1
|
Chang JY, Balch C, Oh HS. Toward the Eradication of Herpes Simplex Virus: Vaccination and Beyond. Viruses 2024; 16:1476. [PMID: 39339952 PMCID: PMC11437400 DOI: 10.3390/v16091476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Herpes simplex virus (HSV) has coevolved with Homo sapiens for over 100,000 years, maintaining a tenacious presence by establishing lifelong, incurable infections in over half the human population. As of 2024, an effective prophylactic or therapeutic vaccine for HSV remains elusive. In this review, we independently screened PubMed, EMBASE, Medline, and Google Scholar for clinically relevant articles on HSV vaccines. We identified 12 vaccines from our literature review and found promising candidates across various classes, including subunit vaccines, live vaccines, DNA vaccines, and mRNA vaccines. Notably, several vaccines-SL-V20, HF10, VC2, and mRNA-1608-have shown promising preclinical results, suggesting that an effective HSV vaccine may be within reach. Additionally, several other vaccines such as GEN-003 (a subunit vaccine from Genocea), HerpV (a subunit vaccine from Agenus), 0ΔNLS/RVx201 (a live-attenuated replication-competent vaccine from Rational Vaccines), HSV 529 (a replication-defective vaccine from Sanofi Pasteur), and COR-1 (a DNA-based vaccine from Anteris Technologies) have demonstrated potential in clinical trials. However, GEN-003 and HerpV have not advanced further despite promising results. Continued progress with these candidates brings us closer to a significant breakthrough in preventing and treating HSV infections.
Collapse
Affiliation(s)
- Jane Y Chang
- Ascendant Biotech Inc., Foster City, CA 94404, USA
| | - Curt Balch
- Bioscience Advising, Cincinnati, OH 45208, USA
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Owen EM, Jama M, Nahal B, Clarke E, Obasi A. 20 years of herpes simplex virus type 2 (HSV-2) research in low-income and middle-income countries: systematic evaluation of progress made in addressing WHO priorities for research in HSV-2/HIV interactions, HSV-2 control and mathematical modelling. BMJ Glob Health 2024; 9:e015167. [PMID: 38964882 PMCID: PMC11227757 DOI: 10.1136/bmjgh-2024-015167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/14/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Reviewing and updating research priorities is essential to assess progress and to ensure optimal allocation of financial and human resources in research. In 2001, WHO held a research priority setting workshop for herpes simplex virus type 2 (HSV-2) research in low-income and middle-income countries (LMICs). This study aimed to describe progress between 2000 and 2020 in three of the five key research priority areas outlined in the workshop: HSV-2/HIV interactions, HSV-2 control measures and HSV-2 mathematical modelling. The remaining priorities are addressed in a companion paper. METHOD A systematic literature search of MEDLINE, CINAHL, Global Health and Cochrane databases was carried out. Relevant primary research studies based in LMICs, written in English and published on 2000-2020 were included. Papers were screened by two independent reviewers, and suitable variables were selected for manual extraction from study texts. Data were organised into an Excel spreadsheet and analysed using IBM SPSS. RESULTS In total, 3214 discrete papers were identified, of which 180 were eligible for inclusion (HSV-2/HIV interactions, 98; control measures, 58; mathematical modelling, 24). Most studies were conducted in East Africa. The majority of the 2001 WHO HSV-2 research priorities were addressed at least in part. Overall, despite several studies describing a strong relationship between HSV-2 and the acquisition and transmission of HIV, HSV-2 control repeatedly demonstrated little effect on HIV shedding or transmission. Further, although mathematical modelling predicted that vaccines could significantly impact HSV-2 indicators, HSV-2 vaccine studies were few. Studies of antiviral resistance were also few. CONCLUSION Since 2000, LMIC HSV-2 research addressing its control, HIV interactions and mathematical modelling has largely addressed the priorities set in the 2001 WHO HSV-2 workshop. However, key knowledge gaps remain in vaccine research, antiviral cost-effectiveness, antiviral resistance and specific geographical areas.
Collapse
Affiliation(s)
- Ela Mair Owen
- Liverpool School of Tropical Medicine, Liverpool, UK
- University of Liverpool, Liverpool, UK
| | - Muna Jama
- Liverpool School of Tropical Medicine, Liverpool, UK
- International Rescue Committee, Mogadishu, Somalia
| | - Belinder Nahal
- University of Liverpool, Liverpool, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Emily Clarke
- University of Liverpool, Liverpool, UK
- Axess Sexual Health, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Angela Obasi
- Liverpool School of Tropical Medicine, Liverpool, UK
- Axess Sexual Health, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
3
|
Ren X, Su W, Li S, Zhao T, Huang Q, Wang Y, Wang X, Zhang X, Wei J. Immunogenicity and Therapeutic Efficacy of a Sendai-Virus-Vectored HSV-2 Vaccine in Mouse and Guinea Pig Models. Vaccines (Basel) 2023; 11:1752. [PMID: 38140157 PMCID: PMC10747028 DOI: 10.3390/vaccines11121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND To date, there is no licensed vaccine for preventing herpes simplex virus type 2 (HSV-2). The current treatment to address the infection and prevent its transmission is not always satisfactory. METHODS We constructed two recombinant vectors, one encoding HSV-2 glycoprotein D (gD, SeV-dF/HSV-2-gD) and one encoding HSV-2-infected cell protein 27 (ICP27, SeV-dF/HSV-2-ICP27), based on a replication-defective Sendai virus through reverse genetics, collectively comprising a combinatorial HSV-2 therapeutic vaccine candidate. The immunogenicity and proper immunization procedure for this vaccine were explored in a murine model. The therapeutic effect that helps prevent recurrent HSV-2 disease was evaluated in HSV-2-infected guinea pigs. RESULTS Both a robust humoral immune response and a cellular immune response, characterized by the neutralizing antibody titer and the IFN-γ level, respectively, were elicited in BALB/c mice. A further study of cellular immunogenicity in mice revealed that T lymphocytes were successfully enhanced with the desirable secretion of several cytokines. In HSV-2-seropositive guinea pigs, vaccination could reduce the severity of HSV-2 in terms of recurrent lesions, duration of recurrent outbreak, and frequency of recurrence by 58.66%, 45.34%, and 45.09%, respectively, while viral shedding was also significantly inhibited in the vaccine-treated group compared to the group treated with phosphate-buffered saline. CONCLUSIONS The replication-defective recombinant Sendai viruses conveying HSV-2-gD and ICP27 proteins showed great immunogenicity and potential for preventing recurrent HSV-2 disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiangbo Wei
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China; (X.R.); (W.S.); (S.L.); (T.Z.); (Q.H.); (Y.W.); (X.W.); (X.Z.)
| |
Collapse
|
4
|
Borase H, Shukla D. The Interplay of Genital Herpes with Cellular Processes: A Pathogenesis and Therapeutic Perspective. Viruses 2023; 15:2195. [PMID: 38005873 PMCID: PMC10675801 DOI: 10.3390/v15112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Genital herpes, primarily caused by herpes simplex virus-2 (HSV-2), remains a pressing global health concern. Its remarkable ability to intertwine with cellular processes, from harnessing host machinery for replication to subverting antiviral defenses like autophagy and programmed cell death, exemplifies the intricate interplay at the heart of its pathogenesis. While the biomedical community has extensively researched antiviral interventions, the efficiency of these strategies in managing HSV-2 remains suboptimal. Recognizing this, attention has shifted toward leveraging host cellular components to regulate HSV-2 replication and influence the cell cycle. Furthermore, innovative interventional strategies-including drug repurposing, microbivacs, connecting the host microbiome, and exploiting natural secondary metabolites-are emerging as potential game changers. This review summarizes the key steps in HSV-2 pathogenesis and newly discovered cellular interactions, presenting the latest developments in the field, highlighting existing challenges, and offering a fresh perspective on HSV-2's pathogenesis and the potential avenues for its treatment by targeting cellular proteins and pathways.
Collapse
Affiliation(s)
- Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Quadiri A, Prakash S, Dhanushkodi NR, Singer M, Zayou L, Shaik AM, Sun M, Suzer B, Lau L, Chilukurri A, Vahed H, Schaefer H, BenMohamed L. Therapeutic Prime/Pull Vaccination of HSV-2 Infected Guinea Pigs with the Ribonucleotide Reductase 2 (RR2) Protein and CXCL11 Chemokine Boosts Antiviral Local Tissue-Resident and Effector Memory CD4 + and CD8 + T Cells and Protects Against Recurrent Genital Herpes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552454. [PMID: 37609157 PMCID: PMC10441333 DOI: 10.1101/2023.08.08.552454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes latency in sensory neurons of the dorsal root ganglia (DRG). Intermittent virus reactivation from latency and shedding in the vaginal mucosa (VM) causes recurrent genital herpes. While T-cells appear to play a role in controlling virus reactivation and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T-cells into DRG and VM tissues remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-1 RR2 protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 (AAV-8) expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus shedding in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ TRM and TEM cells in reducing virus reactivation shedding and the severity of recurrent genital herpes and propose the novel prime/pull vaccine strategy to protect against recurrent genital herpes.
Collapse
Affiliation(s)
- Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Lauren Lau
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Amruth Chilukurri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Hubert Schaefer
- Intracellular Pathogens, Robert Koch-Institute, Berlin 13353, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CaA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
6
|
Preda M, Manolescu LSC, Chivu RD. Advances in Alpha Herpes Viruses Vaccines for Human. Vaccines (Basel) 2023; 11:1094. [PMID: 37376483 DOI: 10.3390/vaccines11061094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Alpha herpes simplex viruses are an important public health problem affecting all age groups. It can produce from common cold sores and chicken pox to severe conditions like encephalitis or newborn mortality. Although all three subtypes of alpha herpes viruses have a similar structure, the produced pathology differs, and at the same time, the available prevention measures, such as vaccination. While there is an available and efficient vaccine for the varicella-zoster virus, for herpes simplex virus 1 and 2, after multiple approaches from trivalent subunit vaccine to next-generation live-attenuated virus vaccines and bioinformatic studies, there is still no vaccine available. Although there are multiple failed approaches in present studies, there are also a few promising attempts; for example, the trivalent vaccine containing herpes simplex virus type 2 (HSV-2) glycoproteins C, D, and E (gC2, gD2, gE2) produced in baculovirus was able to protect guinea pigs against vaginal infection and proved to cross-protect against HSV-1. Another promising vaccine is the multivalent DNA vaccine, SL-V20, tested in a mouse model, which lowered the clinical signs of infection and produced efficient viral eradication against vaginal HSV-2. Promising approaches have emerged after the COVID-19 pandemic, and a possible nucleoside-modified mRNA vaccine could be the next step. All the approaches until now have not led to a successful vaccine that could be easy to administer and, at the same time, offer antibodies for a long period.
Collapse
Affiliation(s)
- Madalina Preda
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Research Department, Marius Nasta Institute of Pneumology, 050159 Bucharest, Romania
| | - Loredana Sabina Cornelia Manolescu
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Virology, Institute of Virology "Stefan S. Nicolau", 030304 Bucharest, Romania
| | - Razvan Daniel Chivu
- Department of Public Health and Health Management, Faculty of Midwifery and Nursing, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Awasthi S, Onishi M, Lubinski JM, Fowler BT, Naughton AM, Hook LM, Egan KP, Hagiwara M, Shirai S, Sakai A, Nakagawa T, Goto K, Yoshida O, Stephens AJ, Choi G, Cohen GH, Katayama K, Friedman HM. Novel Adjuvant S-540956 Targets Lymph Nodes and Reduces Genital Recurrences and Vaginal Shedding of HSV-2 DNA When Administered with HSV-2 Glycoprotein D as a Therapeutic Vaccine in Guinea Pigs. Viruses 2023; 15:1148. [PMID: 37243234 PMCID: PMC10220834 DOI: 10.3390/v15051148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulcer disease and a major risk factor for acquisition and transmission of HIV. Frequent recurrent genital lesions and concerns about transmitting infection to intimate partners affect the quality of life of infected individuals. Therapeutic vaccines are urgently needed to reduce the frequency of genital lesions and transmission. S-540956 is a novel vaccine adjuvant that contains CpG oligonucleotide ODN2006 annealed to its complementary sequence and conjugated to a lipid that targets the adjuvant to lymph nodes. Our primary goal was to compare S-540956 administered with HSV-2 glycoprotein D (gD2) with no treatment in a guinea pig model of recurrent genital herpes (studies 1 and 2). Our secondary goals were to compare S-540956 with oligonucleotide ODN2006 (study1) or glucopyranosyl lipid A in a stable oil-in-water nano-emulsion (GLA-SE) (study 2). gD2/S-540956 reduced the number of days with recurrent genital lesions by 56%, vaginal shedding of HSV-2 DNA by 49%, and both combined by 54% compared to PBS, and was more efficacious than the two other adjuvants. Our results indicate that S-540956 has great potential as an adjuvant for a therapeutic vaccine for genital herpes, and merits further evaluation with the addition of potent T cell immunogens.
Collapse
Affiliation(s)
- Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Motoyasu Onishi
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - John M. Lubinski
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Bernard T. Fowler
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Alexis M. Naughton
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Lauren M. Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Kevin P. Egan
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| | - Masaki Hagiwara
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Seiki Shirai
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Akiho Sakai
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Takayuki Nakagawa
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Kumiko Goto
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Osamu Yoshida
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Alisa J. Stephens
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA; (A.J.S.); (G.C.)
| | - Grace Choi
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA; (A.J.S.); (G.C.)
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Kazufumi Katayama
- Pharmaceutical Research Division, Shionogi & Co., Ltd., Osaka 561-0825, Japan; (M.H.); (S.S.); (A.S.); (T.N.); (K.G.); (O.Y.); (K.K.)
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA (J.M.L.); (B.T.F.); (A.M.N.); (L.M.H.); (K.P.E.)
| |
Collapse
|
8
|
Herpes Simplex Virus and Varicella Zoster Virus Infections in Cancer Patients. Viruses 2023; 15:v15020439. [PMID: 36851652 PMCID: PMC9961783 DOI: 10.3390/v15020439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Herpes simplex virus (HSV) and varicella zoster virus (VZV) are alpha herpesviruses that establish life-long latent infection in neuronal ganglia after primary infection. Periodic reactivation of these viruses results in recurrent infections that can have significant impact on patients' quality of life. HSV commonly causes oral and genital mucocutaneous infections whereas VZV is responsible for varicella/chickenpox and herpes zoster/shingles, but cancer patients are at particularly higher risk of complications including disseminated and visceral infections due to impaired cell-mediated immunity. While diagnosis of more common HSV and/or VZV infections is frequently clinically based, immunocompromised hosts may have atypical skin presentation or visceral involvement. Thus, diagnostic confirmation using virus-specific tests such as polymerase chain reaction or immunohistochemical staining is crucial in some cases. Oral acyclovir, valacyclovir and famciclovir are usually used for mild to moderate infections and intravenous acyclovir is the drug of choice for severe or disseminated infections. Foscarnet can be used when acyclovir-resistance is confirmed or suspected. Pharmaceutical prophylaxis against HSV and/or VZV should be considered in high-risk cancers patients. Currently, there is no commercially available vaccine against HSV, but VZV vaccines are available to prevent varicella and zoster.
Collapse
|
9
|
Malik S, Sah R, Ahsan O, Muhammad K, Waheed Y. Insights into the Novel Therapeutics and Vaccines against Herpes Simplex Virus. Vaccines (Basel) 2023; 11:325. [PMID: 36851203 PMCID: PMC9959597 DOI: 10.3390/vaccines11020325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus (HSV) is a great concern of the global health community due to its linked infection of inconspicuous nature and resultant serious medical consequences. Seropositive patients may develop ocular disease or genital herpes as characteristic infectious outcomes. Moreover, the infectious nature of HSV is so complex that the available therapeutic options have been modified in certain ways to cure it. However, no permanent and highly effective cure has been discovered. This review generates insights into the available prophylactic and therapeutic interventions against HSV. A methodological research approach is used for study design and data complication. Only the latest data from publications are acquired to shed light on updated therapeutic approaches. These studies indicate that the current antiviral therapeutics can suppress the symptoms and control viral transmission up to a certain level, but cannot eradicate the natural HSV infection and latency outcomes. Most trials that have entered the clinical phase are made part of this review to understand what is new within the field. Some vaccination approaches are also discussed. Moreover, some novel therapeutic options that are currently in research annals are given due consideration for future development. The data can enable the scientific community to direct their efforts to fill the gaps that remain unfilled in terms of therapies for HSV. The need is to integrate scientific efforts to produce a proper cure against HSV to control the virus spread, resistance, and mutation in future disease management.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi 46000, Pakistan
| | - Ranjit Sah
- Department of Microbiology, Institute of Medicine, Tribhuvan University Teaching Hospital, Kathmandu 44600, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| | - Omar Ahsan
- Department of Medicine, School of Health Sciences, Foundation University Islamabad, DHA Phase I, Islamabad 44000, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Science, UAE University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
10
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
11
|
Wan M, Yang X, Sun J, Ding X, Chen Z, Su W, Cai L, Hou A, Sun B, Gao F, Jiang C, Zhou Y. An Adenovirus-Based Recombinant Herpes Simplex Virus 2 (HSV-2) Therapeutic Vaccine Is Highly Protective against Acute and Recurrent HSV-2 Disease in a Guinea Pig Model. Viruses 2023; 15:219. [PMID: 36680259 PMCID: PMC9861952 DOI: 10.3390/v15010219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Genital herpes (GH) has become one of the most common sexually transmitted diseases worldwide, and it is spreading rapidly in developing countries. Approximately 90% of GH cases are caused by HSV-2. Therapeutic HSV-2 vaccines are intended for people already infected with HSV-2 with the goal of reducing clinical recurrences and recurrent virus shedding. In our previous work, we evaluated recombinant adenovirus-based vaccines, including rAd-gD2ΔUL25, rAd-ΔUL25, and rAd-gD2, for their potency as prophylactic vaccines. In this study, we evaluated these three vaccines as therapeutic vaccines against acute and recurrent diseases in intravaginal challenged guinea pigs. Compared with the control groups, the recombinant vaccine rAd-gD2ΔUL25 induced a higher titer of the binding antibody, and rAd-gD2 + rAd-ΔUL25 induced a higher titer of the neutralizing antibody. Both rAd-gD2ΔUL25 and rAd-gD2 + rAd-ΔUL25 vaccines significantly enhanced the survival rate by 50% compared to rAd-gD2 and reduced viral replication in the genital tract and recurrent genital skin disease. Our findings provide a new perspective for HSV-2 therapeutic vaccine research and provide a new technique to curtail the increasing spread of HSV-2.
Collapse
Affiliation(s)
- Mingming Wan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xue Ding
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhijun Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Yan Y, Hu K, Fu M, Deng X, Guan X, Luo S, Zhang M, Liu Y, Hu Q. CCL28 Enhances HSV-2 gB-Specific Th1-Polarized Immune Responses against Lethal Vaginal Challenge in Mice. Vaccines (Basel) 2022; 10:vaccines10081291. [PMID: 36016177 PMCID: PMC9415327 DOI: 10.3390/vaccines10081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmid DNA (pDNA) represents a promising “genetic vaccine platform” capable of overcoming major histocompatibility complex barriers. We previously demonstrated that low-to-moderate doses of mucosae-associated epithelial chemokine (MEC or CCL28) as an immunomodulatory adjuvant can trigger effective and long-lasting systemic and mucosal HSV-2 gD-specific immune responses, whereas mice immunized with gD in combination with high-dose CCL28 showed toxicity and lost their immunoprotective effects after lethal HSV-2 challenge. The exact causes underlying high-dose, CCL28-induced lesions remain unknown. In an intramuscularly immunized mouse model, we investigated the immune-enhancement mechanisms of low-dose CCL28 as a molecular adjuvant combined with the relatively weak immunogen HSV-2 gB. Compared with the plasmid gB antigen group, we found that a low-dose of plasmid CCL28 (pCCL28) codelivered with pgB induced increased levels of gB-specific serum IgG and vaginal fluid IgA, serum neutralizing antibodies (NAb), Th1-polarized IgG2a, and cytokine IL-2 (>5-fold). Furthermore, low-dose pCCL28 codelivery with pgB enhanced CCL28/CCR10-axis responsive CCR10− plus CCR10+ B-cell (~1.2-fold) and DC pools (~4-fold) in the spleen, CCR10− plus CCR10+ T-cell pools (~2-fold) in mesenteric lymph nodes (MLNs), and the levels of IgA-ASCs in colorectal mucosal tissues, leading to an improved protective effect against a lethal dose of HSV-2 challenge. Findings in this study provide a basis for the development of CCL28-adjuvant vaccines against viral mucosal infections.
Collapse
Affiliation(s)
- Yan Yan
- Center of Clinical Laboratory, The Fifth People’s Hospital of Wuxi, Wuxi Affiliated Clinical Academy of Nantong University, Wuxi 214016, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xinmeng Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Sukun Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Institute for Infection and Immunity, St. George’s University of London, London SW17 0RE, UK
- Correspondence:
| |
Collapse
|
13
|
Chentoufi AA, Dhanushkodi NR, Srivastava R, Prakash S, Coulon PGA, Zayou L, Vahed H, Chentoufi HA, Hormi-Carver KK, BenMohamed L. Combinatorial Herpes Simplex Vaccine Strategies: From Bedside to Bench and Back. Front Immunol 2022; 13:849515. [PMID: 35547736 PMCID: PMC9082490 DOI: 10.3389/fimmu.2022.849515] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
The development of vaccines against herpes simplex virus type 1 and type 2 (HSV1 and HSV-2) is an important goal for global health. In this review we reexamined (i) the status of ocular herpes vaccines in clinical trials; and (ii) discusses the recent scientific advances in the understanding of differential immune response between HSV infected asymptomatic and symptomatic individuals that form the basis for the new combinatorial vaccine strategies targeting HSV; and (iii) shed light on our novel "asymptomatic" herpes approach based on protective immune mechanisms in seropositive asymptomatic individuals who are "naturally" protected from recurrent herpetic diseases. We previously reported that phenotypically and functionally distinct HSV-specific memory CD8+ T cell subsets in asymptomatic and symptomatic HSV-infected individuals. Moreover, a better protection induced following a prime/pull vaccine approach that consists of first priming anti-viral effector memory T cells systemically and then pulling them to the sites of virus reactivation (e.g., sensory ganglia) and replication (e.g., eyes and vaginal mucosa), following mucosal administration of vectors expressing T cell-attracting chemokines. In addition, we reported that a combination of prime/pull vaccine approach with approaches to reverse T cell exhaustion led to even better protection against herpes infection and disease. Blocking PD-1, LAG-3, TIGIT and/or TIM-3 immune checkpoint pathways helped in restoring the function of antiviral HSV-specific CD8+ T cells in latently infected ganglia and increased efficacy and longevity of the prime/pull herpes vaccine. We discussed that a prime/pull vaccine strategy that use of asymptomatic epitopes, combined with immune checkpoint blockade would prove to be a successful herpes vaccine approach.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Pierre-Gregoire A. Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, Limited Liability Company (LLC), University Lab Partners, Irvine, CA, United States
| | | | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
- Biomedical Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Molecular Biology & Biochemistry, Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
14
|
Efficacy of an HSV-1 Neuro-Attenuated Vaccine in Mice Is Reduced by Preventing Viral DNA Replication. Viruses 2022; 14:v14050869. [PMID: 35632611 PMCID: PMC9144315 DOI: 10.3390/v14050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
We previously isolated an HSV-1 mutant, KOS-NA, that contains two non-synonymous mutations in UL39. One of the mutations, resulting in an R950H amino acid substitution in ICP6, renders KOS-NA severely neuro-attenuated and significantly reduces HSV-1 latency. Vaccination of mice with KOS-NA prior to corneal challenge provides significant protection against HSV-1-mediated eye diseases even at a very low immunizing dose, indicating its utility as a vaccine scaffold. Because KOS-NA contains a neuro-attenuating mutation in a single gene, we sought to improve its safety by deleting a portion of the UL29 gene whose protein product, ICP8, is essential for viral DNA replication. Whereas KOS-NA reduced replication of HSV-1 challenge virus in the corneal epithelium and protected mice against blepharitis and keratitis induced by the challenge virus, KOS-NA/8- and an ICP8- virus were significantly less efficacious except at higher doses. Our results suggest that the capacity to replicate, even at significantly reduced levels compared with wild-type HSV-1, may be an important feature of an effective vaccine. Means to improve safety of attenuated viruses as vaccines without compromising efficacy should be sought.
Collapse
|
15
|
Krishnan R, Stuart PM. Developments in Vaccination for Herpes Simplex Virus. Front Microbiol 2021; 12:798927. [PMID: 34950127 PMCID: PMC8691362 DOI: 10.3389/fmicb.2021.798927] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus (HSV) is an alpha herpes virus, with two subtypes: HSV-1 and HSV-2. HSV is one of the most prevalent sexually transmitted infections. It is the cause of severe neonatal infections and a leading cause of infectious blindness in the Western world. As of 2016, 13.2% of the global population ages 15-49 were existing with HSV-2 infection and 66.6% with HSV-1. This high prevalence of disease and the fact that resistance to current therapies is on the rise makes it imperative to develop and discover new methods of HSV prevention and management. Among the arsenal of therapies/treatments for this virus has been the development of a prophylactic or therapeutic vaccine to prevent the complications of HSV reactivation. Our current understanding of the immune responses involved in latency and reactivation provides a unique challenge to the development of vaccines. There are no approved vaccines currently available for either prophylaxis or therapy. However, there are various promising candidates in the pre-clinical and clinical phases of study. Vaccines are being developed with two broad focuses: preventative and therapeutic, some with a dual use as both immunotherapeutic and prophylactic. Within this article, we will review the current guidelines for the treatment of herpes simplex infections, our understanding of the immunological pathways involved, and novel vaccine candidates in development.
Collapse
Affiliation(s)
| | - Patrick M. Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Shohael AM, Moin AT, Chowdhury MAB, Riana SH, Ullah MA, Araf Y, Sarkar B. An Updated Overview of Herpes Simplex Virus-1 Infection: Insights from Origin to Mitigation Measures. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/10869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
CCL19 and CCL28 Assist Herpes Simplex Virus 2 Glycoprotein D To Induce Protective Systemic Immunity against Genital Viral Challenge. mSphere 2021; 6:6/2/e00058-21. [PMID: 33910988 PMCID: PMC8092132 DOI: 10.1128/msphere.00058-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An effective HSV-2 vaccine should induce antigen (Ag)-specific immune responses against viral mucosal infection. This study reveals that chemokine CCL19 or CCL28 enhanced HSV-2 glycoprotein D ectodomain (gD-306aa)-induced immune responses against vaginal virus challenge. Potent systemic immunity is important for recalled mucosal immune responses, but in the defense against mucosal viral infections, it usually remains low at mucosal sites. Based on our previous findings that enhanced immune responses can be achieved by immunization with an immunogen in combination with a molecular adjuvant, here we designed chemokine-antigen (Ag) fusion constructs (CCL19- or CCL28-herpes simplex virus 2 glycoprotein D [HSV-2 gD]). After intramuscular (i.m.) immunization with different DNA vaccines in a prime and boost strategy, BALB/c mice were challenged with a lethal dose of HSV-2 through the genital tract. Ag-specific immune responses and chemokine receptor-specific lymphocytes were analyzed to determine the effects of CCL19 and CCL28 in strengthening humoral and cellular immunity. Both CCL19 and CCL28 were efficient in inducing long-lasting HSV-2 gD-specific systemic immunity. Compared to CCL19, less CCL28 was required to elicit HSV-2 gD-specific serum IgA responses, Th1- and Th2-like responses of immunoglobulin (Ig) subclasses and cytokines, and CCR3+ T cell enrichment (>8.5-fold) in spleens. These findings together demonstrate that CCL28 tends to assist an immunogen to induce more potently protective immunity than CCL19. This work provides information for the application potential of a promising vaccination strategy against mucosal infections caused by HSV-2 and other sexually transmitted viruses. IMPORTANCE An effective HSV-2 vaccine should induce antigen (Ag)-specific immune responses against viral mucosal infection. This study reveals that chemokine CCL19 or CCL28 enhanced HSV-2 glycoprotein D ectodomain (gD-306aa)-induced immune responses against vaginal virus challenge. In addition to eliciting robust humoral immune responses, the chemokine-Ag fusion construct also induced Th1- and Th2-like immune responses characterized by the secretion of multiple Ig subclasses and cytokines that were able to be recalled after HSV-2 challenge, while CCL28 appeared to be more effective than CCL19 in promoting gD-elicited immune responses as well as the migration of T cells to secondary lymph tissues. Of importance, both CCL19 and CCL28 significantly facilitated gD to induce protective mucosal immune responses in the genital tract. The above-described findings together highlight the potential of CCL19 or CCL28 in combination with gD as a vaccination strategy to control HSV-2 infection.
Collapse
|
18
|
Assessment of Two Novel Live-Attenuated Vaccine Candidates for Herpes Simplex Virus 2 (HSV-2) in Guinea Pigs. Vaccines (Basel) 2021; 9:vaccines9030258. [PMID: 33805768 PMCID: PMC7999511 DOI: 10.3390/vaccines9030258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
Treatment to ameliorate the symptoms of infection with herpes simplex virus 2 (HSV-2) and to suppress reactivation has been available for decades. However, a safe and effective preventative or therapeutic vaccine has eluded development. Two novel live-attenuated HSV-2 vaccine candidates (RVx201 and RVx202) have been tested preclinically for safety. Hartley guinea pigs were inoculated vaginally (n = 3) or intradermally (n = 16) with either vaccine candidate (2 × 107 PFU) and observed for disease for 28 days. All animals survived to study end without developing HSV-2-associated disease. Neither vaccine candidate established latency in dorsal root or sacral sympathetic ganglia, as determined by viral DNA quantification, LAT expression, or explant reactivation. Infectious virus was shed in vaginal secretions for three days following vaginal inoculation with RVx202, but not RVx201, although active or latent HSV-2 was not detected at study end. In contrast, guinea pigs inoculated with wild-type HSV-2 MS (2 × 105 PFU) vaginally (n = 5) or intradermally (n = 16) developed acute disease, neurological signs, shed virus in vaginal secretions, experienced periodic recurrences throughout the study period, and had latent HSV-2 in their dorsal root and sacral sympathetic ganglia at study end. Both vaccine candidates generated neutralizing antibody. Taken together, these findings suggest that these novel vaccine candidates are safe in guinea pigs and should be tested for efficacy as preventative and/or therapeutic anti-HSV-2 vaccines.
Collapse
|
19
|
Singh VK, Kumar S, Dhaked RK, Ansari AS, Lohiya NK, Tapryal S. Generation of oligomers of subunit vaccine candidate glycoprotein D of Herpes Simplex Virus-2 expressed in fusion with IgM Fc domain(s) in Escherichia coli: A strategy to enhance the immunogenicity of the antigen. 3 Biotech 2020; 10:463. [PMID: 33047090 PMCID: PMC7541101 DOI: 10.1007/s13205-020-02452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/23/2020] [Indexed: 11/25/2022] Open
Abstract
Glycoprotein D (gD) of Herpes Simplex Virus-2 is used as an antigen in various anti-herpes subunit vaccines owing to its involvement in binding the host cell receptors for host infectivity. However, most of these monomeric protein based candidates have shown low immunogenicity in animal models. To enhance the immunogenicity of gD, a fresh approach of fusing its ectodomain with the Fc domain(s) of IgM has been adopted to oligomerize the viral antigen and to exploite the immune-modulating potential of IgM Fc. Six vaccine constructs, generated by fusing three gD-ectodomain-length-variants with the Ig µ-chain domain 4 (µCH4) and µCH3-CH4 fragment, were cloned in Escherichia coli using pET28b( +) vector. The vaccine proteins were expressed in the form of inclusion bodies (IBs) and were in vitro refolded into protein oligomers of high stoichiometries of ~ 15–24, with 70–80% refolding yields. The conformations of gD and Fc components of the refolded oligomers were analyzed by ELISA and CD spectroscopy and were found to be native-like. The sizes and profiles of the size-distribution of oligomers were determined by dynamic light scattering (DLS). The candidate C2 (gD-μCH3-CH4), showing the most compact oligomer size and uniform distribution of its particles was chosen as the suitable candidate for mice immunization studies to assess the immunogenicity of the antigen gD. The C2 oligomer stimulated a strong anti-gD humoral response with an antibody titer of 102,400 and a strong, biased Th1 immune response in C57BL/6 mice, indicating its potential as a strong immunogen which may serve as an effective vaccine candidate.
Collapse
Affiliation(s)
- Vikas Kumar Singh
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, Rajasthan India 305817
| | - Sandeep Kumar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, Rajasthan India 305817
| | - Rajeev Kumar Dhaked
- Department of Zoology, Center for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan India 302004
| | - Abdul S. Ansari
- Department of Zoology, Center for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan India 302004
| | - Nirmal K. Lohiya
- Indian Society for the Study of Reproduction and Fertility, Department of Zoology, Center for Advanced Studies, University of Rajasthan, Jaipur, Rajasthan India 302004
| | - Suman Tapryal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, Rajasthan India 305817
| |
Collapse
|
20
|
Immune Response to Herpes Simplex Virus Infection and Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020302. [PMID: 32545507 PMCID: PMC7350219 DOI: 10.3390/vaccines8020302] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.
Collapse
|
21
|
Marchese V, Dal Zoppo S, Quaresima V, Rossi B, Matteelli A. Vaccines for STIs: Present and Future Directions. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
Schiffer JT, Gottlieb SL. Biologic interactions between HSV-2 and HIV-1 and possible implications for HSV vaccine development. Vaccine 2019; 37:7363-7371. [PMID: 28958807 PMCID: PMC5867191 DOI: 10.1016/j.vaccine.2017.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Development of a safe and effective vaccine against herpes simplex virus type 2 (HSV-2) has the potential to limit the global burden of HSV-2 infection and disease, including genital ulcer disease and neonatal herpes, and is a global sexual and reproductive health priority. Another important potential benefit of an HSV-2 vaccine would be to decrease HIV infections, as HSV-2 increases the risk of HIV-1 acquisition several-fold. Acute and chronic HSV-2 infection creates ulcerations and draws dendritic cells and activated CD4+ T cells into genital mucosa. These cells are targets for HIV entry and replication. Prophylactic HSV-2 vaccines (to prevent infection) and therapeutic vaccines (to modify or treat existing infections) are currently under development. By preventing or modifying infection, an effective HSV-2 vaccine could limit HSV-associated genital mucosal inflammation and thus HIV risk. However, a vaccine might have competing effects on HIV risk depending on its mechanism of action and cell populations generated in the genital mucosa. In this article, we review biologic interactions between HSV-2 and HIV-1, consider HSV-2 vaccine development in the context of HIV risk, and discuss implications and research needs for future HSV vaccine development.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division, Seattle, WA, United States; Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, United States; University of Washington, Department of Medicine, Seattle, WA, United States.
| | - Sami L Gottlieb
- World Health Organization, Department of Reproductive Health and Research, Geneva, Switzerland
| |
Collapse
|
23
|
A vaccine containing highly purified virus particles in adjuvant provides high level protection against genital infection and disease in guinea pigs challenged intravaginally with homologous and heterologous strains of herpes simplex virus type 2. Vaccine 2019; 38:79-89. [PMID: 31611098 DOI: 10.1016/j.vaccine.2019.09.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023]
Abstract
Infection with Herpes Simplex Viruses (HSVs) represents a significant health burden worldwide with HSV-1 and HSV-2 causing genital disease and HSV-2 contributing to human immunodeficiency virus acquisition. Despite great need, there is currently no licensed vaccine against HSV. In this report, we evaluated the protective efficacy of a vaccine containing highly purified, inactivated HSV-2 particles (with and without additional recombinant glycoprotein D) formulated with a monophosphoryl lipid A/Alhydrogel adjuvant in a guinea pig HSV genital model. The key results from 3 independent studies were: (1) vaccination consistently provided significant 3-3.5 Log10 reductions in vaginal HSV-2 titers on day 2 postchallenge; (2) following homologous or heterologous challenge with two U.S. isolates, all vaccine groups showed complete protection against lesion formation, significant 3 Log10 reductions in day 2 virus shedding, enhanced virus clearance, significant reductions in HSV-2 DNA within ganglia, and no detectable shedding (<2 PFU) or latent viral DNA in some immunized animals; (3) following challenge with a third heterologous strain, vaccination provided complete protection against primary and recurrent lesions, significant reductions in primary virus shedding, a 50% reduction in recurrent shedding days, and undetectable latent virus in the ganglia and spinal cords of most animals; and (4) adding glycoprotein D provided no enhanced protection relative to that elicited by the inactivated HSV-2 particles alone. Together, these data provide strong support for further development of this exceedingly protective and highly feasible vaccine candidate for human trials.
Collapse
|
24
|
Van Wagoner N, Fife K, Leone PA, Bernstein DI, Warren T, Panther L, Novak RM, Beigi R, Kriesel J, Tyring S, Koltun W, Lucksinger G, Morris A, Zhang B, McNeil LK, Tasker S, Hetherington S, Wald A. Effects of Different Doses of GEN-003, a Therapeutic Vaccine for Genital Herpes Simplex Virus-2, on Viral Shedding and Lesions: Results of a Randomized Placebo-Controlled Trial. J Infect Dis 2019; 218:1890-1899. [PMID: 29982727 DOI: 10.1093/infdis/jiy415] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/03/2018] [Indexed: 01/24/2023] Open
Abstract
Background GEN-003 is a candidate therapeutic vaccine for genital herpes simplex virus type 2 (HSV-2). We compared virologic and clinical impact of varying GEN-003 doses. Methods Adults with symptomatic HSV-2 received placebo or GEN-003 (30 or 60 µg antigen with 25, 50, or 75 µg adjuvant). Viral shedding and lesion rates before vaccination were compared with those measured immediately after vaccination, then at weeks 29-33 and 53-57 after last dose. Results Compared with baseline shedding rates, the rate ratios for viral shedding immediately after treatment were as follows: 0.82 (95% confidence interval [CI], 0.49-1.36), 30 µg antigen/25 µg adjuvant (30/25) dose; 0.64 (95% CI, 0.45-0.92), 30/50 dose; 0.63 (95% CI, 0.37-1.10), 30/75 dose; 0.56 (95% CI, 0.36-0.88), 60/25 dose; 0.58 (95% CI, 0.38-0.89), 60/50 dose; 0.45 (95% CI, 0.16-0.79), 60/75 dose; and 0.98 (95% CI, 0.76-1.26), placebo. Lesion rate reductions by GEN-003 ranged from 31% to 69%, but lesion rates also decreased among placebo recipients (62%). Reductions in shedding and lesion rate were durable for 12 months for the 60 µg antigen plus 50 or 75 µg adjuvant groups. No serious adverse events occurred with vaccination. Conclusions The most efficacious vaccine combinations for GEN-003 were the 60 µg/50 µg and 60 µg/75 µg doses.
Collapse
Affiliation(s)
| | - Kenneth Fife
- Department of Medicine, Indiana University, Indianapolis
| | - Peter A Leone
- Department of Medicine, University of North Carolina, Chapel Hill
| | - David I Bernstein
- Division of Infectious Diseases, Cincinnati Children's Hospital, Cincinnati
| | | | - Lori Panther
- Department of Internal Medicine, Beth Israel Deaconess Hospital, Boston, Massachusetts
| | - Richard M Novak
- Division of Infectious Diseases, University of Illinois, Chicago
| | - Richard Beigi
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh
| | - John Kriesel
- Department of Internal Medicine, University of Utah, Salt Lake City
| | - Stephen Tyring
- Center for Clinical Studies, University of Texas Health Science Center; Houston
| | - William Koltun
- Medical Center for Clinical Research, San Diego, California
| | | | | | - Bin Zhang
- Genocea Biosciences, Cambridge, Massachusetts
| | | | | | | | - Anna Wald
- Department of Medicine, University of Washington Fred Hutchinson Cancer Research Center, Seattle, Washington.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
25
|
Hasan M, Islam S, Chakraborty S, Mustafa AH, Azim KF, Joy ZF, Hossain MN, Foysal SH, Hasan MN. Contriving a chimeric polyvalent vaccine to prevent infections caused by herpes simplex virus (type-1 and type-2): an exploratory immunoinformatic approach. J Biomol Struct Dyn 2019; 38:2898-2915. [PMID: 31328668 DOI: 10.1080/07391102.2019.1647286] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) and 2 (HSV-2) cause a variety of infections including oral-facial infections, genital herpes, herpes keratitis, cutaneous infection and so on. To date, FDA-approved licensed HSV vaccine is not available yet. Hence, the study was conducted to identify and characterize an effective epitope based polyvalent vaccine against both types of Herpes Simplex Virus. The selected proteins were retrieved from ViralZone and assessed to design highly antigenic epitopes by binding analyses of the peptides with MHC class-I and class-II molecules, antigenicity screening, transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis and molecular docking approach. The final vaccine was constructed by the combination of top CTL, HTL and BCL epitopes from each protein along with suitable adjuvant and linkers. Physicochemical and secondary structure analysis, disulfide engineering, molecular dynamic simulation and codon adaptation were further employed to develop a unique multi-epitope peptide vaccine. Docking analysis of the refined vaccine structure with different MHC molecules and human immune TLR-2 receptor demonstrated higher interaction. Complexed structure of the modeled vaccine and TLR-2 showed minimal deformability at molecular level. Moreover, translational potency and microbial expression of the modeled vaccine was analyzed with pET28a(+) vector for E. coli strain K12 and the vaccine constructs had no similarity with entire human proteome. The study enabled design of a novel chimeric polyvalent vaccine to confer broad range immunity against both HSV serotypes. However, further wet lab based research using model animals are highly recommended to experimentally validate our findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shiful Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sourav Chakraborty
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Abu Hasnat Mustafa
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ziaul Faruque Joy
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh.,Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Md Nazmul Hossain
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Shakhawat Hossain Foysal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
26
|
Antibody responses to crucial functional epitopes as a novel approach to assess immunogenicity of vaccine adjuvants. Vaccine 2019; 37:3770-3778. [PMID: 31153687 DOI: 10.1016/j.vaccine.2019.05.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/08/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022]
Abstract
We are interested in developing a vaccine that prevents genital herpes. Adjuvants have a major impact on vaccine immunogenicity. We compared two adjuvants, an experimental Merck Sharp & Dohme lipid nanoparticle (LNP) adjuvant, LNP-2, with CpG oligonucleotide combined with alum for immunogenicity in mice when administered with herpes simplex virus type 2 (HSV-2) glycoproteins C, D and E (gC2, gD2, gE2). The immunogens are intended to produce neutralizing antibodies to gC2 and gD2, antibodies to gD2 and gE2 that block cell-to-cell spread, and antibodies to gE2 and gC2 that block immune evasion from antibody and complement, respectively. Overall, CpG/alum was better at producing serum and vaginal IgG binding antibodies, neutralizing antibodies, antibodies that block virus spread from cell-to-cell, and antibodies that block immune evasion domains on gC2. We used a novel high throughput biosensor assay to further assess differences in immunogenicity by mapping antibody responses to seven crucial epitopes on gD2 involved in virus entry or cell-to-cell spread. We found striking differences between CpG/alum and LNP-2. Mice immunized with gD2 CpG/alum produced higher titers of antibodies than LNP-2 to six of seven crucial epitopes and produced antibodies to more crucial epitopes than LNP-2. Measuring epitope-specific antibodies helped to define mechanisms by which CpG/alum outperformed LNP-2 and is a valuable technique to compare adjuvants.
Collapse
|
27
|
Therapeutic HSV-2 vaccine decreases recurrent virus shedding and recurrent genital herpes disease. Vaccine 2019; 37:3443-3450. [PMID: 31103365 DOI: 10.1016/j.vaccine.2019.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Genital herpes simplex virus (HSV) type 2 is a common persistent infection that frequently reactivates to cause recurrent lesions and recurrent viral shedding which is incompletely controlled by antiviral therapy. GEN-003 is a candidate therapeutic vaccine containing 2 HSV-2 proteins, gD2 and ICP4, and Matrix-M2 adjuvant (M2). METHODS HSV-2 seropositive persons with genital herpes were randomized into three dose cohorts of Gen-003 (60 µg antigen/50 µg M2, 60 µg/75 µg M2 or Placebo). Three intramuscular doses 21 days apart of GEN-003 or placebo were administered. Participants obtained genital area swabs twice-daily for HSV-2 detection and monitored genital lesions for 12 months. The rates of virus shedding and lesion rates before vaccination were compared to 3 defined periods after vaccination; Days 43-71, Month 6 and Month 12. RESULTS GEN-003 at a dose of 60 µg each antigen/50 µg M2 reduced HSV shedding immediately after dosing with a rate ratio of 0.58, compared to 0.75 for the GEN-003 60 µg/75 µg M2 and 1.06 for placebo. Lesion rates, recurrence rates, and duration of recurrences were also reduced. Reactogenicity was higher with the 75 µg M2 dose than the 50 µg M2 dose, specifically for pain, tenderness, malaise and fatigue. Antibody and cellular immune responses were stimulated by both doses and persisted to 12 months. CONCLUSIONS GEN-003 vaccine manufactured with a scalable process gave results similar to those observed in prior clinical trials. GEN-003 had an acceptable safety profile and stimulated both humoral and cellular immune responses. The 60 µg antigen/50 µg M2 provided the maximal effect on virologic and clinical measures and warrants further development. (Funded by Genocea; ClinicalTrials.gov number NCT02515175).
Collapse
|
28
|
Srivastava R, Roy S, Coulon PG, Vahed H, Prakash S, Dhanushkodi N, Kim GJ, Fouladi MA, Campo J, Teng AA, Liang X, Schaefer H, BenMohamed L. Therapeutic Mucosal Vaccination of Herpes Simplex Virus 2-Infected Guinea Pigs with Ribonucleotide Reductase 2 (RR2) Protein Boosts Antiviral Neutralizing Antibodies and Local Tissue-Resident CD4 + and CD8 + T RM Cells Associated with Protection against Recurrent Genital Herpes. J Virol 2019; 93:e02309-18. [PMID: 30787156 PMCID: PMC6475797 DOI: 10.1128/jvi.02309-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Reactivation of herpes simplex virus 2 (HSV-2) from latency causes viral shedding that develops into recurrent genital lesions. The immune mechanisms of protection against recurrent genital herpes remain to be fully elucidated. In this preclinical study, we investigated the protective therapeutic efficacy, in the guinea pig model of recurrent genital herpes, of subunit vaccine candidates that were based on eight recombinantly expressed HSV-2 envelope and tegument proteins. These viral protein antigens (Ags) were rationally selected for their ability to recall strong CD4+ and CD8+ T-cell responses from naturally "protected" asymptomatic individuals, who, despite being infected, never develop any recurrent herpetic disease. Out of the eight HSV-2 proteins, the envelope glycoprotein D (gD), the tegument protein VP22 (encoded by the UL49 gene), and ribonucleotide reductase subunit 2 protein (RR2; encoded by the UL40 gene) produced significant protection against recurrent genital herpes. The RR2 protein, delivered either intramuscularly or intravaginally with CpG and alum adjuvants, (i) boosted the highest neutralizing antibodies, which appear to cross-react with both gB and gD, and (ii) enhanced the numbers of functional gamma interferon (IFN-γ)-producing CRTAM+ CFSE+ CD4+ and CRTAM+ CFSE+ CD8+ TRM cells, which express low levels of PD-1 and TIM-3 exhaustion markers and were localized to healed sites of the vaginal mucocutaneous (VM) tissues. The strong B- and T-cell immunogenicity of the RR2 protein was associated with a significant decrease in virus shedding and a reduction in both the severity and frequency of recurrent genital herpes lesions. In vivo depletion of either CD4+ or CD8+ T cells significantly abrogated the protection. Taken together, these preclinical results provide new insights into the immune mechanisms of protection against recurrent genital herpes and promote the tegument RR2 protein as a viable candidate Ag to be incorporated in future genital herpes therapeutic mucosal vaccines.IMPORTANCE Recurrent genital herpes is one of the most common sexually transmitted diseases, with a global prevalence of HSV-2 infection predicted to be over 536 million worldwide. Despite the availability of many intervention strategies, such as sexual behavior education, barrier methods, and the costly antiviral drug treatments, eliminating or at least reducing recurrent genital herpes remains a challenge. Currently, no FDA-approved therapeutic vaccines are available. In this preclinical study, we investigated the immunogenicity and protective efficacy, in the guinea pig model of recurrent genital herpes, of subunit vaccine candidates that were based on eight recombinantly expressed herpes envelope and tegument proteins. We discovered that similar to the dl5-29 vaccine, based on a replication-defective HSV-2 mutant virus, which has been recently tested in clinical trials, the RR2 protein-based subunit vaccine elicited a significant reduction in virus shedding and a decrease in both the severity and frequency of recurrent genital herpes sores. This protection correlated with an increase in numbers of functional tissue-resident IFN-γ+ CRTAM+ CFSE+ CD4+ and IFN-γ+ CRTAM+ CFSE+ CD8+ TRM cells that infiltrate healed sites of the vaginal tissues. Our study sheds new light on the role of TRM cells in protection against recurrent genital herpes and promotes the RR2-based subunit therapeutic vaccine to be tested in the clinic.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Nisha Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Grace J Kim
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Mona A Fouladi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Joe Campo
- Antigen Discovery Inc., Irvine, California, USA
| | - Andy A Teng
- Antigen Discovery Inc., Irvine, California, USA
| | | | - Hubert Schaefer
- Intracellular Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
29
|
Abstract
Infection with herpes simplex virus (HSV) types 1 and 2 is ubiquitous in the human population. Most commonly, virus replication is limited to the epithelia and establishes latency in enervating sensory neurons, reactivating periodically to produce localized recurrent lesions. However, these viruses can also cause severe disease such as recurrent keratitis leading potentially to blindness, as well as encephalitis, and systemic disease in neonates and immunocompromised patients. Although antiviral therapy has allowed continual and substantial improvement in the management of both primary and recurrent infections, resistance to currently available drugs and long-term toxicity pose a current and future threat that should be addressed through the development of new antiviral compounds directed against new targets. The development of several promising HSV vaccines has been terminated recently because of modest or controversial therapeutic effects in humans. Nevertheless, several exciting vaccine candidates remain in the pipeline and are effective in animal models; these must also be tested in humans for sufficient therapeutic effects to warrant continued development. Approaches using compounds that modulate the chromatin state of the viral genome to suppress infection and reactivation or induce enhanced antiviral immunity have potential. In addition, technologies such as CRISPR/Cas9 have the potential to edit latent viral DNA in sensory neurons, potentially curing the neuron and patient of latent infection. It is hoped that development on all three fronts—antivirals, vaccines, and gene editing—will lead to substantially less HSV morbidity in the future.
Collapse
Affiliation(s)
- Richard Whitley
- Department of Pediatrics, Microbiology, and Medicine, University of Alabama at Birmingham Children's Hospital, Birmingham, AL, 35233, USA
| | - Joel Baines
- Department of Pathobiology, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
30
|
Immunization by Replication-Competent Controlled Herpesvirus Vectors. J Virol 2018; 92:JVI.00616-18. [PMID: 29899091 PMCID: PMC6069180 DOI: 10.1128/jvi.00616-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022] Open
Abstract
We hypothesized that vigorous replication of a pathogen may be critical for eliciting the most potent and balanced immune response against it. Hence, attenuation/inactivation (as in conventional vaccines) should be avoided. Instead, the necessary safety should be provided by placing replication of the pathogen under stringent control and by activating time-limited replication of the pathogen strictly in an administration region in which pathology cannot develop. Immunization will then occur in the context of highly efficient pathogen replication and uncompromised safety. We found that localized activation in mice of efficient but limited replication of a replication-competent controlled herpesvirus vector resulted in a greatly enhanced immune response to the virus or an expressed heterologous antigen. This finding supports the above-mentioned hypothesis and suggests that the vectors may be promising novel agents worth exploring for the prevention/mitigation of infectious diseases for which efficient vaccination is lacking, in particular in immunocompromised patients. Replication-competent controlled virus vectors were derived from the virulent herpes simplex virus 1 (HSV-1) wild-type strain 17syn+ by placing one or two replication-essential genes under the stringent control of a gene switch that is coactivated by heat and an antiprogestin. Upon activation of the gene switch, the vectors replicate in infected cells with an efficacy that approaches that of the wild-type virus from which they were derived. Essentially no replication occurs in the absence of activation. When administered to mice, localized application of a transient heat treatment in the presence of systemic antiprogestin results in efficient but limited virus replication at the site of administration. The immunogenicity of these viral vectors was tested in a mouse footpad lethal challenge model. Unactivated viral vectors—which may be regarded as equivalents of inactivated vaccines—induced detectable protection against lethality caused by wild-type virus challenge. Single activation of the viral vectors at the site of administration (rear footpads) greatly enhanced protective immune responses, and a second immunization resulted in complete protection. Once activated, vectors also induced far better neutralizing antibody and HSV-1-specific cellular immune responses than unactivated vectors. To find out whether the immunogenicity of a heterologous antigen was also enhanced in the context of efficient transient vector replication, a virus vector constitutively expressing an equine influenza virus hemagglutinin was constructed. Immunization of mice with this recombinant induced detectable antibody-mediated neutralization of equine influenza virus, as well as a hemagglutinin-specific cellular immune response. Single activation of viral replication resulted in a severalfold enhancement of these immune responses. IMPORTANCE We hypothesized that vigorous replication of a pathogen may be critical for eliciting the most potent and balanced immune response against it. Hence, attenuation/inactivation (as in conventional vaccines) should be avoided. Instead, the necessary safety should be provided by placing replication of the pathogen under stringent control and by activating time-limited replication of the pathogen strictly in an administration region in which pathology cannot develop. Immunization will then occur in the context of highly efficient pathogen replication and uncompromised safety. We found that localized activation in mice of efficient but limited replication of a replication-competent controlled herpesvirus vector resulted in a greatly enhanced immune response to the virus or an expressed heterologous antigen. This finding supports the above-mentioned hypothesis and suggests that the vectors may be promising novel agents worth exploring for the prevention/mitigation of infectious diseases for which efficient vaccination is lacking, in particular in immunocompromised patients.
Collapse
|
31
|
KUANG L, HUANG EH, HE QH, CHENG SW, LIU XD. Long Dan Xie Gan Formula Granule Promotes Pro-Inflammatory Cytokine Expression in Female Guinea Pigs with Recurrent Genital Herpes. DIGITAL CHINESE MEDICINE 2018. [DOI: 10.1016/s2589-3777(19)30021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Prophylactic herpes simplex virus type 2 vaccine adjuvanted with a universal CD4 T cell helper peptide induces long-term protective immunity against lethal challenge in mice. Int Immunopharmacol 2018; 61:100-108. [PMID: 29857239 DOI: 10.1016/j.intimp.2018.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/12/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
Abstract
Induction of robust and long-term immune responses at the portal of entry remains a big challenge for HSV-2 vaccine development. The adoption of a CD4 T cell helper peptide in the vaccine is thought to be beneficial for the enhancement of immune responses, however, its effect on HSV-2 vaccines has not yet been studied. In this study, we designed a DNA vaccine (gD-TpD) simultaneously expressing HSV-2 gD ectodomain and a universal CD4 T cell helper peptide (TpD), and tested its efficacy on a murine model. Mice were immunized 3 times with gD-TpD or control DNA formulations, and then were rested until Day 150 when they were vaginally challenged with lethal doses of HSV-2. Our data showed that gD-TpD significantly increased gD-specific IgG and IgA in both sera and vaginal washes. Furthermore, the increased antibody responses showed enhanced neutralization activity in vitro. In addition, gD-TpD induced balanced Th1/2 cellular responses and CD8+ T cell-dependent CTL activity. Although immune responses dropped over time after the final immunization, robust and rapid antibody and T cell responses were induced upon virus challenge in gD-TpD group. Moreover, gD-TpD provided full protection against lethal viral challenge in immunized mice. Together, our findings indicate that the inclusion of the CD4 T cell helper peptide TpD in HSV-2 gD subunit vaccine could induce long-term protective immunity, providing information for a rational design of vaccines against HSV-2 or even other viruses.
Collapse
|
33
|
Hanna E, Dany M, Abbas O, Kreidieh F, Kurban M. Updates on the use of vaccines in dermatological conditions. Indian J Dermatol Venereol Leprol 2018; 84:388-402. [PMID: 29794355 DOI: 10.4103/ijdvl.ijdvl_1036_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Numerous vaccines are being actively developed for use in dermatologic diseases. Advances in the fields of immunotherapy, genetics and molecular medicine have allowed for the design of prophylactic and therapeutic vaccines with immense potential in managing infections and malignancies of the skin. This review addresses the different vaccines available for use in dermatological diseases and those under development for future potential use. The major limitation of our review is its complete reliance on published data. Our review is strictly limited to the availability of published research online through available databases. We do not cite any of the authors' previous publications nor have we conducted previous original research studies regarding vaccines in dermatology. Strength would have been added to our paper had we conducted original studies by our research team regarding the candidate vaccines delineated in the paper.
Collapse
Affiliation(s)
- Edith Hanna
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammed Dany
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Firas Kreidieh
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Department of Dermatology, Columbia University, New York, USA
| |
Collapse
|
34
|
Fan S, Xu X, Liao Y, Wang Y, Wang J, Feng M, Wang L, Zhang Y, He Z, Yang F, Fraser NW, Li Q. Attenuated Phenotype and Immunogenic Characteristics of a Mutated Herpes Simplex Virus 1 Strain in the Rhesus Macaque. Viruses 2018; 10:E234. [PMID: 29724057 PMCID: PMC5977227 DOI: 10.3390/v10050234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1(HSV-1) presents a conundrum to public health worldwide because of its specific pathogenicity and clinical features. Some experimental vaccines, such as the recombinant viral glycoproteins, exhibit the viral immunogenicity of a host-specific immune response, but none of these has achieved a valid epidemiological protective efficacy in the human population. In the present study, we constructed an attenuated HSV-1 strain M3 through the partial deletion of UL7, UL41, and the latency-associated transcript (LAT) using the CRISPR/Cas9 system. The mutant strain exhibited lowered infectivity and virulence in macaques. Neutralization testing and ELISpot detection of the specific T-cell responses confirmed the specific immunity induced by M3 immunization and this immunity defended against the challenges of the wild-type strain and restricted the entry of the wild-type strain into the trigeminal ganglion. These results in rhesus macaques demonstrated the potential of the attenuated vaccine for the prevention of HSV-1 in humans.
Collapse
Affiliation(s)
- Shengtao Fan
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Xingli Xu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Yongrong Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Jianbin Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Min Feng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Nigel W Fraser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
35
|
Hook LM, Cairns TM, Awasthi S, Brooks BD, Ditto NT, Eisenberg RJ, Cohen GH, Friedman HM. Vaccine-induced antibodies to herpes simplex virus glycoprotein D epitopes involved in virus entry and cell-to-cell spread correlate with protection against genital disease in guinea pigs. PLoS Pathog 2018; 14:e1007095. [PMID: 29791513 PMCID: PMC5988323 DOI: 10.1371/journal.ppat.1007095] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/05/2018] [Accepted: 05/14/2018] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) glycoprotein D (gD2) subunit antigen is included in many preclinical candidate vaccines. The rationale for including gD2 is to produce antibodies that block crucial gD2 epitopes involved in virus entry and cell-to-cell spread. HSV-2 gD2 was the only antigen in the Herpevac Trial for Women that protected against HSV-1 genital infection but not HSV-2. In that trial, a correlation was detected between gD2 ELISA titers and protection against HSV-1, supporting the importance of antibodies. A possible explanation for the lack of protection against HSV-2 was that HSV-2 neutralization titers were low, four-fold lower than to HSV-1. Here, we evaluated neutralization titers and epitope-specific antibody responses to crucial gD2 epitopes involved in virus entry and cell-to-cell spread as correlates of immune protection against genital lesions in immunized guinea pigs. We detected a strong correlation between neutralizing antibodies and protection against genital disease. We used a high throughput biosensor competition assay to measure epitope-specific responses to seven crucial gD2 linear and conformational epitopes involved in virus entry and spread. Some animals produced antibodies to most crucial epitopes while others produced antibodies to few. The number of epitopes recognized by guinea pig immune serum correlated with protection against genital lesions. We confirmed the importance of antibodies to each crucial epitope using monoclonal antibody passive transfer that improved survival and reduced genital disease in mice after HSV-2 genital challenge. We re-evaluated our prior study of epitope-specific antibody responses in women in the Herpevac Trial. Humans produced antibodies that blocked significantly fewer crucial gD2 epitopes than guinea pigs, and antibody responses in humans to some linear epitopes were virtually absent. Neutralizing antibody titers and epitope-specific antibody responses are important immune parameters to evaluate in future Phase I/II prophylactic human vaccine trials that contain gD2 antigen.
Collapse
Affiliation(s)
- Lauren M. Hook
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tina M. Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Noah T. Ditto
- Carterra, Inc., Salt Lake City, Utah, United States of America
| | - Roselyn J. Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
36
|
Diaz F, Gregory S, Nakashima H, Viapiano MS, Knipe DM. Intramuscular delivery of replication-defective herpes simplex virus gives antigen expression in muscle syncytia and improved protection against pathogenic HSV-2 strains. Virology 2018; 513:129-135. [PMID: 29069622 PMCID: PMC5715658 DOI: 10.1016/j.virol.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/28/2022]
Abstract
Herpes simplex virus 2 (HSV-2) is the leading cause of genital herpes and increases the risk of HIV infection, but there is no effective vaccine. A replication-defective HSV-2 mutant virus, dl5-29, is effective in animal models and has been in a phase I trial. Previous studies have shown that dl5-29 gives higher antibody responses and better protection when inoculated intramuscularly (IM) as compared with subcutaneously (SC). However, the basis for this effect has not been defined. We confirmed that IM inoculation of dl5-29 is more immunogenic and provides better protection than SC inoculation. IM inoculation of HSV-2 strains produced higher levels of a luciferase transgene than SC inoculation, as measured by intravital bioluminescence imaging. Intramuscular immunization also showed better protection against infection with a highly pathogenic African HSV-2, demonstrating that this single vaccine can be efficacious against HSV-2 strains from different geographic regions.
Collapse
Affiliation(s)
- Fernando Diaz
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Sean Gregory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA,United States
| | - Mariano S Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA,United States
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
37
|
Gottlieb SL, Giersing BK, Hickling J, Jones R, Deal C, Kaslow DC. Meeting report: Initial World Health Organization consultation on herpes simplex virus (HSV) vaccine preferred product characteristics, March 2017. Vaccine 2017; 37:7408-7418. [PMID: 29224963 DOI: 10.1016/j.vaccine.2017.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 12/18/2022]
Abstract
The development of vaccines against herpes simplex virus (HSV) is an important global goal for sexual and reproductive health. A key priority to advance development of HSV vaccines is the definition of preferred product characteristics (PPCs), which provide strategic guidance on World Health Organization (WHO) preferences for new vaccines, specifically from a low- and middle-income country (LMIC) perspective. To start the PPC process for HSV vaccines, the WHO convened a global stakeholder consultation in March 2017, to define the priority public health needs that should be addressed by HSV vaccines and discuss the key considerations for HSV vaccine PPCs, particularly for LMICs. Meeting participants outlined an initial set of overarching public health goals for HSV vaccines in LMICs, which are: to reduce the acquisition of HIV associated with HSV-2 infection in high HIV-prevalence populations and to reduce the burden of HSV-associated disease, including mortality and morbidity due to neonatal herpes and impacts on sexual and reproductive health. Participants also considered the role of prophylactic versus therapeutic vaccines, whether both HSV-2 and HSV-1 should be targeted, important target populations, and infection and disease endpoints for clinical trials. This article summarizes the main discussions from the consultation.
Collapse
Affiliation(s)
| | | | | | | | - Carolyn Deal
- National Institutes of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | | |
Collapse
|
38
|
Kuang L, Deng Y, Liu X, Zou Z, Mi L. Differential expression of mRNA and miRNA in guinea pigs following infection with HSV2v. Exp Ther Med 2017; 14:2577-2583. [PMID: 28962197 PMCID: PMC5609232 DOI: 10.3892/etm.2017.4815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 05/19/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are 22-nucleotide single-stranded RNAs which regulate gene expression by targeting 3′ untranslated regions. Previous studies have suggested that miRNAs may be used as markers for investigating the molecular regulation of gene expression. In the present study, miRNA and mRNA expression profiles were investigated using a massively parallel next generation sequencing technique to compare herpes simplex virus (HSV)2-infected (n=3) and healthy (n=3) epithelial tissues from guinea pigs. Total RNA was isolated and RNA sequencing was performed using a HiSeq 2000 sequencing system. Differential expression of miRNA and mRNA was analyzed using two-tailed t-tests. A negative correlation was detected between the miRNAs and their predicted target genes. Following infection with HSV2, 205 and 159 miRNAs were demonstrated to be upregulated and downregulated, respectively. These differentially expressed miRNAs were associated with cellular and metabolic processes, biological regulation, response to stimuli and cellular components of the immune system, as determined by functional gene ontology analysis. Following HSV2 infection, 6 upregulated miRNAs including miR-592, miR-1245b-5p, miR-150, miR-342-5p, miR-1245b-3p and miR-124 were demonstrated to participate in the toll-like receptor (TLR) pathway by targeting related genes. These results suggested that the downregulated genes were associated with the TLR pathway after infection with HSV2. The results of reverse transcription-quantitative polymerase chain reaction analysis were consistent with RNA sequencing, indicating that the increased expression of these miRNAs downregulated the TLR pathway-associated genes, which may mediate the progression of HSV2-induced genital herpes.
Collapse
Affiliation(s)
- Lin Kuang
- Key Laboratory of Colleges and Universities in Hunan Province for Cytobiology and Molecular Biotechnology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Yihui Deng
- Key Laboratory of Colleges and Universities in Hunan Province for Cytobiology and Molecular Biotechnology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xiaodan Liu
- Key Laboratory of Colleges and Universities in Hunan Province for Cytobiology and Molecular Biotechnology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Zhixiang Zou
- Department of Obstetrics and Gynecology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Lan Mi
- Dermatological Department, The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
39
|
Awasthi S, Hook LM, Shaw CE, Friedman HM. A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model. Hum Vaccin Immunother 2017; 13:2785-2793. [PMID: 28481687 PMCID: PMC5718817 DOI: 10.1080/21645515.2017.1323604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An estimated 417 million people worldwide ages 15 to 49 are infected with herpes simplex virus type 2 (HSV-2), the most common cause of genital ulcer disease. Some individuals experience frequent recurrences of genital lesions, while others only have subclinical infection, yet all risk transmitting infection to their intimate partners. A vaccine was developed that prevents shingles, which is a recurrent infection caused by varicella-zoster virus (VZV), a closely related member of the Herpesviridae family. The success of the VZV vaccine has stimulated renewed interest in a therapeutic vaccine for genital herpes. We have been evaluating a trivalent subunit antigen vaccine for prevention of genital herpes. Here, we assess the trivalent vaccine as immunotherapy in guinea pigs that were previously infected intravaginally with HSV-2. The trivalent vaccine contains HSV-2 glycoproteins C, D, and E (gC2, gD2, gE2) subunit antigens administered with CpG and alum as adjuvants. We previously demonstrated that antibodies to gD2 neutralize the virus while antibodies to gC2 and gE2 block their immune evasion activities, including evading complement attack and inhibiting activities mediated by the IgG Fc domain, respectively. Here, we demonstrate that the trivalent vaccine significantly boosts ELISA titers and neutralizing antibody titers. The trivalent vaccine reduces the frequency of recurrent genital lesions and vaginal shedding of HSV-2 DNA by approximately 50% and almost totally eliminates vaginal shedding of replication-competent virus, suggesting that the trivalent vaccine is a worthy candidate for immunotherapy of genital herpes.
Collapse
Affiliation(s)
- Sita Awasthi
- a Infectious Disease Division, Department of Medicine , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Lauren M Hook
- a Infectious Disease Division, Department of Medicine , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Carolyn E Shaw
- a Infectious Disease Division, Department of Medicine , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Harvey M Friedman
- a Infectious Disease Division, Department of Medicine , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
40
|
Kuang L, Deng Y, Liu X, Zou Z, Mi L. Effects of a traditional Chinese medicine, Longdanxiegan formula granule, on Toll-like receptor pathway in female guinea pigs with recurrent genital herpes. Taiwan J Obstet Gynecol 2017; 55:220-8. [PMID: 27125405 DOI: 10.1016/j.tjog.2015.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2015] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the effects of Longdanxiegan formula granule (LDXGFG), a Chinese traditional medicine on Toll-like receptor (TLR) pathway in recurrent genital herpes. MATERIALS AND METHODS An experimental recurrent genital herpes model was constructed using herpes guinea pig model. The effect of LDXGFG on expression levels of TLR pathway genes were detected using real-time polymerase chain reaction. Furthermore, the dendritic cells and Langerhans cells were isolated and the TLR pathway genes of these cells were assayed after LDXGFG treatment. RESULTS The result suggested two different expression patterns of TLR pathway genes in genital herpes and recurrent genital herpes, including upregulated genes and downregulated genes. TLR1, TLR4, TLR6, TLR7, TLR8, TLR9, and TLR10 showed a significant decrease while, TLR2, TLR3, and TLR5 increased in genital herpes and recurrent genital herpes guinea pigs. Meanwhile, the downregulated genes in genital herpes and recurrent genital herpes were stimulated by LDXGFG. By contrast, the upregulated genes decreased significantly after LDXGFG treatment. In both dendritic cells and Langerhans cells, the TLR pathway genes exhibited same pattern: the LDXGFG corrected the abnormal expression of TLR pathway genes. CONCLUSION The present results suggest that LDXGFG is an alternative, inexpensive, and lasting-effect medicine for herpes simplex virus 2 infection.
Collapse
Affiliation(s)
- Lin Kuang
- Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Yihui Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiaodan Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhixiang Zou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lan Mi
- The Second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
41
|
Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir. J Virol 2017; 91:JVI.02257-16. [PMID: 28228587 DOI: 10.1128/jvi.02257-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses.IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection.
Collapse
|
42
|
Bernstein DI, Wald A, Warren T, Fife K, Tyring S, Lee P, Van Wagoner N, Magaret A, Flechtner JB, Tasker S, Chan J, Morris A, Hetherington S. Therapeutic Vaccine for Genital Herpes Simplex Virus-2 Infection: Findings From a Randomized Trial. J Infect Dis 2017; 215:856-864. [PMID: 28329211 PMCID: PMC7206854 DOI: 10.1093/infdis/jix004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/19/2017] [Indexed: 11/29/2022] Open
Abstract
Background Genital herpes simplex virus type 2 (HSV-2) infection causes recurrent lesions and frequent viral shedding. GEN-003 is a candidate therapeutic vaccine containing HSV-2 gD2∆TMR and ICP4.2, and Matrix-M2 adjuvant. Methods Persons with genital herpes were randomized into 3 dose cohorts to receive 3 intramuscular doses 21 days apart of 10 µg, 30 µg, or 100 µg of GEN-003, antigens without adjuvant, or placebo. Participants obtained genital swab specimens twice daily for HSV-2 detection and monitored genital lesions for 28-day periods at baseline and at intervals after the last dose. Results One hundred and thirty-four persons received all 3 doses. Reactogenicity was associated with adjuvant but not with antigen dose or dose number. No serious adverse events were attributed to GEN-003. Compared with baseline, genital HSV-2 shedding rates immediately after dosing were reduced with GEN-003 (from 13.4% to 6.4% for 30 μg [P < .001] and from 15.0% to 10.3% for 100 µg [P < .001]). Lesion rates were also significantly (P < .01) reduced immediately following immunization with 30 µg or 100 µg of GEN-003. GEN-003 elicited increases in antigen binding, virus neutralizing antibody, and T-cell responses. Conclusions GEN-003 had an acceptable safety profile and stimulated humoral and cellular immune responses. GEN-003 at doses of 30 µg and 100 µg reduced genital HSV shedding and lesion rates. Clinical Trials Registration NCT01667341 (funded by Genocea).
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Ohio, USA
| | - Anna Wald
- Vaccine and Fred Hutchinson Cancer Research Center, University of Washington, Seattle, USA
| | | | - Kenneth Fife
- Department of Medicine, Indiana University, Indianapolis, USA
| | - Stephen Tyring
- University of Texas Health Science Center and Center for Clinical Studies, Houston, Texas, USA
| | - Patricia Lee
- University of Texas Health Science Center and Center for Clinical Studies, Houston, Texas, USA
| | - Nick Van Wagoner
- Division of Infectious Diseases, University of Alabama at Birmingham, USA
| | - Amalia Magaret
- Vaccine and Fred Hutchinson Cancer Research Center, University of Washington, Seattle, USA
| | | | - Sybil Tasker
- Genocea Biosciences, Cambridge, Massachusetts, USA
| | - Jason Chan
- Genocea Biosciences, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
43
|
Shah RR, Hassett KJ, Brito LA. Overview of Vaccine Adjuvants: Introduction, History, and Current Status. Methods Mol Biol 2017; 1494:1-13. [PMID: 27718182 DOI: 10.1007/978-1-4939-6445-1_1] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Adjuvants are included in sub-unit or recombinant vaccines to enhance the potency of poorly immunogenic antigens. Adjuvant discovery is as complex as it is a multidiscplinary intersection of formulation science, immunology, toxicology, and biology. Adjuvants such as alum, which have been in use for the past 90 years, have illustrated that adjuvant research is a methodical process. As science advances, new analytical tools are developed which allows us to delve deeper into the various mechanisms that generates a potent immune response. Additionally, these new techniques help the field learn about our existing vaccines and what makes them safe, and effective, allowing us to leverage that in the next generation of vaccines. Our goal in this chapter is to define the concept, need, and mechanism of adjuvants in the vaccine field while describing its history, present use, and future prospects. More details on individual adjuvants and their formulation, development, mechanism, and use will be covered in depth in the next chapters.
Collapse
Affiliation(s)
- Ruchi R Shah
- Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | | | - Luis A Brito
- Moderna Therapeutics, 320 Bent Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
44
|
Persson J, Zhang Y, Olafsdottir TA, Thörn K, Cairns TM, Wegmann F, Sattentau QJ, Eisenberg RJ, Cohen GH, Harandi AM. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs. Front Immunol 2016; 7:640. [PMID: 28082979 PMCID: PMC5183738 DOI: 10.3389/fimmu.2016.00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes.
Collapse
Affiliation(s)
- Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Yuan Zhang
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Thorunn A Olafsdottir
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Karolina Thörn
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Frank Wegmann
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | | | - Roselyn J Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
45
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Distribution and effects of amino acid changes in drug-resistant α and β herpesviruses DNA polymerase. Nucleic Acids Res 2016; 44:9530-9554. [PMID: 27694307 PMCID: PMC5175367 DOI: 10.1093/nar/gkw875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Emergence of drug-resistance to all FDA-approved antiherpesvirus agents is an increasing concern in immunocompromised patients. Herpesvirus DNA polymerase (DNApol) is currently the target of nucleos(t)ide analogue-based therapy. Mutations in DNApol that confer resistance arose in immunocompromised patients infected with herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), and to lesser extent in herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV) and human herpesvirus 6 (HHV-6). In this review, we present distinct drug-resistant mutational profiles of herpesvirus DNApol. The impact of specific DNApol amino acid changes on drug-resistance is discussed. The pattern of genetic variability related to drug-resistance differs among the herpesviruses. Two mutational profiles appeared: one favoring amino acid changes in the Palm and Finger domains of DNApol (in α-herpesviruses HSV-1, HSV-2 and VZV), and another with mutations preferentially in the 3′-5′ exonuclease domain (in β-herpesvirus HCMV and HHV-6). The mutational profile was also related to the class of compound to which drug-resistance emerged.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - S Gillemot
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - G Andrei
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| |
Collapse
|
46
|
Flechtner JB, Long D, Larson S, Clemens V, Baccari A, Kien L, Chan J, Skoberne M, Brudner M, Hetherington S. Immune responses elicited by the GEN-003 candidate HSV-2 therapeutic vaccine in a randomized controlled dose-ranging phase 1/2a trial. Vaccine 2016; 34:5314-5320. [PMID: 27642130 DOI: 10.1016/j.vaccine.2016.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE GEN-003 is a candidate therapeutic HSV-2 vaccine containing a fragment of infected cell protein 4 (ICP4.2), a deletion mutant of glycoprotein D2 (gD2ΔTMR), and Matrix-M2 adjuvant. In a dose-ranging phase 1/2a clinical trial, immunization with GEN-003 reduced viral shedding and the percentage of reported herpetic lesion days. Here we examine the immune responses in the same trial, to characterize vaccine-related changes in antibody and cell-mediated immunity. METHODS Participants with genital HSV-2 infection were randomized to 1 of 3 doses of GEN-003, antigens without adjuvant, or placebo. Subjects received 3 intramuscular doses, three weeks apart, and were monitored for viral shedding, lesions and immunogenicity. Antibody titers were measured by ELISA and neutralization assay in serum samples collected at baseline and 3weeks post each dose. T cell responses were assessed pre-immunization and 1week post each dose by IFN-γ ELISpot and intracellular cytokine staining. Blood was also collected at 6 and 12months to monitor durability of immune responses. RESULTS Antibody and T cell responses increased with vaccination and were potentiated by adjuvant. Among the doses tested, the rank order of reduction in viral shedding follows the ranking of fold change from baseline in T cell responses. Some immune responses persisted up to 12months. CONCLUSION All measures of immunity are increased by vaccination with GEN-003; however, a correlate of protection is yet to be defined.
Collapse
Affiliation(s)
| | | | | | | | - Amy Baccari
- Genocea Biosciences, Inc., Cambridge, MA, USA
| | - Lena Kien
- Genocea Biosciences, Inc., Cambridge, MA, USA
| | - Jason Chan
- Genocea Biosciences, Inc., Cambridge, MA, USA
| | | | | | | |
Collapse
|
47
|
Abstract
As one of the most common sexually transmitted diseases, genital herpes is a global medical problem with significant physical and psychological morbidity. Genital herpes is caused by herpes simplex virus type 1 or type 2 and can manifest as primary and/or recurrent infection. This manuscript provides an overview about the fundamental knowledge on the virus, its epidemiology, and infection. Furthermore, the current possibilities of antiviral therapeutic interventions and laboratory diagnosis of genital herpes as well as the present situation and perspectives for the treatment by novel antivirals and prevention of disease by vaccination are presented. Since the medical management of patients with genital herpes simplex virus infection is often unsatisfactory, this review aims at all physicians and health professionals who are involved in the care of patients with genital herpes. The information provided would help to improve the counseling of affected patients and to optimize the diagnosis, treatment, and prevention of this particular disease.
Collapse
Affiliation(s)
- Andreas Sauerbrei
- Institute of Virology and Antiviral Therapy, German Consulting Laboratory for Herpes Simplex Virus and Varicella-Zoster Virus, Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
| |
Collapse
|
48
|
Bernstein DI, Bravo FJ, Pullum DA, Shen H, Wang M, Rahman A, Glazer RI, Cardin RD. Efficacy of N-methanocarbathymidine against genital herpes simplex virus type 2 shedding and infection in guinea pigs. Antivir Chem Chemother 2016; 24:19-27. [PMID: 26149263 DOI: 10.1177/2040206614566581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Current approved nucleoside therapies for genital herpes simplex virus (HSV) infections are effective but improved therapies are needed for treatment of both acute and recurrent diseases. METHODS The effects of N-methanocarbathymidine were evaluated and compared to acyclovir using guinea pig models of acute and recurrent infection. For acute disease following intravaginal inoculation of 10(6 )pfu HSV-2 (MS strain), animals were treated intraperitoneally beginning 24 h post-infection, and the effects on disease severity, vaginal virus replication, subsequent recurrences, and latent virus loads were evaluated. For evaluation of recurrent infection, animals were treated for 21 days beginning 14 days after infection and disease recurrence and recurrent shedding were evaluated. RESULTS Treatment of the acute disease with N-methanocarbathymidine significantly reduced the severity of acute disease and decreased acute vaginal virus shedding more effectively than acyclovir. Significantly, none of the animals developed visible disease in the high-dose N-methanocarbathymidine group and this was the only group in which the number of days with recurrent virus shedding was reduced. Treatment of recurrent disease was equivalent to acyclovir when acyclovir was continuously supplied in the drinking water. CONCLUSION N-methanocarbathymidine was effective as therapy for acute and recurrent genital HSV-2 disease in the guinea pig models.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Fernando J Bravo
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Derek A Pullum
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Hui Shen
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Mei Wang
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Rhonda D Cardin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
49
|
Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine 2016; 34:1504-1514. [PMID: 26878294 DOI: 10.1016/j.vaccine.2016.02.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/14/2023]
Abstract
Th17 cells are characterized as preferential producer of interleukins including IL-17A, IL-17F, IL-21 and IL-22. Corresponding receptors of these cytokines are expressed on number of cell types found in the mucosa, including epithelial cells and fibroblasts which constitute the prime targets of the Th17-associated cytokines. Binding of IL-17 family members to their corresponding receptors lead to modulation of antimicrobial functions of target cells including alveolar epithelial cells. Stimulated alveolar epithelial cells produce antimicrobial peptides and are involved in granulepoesis, neutrophil recruitment and tissue repair. Mucosal immunity mediated by Th17 cells is protective against numerous pulmonary pathogens including extracellular bacterial and fungal pathogens. This review focuses on the protective role of Th17 cells during pulmonary infection, highlighting subset differentiation, effector cytokines production, followed by study of the binding of these cytokines to their corresponding receptors, the subsequent signaling pathway they engender and their effector role in host defense.
Collapse
Affiliation(s)
- Jitendra Singh Rathore
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA; Gautam Buddha University, School of Biotechnology, Greater Noida, Yamuna Expressway, Uttar Pradesh, India.
| | - Yan Wang
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA
| |
Collapse
|
50
|
Johnston C, Gottlieb SL, Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine 2016; 34:2948-2952. [PMID: 26973067 DOI: 10.1016/j.vaccine.2015.12.076] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/23/2015] [Indexed: 11/27/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Anna Wald
- Department of Medicine, Seattle, WA, USA; Laboratory Medicine, University of Washington, Seattle, WA, USA; Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|