1
|
Garcia A, Grundmann O. The Utilization and Development of Viral Vectors in Vaccines as a Prophylactic Treatment Against Ebola Virus as an Emerging and Zoonotic Infectious Disease. Mini Rev Med Chem 2024; 24:289-299. [PMID: 37489781 DOI: 10.2174/1389557523666230725115324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 07/26/2023]
Abstract
Alongside the prescription of commonly used antivirals, such as acyclovir, remdesivir, oseltamivir, and ciprofloxacin, the most efficient way to prevent or treat communicable diseases is by vaccination. Vaccines have been the most efficient way to prevent or treat highly transmissible infectious agents, such as Ebola, Anthrax, and Dengue Fever. Most epidemics of these highly transmissible infectious agents occur in places, such as South America, Central America, Tropical Asia, and Africa, where the availability of resources and access to adequate healthcare are limited. However, recent events in history have proven that even with access to resources and proper healthcare, those in firstworld countries are not invincible when it comes to infectious diseases and epidemics. The Ebola virus outbreak in West Africa highlighted the gaps in therapeutic advancement and readiness and led to the rapid development of novel vaccine approaches. Viral vectors, in the case of the Ebola vaccine the Vesicular Stomatitis Virus (VSV), can be safely used to activate or initiate the innate adaptive immune response to protect against viral infection. When developed properly and with extensive study, novel vaccine approaches allow physicians and health experts to control the rate at which viruses spread or prevent transmission. This review will discuss the advantages of viral vector vaccines, their chemistry and development, and the pathophysiology of the Ebola virus to develop advantageous and efficacious treatments.
Collapse
Affiliation(s)
- Anthony Garcia
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive, Room P3-20, Gainesville, FL 32611, USA
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive, Room P3-20, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Puente-Massaguer E, Beyer A, Loganathan M, Sapse I, Carreño JM, Bajic G, Sun W, Palese P, Krammer F. Bioprocess development for universal influenza vaccines based on inactivated split chimeric and mosaic hemagglutinin viruses. Front Bioeng Biotechnol 2023; 11:1097349. [PMID: 37342504 PMCID: PMC10277804 DOI: 10.3389/fbioe.2023.1097349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Seasonal influenza viruses account for 1 billion infections worldwide every year, including 3-5 million cases of severe illness and up to 650,000 deaths. The effectiveness of current influenza virus vaccines is variable and relies on the immunodominant hemagglutinin (HA) and to a lesser extent on the neuraminidase (NA), the viral surface glycoproteins. Efficient vaccines that refocus the immune response to conserved epitopes on the HA are needed to tackle infections by influenza virus variants. Sequential vaccination with chimeric HA (cHA) and mosaic HA (mHA) constructs has proven to induce immune responses to the HA stalk domain and conserved epitopes on the HA head. In this study, we developed a bioprocess to manufacture cHA and mHA inactivated split vaccines and a method to quantify HA with a prefusion stalk based on a sandwich enzyme-linked immunosorbent assay. Virus inactivation with beta-propiolactone (βPL) and splitting with Triton X-100 yielded the highest amount of prefusion HA and enzymatically active NA. In addition, the quantity of residual Triton X-100 and ovalbumin (OVA) was reduced to very low levels in the final vaccine preparations. The bioprocess shown here provides the basis to manufacture inactivated split cHA and mHA vaccines for pre-clinical research and future clinical trials in humans, and can also be applied to produce vaccines based on other influenza viruses.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Annika Beyer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Madhumathi Loganathan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Iden Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Shan D, Tang X, Liu R, Pan D, Wang X, Ge J, Wen Z, Bu Z. Immunogenicity of a Recombinant VSV-Vectored SARS-CoV Vaccine Induced Robust Immunity in Rhesus Monkeys after Single-Dose Immunization. Virol Sin 2022; 37:248-255. [PMID: 35234625 PMCID: PMC8754452 DOI: 10.1016/j.virs.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a highly contagious zoonotic disease caused by SARS coronavirus (SARS-CoV). Since its outbreak in Guangdong Province of China in 2002, SARS has caused 8096 infections and 774 deaths by December 31st, 2003. Although there have been no more SARS cases reported in human populations since 2004, the recent emergence of a novel coronavirus disease (COVID-19) indicates the potential of the recurrence of SARS and other coronavirus disease among humans. Thus, developing a rapid response SARS vaccine to provide protection for human populations is still needed. Spike (S) protein of SARS-CoV can induce neutralizing antibodies, which is a pivotal immunogenic antigen for vaccine development. Here we constructed a recombinant chimeric vesicular stomatitis virus (VSV) VSVΔG-SARS, in which the glycoprotein (G) gene is replaced with the SARS-CoV S gene. VSVΔG-SARS maintains the bullet-like shape of the native VSV, with the heterogeneous S protein incorporated into its surface instead of G protein. The results of safety trials revealed that VSVΔG-SARS is safe and effective in mice at a dose of 1 × 106 TCID50. More importantly, only a single-dose immunization of 2 × 107 TCID50 can provide high-level neutralizing antibodies and robust T cell responses to non-human primate animal models. Thus, our data indicate that VSVΔG-SARS can be used as a rapid response vaccine candidate. Our study on the recombinant VSV-vectored SARS-CoV vaccines can accumulate experience and provide a foundation for the new coronavirus disease in the future. A chimeric recombinant VSV-vectored virus expressing SARS-CoV spike protein, VSVΔG-SARS, was constructed. The S protein efficiently incorporated into the envelope of VSVΔG-SARS and mediated cell entry through human ACE2. VSVΔG-SARS induced high levels of neutralizing antibody and T cell responses in monkeys after single dose immunization.
Collapse
Affiliation(s)
- Dan Shan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaoyan Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Renqiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Dan Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
4
|
Isakova-Sivak I, Stepanova E, Mezhenskaya D, Matyushenko V, Prokopenko P, Sychev I, Wong PF, Rudenko L. Influenza vaccine: progress in a vaccine that elicits a broad immune response. Expert Rev Vaccines 2021; 20:1097-1112. [PMID: 34348561 DOI: 10.1080/14760584.2021.1964961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The licensed seasonal influenza vaccines predominantly induce neutralizing antibodies against immunodominant hypervariable epitopes of viral surface proteins, with limited protection against antigenically distant influenza viruses. Strategies have been developed to improve vaccines' performance in terms of broadly reactive and long-lasting immune response induction. AREAS COVERED We have summarized the advancements in the development of cross-protective influenza vaccines and discussed the challenges in evaluating them in preclinical and clinical trials. Here, the literature regarding the current stage of development of universal influenza vaccine candidates was reviewed. EXPERT OPINION Although various strategies aim to redirect adaptive immune responses from variable immunodominant to immunosubdominant antigens, more conserved epitopes are being investigated. Approaches that improve antibody responses to conserved B cell epitopes have increased the protective efficacy of vaccines within a subtype or phylogenetic group of influenza viruses. Vaccines that elicit significant levels of T cells recognizing highly conserved viral epitopes possess a high cross-protective potential and may cover most circulating influenza viruses. However, the development of T cell-based universal influenza vaccines is challenging owing to the diversity of MHCs in the population, unpredictable degree of immunodominance, lack of adequate animal models, and difficulty in establishing T cell immunity in humans. ABBREVIATIONS cHA: chimeric HA; HBc: hepatitis B virus core protein; HA: hemagglutinin; HLA: human leucocyte antigen; IIV: inactivated influenza vaccine; KLH: keyhole limpet hemocyanin; LAH: long alpha helix; LAIV: live attenuated influenza vaccine; M2e: extracellular domain of matrix 2 protein; MHC: major histocompatibility complex; mRNA: messenger ribonucleic acid; NA: neuraminidase; NS1: non-structural protein 1; qNIV: quadrivalent nanoparticle influenza vaccine; TRM: tissue-resident memory T cells; VE: vaccine effectiveness; VLP: virus-like particles; VSV: vesicular stomatitis virus.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ekaterina Stepanova
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Daria Mezhenskaya
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Victoria Matyushenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Polina Prokopenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Ivan Sychev
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Pei-Fong Wong
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department Of Virology, Institute Of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
5
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
6
|
Yousefi Avarvand A, Meshkat Z, Khademi F, Tafaghodi M. Immunogenicity of HspX/EsxS fusion protein of Mycobacterium tuberculosis along with ISCOMATRIX and PLUSCOM nano-adjuvants after subcutaneous administration in animal model. Microb Pathog 2021; 154:104842. [PMID: 33762199 DOI: 10.1016/j.micpath.2021.104842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is one of the most common and dangerous infectious diseases in the world. Despite vaccination with BCG, it is still considered as a major health problem. Therefore, design and production of an effective novel vaccine against TB is necessary. Our aim was to evaluate immunogenicity of HspX/EsxS fusion protein of M. tuberculosis along with ISCOMATRIX, PLUSCOM nano-adjuvants and MPLA through the subcutaneous route in mice model. METHODS HspX/EsxS fused protein of M. tuberculosis was cloned, expressed and purified in the prokaryotic system. ISCOMATRIX and PLUSCOM nano-adjuvants were prepared by film hydration method. Subcutaneous immunization of BALB/c mice was performed by different formulations. IFN-γ, IL-4, IL-17 and TGF-β cytokines levels as well as serum IgG1, IgG2a. RESULTS Our results showed that subcutaneous administration of mice with HspX/EsxS along with three adjuvants, ISCOMATRIX, PLUSCOM and MPLA increased immunogenicity of multi-stage fusion protein of M. tuberculosis. Additionally, HspX/EsxS protein + ISCOMATRIX or + PLUSCOM nano-adjuvants induced stronger Th1, IgG2a and IgG1 immune responses compared to MPLA adjuvant. Totally, HspX/EsxS/ISCOMATRIX/MPLA, HspX/EsxS/PLUSCOM/MPLA and two BCG booster groups could significantly induce higher Th1 and IgG2a immune responses. CONCLUSION With regard to ability of ISCOMATRIX, PLUSCOM and MPLA adjuvants to increase immunogenicity of HspX/EsxS protein through induction of IFN-γ and IgG2a immune responses, it seems that these adjuvants and especially ISCOMATRIX and PLUSCOM, could also improve BCG efficacy as a BCG booster.
Collapse
Affiliation(s)
- Arshid Yousefi Avarvand
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Strategies Targeting Hemagglutinin as a Universal Influenza Vaccine. Vaccines (Basel) 2021; 9:vaccines9030257. [PMID: 33805749 PMCID: PMC7998911 DOI: 10.3390/vaccines9030257] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza virus has significant viral diversity, both through antigenic drift and shift, which makes development of a vaccine challenging. Current influenza vaccines are updated yearly to include strains predicted to circulate in the upcoming influenza season, however this can lead to a mismatch which reduces vaccine efficacy. Several strategies targeting the most abundant and immunogenic surface protein of influenza, the hemagglutinin (HA) protein, have been explored. These strategies include stalk-directed, consensus-based, and computationally derived HA immunogens. In this review, we explore vaccine strategies which utilize novel antigen design of the HA protein to improve cross-reactive immunity for development of a universal influenza vaccine.
Collapse
|
8
|
Masking terminal neo-epitopes of linear peptides through glycosylation favours immune responses towards core epitopes producing parental protein bound antibodies. Sci Rep 2020; 10:18497. [PMID: 33116268 PMCID: PMC7595224 DOI: 10.1038/s41598-020-75754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023] Open
Abstract
Glycosylation of hydrophobic peptides at one terminus effectively increases their water-solubility, and conjugation through the opposing end to a carrier protein, renders them more immunogenic. Moreover, the glycosylation minimizes antibody responses to potentially deleterious, non-productive terminal neo-epitope regions of the peptides, and consequently shifts peptide immunogenicity towards the core amino acid residues. As proof of concept, glycopeptide-protein conjugates related to influenza hemagglutinin (HA), neuraminidase (NA), and the dimerization loop region of human epidermal growth factor receptor 2 (Her2), demonstrated a favorable production of core peptide specific antibodies as determined by ELISA studies. Furthermore, glycosylated Her2 peptide conjugate antisera were also shown to recognize full length Her2 protein by ELISA and at the cell surface through flow cytometry analysis. In contrast, unmasked peptide conjugates generated significant antibody populations that were specific to the terminal neo-epitope of the peptide immunogen that are notably absent in parental proteins. Antibodies generated in this manner to peptides in the dimerization loop of Her2 are also functional as demonstrated by the growth inhibition of Her2 expressing SKBR3 carcinoma cells. This method provides a technique to tailor-make epitope-specific antibodies that may facilitate vaccine, therapeutic and diagnostic antibody development.
Collapse
|
9
|
Jang YH, Seong BL. Call for a paradigm shift in the design of universal influenza vaccines by harnessing multiple correlates of protection. Expert Opin Drug Discov 2020; 15:1441-1455. [PMID: 32783765 DOI: 10.1080/17460441.2020.1801629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The genetic variability and diversity of influenza viruses, and the expansion of their hosts, present a significant threat to human health. The development of a universal influenza vaccine is urgently needed to tackle seasonal epidemics, pandemics, vaccine mismatch, and zoonotic transmissions to humans. AREAS COVERED Despite the identification of broadly neutralizing antibodies against influenza viruses, designing a universal influenza vaccine that induces such broadly neutralizing antibodies at protective levels in humans has remained challenging. Besides neutralizing antibodies, multiple correlates of protection have recently emerged as crucially important for eliciting broad protection against diverse influenza viruses. This review discusses the immune responses required for broad protection against influenza viruses, and suggests a paradigm shift from an HA stalk-based approach to other approaches that can induce multiple immunological correlates of protection for the development of a universal influenza vaccine. EXPERT OPINION To develop a truly universal influenza vaccine, multiple correlates of protection should be considered, including antibody responses and T cell immunity. Balanced induction of neutralizing antibodies, antibody effector functions, and T cell immunity will contribute to the most effective vaccination strategy. Live-attenuated influenza vaccines provide an attractive platform to improve the breadth and potency of vaccines for broader protection.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University , Andong, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, South Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, South Korea
| |
Collapse
|
10
|
Autonomously Replicating RNAs of Bungowannah Pestivirus: E RNS Is Not Essential for the Generation of Infectious Particles. J Virol 2020; 94:JVI.00436-20. [PMID: 32404522 DOI: 10.1128/jvi.00436-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Autonomously replicating subgenomic Bungowannah virus (BuPV) RNAs (BuPV replicons) with deletions of the genome regions encoding the structural proteins C, ERNS, E1, and E2 were constructed on the basis of an infectious cDNA clone of BuPV. Nanoluciferase (Nluc) insertion was used to compare the replication efficiencies of all constructs after electroporation of in vitro-transcribed RNA from the different clones. Deletion of C, E1, E2, or the complete structural protein genome region (C-ERNS-E1-E2) prevented the production of infectious progeny virus, whereas deletion of ERNS still allowed the generation of infectious particles. However, those ΔERNS viral particles were defective in virus assembly and/or egress and could not be further propagated for more than three additional passages in porcine SK-6 cells. These "defective-in-third-cycle" BuPV ΔERNS mutants were subsequently used to express the classical swine fever virus envelope protein E2, the N-terminal domain of the Schmallenberg virus Gc protein, and the receptor binding domain of the Middle East respiratory syndrome coronavirus spike protein. The constructs could be efficiently complemented and further passaged in SK-6 cells constitutively expressing the BuPV ERNS protein. Importantly, BuPVs are able to infect a wide variety of target cell lines, allowing expression in a very wide host spectrum. Therefore, we suggest that packaged BuPV ΔERNS replicon particles have potential as broad-spectrum viral vectors.IMPORTANCE The proteins NPRO and ERNS are unique for the genus Pestivirus, but only NPRO has been demonstrated to be nonessential for in vitro growth. While this was also speculated for ERNS, it has always been previously shown that pestivirus replicons with deletions of the structural proteins ERNS, E1, or E2 did not produce any infectious progeny virus in susceptible host cells. Here, we demonstrated for the first time that BuPV ERNS is dispensable for the generation of infectious virus particles but still important for efficient passaging. The ERNS-defective BuPV particles showed clearly limited growth in cell culture but were capable of several rounds of infection, expression of foreign genes, and highly efficient trans-complementation to rescue virus replicon particles (VRPs). The noncytopathic characteristics and the absence of preexisting immunity to BuPV in human populations and livestock also provide a significant benefit for a possible use, e.g., as a vector vaccine platform.
Collapse
|
11
|
Demminger DE, Walz L, Dietert K, Hoffmann H, Planz O, Gruber AD, von Messling V, Wolff T. Adeno-associated virus-vectored influenza vaccine elicits neutralizing and Fcγ receptor-activating antibodies. EMBO Mol Med 2020; 12:e10938. [PMID: 32163240 PMCID: PMC7207162 DOI: 10.15252/emmm.201910938] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
The current seasonal inactivated influenza vaccine protects only against a narrow range of virus strains as it triggers a dominant antibody response toward the hypervariable hemagglutinin (HA) head region. The discovery of rare broadly protective antibodies against conserved regions in influenza virus proteins has propelled research on distinct antigens and delivery methods to efficiently induce broad immunity toward drifted or shifted virus strains. Here, we report that adeno‐associated virus (AAV) vectors expressing influenza virus HA or chimeric HA protected mice against homologous and heterologous virus challenges. Unexpectedly, immunization even with wild‐type HA induced antibodies recognizing the HA‐stalk and activating FcγR‐dependent responses indicating that AAV‐vectored expression balances HA head‐ and HA stalk‐specific humoral responses. Immunization with AAV‐HA partially protected also ferrets against a harsh virus challenge. Results from this study provide a rationale for further clinical development of AAV vectors as influenza vaccine platform, which could benefit from their approved use in human gene therapy.
Collapse
Affiliation(s)
- Daniel E Demminger
- Unit 17-Influenza and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| | - Lisa Walz
- Veterinary Medicine Division, Paul-Ehrlich-Institute, Langen, Germany
| | - Kristina Dietert
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Berlin, Germany
| | - Helen Hoffmann
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Achim D Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Berlin, Germany
| | | | - Thorsten Wolff
- Unit 17-Influenza and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
12
|
Tannock GA, Kim H, Xue L. Why are vaccines against many human viral diseases still unavailable; an historic perspective? J Med Virol 2020; 92:129-138. [PMID: 31502669 PMCID: PMC7166819 DOI: 10.1002/jmv.25593] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/08/2019] [Indexed: 01/10/2023]
Abstract
The number of new and improved human viral vaccines licensed in recent years contrasts sharply with what could be termed the golden era (1955-1990) when vaccines against polio-, measles, mumps, rubella, and hepatitis B viruses first became available. Here, we attempt to explain why vaccines, mainly against viruses other than human immunodeficiency virus and hepatitis C virus, are still unavailable. They include human herpesviruses other than varicella-zoster virus, respiratory syncytial and most other respiratory, enteric and arthropod-borne viruses. Improved oral poliovirus vaccines are also urgently required. Their unavailability is attributable to regulatory/economic factors and the properties of individual viruses, but also to an absence of relevant animal models and ethical problems for the conduct of clinical of trials in pediatric and other critical populations. All are portents of likely difficulties for the licensing of effective vaccines against emerging pathogens, such as avian influenza, Ebola, and Zika viruses.
Collapse
Affiliation(s)
| | - Hyunsuh Kim
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTennessee
| | - Lumin Xue
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|
13
|
Mathew NR, Angeletti D. Recombinant Influenza Vaccines: Saviors to Overcome Immunodominance. Front Immunol 2020; 10:2997. [PMID: 31998299 PMCID: PMC6966699 DOI: 10.3389/fimmu.2019.02997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/06/2019] [Indexed: 11/24/2022] Open
Abstract
It has been almost a decade since the 2009 influenza A virus pandemic hit the globe causing significant morbidity and mortality. Nonetheless, annual influenza vaccination, which elicits antibodies mainly against the head region of influenza hemagglutinin (HA), remains as the mainstay to combat and reduce symptoms of influenza infection. Influenza HA is highly antigenically variable, thus limiting vaccine efficacy. In addition, the variable HA head occupies the upper strata of the immunodominance hierarchy, thereby clouding the antibody response toward subdominant epitopes, which are usually conserved across different influenza strains. Isolation of monoclonal antibodies from individuals recognizing such epitopes has facilitated the development of recombinant vaccines that focus the adaptive immune response toward conserved, protective targets. Here, we review some significant leaps in recombinant vaccine development, which could possibly help to overcome B cell and antibody immunodominance and provide heterosubtypic immunity to influenza A virus.
Collapse
Affiliation(s)
- Nimitha R Mathew
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Asthagiri Arunkumar G, McMahon M, Pavot V, Aramouni M, Ioannou A, Lambe T, Gilbert S, Krammer F. Vaccination with viral vectors expressing NP, M1 and chimeric hemagglutinin induces broad protection against influenza virus challenge in mice. Vaccine 2019; 37:5567-5577. [PMID: 31399277 PMCID: PMC6717082 DOI: 10.1016/j.vaccine.2019.07.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/06/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
Seasonal influenza virus infections cause significant morbidity and mortality every year. Annual influenza virus vaccines are effective but only when well matched with circulating strains. Therefore, there is an urgent need for better vaccines that induce broad protection against drifted seasonal and emerging pandemic influenza viruses. One approach to design such vaccines is based on targeting conserved regions of the influenza virus hemagglutinin. Sequential vaccination with chimeric hemagglutinin constructs can refocus antibody responses towards the conserved immunosubdominant stalk domain of the hemagglutinin, rather than the variable immunodominant head. A complementary approach for a universal influenza A virus vaccine is to induce T-cell responses to conserved internal influenza virus antigens. For this purpose, replication deficient recombinant viral vectors based on Chimpanzee Adenovirus Oxford 1 and Modified Vaccinia Ankara virus are used to express the viral nucleoprotein and the matrix protein 1. In this study, we combined these two strategies and evaluated the efficacy of viral vectors expressing both chimeric hemagglutinin and nucleoprotein plus matrix protein 1 in a mouse model against challenge with group 2 influenza viruses including H3N2, H7N9 and H10N8. We found that vectored vaccines expressing both sets of antigens provided enhanced protection against H3N2 virus challenge when compared to vaccination with viral vectors expressing only one set of antigens. Vaccine induced antibody responses against divergent group 2 hemagglutinins, nucleoprotein and matrix protein 1 as well as robust T-cell responses to the nucleoprotein and matrix protein 1 were detected. Of note, it was observed that while antibodies to the H3 stalk were already boosted to high levels after two vaccinations with chimeric hemagglutinins (cHAs), three exposures were required to induce strong reactivity across subtypes. Overall, these results show that a combinations of different universal influenza virus vaccine strategies can induce broad antibody and T-cell responses and can provide increased protection against influenza.
Collapse
Affiliation(s)
- Guha Asthagiri Arunkumar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Vincent Pavot
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Andriani Ioannou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, UK
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford, UK.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
15
|
Isakova-Sivak I, Matyushenko V, Kotomina T, Kiseleva I, Krutikova E, Donina S, Rekstin A, Larionova N, Mezhenskaya D, Sivak K, Muzhikyan A, Katelnikova A, Rudenko L. Sequential Immunization with Universal Live Attenuated Influenza Vaccine Candidates Protects Ferrets against a High-Dose Heterologous Virus Challenge. Vaccines (Basel) 2019; 7:vaccines7030061. [PMID: 31288422 PMCID: PMC6789596 DOI: 10.3390/vaccines7030061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
The development of universal influenza vaccines has been a priority for more than 20 years. We conducted a preclinical study in ferrets of two sets of live attenuated influenza vaccines (LAIVs) expressing chimeric hemagglutinin (cHA). These vaccines contained the HA stalk domain from H1N1pdm09 virus but had antigenically unrelated globular head domains from avian influenza viruses H5N1, H8N4 and H9N2. The viral nucleoproteins (NPs) in the two sets of universal LAIV candidates were from different sources: one LAIV set contained NP from A/Leningrad/17 master donor virus (MDV), while in the other set this gene was from wild-type (WT) H1N1pdm09 virus, in order to better match the CD8 T-cell epitopes of currently circulating influenza A viruses. To avoid any difference in protective effect of the various anti-neuraminidase (NA) antibodies, all LAIVs were engineered to contain the NA gene of Len/17 MDV. Naïve ferrets were sequentially immunized with three doses of (i) classical LAIVs containing non-chimeric HA and NP from MDV (LAIVs (NP-MDV)); (ii) cHA-based LAIVs containing NP from MDV (cHA LAIVs (NP-MDV)); and (iii) cHA-based LAIVs containing NP from H1N1pdm09 virus (cHA LAIVs (NP-WT)). All vaccination regimens were safe, producing no significant increase in body temperature or weight loss, in comparison with the placebo group. The two groups of cHA-based vaccines induced a broadly reactive HA stalk-directed antibody, while classical LAIVs did not. A high-dose challenge with H1N1pdm09 virus induced significant pathology in the control, non-immunized ferrets, including high virus titers in respiratory tissues, clinical signs of disease and histopathological changes in nasal turbinates and lung tissues. All three vaccination regimens protected animals from clinical manifestations of disease: immunized ferrets did not lose weight or show clinical symptoms, and their fever was significantly lower than in the control group. Further analysis of virological and pathological data revealed the following hierarchy in the cross-protective efficacy of the vaccines: cHA LAIVs (NP-WT) > cHA LAIVs (NP-MDV) > LAIVs (NP-MDV). This ferret study showed that prototype universal cHA-based LAIVs are highly promising candidates for further clinical development.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia.
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Irina Kiseleva
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Elena Krutikova
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Svetlana Donina
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Andrey Rekstin
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Natalia Larionova
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| | - Konstantin Sivak
- Department of Preclinical Trials, Smorodintsev Research Institute of Influenza, St Petersburg 197376, Russia
| | - Arman Muzhikyan
- Department of Preclinical Trials, Smorodintsev Research Institute of Influenza, St Petersburg 197376, Russia
| | - Anastasia Katelnikova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd., St Petersburg 188663, Russia
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St Petersburg 197376, Russia
| |
Collapse
|
16
|
Krammer F, Palese P. Universal Influenza Virus Vaccines That Target the Conserved Hemagglutinin Stalk and Conserved Sites in the Head Domain. J Infect Dis 2019; 219:S62-S67. [PMID: 30715353 PMCID: PMC6452318 DOI: 10.1093/infdis/jiy711] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Due to limitations of current influenza virus vaccines, new vaccines that mediate broad protection and show high efficacy against seasonal and pandemic viruses are urgently needed. The conserved stalk of the viral hemagglutinin has been identified as potential target antigen for this new generation of vaccines. A vaccination strategy based on chimeric hemagglutinin (cHA), which refocuses the immune response toward the stalk domain and the conserved neuraminidase, is currently being tested in clinical trials. Here we discuss how to improve the cHA antigens to generate vaccine candidates that both induce a broad antistalk response and target conserved immunosubdominant epitopes in the head domain of the hemagglutinin. These novel constructs, termed mosaic hemagglutinins, should provide enhanced protection and should be tested in clinical trials to assess their improved potential as universal influenza virus vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Broadly Neutralizing Antibodies/immunology
- Chimera/immunology
- Epitopes/genetics
- Epitopes/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza Vaccines/immunology
- Influenza, Human/epidemiology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Mice
- Mosaicism
- Neuraminidase/immunology
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Pandemics/prevention & control
- Receptors, Artificial/immunology
- Vaccination
Collapse
Affiliation(s)
- Florian Krammer
- Department of, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter Palese
- Department ofMicrobiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
17
|
Epstein SL. Universal Influenza Vaccines: Progress in Achieving Broad Cross-Protection In Vivo. Am J Epidemiol 2018; 187:2603-2614. [PMID: 30084906 DOI: 10.1093/aje/kwy145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
Despite all we have learned since 1918 about influenza virus and immunity, available influenza vaccines remain inadequate to control outbreaks of unexpected strains. Universal vaccines not requiring strain matching would be a major improvement. Their composition would be independent of predicting circulating viruses and thus potentially effective against unexpected drift or pandemic strains. This commentary explores progress with candidate universal vaccines based on various target antigens. Candidates include vaccines based on conserved viral proteins such as nucleoprotein and matrix, on the conserved hemagglutinin (HA) stem, and various combinations. Discussion covers the differing evidence for each candidate vaccine demonstrating protection in animals against influenza viruses of widely divergent HA subtypes and groups; durability of protection; routes of administration, including mucosal, providing local immunity; and reduction of transmission. Human trials of some candidate universal vaccines have been completed or are underway. Interestingly, the HA stem, like nucleoprotein and matrix, induces immunity that permits some virus replication and emergence of escape mutants fit enough to cause disease. Vaccination with multiple target antigens will thus have advantages over use of single antigens. Ultimately, a universal vaccine providing long-term protection against all influenza virus strains might contribute to pandemic control and routine vaccination.
Collapse
Affiliation(s)
- Suzanne L Epstein
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
18
|
Sunwoo SY, Schotsaert M, Morozov I, Davis AS, Li Y, Lee J, McDowell C, Meade P, Nachbagauer R, García-Sastre A, Ma W, Krammer F, Richt JA. A Universal Influenza Virus Vaccine Candidate Tested in a Pig Vaccination-Infection Model in the Presence of Maternal Antibodies. Vaccines (Basel) 2018; 6:vaccines6030064. [PMID: 30223475 PMCID: PMC6161263 DOI: 10.3390/vaccines6030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
The antigenically conserved hemagglutinin stalk region is a target for universal influenza virus vaccines since antibodies against it can provide broad protection against influenza viruses of different subtypes. We tested a universal influenza virus vaccination regimen based on sequential immunization with chimeric hemagglutinin (HA) containing viruses in a swine influenza virus pig model with maternal antibodies against pandemic H1N1. Vaccines were administered as live attenuated virus or inactivated influenza virus split vaccine (+/− Emulsigen adjuvant). As controls, we included groups that received trivalent inactivated influenza vaccine that contained pandemic H1N1 antigens, inactivated adjuvanted H1N2 vaccine (control group for vaccine associated enhanced respiratory disease in the pig model) or mock-vaccination. No induction of H1 head or stalk-specific antibody responses was observed upon vaccination, while responses against H3 and influenza B HA were elicited in the group vaccinated with the trivalent vaccine. Four weeks post vaccination, pigs were intratracheally challenged with pandemic H1N1 virus and euthanized 5 days after challenge. Despite the lack of detectable anti-stalk immunity, the chimeric hemagglutinin vaccine resulted in better clinical outcomes compared to control groups.
Collapse
Affiliation(s)
- Sun-Young Sunwoo
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Igor Morozov
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Anne Sally Davis
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Yuhao Li
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Jinhwa Lee
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Chester McDowell
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Philip Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Wenjun Ma
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Juergen A Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
19
|
Nachbagauer R, Krammer F, Albrecht RA. A Live-Attenuated Prime, Inactivated Boost Vaccination Strategy with Chimeric Hemagglutinin-Based Universal Influenza Virus Vaccines Provides Protection in Ferrets: A Confirmatory Study. Vaccines (Basel) 2018; 6:vaccines6030047. [PMID: 30044403 PMCID: PMC6161119 DOI: 10.3390/vaccines6030047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Influenza viruses cause severe diseases and mortality in humans on an annual basis. The current influenza virus vaccines can confer protection when they are well-matched with the circulating strains. However, due to constant changes of the virus surface glycoproteins, the vaccine efficacy can drop substantially in some seasons. In addition, the current seasonal influenza virus vaccines do not protect from avian influenza viruses of human pandemic potential. Novel influenza virus vaccines that aim to elicit antibodies against conserved epitopes like the hemagglutinin stalk could not only reduce the burden of drifted seasonal viruses but potentially also protect humans from infection with zoonotic and emerging pandemic influenza viruses. In this paper, we generated influenza virus vaccine constructs that express chimeric hemagglutinins consisting of exotic, avian head domains and a consistent stalk domain of a seasonal virus. Using such viruses in a sequential immunization regimen can redirect the immune response towards conserved epitopes. In this study, male ferrets received a live-attenuated vaccine virus based on the A/Ann Arbor/6/60 strain expressing a chimeric H8/1 (cH8/1) hemagglutinin, which was followed by a heterologous booster vaccination with a cH5/1N1 formalin inactivated non-adjuvanted whole virus. This group was compared to a second group that received a cH8/1N1 inactivated vaccine followed by a cH5/1N1 inactivated vaccine. Both groups showed a reduction in viral titers in the upper respiratory tract after the A(H1N1)pdm09 virus challenge. Animals that received the live-attenuated vaccine had low or undetectable titers in the lower respiratory tract. The results support the further development of chimeric hemagglutinin-based vaccination strategies. The outcome of this study confirms and corroborates findings from female ferrets primed with a A/Leningrad/134/17/57-based live attenuated cH8/1N1 vaccine followed by vaccination with an AS03-adjuvanted cH5/1N1 split virus vaccine 10.
Collapse
Affiliation(s)
- Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
20
|
Zemp F, Rajwani J, Mahoney DJ. Rhabdoviruses as vaccine platforms for infectious disease and cancer. Biotechnol Genet Eng Rev 2018; 34:122-138. [PMID: 29781359 DOI: 10.1080/02648725.2018.1474320] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The family Rhabdoviridae (RV) comprises a large, genetically diverse collection of single-stranded, negative sense RNA viruses from the order Mononegavirales. Several RV members are being developed as live-attenuated vaccine vectors for the prevention or treatment of infectious disease and cancer. These include the prototype recombinant Vesicular Stomatitis Virus (rVSV) and the more recently developed recombinant Maraba Virus, both species within the genus Vesiculoviridae. A relatively strong safety profile in humans, robust immunogenicity and genetic malleability are key features that make the RV family attractive vaccine platforms. Currently, the rVSV vector is in preclinical development for vaccination against numerous high-priority infectious diseases, with clinical evaluation underway for HIV/AIDS and Ebola virus disease. Indeed, the success of the rVSV-ZEBOV vaccine during the 2014-15 Ebola virus outbreak in West Africa highlights the therapeutic potential of rVSV as a vaccine vector for acute, life-threatening viral illnesses. The rVSV and rMaraba platforms are also being tested as 'oncolytic' cancer vaccines in a series of phase 1-2 clinical trials, after being proven effective at eliciting immune-mediated tumour regression in preclinical mouse models. In this review, we discuss the biological and genetic features that make RVs attractive vaccine platforms and the development and ongoing testing of rVSV and rMaraba strains as vaccine vectors for infectious disease and cancer.
Collapse
Affiliation(s)
- Franz Zemp
- a Alberta Children's Hospital Research Institute , Calgary , Canada.,b Charbonneau Cancer Research Institute , Calgary , Canada
| | - Jahanara Rajwani
- a Alberta Children's Hospital Research Institute , Calgary , Canada.,b Charbonneau Cancer Research Institute , Calgary , Canada.,d Department of Biochemistry and Molecular Biology, Faculty of Medicine , University of Calgary , Calgary , Canada
| | - Douglas J Mahoney
- a Alberta Children's Hospital Research Institute , Calgary , Canada.,b Charbonneau Cancer Research Institute , Calgary , Canada.,c Department of Microbiology, Immunology and Infectious Disease , Faculty of Medicine , University of Calgary , Calgary , Canada.,d Department of Biochemistry and Molecular Biology, Faculty of Medicine , University of Calgary , Calgary , Canada
| |
Collapse
|
21
|
Isakova-Sivak I, Korenkov D, Smolonogina T, Kotomina T, Donina S, Matyushenko V, Mezhenskaya D, Krammer F, Rudenko L. Broadly protective anti-hemagglutinin stalk antibodies induced by live attenuated influenza vaccine expressing chimeric hemagglutinin. Virology 2018; 518:313-323. [PMID: 29574336 DOI: 10.1016/j.virol.2018.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Abstract
The development of influenza vaccines that can provide broad protection against all drifted seasonal virus variants, zoonotic infections and emerging pandemic strains, has been a priority for two decades. Here we propose a strategy of inducing broadly-reactive anti-stalk antibody by sequential immunizations with live attenuated influenza vaccines (LAIVs) expressing chimeric HAs (cHAs). These vaccines are designed to contain identical hemagglutinin stalk domains from H1N1 virus but antigenically unrelated globular head domains from avian influenza virus subtypes H5, H8 and H9. Mouse experiments demonstrated enhanced cross-protection of cHA-containing LAIVs compared to the relevant vaccine viruses expressing natural HAs, and this enhanced protection was driven by stalk-HA-reactive IgG antibodies. The establishment of fully functional cross-protective immunity after two doses of cHA LAIV vaccination in naïve animals suggests that a similar effect might be expected after a single cHA LAIV dose in primed individuals, or after two to three doses in naïve children.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia.
| | - Daniil Korenkov
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Tatiana Smolonogina
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Svetlana Donina
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Daria Mezhenskaya
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, St Petersburg, Russia
| |
Collapse
|
22
|
Dong W, Bhide Y, Sicca F, Meijerhof T, Guilfoyle K, Engelhardt OG, Boon L, de Haan CAM, Carnell G, Temperton N, de Vries-Idema J, Kelvin D, Huckriede A. Cross-Protective Immune Responses Induced by Sequential Influenza Virus Infection and by Sequential Vaccination With Inactivated Influenza Vaccines. Front Immunol 2018; 9:2312. [PMID: 30356772 PMCID: PMC6189474 DOI: 10.3389/fimmu.2018.02312] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
Sequential infection with antigenically distinct influenza viruses induces cross-protective immune responses against heterologous virus strains in animal models. Here we investigated whether sequential immunization with antigenically distinct influenza vaccines can also provide cross-protection. To this end, we compared immune responses and protective potential against challenge with A(H1N1)pdm09 in mice infected sequentially with seasonal A(H1N1) virus followed by A(H3N2) virus or immunized sequentially with whole inactivated virus (WIV) or subunit (SU) vaccine derived from these viruses. Sequential infection provided solid cross-protection against A(H1N1)pdm09 infection while sequential vaccination with WIV, though not capable of preventing weight loss upon infection completely, protected the mice from reaching the humane endpoint. In contrast, sequential SU vaccination did not prevent rapid and extensive weight loss. Protection correlated with levels of cross-reactive but non-neutralizing antibodies of the IgG2a subclass, general increase of memory T cells and induction of influenza-specific CD4+ and CD8+ T cells. Adoptive serum transfer experiments revealed that despite lacking neutralizing activity, serum antibodies induced by sequential infection protected mice from weight loss and vigorous virus growth in the lungs upon A(H1N1)pdm09 virus challenge. Antibodies induced by WIV vaccination alleviated symptoms but could not control virus growth in the lung. Depletion of T cells prior to challenge revealed that CD8+ T cells, but not CD4+ T cells, contributed to cross-protection. These results imply that sequential immunization with WIV but not SU derived from antigenically distinct viruses could alleviate the severity of infection caused by a pandemic and may improve protection to unpredictable seasonal infection.
Collapse
Affiliation(s)
- Wei Dong
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, China
| | - Yoshita Bhide
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Federica Sicca
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tjarko Meijerhof
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kate Guilfoyle
- National Institute for Biological Standards and Controls, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | - Othmar G. Engelhardt
- National Institute for Biological Standards and Controls, Medicines and Healthcare Products Regulatory Agency, Potters Bar, United Kingdom
| | | | - Cornelis A. M. de Haan
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - George Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent, United Kingdom
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - David Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Anke Huckriede
| |
Collapse
|
23
|
Development of an influenza virus protein microarray to measure the humoral response to influenza virus infection in mallards. Emerg Microbes Infect 2017; 6:e110. [PMID: 29209053 PMCID: PMC5750464 DOI: 10.1038/emi.2017.98] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 02/02/2023]
Abstract
Avian influenza viruses pose a serious zoonotic threat, in part because current seasonal influenza virus vaccines only offer strain-specific protection, instead of heterosubtypic or universal protection against influenza virus infection. Understanding the humoral response to vaccination and natural infection in the broadest context possible is important to developing defenses against influenza zoonosis. Protein microarrays are a novel platform well suited to assaying the humoral immune response broadly and efficiently. We developed an influenza virus protein microarray (IVPM) that could be used to assay sera from many species, including humans. Waterfowl such as mallard ducks are natural reservoirs for many influenza A viruses, but their humoral immune response to infection is poorly understood. To establish this technology, we assayed sera from mallards experimentally infected with two low-pathogenic common avian influenza viruses (H3N8 and H4N5) for reactivity to influenza virus hemagglutinin (HA) by IVPM. The IVPM results correlated well with results from an established enzyme-linked immunosorbent assay, supporting the validity of the IVPM as a serological assay in influenza virus research. Interestingly, successive infection with H3N8 followed by H4N5 virus in mallard ducks induced antibodies that were broadly reactive against group 2 hemagglutinins. We also analyzed sera from wild mallards and observed serological evidence for infection in those sera. With serological information, it may be possible to infer infection history of wild avian species and gain a better understanding of the infection dynamics of influenza viruses in their natural reservoir. This might ultimately lead to interventions that enhance our pandemic preparedness.
Collapse
|
24
|
Increasing the breadth and potency of response to the seasonal influenza virus vaccine by immune complex immunization. Proc Natl Acad Sci U S A 2017; 114:10172-10177. [PMID: 28874545 DOI: 10.1073/pnas.1707950114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The main barrier to reduction of morbidity caused by influenza is the absence of a vaccine that elicits broad protection against different virus strains. Studies in preclinical models of influenza virus infections have shown that antibodies alone are sufficient to provide broad protection against divergent virus strains in vivo. Here, we address the challenge of identifying an immunogen that can elicit potent, broadly protective, antiinfluenza antibodies by demonstrating that immune complexes composed of sialylated antihemagglutinin antibodies and seasonal inactivated flu vaccine (TIV) can elicit broadly protective antihemagglutinin antibodies. Further, we found that an Fc-modified, bispecific monoclonal antibody against conserved epitopes of the hemagglutinin can be combined with TIV to elicit broad protection, thus setting the stage for a universal influenza virus vaccine.
Collapse
|
25
|
Chimeric Hemagglutinin Constructs Induce Broad Protection against Influenza B Virus Challenge in the Mouse Model. J Virol 2017; 91:JVI.00286-17. [PMID: 28356526 DOI: 10.1128/jvi.00286-17] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022] Open
Abstract
Seasonal influenza virus epidemics represent a significant public health burden. Approximately 25% of all influenza virus infections are caused by type B viruses, and these infections can be severe, especially in children. Current influenza virus vaccines are an effective prophylaxis against infection but are impacted by rapid antigenic drift, which can lead to mismatches between vaccine strains and circulating strains. Here, we describe a broadly protective vaccine candidate based on chimeric hemagglutinins, consisting of globular head domains from exotic influenza A viruses and stalk domains from influenza B viruses. Sequential vaccination with these constructs in mice leads to the induction of broadly reactive antibodies that bind to the conserved stalk domain of influenza B virus hemagglutinin. Vaccinated mice are protected from lethal challenge with diverse influenza B viruses. Results from serum transfer experiments and antibody-dependent cell-mediated cytotoxicity (ADCC) assays indicate that this protection is antibody mediated and based on Fc effector functions. The present data suggest that chimeric hemagglutinin-based vaccination is a viable strategy to broadly protect against influenza B virus infection.IMPORTANCE While current influenza virus vaccines are effective, they are affected by mismatches between vaccine strains and circulating strains. Furthermore, the antiviral drug oseltamivir is less effective for treating influenza B virus infections than for treating influenza A virus infections. A vaccine that induces broad and long-lasting protection against influenza B viruses is therefore urgently needed.
Collapse
|
26
|
Krammer F. Strategies to induce broadly protective antibody responses to viral glycoproteins. Expert Rev Vaccines 2017; 16:503-513. [PMID: 28277797 DOI: 10.1080/14760584.2017.1299576] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Currently, several universal/broadly protective influenza virus vaccine candidates are under development. Many of these vaccines are based on strategies to induce protective antibody responses against the surface glycoproteins of antigenically and genetically diverse influenza viruses. These strategies might also be applicable to surface glycoproteins of a broad range of other important viral pathogens. Areas covered: Common strategies include sequential vaccination with divergent antigens, multivalent approaches, vaccination with glycan-modified antigens, vaccination with minimal antigens and vaccination with antigens that have centralized/optimized sequences. Here we review these strategies and the underlying concepts. Furthermore, challenges, feasibility and applicability to other viral pathogens are discussed. Expert commentary: Several broadly protective/universal influenza virus vaccine strategies will be tested in humans in the coming years. If successful in terms of safety and immunological readouts, they will move forward into efficacy trials. In the meantime, successful vaccine strategies might also be applied to other antigenically diverse viruses of concern.
Collapse
Affiliation(s)
- F Krammer
- a Department of Microbiology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
27
|
Chikungunya, Influenza, Nipah, and Semliki Forest Chimeric Viruses with Vesicular Stomatitis Virus: Actions in the Brain. J Virol 2017; 91:JVI.02154-16. [PMID: 28077641 DOI: 10.1128/jvi.02154-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/02/2017] [Indexed: 02/02/2023] Open
Abstract
Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain.IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism.
Collapse
|
28
|
Replicon RNA Viral Vectors as Vaccines. Vaccines (Basel) 2016; 4:vaccines4040039. [PMID: 27827980 PMCID: PMC5192359 DOI: 10.3390/vaccines4040039] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/14/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Single-stranded RNA viruses of both positive and negative polarity have been used as vectors for vaccine development. In this context, alphaviruses, flaviviruses, measles virus and rhabdoviruses have been engineered for expression of surface protein genes and antigens. Administration of replicon RNA vectors has resulted in strong immune responses and generation of neutralizing antibodies in various animal models. Immunization of mice, chicken, pigs and primates with virus-like particles, naked RNA or layered DNA/RNA plasmids has provided protection against challenges with lethal doses of infectious agents and administered tumor cells. Both prophylactic and therapeutic efficacy has been achieved in cancer immunotherapy. Moreover, recombinant particles and replicon RNAs have been encapsulated by liposomes to improve delivery and targeting. Replicon RNA vectors have also been subjected to clinical trials. Overall, immunization with self-replicating RNA viruses provides high transient expression levels of antigens resulting in generation of neutralizing antibody responses and protection against lethal challenges under safe conditions.
Collapse
|
29
|
Complete Protection against Influenza Virus H1N1 Strain A/PR/8/34 Challenge in Mice Immunized with Non-Adjuvanted Novirhabdovirus Vaccines. PLoS One 2016; 11:e0164245. [PMID: 27711176 PMCID: PMC5053517 DOI: 10.1371/journal.pone.0164245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/05/2016] [Indexed: 11/19/2022] Open
Abstract
Novirhabdoviruses like Viral Hemorrhagic Septicemia Virus (VHSV) and Infectious Hematopoietic Necrosis Virus (IHNV) are fish-infecting Rhabdoviruses belonging to the Mononegavirales order. By reverse genetics, we previously showed that a recombinant VHSV expressing the West Nile Virus (WNV) E glycoprotein could serve as a vaccine platform against WNV. In the current study, we aimed to evaluate the potential of the Novirhabdovirus platform as a vaccine against influenza virus. Recombinant Novirhabdoviruses, rVHSV-HA and rIHNV-HA, expressing at the viral surface the hemagglutinin HA ectodomain were generated and used to immunized mice. We showed that mice immunized with either, rVHSV-HA or rIHNV-HA, elicited a strong neutralizing antibody response against influenza virus. A complete protection was conferred to the immunized mice when challenged with a lethal dose of influenza H1N1 A/PR/8/34 virus. Furthermore we showed that although acting as inert antigen in mice, since naturally inactivated over 20°C, mice immunized with rVHSV-HA or rIHNV-HA in the absence of adjuvant were also completely protected from a lethal challenge. Novirhabdoviruses platform are of particular interest as vaccines for mammals since they are cost effective to produce, relatively easy to generate and very effective to protect immunized animals.
Collapse
|
30
|
Nachbagauer R, Kinzler D, Choi A, Hirsh A, Beaulieu E, Lecrenier N, Innis BL, Palese P, Mallett CP, Krammer F. A chimeric haemagglutinin-based influenza split virion vaccine adjuvanted with AS03 induces protective stalk-reactive antibodies in mice. NPJ Vaccines 2016; 1. [PMID: 29250436 PMCID: PMC5707880 DOI: 10.1038/npjvaccines.2016.15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Seasonal influenza virus vaccines are generally effective at preventing disease, but need to be well matched to circulating virus strains for maximum benefit. Influenza viruses constantly undergo antigenic changes because of their high mutation rate in the immunodominant haemagglutinin (HA) head domain, which necessitates annual re-formulation and re-vaccination for continuing protection. In case of pandemic influenza virus outbreaks, new vaccines need to be produced and quickly distributed. Novel influenza virus vaccines that redirect the immune response towards more conserved epitopes located in the HA stalk domain may remove the need for annual vaccine re-formulation and could also protect against emergent pandemic strains to which the human population is immunologically naive. One approach to create such universal influenza virus vaccines is the use of constructs expressing chimeric HAs. By sequential immunization with vaccine strains expressing the same conserved HA stalk domain and exotic HA heads to which the host is naive, antibodies against the stalk can be boosted to high titres. Here we tested a monovalent chimeric HA-based prototype universal influenza virus split virion vaccine candidate with and without AS03 adjuvant in primed mice. We found that the chimeric HA-based vaccination regimen induced higher stalk antibody titres than the seasonal vaccine. The stalk antibody responses were long lasting, cross-reactive to distantly related HAs and provided protection in vivo in a serum transfer challenge model. The results of this study are promising and support further development of a universal influenza vaccine candidate built on the chimeric HA technology platform.
Collapse
Affiliation(s)
- Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - David Kinzler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute of Molecular Virology, Center of Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Hirsh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
Zhou J, Yang F, Yang J, Ma L, Cun Y, Song S, Liao G. Reassortment of high-yield influenza viruses in vero cells and safety assessment as candidate vaccine strains. Hum Vaccin Immunother 2016; 13:111-116. [PMID: 27648636 DOI: 10.1080/21645515.2016.1231261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Vaccination is the practiced and accessible measure for preventing influenza infection. Because chicken embryos used for vaccine production have various insufficiencies, more efficient methods are needed. African green monkey kidney (Vero) cells are recommended by the World Health Organization (WHO) as a safe substitute for influenza vaccine production for humans. However, the influenza virus usually had low-yield in Vero cells, which limits the usage of Vero cellular vaccines. This study used 2 high-yield influenza viruses in Vero cells: A/Yunnan/1/2005Va (H3N2) and B/Yunnan/2/2005Va (B) as donor viruses. It used 3 wild strain viruses to reassort new adaptation viruses, including: A/Tianjin/15/2009(H1N1), A/Fujian/196/2009(H3N2), and B/Chongqing/1384/2010(B). These three new viruses could maintain the characteristic of high-yield in Vero cells. Furthermore, they could keep the immunogenic characteristics of the original wild influenza viruses. Importantly, these viruses were shown as safe in chicken embryo and guinea pigs assessment systems. These results provide an alternative method to produce influenza vaccine based on Vero cells.
Collapse
Affiliation(s)
- Jian Zhou
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Fan Yang
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Jinghui Yang
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China.,b The First Hospital of Yunnan Province , Kunming , Yunnan Province , People's Republic of China
| | - Lei Ma
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Yina Cun
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Shaohui Song
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Guoyang Liao
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| |
Collapse
|
32
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
33
|
Ertl HC. Viral vectors as vaccine carriers. Curr Opin Virol 2016; 21:1-8. [PMID: 27327517 DOI: 10.1016/j.coviro.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022]
Abstract
This chapter reviews the performance of viral vectors based on adenoviruses or adeno-associated virus as vaccine carriers for infectious diseases. Replication-defective adenovirus vectors based on multiple human or non-human serotypes have consistently induced potent transgene product-specific B and T cell responses and are increasingly being explored in human clinical trials. The immunogenicity of most vectors based on adeno-associated virus vectors has been poor with the exception of a recently described hybrid vector from rhesus macaques that due to its ability to induce potent responses in mice warrant further investigation.
Collapse
Affiliation(s)
- Hildegund Cj Ertl
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
34
|
Krammer F. Novel universal influenza virus vaccine approaches. Curr Opin Virol 2016; 17:95-103. [PMID: 26927813 DOI: 10.1016/j.coviro.2016.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/03/2016] [Accepted: 02/06/2016] [Indexed: 10/24/2022]
Abstract
Seasonal influenza virus vaccines have to be re-formulated and re-administered on an annual basis due to antigenic drift of the influenza virus surface glycoproteins. In addition, seasonal vaccines show limited efficacy against novel pandemic influenza virus strains, and producing tailored vaccines for these strains in a timely manner is challenging. Several novel broadly protective vaccine candidates targeting the conserved stalk domain of the viral hemagglutinin have been developed. Here we review these novel constructs and discuss several important findings and considerations regarding the protective efficacy of stalk-based vaccines.
Collapse
Affiliation(s)
- Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|