1
|
Hashempour T, Dehghani B, Musavi Z, Moayedi J, Hasanshahi Z, Sarvari J, Hosseini SY, Hosseini E, Moeini M, Merat S. Impact of IL28 Genotypes and Modeling the Interactions of HCV Core Protein on Treatment of Hepatitis C. Interdiscip Sci 2020; 12:424-437. [PMID: 32656614 DOI: 10.1007/s12539-020-00382-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/02/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mutations in the core CVR region of hepatitis C virus (HCV) and polymorphisms of interleukin 28B (IL28B) are associated with progression toward liver disease and in response to therapy. In addition, interactions of the core protein with some cell interactors can be related to HCV liver damage. AIM This study aimed to evaluate the effect of core mutations as well as IL28B polymorphism on clinical features, sustained virological response (SVR) in 1a and 3a HCV genotypes amongst Iranian HCV infected patients, and the impact of mutations on core protein properties, antigenic properties, and interactions with HCV inhibitors, using several bioinformatics tools. METHODS Seventy-nine Iranian patients infected with HCV genotypes 1a and 3a and diagnosed with chronic active hepatitis were examined. Plasma viral RNA was used to amplify and sequence the HCV Core gene; also, HCV viral load, molecular genotyping, and the liver enzymes were determined for all samples. The sequencing results were analyzed by several reliable bioinformatics tools to determine the physicochemical properties, B cell epitopes, post-modification changes, and secondary/tertiary structures; and evaluate the interactions with 4 drugs by docking method. RESULT There were some substitutions in core CVR related to ALT and AST enzymes that can lead to HCV advanced liver disease. The most prevalent mutation for 3a genotypes was a substitution in aa 162 (I to V) while we did not find any mutation in 1a responder group. Polymorphism of the rs8099917 showed that the majority of patients had TG heterozygous and carried CT genotype at the rs12979860. Analysis indicated several phosphorylation sits for core protein as well as two important disulfide bonds. Immunogenic prediction showed that core protein can strongly induce the immune system. Interaction analysis, using the docking method revealed two potential interactors (Vitronectin and SETD2). CONCLUSION Generally, mutations in all core CVR regions in all patients showed a relationship between such substitutions and higher liver enzymes that can result in advanced liver disease progression in HCV infected patients. Furthermore, immunoinformatics analysis determined the possible immunodominant regions to be considered in HCV vaccine designs. Furthermore, no association between SVR and IL28B polymorphism was shown. In silico analysis determined modification sites, structures, B-cell epitopes of core protein and interactions with several interactors can lead to persistent HCV infection in the cell and the progress of liver diseases.
Collapse
Affiliation(s)
- Tayebeh Hashempour
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Musavi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Younes Hosseini
- Bacteriology and Virology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ebrahim Hosseini
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maryam Moeini
- Gastroenterology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahin Merat
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Oyarzún-Arrau A, Alonso-Palomares L, Valiente-Echeverría F, Osorio F, Soto-Rifo R. Crosstalk between RNA Metabolism and Cellular Stress Responses during Zika Virus Replication. Pathogens 2020; 9:E158. [PMID: 32106582 PMCID: PMC7157488 DOI: 10.3390/pathogens9030158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus associated with neurological disorders such as Guillain-Barré syndrome and microcephaly. In humans, ZIKV is able to replicate in cell types from different tissues including placental cells, neurons, and microglia. This intricate virus-cell interaction is accompanied by virally induced changes in the infected cell aimed to promote viral replication as well as cellular responses aimed to counteract or tolerate the virus. Early in the infection, the 11-kb positive-sense RNA genome recruit ribosomes in the cytoplasm and the complex is translocated to the endoplasmic reticulum (ER) for viral protein synthesis. In this process, ZIKV replication is known to induce cellular stress, which triggers both the expression of innate immune genes and the phosphorylation of eukaryotic translation initiation factor 2 (eIF2α), shutting-off host protein synthesis. Remodeling of the ER during ZIKV replication also triggers the unfolded protein response (UPR), which induces changes in the cellular transcriptional landscapes aimed to tolerate infection or trigger apoptosis. Alternatively, ZIKV replication induces changes in the adenosine methylation patterns of specific host mRNAs, which have different consequences in viral replication and cellular fate. In addition, the ZIKV RNA genome undergoes adenosine methylation by the host machinery, which results in the inhibition of viral replication. However, despite these relevant findings, the full scope of these processes to the outcome of infection remains poorly elucidated. This review summarizes relevant aspects of the complex crosstalk between RNA metabolism and cellular stress responses against ZIKV and discusses their possible impact on viral pathogenesis.
Collapse
Affiliation(s)
- Aarón Oyarzún-Arrau
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
| | - Luis Alonso-Palomares
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Fabiola Osorio
- Laboratory of Immunology and Cellular Stress, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (A.O.-A.); (L.A.-P.); (F.V.-E.)
- HIV/AIDS Workgroup, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
3
|
Frequency of Interferon-Resistance Conferring Substitutions in Amino Acid Positions 70 and 91 of Core Protein of the Russian HCV 1b Isolates Analyzed in the T-Cell Epitopic Context. J Immunol Res 2018; 2018:7685371. [PMID: 29577052 PMCID: PMC5821972 DOI: 10.1155/2018/7685371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
Amino acid substitutions R70Q/H and L91M in HCV subtype 1b core protein can affect the response to interferon and are associated with the development of hepatocellular carcinoma. We found that the rate of R70Q/H in HCV 1b from Russia was 31.2%, similar to that in HCV strains from Asia (34.0%), higher than that in the European (18.0%, p = 0.0010), but lower than that in the US HCV 1b strains (62.8%, p < 0.0001). Substitution L91M was found in 80.4% of the Russian HCV 1b isolates, higher than in Asian isolates (43.8%, p < 0.0001). Thus, a significant proportion of Russian HCV 1b isolates carry the unfavorable R70Q/H and/or L91M substitution. In silico analysis of the epitopic structure of the regions of substitutions revealed that both harbor clusters of T-cell epitopes. Peptides encompassing these regions were predicted to bind to a panel of HLA class I molecules, with substitutions impairing peptide recognition by HLA I molecules of the alleles prevalent in Russia. This indicates that HCV 1b with R70Q/H and L91M substitutions may have evolved as the immune escape variants. Impairment of T-cell recognition may play a part in the negative effect of these substitutions on the response to IFN treatment.
Collapse
|
4
|
Naseem S, Hussain T, Manzoor S. Interleukin-6: A promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev 2018; 39:36-45. [PMID: 29361380 DOI: 10.1016/j.cytogfr.2018.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
Liver pathologies (fibrosis, cirrhosis, alcoholic, non-alcoholic diseases and hepatocellular carcinoma) represent one of the most common causes of death worldwide. A number of genetic and environmental factors contribute to the development of liver diseases. Interleukin-6 (IL-6) is a pleiotropic cytokine, exerting variety of effects on inflammation, liver regeneration, and defence against infections by regulating adaptive immunity. Due to its high abundance in inflammatory settings, IL-6 is often viewed as a detrimental cytokine. However, accumulating evidence supports the view that IL-6 has a beneficial impact in numerous liver pathologies, due to its roles in liver regeneration and in promoting an anti-inflammatory response in certain conditions. IL-6 promotes proliferation, angiogenesis and metabolism, and downregulates apoptosis and oxidative stress; together these functions are critical for mediating hepatoprotection. IL-6 is also an important regulator of adaptive immunity where it induces T cell differentiation and regulates autoimmunity. It can augment antiviral adaptive immune responses and mitigate exhaustion of T cells during chronic infection. This review focuses on studies that present IL-6 as a key factor in regulating liver regeneration and in supporting effector immune functions and suggests that these functions of IL-6 can be exploited in treatment strategies for liver pathologies.
Collapse
Affiliation(s)
- Sidrah Naseem
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Tabinda Hussain
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| |
Collapse
|
5
|
Abdallah F, Mohamed G, Ibrahim M, El Tarabily M. Effectiveness of Sofosbuvir, Ribavirin and PEG-IFNα-2a in the Treatment of Naïve Egyptian Patients With Chronic Hepatitis C Virus Genotype 4. Am J Med Sci 2017; 355:456-466. [PMID: 29753376 DOI: 10.1016/j.amjms.2017.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Egypt is one of the largest epidemic areas of hepatitis C virus (HCV) in the world. Its prevalent genotype is 4 with a majority of subtype 4a. In 2013, the Food and Drug Administration approved a new direct-acting antiviral drug (sofosbuvir) to treat patients with chronic HCV infection. In Egypt, the patients are already being treated with sofosbuvir in conjunction with ribavirin and pegylated interferon alfa-2a (PEG-IFNα-2a) for 12 weeks since 2015. The present study was planned to explain the efficacy of this treatment regimen against the HCV genotype 4a in Egyptian patients and its pretreatment predictive factors of virological response. METHODS In this population-based study, serum samples were biochemically analyzed and the HCV RNA levels were quantified. The direct sequencing and bioinformatics analysis were utilized to investigate the mutation of the core protein. RESULTS The sustained virological response (SVR) and non-SVR were 72% and 16% respectively, but the nonvirological response was only 12% following the treatment regimen. The multivariable analysis recognized viral (level of viremia and substitution of aa70) and host-related factors (age, alanine aminotransferase and aspartate aminotransferase levels) affecting the virological response in patients infected with high viral load of HCV 4a. CONCLUSIONS Overall, these results concluded that sofosbuvir with ribavirin and PEG-IFNα-2a are highly efficient in HCV-4a Egyptian patients where a high SVR was achieved (72%). In addition to this, there is a significant association between core protein mutations and treatment outcome predominantly at amino acid position 70 (Arg or Gln).
Collapse
Affiliation(s)
- Fatma Abdallah
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Gehad Mohamed
- Department of Botany (Microbiology), Faculty of Science, Port Said University, Port Said, Egypt
| | - Mohsen Ibrahim
- Department of Botany (Microbiology), Faculty of Science, Port Said University, Port Said, Egypt
| | - Mokhtar El Tarabily
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Lerat H, Imache MR, Polyte J, Gaudin A, Mercey M, Donati F, Baudesson C, Higgs MR, Picard A, Magnan C, Foufelle F, Pawlotsky JM. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice. J Biol Chem 2017; 292:12860-12873. [PMID: 28559285 DOI: 10.1074/jbc.m117.785030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans.
Collapse
Affiliation(s)
- Hervé Lerat
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France; Université Paris-Est Créteil Val de Marne, 94010 Créteil, France.
| | - Mohamed Rabah Imache
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Jacqueline Polyte
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Aurore Gaudin
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Marion Mercey
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Flora Donati
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Camille Baudesson
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Martin R Higgs
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France
| | - Alexandre Picard
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, 75013 Paris, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR 8251, Université Paris Diderot, 75013 Paris, France
| | - Fabienne Foufelle
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Jean-Michel Pawlotsky
- INSERM, U955, Team "Pathophysiology and Therapy of Chronic Viral Hepatitis and Related Cancers", 94010 Créteil, France; Université Paris-Est Créteil Val de Marne, 94010 Créteil, France; National Reference Center for Viral Hepatitis B, C and Delta, Department of Virology, Hôpital Henri Mondor, AP-HP, 94010 Créteil, France
| |
Collapse
|
7
|
Takahashi S, Sato N, Kikuchi J, Kakinuma H, Okawa J, Masuyama Y, Iwasa S, Irokawa H, Hwang GW, Naganuma A, Kohara M, Kuge S. Immature Core protein of hepatitis C virus induces an unfolded protein response through inhibition of ERAD-L in a yeast model system. Genes Cells 2017; 22:160-173. [PMID: 28097745 DOI: 10.1111/gtc.12464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/29/2016] [Indexed: 01/18/2023]
Abstract
The structural protein Core of hepatitis C virus (HCV), a cytosolic protein, induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in hepatocytes, and is responsible for the pathogenesis of persistent HCV infection. Using yeast as a model system, we evaluated mechanisms underlying Core-induced interference of ER homeostasis and UPR, and found that UPR is induced by the immature Core (aa 1-191, Core191) but not by the mature Core (aa 1-177, Core177). Interestingly, Core191 inhibits both ERAD-L, a degradation system responsible for misfolded/unfolded proteins in the ER lumen, and ERAD-M, a degradation system responsible for proteins carrying a misfolded/unfolded region in the ER membrane. In contrast, Core177 inhibits ERAD-M but not ERAD-L. In addition, requirement of an unfolded protein sensor in the ER lumen suggested that inhibition of ERAD-L is probably responsible for Core191-dependent UPR activation. These results implicate inadequate maturation of Core as a trigger for induction of ER stress and UPR.
Collapse
Affiliation(s)
- Shota Takahashi
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Naoko Sato
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.,Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Junichi Kikuchi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hideaki Kakinuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Jun Okawa
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Yukiko Masuyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Singo Iwasa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Hayato Irokawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Shusuke Kuge
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.,Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
8
|
Aslam R, Raza SM, Naeemi H, Mubarak B, Afzal N, Khaliq S. SOCS3 mRNA expression and polymorphisms as pretreatment predictor of response to HCV genotype 3a IFN-based treatment. SPRINGERPLUS 2016; 5:1826. [PMID: 27818864 PMCID: PMC5074986 DOI: 10.1186/s40064-016-3506-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/10/2016] [Indexed: 01/10/2023]
Abstract
Aim Suppressor of Cytokine Signaling 3 (SOCS3) gene belongs to SOCS family as one of the negative regulators of cytokine signaling and IFN response that function via the JAK-STAT pathway in antiviral response. SOCS3 expression and genetic polymorphism influences the pathogenesis and outcome of antiviral treatment in hepatitis C virus (HCV) infected patients. This study was designed for analysis of SOCS3 gene expression and polymorphism in Pakistani HCV patients. Methods This descriptive study was conducted on 250 diagnosed HCV genotype 3a infected subjects. The study population was divided into two major groups on the basis of therapeutic response i.e. sustained virological response (SVR) and non-responders/relapsers (NR). SOCS3 gene mRNA expression analysis was done by using Real time PCR technique, whereas ARMS PCR technique was used for analysis of SOCS3 gene polymorphisms i.e. 8464 A/C (rs12952093), −4874 A/G (rs4969170) and −1383 A/G, (rs4969168). Results Gene expression analysis of SOCS3 showed that there was statistically significant increase of 2.275-fold and 3.72-fold in relative gene expression for SVR and NR as compared to normal healthy samples (p < 0.001). The distribution of rs4969168, rs4969170 and rs12952093 genotype frequencies between SVR versus NR group were not statistically significant, only the allelic frequency of rs4969170 was statistically significant (p ≤ 0.0001) with therapeutic response. Conclusion The gene expression analysis of SOCS3 showed a clear difference in mRNA expression of SOCS3 as a possible indicator of therapeutic response rather than polymorphism of SOCS3 gene in our studied population.
Collapse
Affiliation(s)
- Rabia Aslam
- Department of Immunology, University of Health Sciences Lahore, Khayaban-e-Jamia Punjab, Lahore, Pakistan
| | - Syed Mohsin Raza
- Department of Physiology & Cell Biology, University of Health Sciences Lahore, Khayaban-e-Jamia Punjab, Lahore, Pakistan ; Allied Health Sciences, University of Health Sciences Lahore, Lahore, Pakistan
| | - Humeira Naeemi
- Department of Immunology, University of Health Sciences Lahore, Khayaban-e-Jamia Punjab, Lahore, Pakistan
| | - Bushra Mubarak
- Department of Immunology, University of Health Sciences Lahore, Khayaban-e-Jamia Punjab, Lahore, Pakistan
| | - Nadeem Afzal
- Department of Immunology, University of Health Sciences Lahore, Khayaban-e-Jamia Punjab, Lahore, Pakistan
| | - Saba Khaliq
- Department of Physiology & Cell Biology, University of Health Sciences Lahore, Khayaban-e-Jamia Punjab, Lahore, Pakistan ; Department of Immunology, University of Health Sciences Lahore, Khayaban-e-Jamia Punjab, Lahore, Pakistan
| |
Collapse
|
9
|
Sultana C, Oprişan G, Teleman MD, Dinu S, Oprea C, Voiculescu M, Ruta S. Impact of hepatitis C virus core mutations on the response to interferon-based treatment in chronic hepatitis C. World J Gastroenterol 2016; 22:8406-8413. [PMID: 27729747 PMCID: PMC5055871 DOI: 10.3748/wjg.v22.i37.8406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/09/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine whether hepatitis C virus (HCV) core substitutions play a role in the response to interferon-based treatment in Caucasian patients. METHODS One hundred eight HCV chronically infected patients initiating treatment with pegylated IFN plus ribavirin for 48 wk were tested for baseline substitutions at codons 70 and 91 of the viral core protein (BigDye Terminator vers.3.1, Applied Biosystems,) and for genetic polymorphisms in host IL28B gene rs12979860 (Custom TaqMan 5' allelic discrimination assay; Applied Biosystems). RESULTS Of the patients, all were infected with HCV genotype 1b, 44.4% had low baseline HCV viral load, and 37.9% had mild/moderate fibrosis. Only 38.9% achieved therapeutic success, defined as sustained virological response (SVR). Eighty-eight percent of the patients presented at least one substitution at core position 70 (R70Q/H) or/and position 91 (L91M). The favorable IL28B CC polymorphism was detected in only 17.6% of the patients. In the univariate analysis, young age (P < 0.001), urban residence (P = 0.004), IL28B CC genotype (P < 0.001), absence of core mutations (P = 0.005), achievement of rapid virologic response (P < 0.001) and early virological response (P < 0.001) were significantly correlated with SVR. A multivariate analysis revealed three independent predictors of therapeutic success: young age (P < 0.001), absence of core substitutions (P = 0.04) and IL28B CC genotype (P < 0.001); the model correctly classified 75.9% of SVR cases with a positive predictive value of 80.7%. CONCLUSION HCV core mutations can help distinguish between patients who can still benefit from the affordable IFN-based therapy from those who must be treated with DAAs to prevent the evolution towards end-stage liver disease.
Collapse
|
10
|
Taniguchi M, Tasaka-Fujita M, Nakagawa M, Watanabe T, Kawai-Kitahata F, Otani S, Goto F, Nagata H, Kaneko S, Nitta S, Murakawa M, Nishimura-Sakurai Y, Azuma S, Itsui Y, Mori K, Yagi S, Kakinuma S, Asahina Y, Watanabe M. Evaluation of Interferon Resistance in Newly Established Genotype 1b Hepatitis C Virus Cell Culture System. J Clin Transl Hepatol 2016; 4:5-11. [PMID: 27047766 PMCID: PMC4807137 DOI: 10.14218/jcth.2015.00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS The hepatitis C virus (HCV) genotype 1b is known to exhibit treatment resistance with respect to interferon (IFN) therapy. Substitution of amino acids 70 and 91 in the core region of the 1b genotype is a significant predictor of liver carcinogenesis and poor response to pegylated-IFN-α and ribavirin therapy. However, the molecular mechanism has not yet been clearly elucidated because of limitations of the HCV genotype 1b infectious model. Recently, the TPF1-M170T HCV genotype 1b cell culture system was established, in which the clone successfully replicates and infects Huh-7-derived Huh7-ALS32.50 cells. Therefore, the purpose of this study was to compare IFN resistance in various HCV clones using this system. METHODS HCV core amino acid substitutions R70Q and L91M were introduced to the TPF1-M170T clone and then transfected into Huh7-ALS32.50 cells. To evaluate the production of each virus, intracellular HCV core antigens were measured. RESULTS were confirmed with Western blot analysis using anti-NS5A antibodies, and IFN sensitivity was subsequently measured. RESULTS Each clone was transfected successfully compared with JFH-1, with a significant difference in intracellular HCV core antigen (p < 0.05), an indicator of continuous HCV replication. Among all clones, L91M showed the highest increase in the HCV core antigen and HCV protein. There was no significant resistance against IFN treatment in core substitutions; however, IFN sensitivity was significantly different between the wildtype core and JFH-1 (p < 0.05). CONCLUSIONS A novel genotype 1b HCV cell culture was constructed with core amino acid substitutions, which demonstrated IFN resistance of genotype 1b. This system will be useful for future analyses into the mechanisms of HCV genotype 1b treatment.
Collapse
Affiliation(s)
- Miki Taniguchi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- †These authors contributed equally to this work
| | - Megumi Tasaka-Fujita
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Interprofessional Education, Tokyo Medical and Dental University, Tokyo, Japan
- †These authors contributed equally to this work
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Interprofessional Education, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takako Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Medical Education Research and Development, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Otani
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumio Goto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroko Nagata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuki Nishimura-Sakurai
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishin Azuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Itsui
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Medical Education Research and Development, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Sei Kakinuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
- Correspondence to: Yasuhiro Asahina, Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan. Tel: +81-358035877, Fax: +81-358030268, E-mail:
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Prabdial-Sing N, Blackard J, Puren A, Mahomed A, Abuelhassan W, Mahlangu J, Vermeulen M, Bowyer S. Naturally occurring resistance mutations within the core and NS5B regions in hepatitis C genotypes, particularly genotype 5a, in South Africa. Antiviral Res 2016; 127:90-8. [DOI: 10.1016/j.antiviral.2015.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/05/2015] [Accepted: 11/26/2015] [Indexed: 12/27/2022]
|
12
|
Trimbitas RD, Fayssel N, Serghini FZ, Wakrim L, Khyatti M, Essalhi M, Bellefquih AM, Benani A. Molecular characterization of hepatitis C virus core region in moroccan intravenous drug users. J Med Virol 2016; 88:1376-83. [PMID: 26754854 DOI: 10.1002/jmv.24470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
Abstract
Intravenous drug users (IDUs) represent a highly-infected reservoir for Hepatitis C virus (HCV) worldwide, harboring some of the most elevated prevalences and majority of the epidemic in developed nations. Studies aimed at sequencing regions of the viral genome uncovered amino acid mutations, some of which have been implicated in resistance to standard of care pegylated interferon/Ribavirin double therapy. Using the nested PCR method on the Core region of HCV strains in Moroccan IDUs living in the Tangier region this study sought to identify genotype-specific amino acid mutations, followed by Phylogenetic methods in order to compare them with international strains so as to identify sequences of highest homology. Genotyping was confirmed and recombination events excluded by line-probe assay. Italy was found most homologous for genotypes 1a and 3a, Iran for genotype 1a and Egypt for genotype 4a. Amino Acid Mutation analysis revealed the following novel genotype 3a-specific mutations: N16I, L36V, T49A, P71S, T75S, and T110N. The outcome of this work describes the HCV genetic heterogeneity in high-risk intravenous drug users, and it gives clues to the global migratory flow of genotypes as they cross geographical boundaries between various IDU populations and identifies "signature" amino acid mutations traceable to HCV genotype 3a. Identification of key amino acid positions in the HCV Core region with higher rates of mutations paves the way for eventual clinical trials seeking to establish a link between these recurrent mutations and response to standard of care Interferon and Ribavirin antiviral therapy. J. Med. Virol. 88:1376-1383, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Naouar Fayssel
- Virology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | | | - Lahcen Wakrim
- Virology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Meriem Khyatti
- Oncovirology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | | | | | - Abdelouaheb Benani
- Molecular Biology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| |
Collapse
|
13
|
Li L, Zhao G. Downregulation of microRNA-218 relieves neuropathic pain by regulating suppressor of cytokine signaling 3. Int J Mol Med 2016; 37:851-8. [PMID: 26782075 DOI: 10.3892/ijmm.2016.2455] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 12/16/2015] [Indexed: 11/05/2022] Open
Abstract
Neuropathic pain is an incapacitating disease that affects a large number of people worldwide, but effective therapies have not yet been established. microRNAs (miRs) are short non-coding RNAs that participate in several biological processes and states, including neuropathic pain. Nevertheless, the precise role of miRs in regulating neuropathic pain remains largely unknown. In the present study, we investigated the role of miR-218 in neuropathic pain using a rat model of chronic constriction injury (CCI). miR-218 expression was induced and studied in the spinal cord and microglial cells of rats with CCI. We noted that downregulation of miR-218 by a specific miR-218 inhibitor significantly attenuated mechanical allodynia, thermal hyperalgesia, and proinflammatory cytokine release in CCI rats. A dual-luciferase reporter assay, RT-qPCR, and western blot analysis results demonstrated that miR-218 directly targeted the 3'-UTR of the suppressor of cytokine signaling 3 (SOCS3) and regulated mRNA and protein expression of SOCS3. Treatment with miR-218 inhibitors inactivated Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling in rats with CCI in vivo. Moreover, miR-218 inhibitors significantly inhibited the activation of microglial cell STAT3 signaling and downstream proinflammatory genes in microglial cells. These results suggest that miR-218 regulated neuropathic pain and neuroinflammation by regulating SOCS3 expression, which negatively mediated STAT3 signaling. Thus, we propose that silencing of miR-218 may be a promising and novel treatment for neuropathic pain.
Collapse
Affiliation(s)
- Longyun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
14
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
15
|
Hu Z, Liu Y, Qiu L, Fan Z, Nie W, Liang S, Jin R. Kinetic response of wild and mutant core codon 70 strains of HCV genotype 1b to pegylated interferon-α and ribavirin therapy. Virol J 2015; 12:220. [PMID: 26684004 PMCID: PMC4683707 DOI: 10.1186/s12985-015-0451-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/09/2015] [Indexed: 01/09/2023] Open
Abstract
Background Amino acid (aa) 70 substitution (R70Q/H) in the core protein of hepatitis C virus (HCV) genotype 1b has been shown to be one of the key factors in determining resistance for pegylated interferon-α plus ribavirin combination therapy (PEG-IFNα/RBV). But the exact mechanisms remain unclear. The aim of this study was to investigate the dynamic response of wild and mutant core codon 70 strains to PEG-IFNα/RBV treatment. Methods One hundred twelve Chinese patients with chronic HCV 1b infection were enrolled and received a standard protocol of 48 weeks of PEG-IFNα/RBV therapy and 24 consecutive weeks of follow-up. Serial blood samples were obtained at pretreatment baseline, and again at weeks 2, 4, 8, 12, and 24 during therapy for the quantification of 70R and 70Q/H strains. Dynamic characteristics and association with early virological response (EVR), sustained virological response (SVR) and IL28B genotypes were analyzed. Results Of the 112 patients enrolled in this study, 93.8 % (105/112) were infected with mixture of 70R and 70Q/H strains before treatment. The 70Q/H strain was dominant in 20.5 % of patients. 42.9 % of patients with dominant 70Q/H exhibited EVR versus 88.6 % of patients with dominant 70R (P < 0.001). Furthermore, 35.0 % of patients with dominant 70Q/H exhibited SVR versus 77.4 % with dominant 70R (P < 0.001). However, regardless of the dominant strain, virological response types or the IL28B SNP genotypes, 70Q/H strains always exhibited the same response to treatment as the 70R strains and the percentage of HCV harboring the 70Q/H substitution did not change significantly during treatment. Conclusions Although the ratio of 70Q/H to 70R is related to the virological response, 70Q/H strains always exhibited the same response as the 70R strains during PEG-IFNα/RBV treatment. Substitution of R70Q/H alone is not enough to lead to resistance to therapy. Positive selection for 70Q/H induced by IFNα was not observed.
Collapse
Affiliation(s)
- Zhongjie Hu
- Department of Hepatitis C & Toxic liver diseases, Beijing Youan Hospital, Capital Medical University, Beijing, the People's Republic of China.
| | - Ying Liu
- Management center of medical record, Beijing Youan Hospital, Capital Medical University, Beijing, the People's Republic of China.
| | - Lixia Qiu
- Department of Hepatitis C & Toxic liver diseases, Beijing Youan Hospital, Capital Medical University, Beijing, the People's Republic of China.
| | - Zuopeng Fan
- Department of Hepatitis C & Toxic liver diseases, Beijing Youan Hospital, Capital Medical University, Beijing, the People's Republic of China.
| | - Wei Nie
- Department of Hepatitis C & Toxic liver diseases, Beijing Youan Hospital, Capital Medical University, Beijing, the People's Republic of China.
| | - Shan Liang
- Department of Hepatitis C & Toxic liver diseases, Beijing Youan Hospital, Capital Medical University, Beijing, the People's Republic of China.
| | - Ronghua Jin
- Beijing Youan Hospital, Capital Medical University, No. 8 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, the People's Republic of China.
| |
Collapse
|
16
|
Kumthip K, Maneekarn N. The role of HCV proteins on treatment outcomes. Virol J 2015; 12:217. [PMID: 26666318 PMCID: PMC4678629 DOI: 10.1186/s12985-015-0450-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
For many years, the standard of treatment for hepatitis C virus (HCV) infection was a combination of pegylated interferon alpha (Peg-IFN-α) and ribavirin for 24–48 weeks. This treatment regimen results in a sustained virologic response (SVR) rate in about 50 % of cases. The failure of IFN-α-based therapy to eliminate HCV is a result of multiple factors including a suboptimal treatment regimen, severity of HCV-related diseases, host factors and viral factors. In recent years, advances in HCV cell culture have contributed to a better understanding of the viral life cycle, which has led to the development of a number of direct-acting antiviral agents (DAAs) that target specific key components of viral replication, such as HCV NS3/4A, HCV NS5A, and HCV NS5B proteins. To date, several new drugs have been approved for the treatment of HCV infection. Application of DAAs with IFN-based or IFN-free regimens has increased the SVR rate up to >90 % and has allowed treatment duration to be shortened to 12–24 weeks. The impact of HCV proteins in response to IFN-based and IFN-free therapies has been described in many reports. This review summarizes and updates knowledge on molecular mechanisms of HCV proteins involved in anti-IFN activity as well as examining amino acid variations and mutations in several regions of HCV proteins associated with the response to IFN-based therapy and pattern of resistance associated amino acid variants (RAV) to antiviral agents.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Tasaka-Fujita M, Sugiyama N, Kang W, Masaki T, Masaski T, Murayama A, Yamada N, Sugiyama R, Tsukuda S, Watashi K, Asahina Y, Sakamoto N, Wakita T, Shin EC, Kato T. Amino Acid Polymorphisms in Hepatitis C Virus Core Affect Infectious Virus Production and Major Histocompatibility Complex Class I Molecule Expression. Sci Rep 2015; 5:13994. [PMID: 26365522 PMCID: PMC4568458 DOI: 10.1038/srep13994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023] Open
Abstract
Amino acid (aa) polymorphisms in the hepatitis C virus (HCV) genotype 1b core protein have been reported to be a potent predictor for poor response to interferon (IFN)-based therapy and a risk factor for hepatocarcinogenesis. We investigated the effects of these polymorphisms with genotype 1b/2a chimeric viruses that contained polymorphisms of Arg/Gln at aa 70 and Leu/Met at aa 91. We found that infectious virus production was reduced in cells transfected with chimeric virus RNA that had Gln at aa 70 (aa70Q) compared with RNA with Arg at aa 70 (aa70R). Using flow cytometry analysis, we confirmed that HCV core protein accumulated in aa70Q clone transfected cells, and it caused a reduction in cell-surface expression of major histocompatibility complex (MHC) class I molecules induced by IFN treatment through enhanced protein kinase R phosphorylation. We could not detect any effects due to the polymorphism at aa 91. In conclusion, the polymorphism at aa 70 was associated with efficiency of infectious virus production, and this deteriorated virus production in strains with aa70Q resulted in the intracellular accumulation of HCV proteins and attenuation of MHC class I molecule expression. These observations may explain the strain-associated resistance to IFN-based therapy and hepatocarcinogenesis of HCV.
Collapse
Affiliation(s)
- Megumi Tasaka-Fujita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.,Center for Interprofessional Education, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Nao Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Wonseok Kang
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Takahiro Masaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Norie Yamada
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
18
|
Uraki S, Tameda M, Sugimoto K, Shiraki K, Takei Y, Nobori T, Ito M. Substitution in Amino Acid 70 of Hepatitis C Virus Core Protein Changes the Adipokine Profile via Toll-Like Receptor 2/4 Signaling. PLoS One 2015; 10:e0131346. [PMID: 26121241 PMCID: PMC4487891 DOI: 10.1371/journal.pone.0131346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/01/2015] [Indexed: 12/28/2022] Open
Abstract
Background & Aims It has been suggested that amino acid (aa) substitution at position 70 from arginine (70R) to glutamine (70Q) in the genotype 1b hepatitis C virus (HCV) core protein is associated with insulin resistance and worse prognosis. However, the precise mechanism is still unclear. The aim of this study was to investigate the impact of the substitution at position 70 in HCV core protein on adipokine production by murine and human adipocytes. Methods The influence of treatment with HCV core protein (70R or 70Q) on adipokine production by both 3T3-L1 and human adipocytes were examined with real-time PCR and enzyme-linked immunosorbent assay (ELISA), and triglyceride content was also analyzed. The effects of toll-like receptor (TLR)2/4 inhibition on IL-6 production by 3T3-L1 induced by HCV core protein were examined. Results IL-6 production was significantly increased and adiponectin production was reduced without a change in triglyceride content by treatment with 70Q compared to 70R core protein in both murine and human adipocytes. IL-6 induction of 3T3-L1 cells treated by 70Q HCV core protein was significantly inhibited with anti-TLR2 antibody by 42%, and by TLR4 inhibitor by 40%. Conclusions Our study suggests that extracellular HCV core protein with substitution at position 70 enhanced IL-6 production and reduced adiponectin production from visceral adipose tissue, which can cause insulin resistance, hepatic steatosis, and ultimately development of HCC.
Collapse
Affiliation(s)
- Satoko Uraki
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| | - Masahiko Tameda
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Kazushi Sugimoto
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
- * E-mail:
| | - Katsuya Shiraki
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu, Japan
| | - Tsutomu Nobori
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, 2–174 Edobashi, Tsu, Mie, 514–8507, Japan
| | - Masaaki Ito
- First Department of Internal Medicine, Mie University School of Medicine, Tsu, Japan
| |
Collapse
|
19
|
Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell Mol Immunol 2014; 13:11-35. [PMID: 25544499 PMCID: PMC4712384 DOI: 10.1038/cmi.2014.127] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 12/14/2022] Open
Abstract
Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed.
Collapse
|
20
|
Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell Mol Immunol 2014; 11:218-20. [PMID: 25544499 DOI: 10.1038/cmi.2014.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed.
Collapse
|
21
|
Molecular basis of interferon resistance in hepatitis C virus. Curr Opin Virol 2014; 8:38-44. [DOI: 10.1016/j.coviro.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 02/08/2023]
|
22
|
Lin RJ, Chu JS, Chien HL, Tseng CH, Ko PC, Mei YY, Tang WC, Kao YT, Cheng HY, Liang YC, Lin SY. MCPIP1 suppresses hepatitis C virus replication and negatively regulates virus-induced proinflammatory cytokine responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:4159-68. [PMID: 25225661 DOI: 10.4049/jimmunol.1400337] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human MCP-1-induced protein 1 (MCPIP1, also known as ZC3H12A and Regnase-1) plays important roles in negatively regulating the cellular inflammatory response. Recently, we found that as an RNase, MCPIP1 has broad-spectrum antiviral effects by targeting viral RNA. In this study, we demonstrated that MCPIP1 expression was induced by hepatitis C virus (HCV) infection in Huh7.5 hepatoma cells. MCPIP1 expression was higher in liver tissue from patients with chronic HCV infection compared with those without chronic HCV infection. Knockdown of MCPIP1 increased HCV replication and HCV-mediated expression of proinflammatory cytokines, such as TNF-α, IL-6, and MCP-1. However, overexpression of MCPIP1 significantly inhibited HCV replication and HCV-mediated expression of proinflammatory cytokines. Various mutants of functional domains of MCPIP1 showed disruption of the RNA binding and oligomerization abilities, as well as RNase activity, but not deubiquitinase activity, which impaired the inhibitory activity against HCV replication. On immunocytochemistry, MCPIP1 colocalized with HCV RNA. Use of a replication-defective HCV John Cunningham 1/AAG mutant and in vitro RNA cleavage assay demonstrated that MCPIP1 could directly degrade HCV RNA. MCPIP1 may suppress HCV replication and HCV-mediated proinflammatory responses with infection, which might contribute to the regulation of host defense against the infection and virus-induced inflammation.
Collapse
Affiliation(s)
- Ren-Jye Lin
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Jan-Show Chu
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Pathology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Hsu-Ling Chien
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Hsin Tseng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pin-Chen Ko
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Yu Mei
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Chun Tang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; and
| | - Yu-Ting Kao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; and
| | - Hui-Ying Cheng
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Shyr-Yi Lin
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
| |
Collapse
|
23
|
El-Shamy A, Hotta H. Impact of hepatitis C virus heterogeneity on interferon sensitivity: an overview. World J Gastroenterol 2014; 20:7555-69. [PMID: 24976696 PMCID: PMC4069287 DOI: 10.3748/wjg.v20.i24.7555] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide. HCV is able to evade host defense mechanisms, including both innate and acquired immune responses, to establish persistent infection, which results in a broad spectrum of pathogenicity, such as lipid and glucose metabolism disorders and hepatocellular carcinoma development. The HCV genome is characterized by a high degree of genetic diversity, which can be associated with viral sensitivity or resistance (reflected by different virological responses) to interferon (IFN)-based therapy. In this regard, it is of importance to note that polymorphisms in certain HCV genomic regions have shown a close correlation with treatment outcome. In particular, among the HCV proteins, the core and nonstructural proteins (NS) 5A have been extensively studied for their correlation with responses to IFN-based treatment. This review aims to cover updated information on the impact of major HCV genetic factors, including HCV genotype, mutations in amino acids 70 and 91 of the core protein and sequence heterogeneity in the IFN sensitivity-determining region and IFN/ribavirin resistance-determining region of NS5A, on virological responses to IFN-based therapy.
Collapse
|
24
|
Li HC, Ma HC, Yang CH, Lo SY. Production and pathogenicity of hepatitis C virus core gene products. World J Gastroenterol 2014; 20:7104-7122. [PMID: 24966583 PMCID: PMC4064058 DOI: 10.3748/wjg.v20.i23.7104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/05/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis.
Collapse
|
25
|
Chan SW. Unfolded protein response in hepatitis C virus infection. Front Microbiol 2014; 5:233. [PMID: 24904547 PMCID: PMC4033015 DOI: 10.3389/fmicb.2014.00233] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical importance. The virus establishes a chronic infection and can progress from chronic hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The mechanisms of viral persistence and pathogenesis are poorly understood. Recently the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic reticulum (ER) stress, has emerged to be a major contributing factor in many human diseases. It is also evident that viruses interact with the host UPR in many different ways and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular type of infection. Here we present evidence for the elicitation of chronic ER stress in HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the various levels of UPR regulation by different viral proteins and finally, we propose several mechanisms by which the virus provokes the UPR.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Life Sciences, The University of Manchester Manchester, UK
| |
Collapse
|
26
|
Carow B, Rottenberg ME. SOCS3, a Major Regulator of Infection and Inflammation. Front Immunol 2014; 5:58. [PMID: 24600449 PMCID: PMC3928676 DOI: 10.3389/fimmu.2014.00058] [Citation(s) in RCA: 376] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/31/2014] [Indexed: 12/18/2022] Open
Abstract
In this review, we describe the role of suppressor of cytokine signaling-3 (SOCS3) in modulating the outcome of infections and autoimmune diseases as well as the underlying mechanisms. SOCS3 regulates cytokine or hormone signaling usually preventing, but in some cases aggravating, a variety of diseases. A main role of SOCS3 results from its binding to both the JAK kinase and the cytokine receptor, which results in the inhibition of STAT3 activation. Available data also indicate that SOCS3 can regulate signaling via other STATs than STAT3 and also controls cellular pathways unrelated to STAT activation. SOCS3 might either act directly by hampering JAK activation or by mediating the ubiquitination and subsequent proteasome degradation of the cytokine/growth factor/hormone receptor. Inflammation and infection stimulate SOCS3 expression in different myeloid and lymphoid cell populations as well as in diverse non-hematopoietic cells. The accumulated data suggest a relevant program coordinated by SOCS3 in different cell populations, devoted to the control of immune homeostasis in physiological and pathological conditions such as infection and autoimmunity.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
27
|
Identification of alpha interferon-induced envelope mutations of hepatitis C virus in vitro associated with increased viral fitness and interferon resistance. J Virol 2013; 87:12776-93. [PMID: 24049176 DOI: 10.1128/jvi.00901-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alpha interferon (IFN-α) is an essential component of innate antiviral immunity and of treatment regimens for chronic hepatitis C virus (HCV) infection. Resistance to IFN might be important for HCV persistence and failure of IFN-based therapies. Evidence for HCV genetic correlates of IFN resistance is limited. Experimental studies were hampered by lack of HCV culture systems. Using genotype (strain) 1a(H77) and 3a(S52) Core-NS2 JFH1-based recombinants, we aimed at identifying viral correlates of IFN-α resistance in vitro. Long-term culture with IFN-α2b in Huh7.5 cells resulted in viral spread with acquisition of putative escape mutations in HCV structural and nonstructural proteins. Reverse genetic studies showed that primarily amino acid changes I348T in 1a(H77) E1 and F345V/V414A in 3a(S52) E1/E2 increased viral fitness. Single-cycle assays revealed that I348T and F345V/V414A enhanced viral entry and release, respectively. In assays allowing viral spread, these mutations conferred a level of IFN-α resistance exceeding the observed fitness effect. The identified mutations acted in a subtype-specific manner but were not found in genotype 1a and 3a patients, who failed IFN-α therapy. Studies with HCV recombinants with different degrees of culture adaptation confirmed the correlation between viral fitness and IFN-α resistance. In conclusion, in vitro escape experiments led to identification of HCV envelope mutations resulting in increased viral fitness and conferring IFN-α resistance. While we established a close link between viral fitness and IFN-α resistance, identified mutations acted via different mechanisms and appeared to be relatively specific to the infecting virus, possibly explaining difficulties in identifying signature mutations for IFN resistance.
Collapse
|
28
|
Saludes V, Bascuñana E, Jordana-Lluch E, Casanovas S, Ardèvol M, Soler E, Planas R, Ausina V, Martró E. Relevance of baseline viral genetic heterogeneity and host factors for treatment outcome prediction in hepatitis C virus 1b-infected patients. PLoS One 2013; 8:e72600. [PMID: 24015264 PMCID: PMC3755994 DOI: 10.1371/journal.pone.0072600] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Only about 50% of patients chronically infected with HCV genotype 1 (HCV-1) respond to treatment with pegylated interferon-alfa and ribavirin (dual therapy), and protease inhibitors have to be administered together with these drugs increasing costs and side-effects. We aimed to develop a predictive model of treatment response based on a combination of baseline clinical and viral parameters. METHODOLOGY Seventy-four patients chronically infected with HCV-1b and treated with dual therapy were studied (53 retrospectively -training group-, and 21 prospectively -validation group-). Host and viral-related factors (viral load, and genetic variability in the E1-E2, core and Interferon Sensitivity Determining Region) were assessed. Multivariate discriminant analysis and decision tree analysis were used to develop predictive models on the training group, which were then validated in the validation group. PRINCIPAL FINDINGS A multivariate discriminant predictive model was generated including the following variables in decreasing order of significance: the number of viral variants in the E1-E2 region, an amino acid substitution pattern in the viral core region, the IL28B polymorphism, serum GGT and ALT levels, and viral load. Using this model treatment outcome was accurately predicted in the training group (AUROC = 0.9444; 96.3% specificity, 94.7% PPV, 75% sensitivity, 81% NPV), and the accuracy remained high in the validation group (AUROC = 0.8148, 88.9% specificity, 90.0% PPV, 75.0% sensitivity, 72.7% NPV). A second model was obtained by a decision tree analysis and showed a similarly high accuracy in the training group but a worse reproducibility in the validation group (AUROC = 0.9072 vs. 0.7361, respectively). CONCLUSIONS AND SIGNIFICANCE The baseline predictive models obtained including both host and viral variables had a high positive predictive value in our population of Spanish HCV-1b treatment naïve patients. Accurately identifying those patients that would respond to the dual therapy could help reducing implementation costs and additional side effects of new treatment regimens.
Collapse
Affiliation(s)
- Verónica Saludes
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Elisabet Bascuñana
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Elena Jordana-Lluch
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Sònia Casanovas
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Mercè Ardèvol
- Hospital Pharmacy, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Esther Soler
- Liver Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ramón Planas
- Liver Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Vicente Ausina
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Bunyola, Spain
| | - Elisa Martró
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
29
|
Khaliq S, Latief N, Jahan S. Role of different regions of the hepatitis C virus genome in the therapeutic response to interferon-based treatment. Arch Virol 2013; 159:1-15. [PMID: 23851652 DOI: 10.1007/s00705-013-1780-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) is considered a significant risk factor in HCV-induced liver diseases and development of hepatocellular carcinoma (HCC). Nucleotide substitutions in the viral genome result in its diversification into quasispecies, subtypes and distinct genotypes. Different genotypes vary in their infectivity and immune response due to these nucleotide/amino acid variations. The current combination treatment for HCV infection is pegylated interferon α (PEG-IFN-α) with ribavirin, with a highly variable response rate mainly depending upon the HCV genotype. Genotypes 2 and 3 are found to respond better than genotypes 1 and 4, which are more resistant to IFN-based therapies. Different studies have been conducted worldwide to explore the basis of this difference in therapy response, which identified some putative regions in the HCV genome, especially in Core and NS5a, and to some extent in the E2 region, containing specific sequences in different genotypes that act differently with respect to the IFN response. In the review, we try to summarize the role of HCV proteins and their nucleotide sequences in association with treatment outcome in IFN-based therapy.
Collapse
Affiliation(s)
- Saba Khaliq
- Department of Immunology, University of Health Sciences, Lahore, Pakistan,
| | | | | |
Collapse
|
30
|
Impact of host and virus genome variability on HCV replication and response to interferon. Curr Opin Virol 2013; 3:501-7. [PMID: 23835049 DOI: 10.1016/j.coviro.2013.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023]
Abstract
Since the discovery of hepatitis C virus (HCV), treatment has proven difficult and the regimen of pegylated interferon-α and ribavirin is only effective for half of patients. Evidence suggests that host and viral genome variations play a role in either viral clearance or persistence. Powerful genomic technologies have made it possible to study genome-wide associations with treatment response, which yielded critical genetic polymorphisms that predict treatment response. This has important implications for treatment of HCV infection and opened the door to the possibility of genetic marker-guided treatment (personalized medicine). This review will focus on the recent advances in understanding host and viral genetic variations with regards to treatment and the importance for future therapeutic intervention.
Collapse
|
31
|
Qashqari H, Al-Mars A, Chaudhary A, Abuzenadah A, Damanhouri G, Alqahtani M, Mahmoud M, El Sayed Zaki M, Fatima K, Qadri I. Understanding the molecular mechanism(s) of hepatitis C virus (HCV) induced interferon resistance. INFECTION GENETICS AND EVOLUTION 2013; 19:113-9. [PMID: 23831932 DOI: 10.1016/j.meegid.2013.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is one of the foremost causes of chronic liver disease affecting over 300 million globally. HCV contains a positive-stranded RNA of ~9600 nt and is surrounded by the 5' and 3'untranslated regions (UTR). The only successful treatment regimen includes interferon (IFN) and ribavirin. Like many other viruses, HCV has also evolved various mechanisms to circumvent the IFN response by blocking (1) downstream signaling actions via STAT1, STAT2, IRF9 and JAK-STAT pathways and (2) repertoire of IFN Stimulatory Genes (ISGs). Several studies have identified complex host demographic and genetic factors as well as viral genetic heterogeneity associated with outcomes of IFN therapy. The genetic predispositions of over 2000 ISGS may render the patients to become resistant, thus identification of such parameters within a subset of population are necessary for management corollary. The ability of various HCV genotypes to diminish IFN antiviral responses plays critical role in the establishment of chronic infection at the acute stage of infection, thus highlighting importance of the resistance in HCV treated groups. The recently defined role of viral protein such as C, E2, NS3/NS4 and NS5A proteins in inducing the IFN resistance are discussed in this article. How the viral and host genetic composition and epistatic connectivity among polymorphic genomic sites synchronizes the evolutionary IFN resistance trend remains under investigation. However, these signals may have the potential to be employed for accurate prediction of therapeutic outcomes. In this review article, we accentuate the significance of host and viral components in IFN resistance with the aim to determine the successful outcome in patients.
Collapse
Affiliation(s)
- Hanadi Qashqari
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Response of hepatitis C virus to long-term passage in the presence of alpha interferon: multiple mutations and a common phenotype. J Virol 2013; 87:7593-607. [PMID: 23637397 DOI: 10.1128/jvi.02824-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell culture-produced hepatitis C virus (HCV) has been subjected to up to 100 serial passages in human hepatoma cells in the absence or presence of different doses of alpha interferon (IFN-α). Virus survival, genetic changes, fitness levels, and phenotypic traits have been examined. While high initial IFN-α doses (increasing from 1 to 4 IU/ml) did not allow HCV survival beyond passage 40, a gradual exposure (from 0.25 to 10 IU/ml) allowed the virus to survive for at least 100 passages. The virus passaged in the presence of IFN-α acquired IFN-α resistance as evidenced by enhanced progeny production and viral protein expression in an IFN-α environment. A partial IFN-α resistance was also noted in populations passaged in the absence of IFN-α. All lineages acquired adaptative mutations, and multiple, nonsynonymous mutations scattered throughout the genome were present in IFN-α-selected populations. Comparison of consensus sequences indicates a dominance of synonymous versus nonsynonymous substitutions. IFN-α-resistant populations displayed decreased sensitivity to a combination of IFN-α and ribavirin. A phenotypic trait common to all assayed viral populations is the ability to increase shutoff host cell protein synthesis, accentuated in infections with IFN-α-selected populations carried out in the presence of IFN-α. The trait was associated with enhanced phosphorylation of protein kinase R (PKR) and eIF2α, although other contributing factors are likely. The results suggest that multiple, independent mutational pathways can confer IFN-α resistance to HCV and might explain why no unified picture has been obtained regarding IFN-α resistance in vivo.
Collapse
|
33
|
Timucin M, Alagozlu H, Ozdemir S, Ozdemir O. Association Between ABCB1 (MDR1) Gene Polymorphism and Unresponsiveness Combined Therapy in Chronic Hepatitis C virus. HEPATITIS MONTHLY 2013; 13:e7522. [PMID: 23805158 PMCID: PMC3693542 DOI: 10.5812/hepatmon.7522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/31/2012] [Accepted: 01/31/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND To treat viral infection of chronic hepatitis C (CHC) is a main strategy to prevent progression of liver disease, and cancer. Some patients with CHC have failed to respond to the common antiviral therapy in different populations. OBJECTIVES In the current study it was aimed to find out the possible role of multiple drug resistance gene1 (MDR1) in non-responder patients with CHC infection in Turkish population. PATIENTS AND METHODS Peripheral blood-EDTA samples were used for total genomic DNA isolation. In total of 55 patients with chronic hepatitis C and positive results for genotype 1 [31 male (56.4%), 24 female (43.6%) and mean age-min-max; 56.9 ± 9.66 (39-71)]; 19 responder (34.5%), 21 non responder (38.2%), and 15 recurrence (27.3%) were included in the presented results. Functional MDR1 gene was genotyped by multiplex PCR-based reverse-hybridization Strip Assay method, and some samples were confirmed by direct sequencing. RESULTS Our results indicate that MDR1 gene polymorphism is strongly associated with non-responder patients and those with recurrent chronic hepatitis C during conventional drug therapy when compared to the responder patients. Homozygous of the TT genotype for MDR1 exon 26 polymorphism was at 2.0-fold higher risk of non-responder than patients with CC and CT. CONCLUSIONS The homozygous MDR1 3435TT genotype which encodes the xenobiotic transporter P-glycoprotein may be associated with a poor antiviral response in HCV chronicity during conventional therapy, and large-scale studies are needed to validate this association.
Collapse
Affiliation(s)
- Meryem Timucin
- Department of Gastroenterology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Hakan Alagozlu
- Department of Gastroenterology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Semra Ozdemir
- Department of Nuclear Medicine, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
- Corresponding author: Ozturk Ozdemir, Ozturk Ozdemir, Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, 17100, Canakkale, Turkey. Tel.: +90-5442118741, Fax: +90-2862180000, E-mail:
| |
Collapse
|
34
|
Taylor KE, Mossman KL. Recent advances in understanding viral evasion of type I interferon. Immunology 2013; 138:190-7. [PMID: 23173987 PMCID: PMC3573272 DOI: 10.1111/imm.12038] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/11/2012] [Accepted: 11/14/2012] [Indexed: 12/21/2022] Open
Abstract
The type I interferon (IFN) system mediates a wide variety of antiviral effects and represents an important first barrier to virus infection. Consequently, viruses have developed an impressive diversity of tactics to circumvent IFN responses. Evasion strategies can involve preventing initial virus detection, via the disruption of the Toll‐like receptors or the retinoic acid inducible gene I (RIG‐I) ‐like receptors, or by avoiding the initial production of the ligands recognized by these receptors. An alternative approach is to preclude IFN production by disarming or degrading the transcription factors involved in the expression of IFN, such as interferon regulatory factor 3 (IRF3)/IRF7, nuclear factor‐κB (NF‐κB), or ATF‐2/c‐jun, or by inducing a general block on host cell transcription. Viruses also oppose IFN signalling, both by disturbing the type I IFN receptor and by impeding JAK/STAT signal transduction upon IFN receptor engagement. In addition, the global expression of IFN‐stimulated genes (ISGs) can be obstructed via interference with epigenetic signalling, and specific ISGs can also be selectively targeted for inhibition. Finally, some viruses disrupt IFN responses by co‐opting negative regulatory systems, whereas others use antiviral mechanisms to their own advantage. Here, we review recent developments in this field.
Collapse
Affiliation(s)
- Kathryne E Taylor
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, Michael DeGroote Centre for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
35
|
Fernández-Rodríguez A, Rallón N, Berenguer J, Jiménez-Sousa MA, Cosín J, Guzmán-Fulgencio M, Restrepo C, Lopez JC, García-Álvarez M, Miralles P, Soriano V, Benito JM, Resino S. Analysis of IL28B alleles with virologic response patterns and plasma cytokine levels in HIV/HCV-coinfected patients. AIDS 2013; 27:163-73. [PMID: 23135173 DOI: 10.1097/qad.0b013e32835c11e8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To estimate the impact of interleukin 28B (IL28B) polymorphisms (rs12980275, rs8099917, rs7248668, and rs11881222) and their haplotypes on hepatitis C virus (HCV) treatment (peg-interferon-α and ribavirin) success in 324 HIV/HCV-coinfected patients. We also explore the behavior of plasma cytokine levels. DESIGN Retrospective follow-up study. METHODS Virologic response to HCV treatment was measured by plasma HCV viral load at different endpoints: rapid virologic response (RVR), early virologic response (EVR), end-of-treatment virologic response (ETVR) and sustained virologic response (SVR). IL28B polymorphisms were genotyped using GoldenGate assay. Finally, 13 cytokines were measured at baseline in 57 plasma samples using a multiplex immunoassay kit. RESULTS IL28B polymorphisms were strongly associated to virologic responses (RVR, EVR, ETVR, and SVR), although only for HCV genotypes 1 and 4 (P < 0.05). Strong linkage disequilibrium was detected for rs12980275/rs11881222 (r = 0.94) and rs8099917/rs7248668 (r = 0.99). IL28B haplotypes showed association but no improvement on treatment outcome prediction. Thus, the genotyping of only one single-nucleotide polymorphism was enough for predicting treatment response in GT1/4 patients with favorable rs12980275 (AA) genotype, while for subjects harboring unfavorable genotypes, the inclusion of rs8099917 was useful (SVR increased from 31 to 45%). Moreover, patients with rs12980275 (AA) that achieved SVR showed reduced plasma levels of Th1 (IFN-γ), Th2 (IL-6 and IL-9), and proinflammatory (TNF-α) cytokines. CONCLUSION The presence of IL28B polymorphisms was significantly associated with HCV clearance during and after HCV therapy. The evaluated cytokine profile was much more favorable in patients with rs12980275 (AA) who achieved SVR.
Collapse
Affiliation(s)
- Amanda Fernández-Rodríguez
- Unidad de coinfección HIV/hepatitis, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nitta S, Sakamoto N, Nakagawa M, Kakinuma S, Mishima K, Kusano-Kitazume A, Kiyohashi K, Murakawa M, Nishimura-Sakurai Y, Azuma S, Tasaka-Fujita M, Asahina Y, Yoneyama M, Fujita T, Watanabe M. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology 2013; 57:46-58. [PMID: 22911572 DOI: 10.1002/hep.26017] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) infection blocks cellular interferon (IFN)-mediated antiviral signaling through cleavage of Cardif by HCV-NS3/4A serine protease. Like NS3/4A, NS4B protein strongly blocks IFN-β production signaling mediated by retinoic acid-inducible gene I (RIG-I); however, the underlying molecular mechanisms are not well understood. Recently, the stimulator of interferon genes (STING) was identified as an activator of RIG-I signaling. STING possesses a structural homology domain with flaviviral NS4B, which suggests a direct protein-protein interaction. In the present study, we investigated the molecular mechanisms by which NS4B targets RIG-I-induced and STING-mediated IFN-β production signaling. IFN-β promoter reporter assay showed that IFN-β promoter activation induced by RIG-I or Cardif was significantly suppressed by both NS4B and NS3/4A, whereas STING-induced IFN-β activation was suppressed by NS4B but not by NS3/4A, suggesting that NS4B had a distinct point of interaction. Immunostaining showed that STING colocalized with NS4B in the endoplasmic reticulum. Immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays demonstrated that NS4B specifically bound STING. Intriguingly, NS4B expression blocked the protein interaction between STING and Cardif, which is required for robust IFN-β activation. NS4B truncation assays showed that its N terminus, containing the STING homology domain, was necessary for the suppression of IFN-β promoter activation. NS4B suppressed residual IFN-β activation by an NS3/4A-cleaved Cardif (Cardif1-508), suggesting that NS3/4A and NS4B may cooperate in the blockade of IFN-β production. CONCLUSION NS4B suppresses RIG-I-mediated IFN-β production signaling through a direct protein interaction with STING. Disruption of that interaction may restore cellular antiviral responses and may constitute a novel therapeutic strategy for the eradication of HCV.
Collapse
Affiliation(s)
- Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Teran-Cabanillas E, Montalvo-Corral M, Caire-Juvera G, Moya-Camarena SY, Hernández J. Decreased interferon-α and interferon-β production in obesity and expression of suppressor of cytokine signaling. Nutrition 2013; 29:207-12. [DOI: 10.1016/j.nut.2012.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/30/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
38
|
Akuta N, Suzuki F, Seko Y, Kawamura Y, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Hara T, Kobayashi M, Saitoh S, Arase Y, Ikeda K, Kumada H. Complicated relationships of amino acid substitution in hepatitis C virus core region and IL28B genotype influencing hepatocarcinogenesis. Hepatology 2012; 56:2134-41. [PMID: 22806754 DOI: 10.1002/hep.25949] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/30/2012] [Accepted: 06/17/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED The impact of amino acid (aa) 70 substitution in the core region on hepatocarcinogenesis and survival for liver-related death in patients of hepatitis C virus (HCV) genotype 1b (HCV-1b), who had not received antiviral therapy, is unknown. The relationships among aa 70 substitution, IL28B genotype, and hepatocarcinogenesis are also not clear. A total of 1,181 consecutive HCV-infected patients, who had not received antiviral therapy, were included in a follow-up study to determine predictive factors of hepatocarcinogenesis and survival for liver-related death. The cumulative hepatocarcinogenesis rates in HCV-1b of Gln70(His70) (glutamine (histidine) at aa 70) were significantly higher than those in HCV-1b of Arg70 (arginine at aa 70) and HCV-2a/2b. The cumulative survival rates for liver-related death in HCV-1b of Gln70(His70) were significantly lower than those in HCV-1b of Arg70 and HCV-2a/2b. Multivariate analysis identified gender (male), age (≥ 60 years), albumin (<3.9 g/dL), platelet count (<15.0 × 10(4) /mm(3) ), aspartate aminotransferase (≥ 67 IU/L), and HCV subgroup (HCV-1b of Gln70(His70)) as determinants of both hepatocarcinogenesis and survival rates for liver-related death. In HCV-1b patients, the cumulative change rates from Arg70 to Gln70(His70) by direct sequencing were significantly higher than those from Gln70(His70) to Arg70. In patients of Arg70 at the initial visit, the cumulative change rates from Arg70 to Gln70(His70) in IL28B rs8099917 non-TT genotype were significantly higher than those in the TT genotype. CONCLUSION Substitution of aa 70 in the core region of HCV-1b is an important predictor of hepatocarcinogenesis and survival for liver-related death in HCV patients who had not received antiviral therapy. The IL28B genotype might partly affect changes over time of dominant amino acid in core aa 70 of HCV-1b.
Collapse
Affiliation(s)
- Norio Akuta
- Department of Hepatology, Toranomon Hospital, and Okinaka Memorial Institute for Medical Research, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tadokoro K, Kobayashi M, Suzuki F, Tanaka C, Yamaguchi T, Nagano M, Egashira T, Kumada H. Comparative quantitative analysis of hepatitis C mutations at amino acids 70 and 91 in the core region by the Q-Invader assay. J Virol Methods 2012; 189:221-7. [PMID: 23124003 DOI: 10.1016/j.jviromet.2012.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 09/26/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
Hepatitis C virus (HCV) is a major worldwide public health problem, and mutations at amino acids 70 and 91 in the genotype 1b core region predict the effectiveness of combination therapy with peginterferon and ribavirin. An assay based on the Q-Invader technology was developed to determine the relative ratios of the mutant to wild-type virus with high sensitivity. The assay detected a minor type plasmid that constituted only 1% of a mixture of plasmids containing wild-type and mutant sequences. The calculated ratios agreed with those of the template DNA. A total of 123 serum samples of HCV in Japan were examined with the Q-Invader assay. The Q-Invader assay detected all of the mutations that were detected by direct sequencing and even some mutants that direct sequencing could not. PCR with mutant specific primers confirmed those mutations found by the Q-Invader assay and not by direct sequencing. The Q-Invader assay, thus, is a useful tool for detecting mutations at positions 70 and 91 in the HCV-1b core region.
Collapse
|
40
|
Maekawa S, Sakamoto M, Miura M, Kadokura M, Sueki R, Komase K, Shindo H, Komatsu N, Shindo K, Kanayama A, Ohmori T, Amemiya F, Takano S, Yamaguchi T, Nakayama Y, Kitamura T, Inoue T, Okada S, Enomoto N. Comprehensive analysis for viral elements and interleukin-28B polymorphisms in response to pegylated interferon plus ribavirin therapy in hepatitis C virus 1B infection. Hepatology 2012; 56:1611-21. [PMID: 22577043 DOI: 10.1002/hep.25826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED To comprehensively characterize the contribution of virological factors as well as interleukin-28B (IL28B) single-nucleotide polymorphisms (SNPs) in determining treatment responses in pegylated-interferon plus ribavirin (Peg-IFN/RBV) therapy for chronic hepatitis C virus (HCV)-1b infection, we undertook a retrospective cohort analysis for the pretreatment dominant complete HCV open reading frame (ORF) amino-acid (aa) sequence study in 103 consecutive HCV-1b Japanese patients. The dominant HCV sequences classified by the response were subjected to systematic sliding-window comparison analysis to characterize response-specific viral sequences, along with IL28B SNP analyses (rs8099917). In each comparison of the patients between with and without rapid viral response (RVR), nonearly viral response (nEVR), sustained virological response (SVR), or relapse, the following regions were extracted as most significantly associated with the different responses respectively: nonstructural protein 5A (NS5A) aa.2224-2248 (P = 1.2E-07); core aa.70 (P = 4E-04); NS5A aa.2340-2382 (P = 7.0E-08); and NS5A aa.2360-2377 (P = 1.1E-05). Those NS5A regions nearly coincided with the interferon (IFN) sensitivity-determining region (NS5A aa.2209-2248) and the IFN/RBV resistance-determining region (NS5A aa.2339-2379). In a multivariate analysis, the IL28B SNP (odds ratio [OR] = 16.8; P = 0.009) and NS5A aa.2340-2382 (OR = 13.8; P = 0.0003) were extracted as the two most-significant independent variables contributing to the final outcome. CONCLUSION In Peg-IFN/RBV therapy, polymorphisms in IL28B, NS5A aa.2224-2248, core aa.70, and, most important, NS5A aa.2340-2382 have a tremendous influence on treatment response in association with viral kinetics, resulting in significantly different outcomes in chronic HCV-1b infection.
Collapse
Affiliation(s)
- Shinya Maekawa
- Department of Advanced Medicine for Liver Diseases, University of Yamanashi, Yamanashi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Silencing of microRNA-122 enhances interferon-α signaling in the liver through regulating SOCS3 promoter methylation. Sci Rep 2012; 2:637. [PMID: 22957141 PMCID: PMC3434395 DOI: 10.1038/srep00637] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/14/2012] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. Although novel drugs against HCV are under development, the current standard therapy consists principally of interferon (IFN). To improve the response to IFN treatment by enhancing interferon-stimulated response element (ISRE)-mediated gene transcription, we screened 75 microRNAs highly expressed in hepatocytes for their ability to modulate ISRE activity. Overexpression of microRNA-122 (miR122) significantly suppressed ISRE activity. Conversely, silencing of miR122 function enhanced IFN-induced ISRE activity, by decreasing expression of suppressor of cytokine signaling 3 (SOCS3). This decrease in SOCS3 level was not mediated by microRNA target gene suppression, but rather by enhanced methylation at SOCS3 gene promoter. Taken together, our data, along with the fact that antisense oligonucleotides of miR122 also directly inhibit HCV replication, suggest that a combination therapy comprising IFN and silencing of miR122 function may be a promising therapeutic option in the near future.
Collapse
|
42
|
Seko Y, Akuta N, Suzuki F, Kawamura Y, Sezaki H, Suzuki Y, Hosaka T, Kobayashi M, Kobayashi M, Saitoh S, Arase Y, Ikeda K, Kumada H. Amino acid substitutions in the hepatitis C Virus core region and lipid metabolism are associated with hepatocarcinogenesis in nonresponders to interferon plus ribavirin combination therapy. Intervirology 2012; 56:13-21. [PMID: 22907167 DOI: 10.1159/000339993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 06/11/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Substitution of amino acid 70 and/or 91 in the core region of hepatitis C virus (HCV) genotype 1b (HCV-1b) is an important predictor of hepatocellular carcinoma (HCC), but its impact on HCC in nonresponders to interferon (IFN) and ribavirin (RIB) combination therapy is not clear. METHODS A total of 292 patients with HCV-1b-related chronic liver disease who did not achieve a sustained virological response to 24-48 weeks of IFN+RIB combination therapy were included in a follow-up study to investigate the risk factors for HCC. RESULTS Sixteen patients developed HCC during the follow-up. The cumulative HCC rates were 5.0, 13.1 and 16.9% at the end of 3, 5 and 7 years, respectively. Multivariate analysis identified substitution of core amino acid 70 (Gln70/His70; hazard ratio 4.64, p = 0.018) and low serum levels of high-density lipoprotein cholesterol (<50 mg/dl; hazard ratio 9.35, p = 0.041) as determinants of HCC. Gender, stage of fibrosis and interleukin-28B showed no such relationship. CONCLUSIONS Amino acid substitution in the core region of HCV-1b and low serum levels of high-density lipoprotein cholesterol are significant and independent predictors of HCC in nonresponders to IFN+RIB combination therapy. These results emphasize the importance of viral and lipid metabolic factors in the development of HCC after combination therapy.
Collapse
Affiliation(s)
- Yuya Seko
- Department of Hepatology, Toranomon Hospital, Tokyo 105-0001, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Guzmán-Fulgencio M, Jiménez JL, Berenguer J, Fernández-Rodríguez A, López JC, Cosín J, Miralles P, Micheloud D, Muñoz-Fernández MÁ, Resino S. Plasma IL-6 and IL-9 predict the failure of interferon-α plus ribavirin therapy in HIV/HCV-coinfected patients. J Antimicrob Chemother 2012; 67:1238-45. [PMID: 22294644 DOI: 10.1093/jac/dkr595] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The cytokine profile plays an important role in treatment outcome of hepatitis C virus (HCV) infection, and probably modulates the immune response against HCV. The aim of this study was to evaluate which cytokines affect the response to interferon-α (IFN-α) and ribavirin therapy and how these cytokines change 72 weeks after starting anti-HCV therapy in HIV/HCV-coinfected patients. METHODS We carried out a retrospective follow-up study of 65 patients on anti-HCV therapy. A sustained virological response (SVR) was defined as an undetectable HCV viral load up to 24 weeks after the end of treatment. Cytokines were measured using a multiplex immunoassay kit. RESULTS On starting anti-HCV therapy, non-responder (NR) patients had higher levels of interleukin (IL)-6, IL-9, IL-10 and tumour necrosis factor (TNF)-α (P < 0.05), while IL-17A levels were increased in SVR patients (P = 0.058). However, only patients with high levels of IL-6 and IL-9 had decreased odds to achieve SVR (P < 0.05). Plasma levels of IL-6 and IL-9 had a high predictive value for SVR failure [area under the ROC curve (AUC) 0.839 (95% CI 0.733-0.945) and AUC 0.769 (95% CI 0.653-0.884)]. In addition, during anti-HCV therapy, IL-1β showed an increase in NR patients (P = 0.015) and IL-10 decreased in SVR patients (P = 0.049). After clearing HCV infection, low levels of TNF-α, IL-6, IL-9, IL-10, IL-13 and IL-22 were found in SVR patients (P < 0.05), as well as IL-1β, but only near statistical significance (P = 0.073). CONCLUSIONS High plasma levels of IL-6 and IL-9 had a high predictive value for SVR failure. Furthermore, clearing of HCV infection was associated with low inflammatory and T helper (Th)2/Th9/Th22 cytokine levels.
Collapse
Affiliation(s)
- María Guzmán-Fulgencio
- Laboratorio de Epidemiología Molecular de Enfermedades Infecciosas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Saludes Montoro V, Ausina Ruiz V, Martró Català E. [Current options for predicting therapeutic response in chronically infected patients with hepatitis C virus genotype 1]. Enferm Infecc Microbiol Clin 2011; 29 Suppl 5:51-8. [PMID: 22305670 DOI: 10.1016/s0213-005x(11)70044-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Only about 50% of patients chronically infected with hepatitis C virus genotype 1 achieve a successful response to standard treatment with pegylated interferon-alfa and ribavirin. Moreover, the recently approved protease inhibitors will have to be administered together with these drugs. Consequently, predicting response to standard treatment, ideally before starting it, remains an important challenge. Although several baseline predictors of treatment failure have been described, including clinical and virological factors, none of them is able to provide reliable predictions at the individual level. In addition, the development of multivariate models combining several predictive factors has not yet yielded predictions with the requisite reliability for use in clinical practice. Therefore, further research is needed to improve predictive models and to describe new factors that would enable us to predict treatment outcome with greater reliability and reproducibility. The development of candidate selection algorithms that help clinicians to identify which patients could benefit from the new therapies on the basis of their chances of responding to standard therapy is of major interest for both patient well-being and healthcare expense. This review attempts to provide a view of the current options for predicting the response to pegylated interferon-alfa plus ribavirin therapy in patients chronically infected with hepatitis C virus genotype 1.
Collapse
Affiliation(s)
- Verónica Saludes Montoro
- Servicio de Microbiología, Fundación Instituto de Investigación en Ciencias de la Salud Germans Trias y Pujol, Hospital Universitario Germans Trias y Pujol, Badalona, Universidad Autónoma de Barcelona, Barcelona, España
| | | | | |
Collapse
|
45
|
Inhibitory effect of a triterpenoid compound, with or without alpha interferon, on hepatitis C virus infection. Antimicrob Agents Chemother 2011; 55:2537-45. [PMID: 21444704 DOI: 10.1128/aac.01780-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A lack of patient response to alpha interferon (α-IFN) plus ribavirin (RBV) treatment is a major problem in eliminating hepatitis C virus (HCV). We screened chemical libraries for compounds that enhanced cellular responses to α-IFN and identified a triterpenoid, toosendanin (TSN). Here, we studied the effects and mechanisms of action of TSN on HCV replication and its effect on α-IFN signaling. We treated HCV genotype 1b replicon-expressing cells and HCV-J6/JFH-infected cells with TSN, with or without α-IFN, and the level of HCV replication was quantified. To study the effects of TSN on α-IFN signaling, we detected components of the interferon-stimulated gene factor 3 (ISGF3), phosphorylated signal transducer and activator of transcription 1 (STAT1), and STAT2 by Western blotting analysis; expression levels of mRNA of interferon regulatory factor 9 using real-time reverse transcription-PCR (RT-PCR); and interferon-stimulated response element reporter activity and measured the expression levels of interferon-inducible genes for 2',5'-oligoadenylate synthetase, MxA, protein kinase R, and p56 using real-time RT-PCR. TSN alone specifically inhibited expression of the HCV replicon (50% effective concentration = 20.6 nM, 50% cytotoxic concentration > 3 μM, selectivity index > 146). Pretreatment with TSN prior to α-IFN treatment was more effective in suppressing HCV replication than treatment with either drug alone. Although TSN alone did not activate the α-IFN pathway, it significantly enhanced the α-IFN-induced increase of phosphorylated STATs, interferon-stimulated response element activation, and interferon-stimulated gene expression. TSN significantly increased baseline expression of interferon regulatory factor 9, a component of interferon-stimulated gene factor 3. Antiviral effects of treatment with α-IFN can be enhanced by pretreatment with TSN. Its mechanisms of action could potentially be important to identify novel molecular targets to treat HCV infection.
Collapse
|