutes a widespread problem in antiviral pharmacology, and a challenge for the design of effective antiviral treatments. Recent evidence with hepatitis C virus suggests the operation of mechanisms of antiviral resistance additional to the standard selection of drug-escape mutants. The possibility that high replicative fitness may be the driver of such alternative mechanisms is considered. New broad-spectrum antiviral designs that target viral fitness may curtail the impact of drug-escape mutants in treatment failures. We consider to what extent fitness-related concepts apply to coronaviruses and how they may affect strategies for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain.,Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
8
|
Wu X, Cui L, Bai Y, Bian L, Liang Z. Pseudotyped Viruses for Enterovirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:209-228. [PMID: 36920699 DOI: 10.1007/978-981-99-0113-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Using a non-pathogenic pseudotyped virus as a surrogate for a wide-type virus in scientific research complies with the recent requirements for biosafety. Enterovirus (EV) contains many species of viruses, which are a type of nonenveloped virus. The preparation of its corresponding pseudotyped virus often needs customized construction compared to some enveloped viruses. This article describes the procedures and challenges in the construction of pseudotyped virus for enterovirus (pseudotyped enterovirus, EVpv) and also introduces the application of EVpv in basic virological research, serological monitoring, and the detection of neutralizing antibody (NtAb).
Collapse
Affiliation(s)
- Xing Wu
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Lisha Cui
- Minhai biotechnology Co. Ltd, Beijing, China
| | - Yu Bai
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Lianlian Bian
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
9
|
Quasispecies Fitness Partition to Characterize the Molecular Status of a Viral Population. Negative Effect of Early Ribavirin Discontinuation in a Chronically Infected HEV Patient. Int J Mol Sci 2022; 23:ijms232314654. [PMID: 36498981 PMCID: PMC9739305 DOI: 10.3390/ijms232314654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.
Collapse
|
10
|
García-Crespo C, Vázquez-Sirvent L, Somovilla P, Soria ME, Gallego I, de Ávila AI, Martínez-González B, Durán-Pastor A, Domingo E, Perales C. Efficacy decrease of antiviral agents when administered to ongoing hepatitis C virus infections in cell culture. Front Microbiol 2022; 13:960676. [PMID: 35992670 PMCID: PMC9382109 DOI: 10.3389/fmicb.2022.960676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
We report a quantification of the decrease of effectiveness of antiviral agents directed to hepatitis C virus, when the agents are added during an ongoing infection in cell culture vs. when they are added at the beginning of the infection. Major determinants of the decrease of inhibitory activity are the time post-infection of inhibitor administration and viral replicative fitness. The efficacy decrease has been documented with antiviral assays involving the combination of the direct-acting antiviral agents, daclatasvir and sofosbuvir, and with the combination of the lethal mutagens, favipiravir and ribavirin. The results suggest that strict antiviral effectiveness assays in preclinical trials may involve the use of high fitness viral populations and the delayed administration of the agents, relative to infection onset.
Collapse
Affiliation(s)
- Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antoni Durán-Pastor
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Martínez-González B, Soria ME, Vázquez-Sirvent L, Ferrer-Orta C, Lobo-Vega R, Mínguez P, de la Fuente L, Llorens C, Soriano B, Ramos-Ruíz R, Cortón M, López-Rodríguez R, García-Crespo C, Somovilla P, Durán-Pastor A, Gallego I, de Ávila AI, Delgado S, Morán F, López-Galíndez C, Gómez J, Enjuanes L, Salar-Vidal L, Esteban-Muñoz M, Esteban J, Fernández-Roblas R, Gadea I, Ayuso C, Ruíz-Hornillos J, Verdaguer N, Domingo E, Perales C. SARS-CoV-2 Mutant Spectra at Different Depth Levels Reveal an Overwhelming Abundance of Low Frequency Mutations. Pathogens 2022; 11:662. [PMID: 35745516 PMCID: PMC9227345 DOI: 10.3390/pathogens11060662] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Populations of RNA viruses are composed of complex and dynamic mixtures of variant genomes that are termed mutant spectra or mutant clouds. This applies also to SARS-CoV-2, and mutations that are detected at low frequency in an infected individual can be dominant (represented in the consensus sequence) in subsequent variants of interest or variants of concern. Here we briefly review the main conclusions of our work on mutant spectrum characterization of hepatitis C virus (HCV) and SARS-CoV-2 at the nucleotide and amino acid levels and address the following two new questions derived from previous results: (i) how is the SARS-CoV-2 mutant and deletion spectrum composition in diagnostic samples, when examined at progressively lower cut-off mutant frequency values in ultra-deep sequencing; (ii) how the frequency distribution of minority amino acid substitutions in SARS-CoV-2 compares with that of HCV sampled also from infected patients. The main conclusions are the following: (i) the number of different mutations found at low frequency in SARS-CoV-2 mutant spectra increases dramatically (50- to 100-fold) as the cut-off frequency for mutation detection is lowered from 0.5% to 0.1%, and (ii) that, contrary to HCV, SARS-CoV-2 mutant spectra exhibit a deficit of intermediate frequency amino acid substitutions. The possible origin and implications of mutant spectrum differences among RNA viruses are discussed.
Collapse
Affiliation(s)
- Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Lucía Vázquez-Sirvent
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Cristina Ferrer-Orta
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, 08028 Barcelona, Spain; (C.F.-O.); (N.V.)
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Pablo Mínguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Lorena de la Fuente
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Carlos Llorens
- Biotechvana, “Scientific Park”, Universidad de Valencia, 46980 Valencia, Spain; (C.L.); (B.S.)
| | - Beatriz Soriano
- Biotechvana, “Scientific Park”, Universidad de Valencia, 46980 Valencia, Spain; (C.L.); (B.S.)
| | - Ricardo Ramos-Ruíz
- Unidad de Genómica, “Scientific Park of Madrid”, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Marta Cortón
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosario López-Rodríguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Antoni Durán-Pastor
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Soledad Delgado
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos (ETSISI), Universidad Politécnica de Madrid, 28031 Madrid, Spain;
| | - Federico Morán
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28005 Madrid, Spain;
| | - Cecilio López-Galíndez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28222 Madrid, Spain;
| | - Jordi Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, 18016 Granada, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Mario Esteban-Muñoz
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Ricardo Fernández-Roblas
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (P.M.); (L.d.l.F.); (M.C.); (R.L.-R.); (C.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Ruíz-Hornillos
- Allergy Unit, Hospital Infanta Elena, Valdemoro, 28342 Madrid, Spain;
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Nuria Verdaguer
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, 08028 Barcelona, Spain; (C.F.-O.); (N.V.)
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (P.S.); (A.D.-P.); (I.G.); (A.I.d.Á.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain; (B.M.-G.); (M.E.S.); (L.V.-S.); (R.L.-V.); (L.S.-V.); (M.E.-M.); (J.E.); (R.F.-R.); (I.G.)
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
12
|
Sabariegos R, Ortega-Prieto AM, Díaz-Martínez L, Grande-Pérez A, García Crespo C, Gallego I, de Ávila AI, Albentosa-González L, Soria ME, Gastaminza P, Domingo E, Perales C, Mas A. Guanosine inhibits hepatitis C virus replication and increases indel frequencies, associated with altered intracellular nucleotide pools. PLoS Pathog 2022; 18:e1010210. [PMID: 35085375 PMCID: PMC8794218 DOI: 10.1371/journal.ppat.1010210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
In the course of experiments aimed at deciphering the inhibition mechanism of mycophenolic acid and ribavirin in hepatitis C virus (HCV) infection, we observed an inhibitory effect of the nucleoside guanosine (Gua). Here, we report that Gua, and not the other standard nucleosides, inhibits HCV replication in human hepatoma cells. Gua did not directly inhibit the in vitro polymerase activity of NS5B, but it modified the intracellular levels of nucleoside di- and tri-phosphates (NDPs and NTPs), leading to deficient HCV RNA replication and reduction of infectious progeny virus production. Changes in the concentrations of NTPs or NDPs modified NS5B RNA polymerase activity in vitro, in particular de novo RNA synthesis and template switching. Furthermore, the Gua-mediated changes were associated with a significant increase in the number of indels in viral RNA, which may account for the reduction of the specific infectivity of the viral progeny, suggesting the presence of defective genomes. Thus, a proper NTP:NDP balance appears to be critical to ensure HCV polymerase fidelity and minimal production of defective genomes.
Collapse
Affiliation(s)
- Rosario Sabariegos
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Ana María Ortega-Prieto
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHMS-UMA-CSIC), Málaga, Spain
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHMS-UMA-CSIC), Málaga, Spain
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Carlos García Crespo
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I. de Ávila
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
| | - Laura Albentosa-González
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Pablo Gastaminza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (AM); (CP); (ED)
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- * E-mail: (AM); (CP); (ED)
| | - Antonio Mas
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
- * E-mail: (AM); (CP); (ED)
| |
Collapse
|
13
|
Delgado S, Perales C, García-Crespo C, Soria ME, Gallego I, de Ávila AI, Martínez-González B, Vázquez-Sirvent L, López-Galíndez C, Morán F, Domingo E. A Two-Level, Intramutant Spectrum Haplotype Profile of Hepatitis C Virus Revealed by Self-Organized Maps. Microbiol Spectr 2021; 9:e0145921. [PMID: 34756074 PMCID: PMC8579923 DOI: 10.1128/spectrum.01459-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
RNA viruses replicate as complex mutant spectra termed viral quasispecies. The frequency of each individual genome in a mutant spectrum depends on its rate of generation and its relative fitness in the replicating population ensemble. The advent of deep sequencing methodologies allows for the first-time quantification of haplotype abundances within mutant spectra. There is no information on the haplotype profile of the resident genomes and how the landscape evolves when a virus replicates in a controlled cell culture environment. Here, we report the construction of intramutant spectrum haplotype landscapes of three amplicons of the NS5A-NS5B coding region of hepatitis C virus (HCV). Two-dimensional (2D) neural networks were constructed for 44 related HCV populations derived from a common clonal ancestor that was passaged up to 210 times in human hepatoma Huh-7.5 cells in the absence of external selective pressures. The haplotype profiles consisted of an extended dense basal platform, from which a lower number of protruding higher peaks emerged. As HCV increased its adaptation to the cells, the number of haplotype peaks within each mutant spectrum expanded, and their distribution shifted in the 2D network. The results show that extensive HCV replication in a monotonous cell culture environment does not limit HCV exploration of sequence space through haplotype peak movements. The landscapes reflect dynamic variation in the intramutant spectrum haplotype profile and may serve as a reference to interpret the modifications produced by external selective pressures or to compare with the landscapes of mutant spectra in complex in vivo environments. IMPORTANCE The study provides for the first time the haplotype profile and its variation in the course of virus adaptation to a cell culture environment in the absence of external selective constraints. The deep sequencing-based self-organized maps document a two-layer haplotype distribution with an ample basal platform and a lower number of protruding peaks. The results suggest an inferred intramutant spectrum fitness landscape structure that offers potential benefits for virus resilience to mutational inputs.
Collapse
Affiliation(s)
- Soledad Delgado
- Departamento de Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos (ETSISI), Universidad Politécnica de Madrid, Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Cecilio López-Galíndez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Federico Morán
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Ortega-Del Campo S, Grigoras I, Timchenko T, Gronenborn B, Grande-Pérez A. Twenty years of evolution and diversification of digitaria streak virus in Digitaria setigera. Virus Evol 2021; 7:veab083. [PMID: 34659796 PMCID: PMC8516820 DOI: 10.1093/ve/veab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Within the family Geminiviridae, the emergence of new species results from their high mutation and recombination rates. In this study, we report the variability and evolution of digitaria streak virus (DSV), a mastrevirus isolated in 1986 from the grass Digitaria setigera in an island of the Vanuatu archipelago. Viral DNA of DSV samples was amplified from D. setigera specimens, derived from the naturally infected original plant, which were propagated in different laboratories in France and Italy for more than 20 years. From the consensus sequences, the nucleotide substitution rate was estimated for the period between a sample and the original sequence published in 1987, as well as for the period between samples. In addition, the intra-host genetic complexity and diversity of 8 DSV populations with a total of 165 sequenced haplotypes was characterized. The evolutionary rate of DSV was estimated to be between 1.13 × 10−4 and 9.87 × 10−4 substitutions/site/year, within the ranges observed in other single-stranded DNA viruses and RNA viruses. Bioinformatic analyses revealed high variability and heterogeneity in DSV populations, which confirmed that mutant spectra are continuously generated and are organized as quasispecies. The analysis of polymorphisms revealed nucleotide substitution biases in viral genomes towards deamination and oxidation of single-stranded DNA. The differences in variability in each of the genomic regions reflected a dynamic and modular evolution in the mutant spectra that was not reflected in the consensus sequences. Strikingly, the most variable region of the DSV genome, encoding the movement protein, showed rapid fixation of the mutations in the consensus sequence and a concomitant dN/dS ratio of 6.130, which suggests strong positive selection in this region. Phylogenetic analyses revealed a possible divergence in three genetic lineages from the original Vanuatu DSV isolate.
Collapse
Affiliation(s)
| | - Ioana Grigoras
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Tatiana Timchenko
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Bruno Gronenborn
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga 29071, Spain
| |
Collapse
|
15
|
Abstract
Viral quasispecies are dynamic distributions of nonidentical but closely related mutant and recombinant viral genomes subjected to a continuous process of genetic variation, competition, and selection that may act as a unit of selection. The quasispecies concept owes its theoretical origins to a model for the origin of life as a collection of mutant RNA replicators. Independently, experimental evidence for the quasispecies concept was obtained from sampling of bacteriophage clones, which revealed that the viral populations consisted of many mutant genomes whose frequency varied with time of replication. Similar findings were made in animal and plant RNA viruses. Quasispecies became a theoretical framework to understand viral population dynamics and adaptability. The evidence came at a time when mutations were considered rare events in genetics, a perception that was to change dramatically in subsequent decades. Indeed, viral quasispecies was the conceptual forefront of a remarkable degree of biological diversity, now evident for cell populations and organisms, not only for viruses. Quasispecies dynamics unveiled complexities in the behavior of viral populations,with consequences for disease mechanisms and control strategies. This review addresses the origin of the quasispecies concept, its major implications on both viral evolution and antiviral strategies, and current and future prospects.
Collapse
Affiliation(s)
- Esteban Domingo
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Celia Perales
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
16
|
Domingo E, García-Crespo C, Lobo-Vega R, Perales C. Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses 2021; 13:1882. [PMID: 34578463 PMCID: PMC8473064 DOI: 10.3390/v13091882] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/29/2022] Open
Abstract
The error rate displayed during template copying to produce viral RNA progeny is a biologically relevant parameter of the replication complexes of viruses. It has consequences for virus-host interactions, and it represents the first step in the diversification of viruses in nature. Measurements during infections and with purified viral polymerases indicate that mutation rates for RNA viruses are in the range of 10-3 to 10-6 copying errors per nucleotide incorporated into the nascent RNA product. Although viruses are thought to exploit high error rates for adaptation to changing environments, some of them possess misincorporation correcting activities. One of them is a proofreading-repair 3' to 5' exonuclease present in coronaviruses that may decrease the error rate during replication. Here we review experimental evidence and models of information maintenance that explain why elevated mutation rates have been preserved during the evolution of RNA (and some DNA) viruses. The models also offer an interpretation of why error correction mechanisms have evolved to maintain the stability of genetic information carried out by large viral RNA genomes such as the coronaviruses.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040 Madrid, Spain;
| |
Collapse
|
17
|
Population Disequilibrium as Promoter of Adaptive Explorations in Hepatitis C Virus. Viruses 2021; 13:v13040616. [PMID: 33916702 PMCID: PMC8067247 DOI: 10.3390/v13040616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Replication of RNA viruses is characterized by exploration of sequence space which facilitates their adaptation to changing environments. It is generally accepted that such exploration takes place mainly in response to positive selection, and that further diversification is boosted by modifications of virus population size, particularly bottleneck events. Our recent results with hepatitis C virus (HCV) have shown that the expansion in sequence space of a viral clone continues despite prolonged replication in a stable cell culture environment. Diagnosis of the expansion was based on the quantification of diversity indices, the occurrence of intra-population mutational waves (variations in mutant frequencies), and greater individual residue variations in mutant spectra than those anticipated from sequence alignments in data banks. In the present report, we review our previous results, and show additionally that mutational waves in amplicons from the NS5A-NS5B-coding region are equally prominent during HCV passage in the absence or presence of the mutagenic nucleotide analogues favipiravir or ribavirin. In addition, by extending our previous analysis to amplicons of the NS3- and NS5A-coding region, we provide further evidence of the incongruence between amino acid conservation scores in mutant spectra from infected patients and in the Los Alamos National Laboratory HCV data banks. We hypothesize that these observations have as a common origin a permanent state of HCV population disequilibrium even upon extensive viral replication in the absence of external selective constraints or changes in population size. Such a persistent disequilibrium—revealed by the changing composition of the mutant spectrum—may facilitate finding alternative mutational pathways for HCV antiviral resistance. The possible significance of our model for other genetically variable viruses is discussed.
Collapse
|
18
|
García-Crespo C, Soria ME, Gallego I, de Ávila AI, Martínez-González B, Vázquez-Sirvent L, Gómez J, Briones C, Gregori J, Quer J, Perales C, Domingo E. Dissimilar Conservation Pattern in Hepatitis C Virus Mutant Spectra, Consensus Sequences, and Data Banks. J Clin Med 2020; 9:jcm9113450. [PMID: 33121037 PMCID: PMC7692060 DOI: 10.3390/jcm9113450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
The influence of quasispecies dynamics on long-term virus diversification in nature is a largely unexplored question. Specifically, whether intra-host nucleotide and amino acid variation in quasispecies fit the variation observed in consensus sequences or data bank alignments is unknown. Genome conservation and dynamics simulations are used for the computational design of universal vaccines, therapeutic antibodies and pan-genomic antiviral agents. The expectation is that selection of escape mutants will be limited when mutations at conserved residues are required. This strategy assumes long-term (epidemiologically relevant) conservation but, critically, does not consider short-term (quasispecies-dictated) residue conservation. We calculated mutant frequencies of individual loci from mutant spectra of hepatitis C virus (HCV) populations passaged in cell culture and from infected patients. Nucleotide or amino acid conservation in consensus sequences of the same populations, or in the Los Alamos HCV data bank did not match residue conservation in mutant spectra. The results relativize the concept of sequence conservation in viral genetics and suggest that residue invariance in data banks is an insufficient basis for the design of universal viral ligands for clinical purposes. Our calculations suggest relaxed mutational restrictions during quasispecies dynamics, which may contribute to higher calculated short-term than long-term viral evolutionary rates.
Collapse
Affiliation(s)
- Carlos García-Crespo
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
| | - María Eugenia Soria
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Isabel Gallego
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
| | - Ana Isabel de Ávila
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
| | - Brenda Martínez-González
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
| | - Jordi Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina ‘López-Neyra’ (CSIC), Parque Tecnológico Ciencias de la Salud, Armilla, 18016 Granada, Spain
| | - Carlos Briones
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Department of Molecular Evolution, Centro de Astrobiología (CAB, CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain
| | - Josep Gregori
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Liver Unit, Liver Diseases—Viral Hepatitis, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Roche Diagnostics, S.L., Sant Cugat del Vallés, 08174 Barcelona, Spain
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Liver Unit, Liver Diseases—Viral Hepatitis, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Celia Perales
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Correspondence: or (C.P.); (E.D.)
| | - Esteban Domingo
- Department of Interactions with the environment, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain; (C.G.-C.); (M.E.S.); (I.G.); (A.I.d.Á.); (B.M.-G.); (L.V.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.G.); (C.B.); (J.G.); (J.Q.)
- Correspondence: or (C.P.); (E.D.)
| |
Collapse
|
19
|
Correa-Fiz F, Franzo G, Llorens A, Huerta E, Sibila M, Kekarainen T, Segalés J. Porcine circovirus 2 (PCV2) population study in experimentally infected pigs developing PCV2-systemic disease or a subclinical infection. Sci Rep 2020; 10:17747. [PMID: 33082419 PMCID: PMC7576782 DOI: 10.1038/s41598-020-74627-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine circovirus 2 (PCV2) is a single stranded DNA virus with one of the highest mutation rates among DNA viruses. This ability allows it to generate a cloud of mutants constantly providing new opportunities to adapt and evade the immune system. This pig pathogen is associated to many diseases, globally called porcine circovirus diseases (PCVD) and has been a threat to pig industry since its discovery in the early 90's. Although 11 ORFs have been predicted from its genome, only two main proteins have been deeply characterized, i.e. Rep and Cap. The structural Cap protein possesses the majority of the epitopic determinants of this non-enveloped virus. The evolution of PCV2 is affected by both natural and vaccine-induced immune responses, which enhances the genetic variability, especially in the most immunogenic Cap region. Intra-host variability has been also demonstrated in infected animals where long-lasting infections can take place. However, the association between this intra-host variability and pathogenesis has never been studied for this virus. Here, the within-host PCV2 variability was monitored over time by next generation sequencing during an experimental infection, demonstrating the presence of large heterogeneity. Remarkably, the level of quasispecies diversity, affecting particularly the Cap coding region, was statistically different depending on viremia levels and clinical signs detected after infection. Moreover, we proved the existence of hyper mutant subjects harboring a remarkably higher number of genetic variants. Altogether, these results suggest an interaction between genetic diversity, host immune system and disease severity.
Collapse
Affiliation(s)
- Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, PD, Italy
| | - Anna Llorens
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Eva Huerta
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,Kuopio Center for Gene and Cell Therapy, Microkatu 1, Kuopio, Finland
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain
| |
Collapse
|
20
|
Braun T, Bordería AV, Barbezange C, Vignuzzi M, Louzoun Y. Long-term context-dependent genetic adaptation of the viral genetic cloud. Bioinformatics 2020; 35:1907-1915. [PMID: 30346482 DOI: 10.1093/bioinformatics/bty891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION RNA viruses generate a cloud of genetic variants within each host. This cloud contains high-frequency genotypes, and many rare variants. The dynamics of these variants is crucial to understand viral evolution and their effect on their host. RESULTS We use an experimental evolution system to show that the genetic cloud surrounding the Coxsackie virus master sequence slowly, but steadily, evolves over hundreds of generations. This movement is determined by strong context-dependent mutations, where the frequency and type of mutations are affected by neighboring positions, even in silent mutations. This context-dependent mutation pattern serves as a spearhead for the viral population's movement within the adaptive landscape and affects which new dominant variants will emerge. The non-local mutation patterns affect the mutated dinucleotide distribution, and eventually lead to a non-uniform dinucleotide distribution in the main viral sequence. We tested these results on other RNA viruses with similar conclusions. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tzipi Braun
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Antonio V Bordería
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
| | - Cyril Barbezange
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
| | - Marco Vignuzzi
- Institut Pasteur, Viral Populations and Pathogenesis, CNRS UMR 3569, Paris, France
| | - Yoram Louzoun
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
21
|
A new implication of quasispecies dynamics: Broad virus diversification in absence of external perturbations. INFECTION GENETICS AND EVOLUTION 2020; 82:104278. [PMID: 32165244 DOI: 10.1016/j.meegid.2020.104278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022]
Abstract
RNA genetic elements include many important animal and plant pathogens. They share high mutability, a trait that has multiple implications for the interactions with their host organisms. Here we review evidence of a new adaptive feature of RNA viruses that we term "broadly diversifying selection". It constitutes a new type of positive selection without participation of any external selective agent, and which is built upon a progressive increase of the number of different genomes that dominate the population. The evidence was provided by analyses of mutant spectrum composition of two important viral pathogens, foot-and-mouth disease virus (FMDV) and hepatitis C virus (HCV) after prolonged replication in their respective cell culture environment. Despite being fueled by mutations that arise randomly and in absence of an external guiding selective force, this type of selection prepares the viral population for a response to selective forces still to occur. Since current evidence suggests that broadly diversifying selection is favored by elevated mutation rates and population sizes, it may constitute a more general behavior, relevant also to the adaptive dynamics of microbial populations and cancer cells.
Collapse
|
22
|
Broad and Dynamic Diversification of Infectious Hepatitis C Virus in a Cell Culture Environment. J Virol 2020; 94:JVI.01856-19. [PMID: 31852791 DOI: 10.1128/jvi.01856-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Previous studies documented that long-term hepatitis C virus (HCV) replication in human hepatoma Huh-7.5 cells resulted in viral fitness gain, expansion of the mutant spectrum, and several phenotypic alterations. In the present work, we show that mutational waves (changes in frequency of individual mutations) occurred continuously and became more prominent as the virus gained fitness. They were accompanied by an increasing proportion of heterogeneous genomic sites that affected 1 position in the initial HCV population and 19 and 69 positions at passages 100 and 200, respectively. Analysis of biological clones of HCV showed that these dynamic events affected infectious genomes, since part of the fluctuating mutations became incorporated into viable genomes. While 17 mutations were scored in 3 biological clones isolated from the initial population, the number reached 72 in 3 biological clones from the population at passage 200. Biological clones differed in their responses to antiviral inhibitors, indicating a phenotypic impact of viral dynamics. Thus, HCV adaptation to a specific constant environment (cell culture without external influences) broadens the mutant repertoire and does not focus the population toward a limited number of dominant genomes. A retrospective examination of mutant spectra of foot-and-mouth disease virus passaged in cell cultures suggests a parallel behavior here described for HCV. We propose that virus diversification in a constant environment has its basis in the availability of multiple alternative mutational pathways for fitness gain. This mechanism of broad diversification should also apply to other replicative systems characterized by high mutation rates and large population sizes.IMPORTANCE The study shows that extensive replication of an RNA virus in a constant biological environment does not limit exploration of sequence space and adaptive options. There was no convergence toward a restricted set of adapted genomes. Mutational waves and mutant spectrum broadening affected infectious genomes. Therefore, profound modifications of mutant spectrum composition and consensus sequence diversification are not exclusively dependent on environmental alterations or the intervention of population bottlenecks.
Collapse
|
23
|
Domingo E, de Ávila AI, Gallego I, Sheldon J, Perales C. Viral fitness: history and relevance for viral pathogenesis and antiviral interventions. Pathog Dis 2020; 77:5454742. [PMID: 30980658 DOI: 10.1093/femspd/ftz021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/06/2019] [Indexed: 02/06/2023] Open
Abstract
The quasispecies dynamics of viral populations (continuous generation of variant genomes and competition among them) has as one of its frequent consequences variations in overall multiplication capacity, a major component of viral fitness. This parameter has multiple implications for viral pathogenesis and viral disease control, some of them unveiled thanks to deep sequencing of viral populations. Darwinian fitness is an old concept whose quantification dates back to the early developments of population genetics. It was later applied to viruses (mainly to RNA viruses) to quantify relative multiplication capacities of individual mutant clones or complex populations. The present article reviews the fitness concept and its relevance for the understanding of the adaptive dynamics of viruses in constant and changing environments. Many studies have addressed the fitness cost of escape mutations (to antibodies, cytotoxic T cells or inhibitors) as an influence on the efficacy of antiviral interventions. Here, we summarize the evidence that the basal fitness level can be a determinant of inhibitor resistance.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Ana I de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain
| | - Isabel Gallego
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Julie Sheldon
- Institute of Experimental Virology, Twincore, Centre for Experimental and Clinical Infection Research, A Joint Venture Between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), D-30625, Hannover, Germany
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Nicolás Cabrera 1, Campus de Cantoblanco, Madrid 28049, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid 28029, Spain.,Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, Madrid 28040, Spain
| |
Collapse
|
24
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
25
|
Domingo E. Virus population dynamics examined with experimental model systems. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153323 DOI: 10.1016/b978-0-12-816331-3.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimens. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
26
|
Study of multiple genetic variations caused by persistent hepatitis C virus replication in long-term cell culture. Arch Virol 2019; 165:331-343. [PMID: 31832864 DOI: 10.1007/s00705-019-04461-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022]
Abstract
The most characteristic feature of the hepatitis C virus (HCV) genome in patients with chronic hepatitis C is its remarkable variability and diversity. To better understand this feature, we performed genetic analysis of HCV replicons recovered from two human hepatoma HuH-7-derived cell lines after 1, 3, 5, 7, and 9 years in culture: The cell lines 50-1 and sO harbored HCV 1B-1 and O strain-derived HCV replicons established in 2002 and 2003, respectively. The results revealed that genetic variations in both replicons accumulated in a time-dependent manner at a constant rate despite the maintenance of moderate diversity (less than 1.8% difference) between the clones and that the mutation rate in the 50-1 and sO replicons was 2.5 and 2.9 × 10-3 base substitutions/site/year, respectively. We found that the genetic distance of both replicons increased from 7.9% to 10.5% after 9 years in culture. In addition, we observed that the guanine + cytosine (GC) content of both replicon RNAs increased in a time-dependent manner, as observed in our previous studies. Finally, we demonstrated that the high sensitivity of both replicons to direct-acting antivirals was maintained even after 9 years in culture. Our results suggest that long-term cultured HCV replicon-harboring cells are a useful model for understanding the variability and diversity of the HCV genome and the drug sensitivity of HCV in patients with chronic hepatitis C.
Collapse
|
27
|
Abstract
Viral quasispecies refers to a population structure that consists of extremely large numbers of variant genomes, termed mutant spectra, mutant swarms or mutant clouds. Fueled by high mutation rates, mutants arise continually, and they change in relative frequency as viral replication proceeds. The term quasispecies was adopted from a theory of the origin of life in which primitive replicons) consisted of mutant distributions, as found experimentally with present day RNA viruses. The theory provided a new definition of wild type, and a conceptual framework for the interpretation of the adaptive potential of RNA viruses that contrasted with classical studies based on consensus sequences. Standard clonal analyses and deep sequencing methodologies have confirmed the presence of myriads of mutant genomes in viral populations, and their participation in adaptive processes. The quasispecies concept applies to any biological entity, but its impact is more evident when the genome size is limited and the mutation rate is high. This is the case of the RNA viruses, ubiquitous in our biosphere, and that comprise many important pathogens. In virology, quasispecies are defined as complex distributions of closely related variant genomes subjected to genetic variation, competition and selection, and that may act as a unit of selection. Despite being an integral part of their replication, high mutation rates have an upper limit compatible with inheritable information. Crossing such a limit leads to RNA virus extinction, a transition that is the basis of an antiviral design termed lethal mutagenesis.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|
28
|
Synergistic lethal mutagenesis of hepatitis C virus. Antimicrob Agents Chemother 2019:AAC.01653-19. [PMID: 31570400 DOI: 10.1128/aac.01653-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagenic agent, often a nucleotide analogue. One of its advantages is its broad spectrum nature that renders the strategy potentially effective against emergent RNA viral infections. Here we describe synergistic lethal mutagenesis of hepatitis C virus (HCV) by a combination of favipiravir (T-705) and ribavirin. Synergy has been documented over a broad range of analogue concentrations using the Chou-Talalay method as implemented in the CompuSyn graphics, with average dose reduction index (DRI) above 1 (68.02±101.6 for favipiravir, and 5.83±6.07 for ribavirin), and average combination indices (CI) below 1 (0.52±0.28). Furthermore, analogue concentrations that individually did not extinguish high fitness HCV in ten serial infections, when used in combination they extinguished high fitness HCV in one to two passages. Although both analogues display a preference for G→A and C→U transitions, deep sequencing analysis of mutant spectra indicated a different preference of the two analogues for the mutation sites, thus unveiling a new possible synergy mechanism in lethal mutagenesis. Prospects of synergy among mutagenic nucleotides as a strategy to confront emerging viral infections are discussed.
Collapse
|
29
|
Abstract
Selection of viral mutants resistant to compounds used in therapy is a major determinant of treatment failure, a problem akin to antibiotic resistance in bacteria. In this scenario, mutagenic base and nucleoside analogs have entered the picture because they increase the mutation rate of viral populations to levels incompatible with their survival. This antiviral strategy is termed lethal mutagenesis. It has found a major impulse with the observation that some antiviral agents, which initially were considered only inhibitors of virus multiplication, may in effect exert part of their antiviral activity through mutagenesis. Here, we review the conceptual basis of lethal mutagenesis, the evidence of virus extinction through mutagenic nucleotide analogs and prospects for application in antiviral designs.
Collapse
|
30
|
Dominguez-Molina B, Machmach K, Perales C, Tarancon-Diez L, Gallego I, Sheldon JL, Leal M, Domingo E, Ruiz-Mateos E. Toll-Like Receptor 7 (TLR-7) and TLR-9 Agonists Improve Hepatitis C Virus Replication and Infectivity Inhibition by Plasmacytoid Dendritic Cells. J Virol 2018; 92:e01219-18. [PMID: 30232187 PMCID: PMC6232477 DOI: 10.1128/jvi.01219-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are innate immune cells with high antiviral activity triggered by Toll-like receptor 7 (TLR-7) and TLR-9 stimulation. Moreover, they are important mediators between innate and adaptive immunity. Although nowadays there is available an effective therapeutic arsenal against hepatitis C virus (HCV), a protective vaccine is not available. We have analyzed the pDCs' response to HCV infection in a hepatitis C virus (HCV)-Huh7.5 virus-cell system, which allows completion of the virus infectious cycle. pDCs were cocultured following human immunodeficiency virus (HIV) aldrithiol-2 (AT-2 [TLR-7 agonist]) inactivation and CpG (TLR-9 agonist) stimulation. We employed three virus derivatives-wild-type Jc1, interferon (IFN)-resistant virus IR, and high-replicative-fitness virus P100-in order to explore additional IFN-α-related virus inhibition mechanisms. pDCs inhibited HCV infectivity and replication and produced IFN-α. After TLR-7 and TLR-9 stimulation, inhibition of infectivity and IFN-α production by pDCs were enhanced. TLR-7 stimulation drove higher TNF-related apoptosis-inducing ligand (TRAIL) expression in pDCs. Additionally, TLR-7- and TLR-9-stimulated pDCs exhibited a mature phenotype, improving the antigen presentation and lymph node homing-related markers. In conclusion, pDCs could serve as a drug target against HCV in order to improve antiviral activity and as an enhancer of viral immunization.IMPORTANCE We implemented a coculture system of pDCs with HCV-infected hepatoma cell line, Huh7.5. We used three HCV derivatives in order to gain insight into pDCs' behavior against HCV and associated antiviral mechanisms. The results with this cell coculture system support the capacity of pDCs to inhibit HCV replication and infectivity mainly via IFN-α, but also through additional mechanisms associated with pDC maturation. We provided evidence that TLR agonists can enhance antiviral pDCs' function and can induce phenotypic changes that may facilitate the interplay with other immune cells. These findings suggest the possibility of including TLR agonists in the strategies of HCV vaccine development.
Collapse
Affiliation(s)
- B Dominguez-Molina
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - K Machmach
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
- California National Primate Research Center, Davis, California, USA
| | - C Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - L Tarancon-Diez
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| | - I Gallego
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - J L Sheldon
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - M Leal
- Servicio de Medicina Interna, Hospital Viamed, Santa Ángela de la Cruz, Seville, Spain
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - E Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - E Ruiz-Mateos
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital, Seville, Spain
| |
Collapse
|
31
|
de la Higuera I, Ferrer-Orta C, Moreno E, de Ávila AI, Soria ME, Singh K, Caridi F, Sobrino F, Sarafianos SG, Perales C, Verdaguer N, Domingo E. Contribution of a Multifunctional Polymerase Region of Foot-and-Mouth Disease Virus to Lethal Mutagenesis. J Virol 2018; 92:e01119-18. [PMID: 30068642 PMCID: PMC6158410 DOI: 10.1128/jvi.01119-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023] Open
Abstract
Viral RNA-dependent RNA polymerases (RdRps) are major determinants of high mutation rates and generation of mutant spectra that mediate RNA virus adaptability. The RdRp of the picornavirus foot-and-mouth disease virus (FMDV), termed 3D, is a multifunctional protein that includes a nuclear localization signal (NLS) in its N-terminal region. Previous studies documented that some amino acid substitutions within the NLS altered nucleotide recognition and enhanced the incorporation of the mutagenic purine analogue ribavirin in viral RNA, but the mutants tested were not viable and their response to lethal mutagenesis could not be studied. Here we demonstrate that NLS amino acid substitution M16A of FMDV serotype C does not affect infectious virus production but accelerates ribavirin-mediated virus extinction. The mutant 3D displays polymerase activity, RNA binding, and copying processivity that are similar to those of the wild-type enzyme but shows increased ribavirin-triphosphate incorporation. Crystal structures of the mutant 3D in the apo and RNA-bound forms reveal an expansion of the template entry channel due to the replacement of the bulky Met by Ala. This is a major difference with other 3D mutants with altered nucleotide analogue recognition. Remarkably, two distinct loop β9-α11 conformations distinguish 3Ds that exhibit higher or lower ribavirin incorporation than the wild-type enzyme. This difference identifies a specific molecular determinant of ribavirin sensitivity of FMDV. Comparison of several polymerase mutants indicates that different domains of the molecule can modify nucleotide recognition and response to lethal mutagenesis. The connection of this observation with current views on quasispecies adaptability is discussed.IMPORTANCE The nuclear localization signal (NLS) of the foot-and-mouth disease virus (FMDV) polymerase includes residues that modulate the sensitivity to mutagenic agents. Here we have described a viable NLS mutant with an amino acid replacement that facilitates virus extinction by ribavirin. The corresponding polymerase shows increased incorporation of ribavirin triphosphate and local structural modifications that implicate the template entry channel. Specifically, comparison of the structures of ribavirin-sensitive and ribavirin-resistant FMDV polymerases has identified loop β9-α11 conformation as a determinant of sensitivity to ribavirin mutagenesis.
Collapse
Affiliation(s)
| | - Cristina Ferrer-Orta
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Elena Moreno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center and Department of Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Flavia Caridi
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center and Department of Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Verdaguer
- Structural Biology Unit, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
32
|
Perales C. Quasispecies dynamics and clinical significance of hepatitis C virus (HCV) antiviral resistance. Int J Antimicrob Agents 2018; 56:105562. [PMID: 30315919 DOI: 10.1016/j.ijantimicag.2018.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) follows quasispecies dynamics in infected hosts and this influences its biology, how the virus diversifies into several genotypes and many subtypes, and how viral populations respond to antiviral therapies. Despite current antiviral combinations being able to cure a great percentage of HCV-infected patients, the presence of resistance-associated substitutions (RASs) diminishes the success of antiviral therapies, which is a main concern in the re-treatment of patients treated with direct-acting antiviral agents. Current methodologies such as ultra deep sequencing are ideal tools to obtain a detailed representation of the mutant spectrum composition circulating in infected patients. Such knowledge should allow optimisation of rescue treatments. A new mechanism of antiviral resistance not based on the selection of RASs but on high viral fitness is discussed.
Collapse
Affiliation(s)
- Celia Perales
- Liver Unit, Internal Medicine Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain; Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
33
|
Gregori J, Soria ME, Gallego I, Guerrero-Murillo M, Esteban JI, Quer J, Perales C, Domingo E. Rare haplotype load as marker for lethal mutagenesis. PLoS One 2018; 13:e0204877. [PMID: 30281674 PMCID: PMC6169937 DOI: 10.1371/journal.pone.0204877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/19/2018] [Indexed: 12/23/2022] Open
Abstract
RNA viruses replicate with a template-copying fidelity, which lies close to an extinction threshold. Increases of mutation rate by nucleotide analogues can drive viruses towards extinction. This transition is the basis of an antiviral strategy termed lethal mutagenesis. We have introduced a new diversity index, the rare haplotype load (RHL), to describe NS5B (polymerase) mutant spectra of hepatitis C virus (HCV) populations passaged in absence or presence of the mutagenic agents favipiravir or ribavirin. The increase in RHL is more prominent in mutant spectra whose expansions were due to nucleotide analogues than to multiple passages in absence of mutagens. Statistical tests for paired mutagenized versus non-mutagenized samples with 14 diversity indices show that RHL provides consistently the highest standardized effect of mutagenic treatment difference for ribavirin and favipiravir. The results indicate that the enrichment of viral quasispecies in very low frequency minority genomes can serve as a robust marker for lethal mutagenesis. The diagnostic value of RHL from deep sequencing data is relevant to experimental studies on enhanced mutagenesis of viruses, and to pharmacological evaluations of inhibitors suspected to have a mutagenic activity.
Collapse
Affiliation(s)
- Josep Gregori
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Roche Diagnostics, S.L., Sant Cugat del Vallés, Barcelona, Spain
| | - María Eugenia Soria
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
| | - Isabel Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Mercedes Guerrero-Murillo
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
| | - Juan Ignacio Esteban
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Josep Quer
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Universitat Autónoma de Barcelona, Barcelona, Spain
- * E-mail: (CP); (JQ)
| | - Celia Perales
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Internal Medicine Department, Vall d’Hebron Institut Recerca (VHIR)-Hospital Universitari Vall d’Hebron (HUVH), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- * E-mail: (CP); (JQ)
| | - Esteban Domingo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
34
|
Resistance of high fitness hepatitis C virus to lethal mutagenesis. Virology 2018; 523:100-109. [PMID: 30107298 DOI: 10.1016/j.virol.2018.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023]
Abstract
Viral fitness quantifies the degree of virus adaptation to a given environment. How viral fitness can influence the mutant spectrum complexity of a viral quasispecies subjected to lethal mutagenesis has not been investigated. Here we document that two high fitness hepatitis C virus populations display higher resistance to the mutagenic nucleoside analogues favipiravir and ribavirin than their parental, low fitness HCV. All populations, however, exhibited a mutation transition bias indicative of active mutagenesis. Resistance to the analogues was associated with a limited expansion of mutant spectrum complexity, as evidenced by several diversity indices used to characterize mutant spectra. The results are consistent with a replicative site-drug competition mechanism that was previously proposed for HCV fitness-associated resistance to non-mutagenic inhibitors. Other alternative, non-mutually exclusive mechanisms are considered. The results introduce viral fitness as a relevant parameter to evaluate the response of viruses to lethal mutagenesis, with implications for antiviral designs.
Collapse
|
35
|
Saccon E, Vitiello A, Trevisan M, Salata C, Palù G. Sixth European Seminar in Virology on Virus⁻Host Interaction at Single Cell and Organism Level. Viruses 2018; 10:v10080400. [PMID: 30060596 PMCID: PMC6116093 DOI: 10.3390/v10080400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 11/30/2022] Open
Abstract
The 6th European Seminar in Virology (EuSeV) was held in Bertinoro, Italy, 22–24 June 2018, and brought together international scientists and young researchers working in the field of Virology. Sessions of the meeting included: virus–host-interactions at organism and cell level; virus evolution and dynamics; regulation; immunity/immune response; and disease and therapy. This report summarizes lectures by the invited speakers and highlights advances in the field.
Collapse
Affiliation(s)
- Elisa Saccon
- Department of Molecular Medicine, University of Padova, 35121 Padova PD, Italy.
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padova, 35121 Padova PD, Italy.
| | - Marta Trevisan
- Department of Molecular Medicine, University of Padova, 35121 Padova PD, Italy.
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, 35121 Padova PD, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, 35121 Padova PD, Italy.
| |
Collapse
|
36
|
Domingo E, Perales C. Quasispecies and virus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:443-457. [PMID: 29397419 DOI: 10.1007/s00249-018-1282-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022]
Abstract
Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| |
Collapse
|