1
|
Gianopulos KA, Makio AO, Pritchard SM, Cunha CW, Hull MA, Nicola AV. Herpes Simplex Virus 1 Glycoprotein B from a Hyperfusogenic Virus Mediates Enhanced Cell-Cell Fusion. Viruses 2024; 16:251. [PMID: 38400027 PMCID: PMC10892784 DOI: 10.3390/v16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4 °C and also entered cells more efficiently at 15 °C, relative to wild type HSV-1 strain KOS virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type KOS. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type KOS gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the KOS gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.
Collapse
Affiliation(s)
- Katrina A. Gianopulos
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
- Protein Biotechnology Graduate Training Program, Washington State University, Pullman, WA 99164, USA
| | - Albina O. Makio
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
- Protein Biotechnology Graduate Training Program, Washington State University, Pullman, WA 99164, USA
| | - Suzanne M. Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
| | - Cristina W. Cunha
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA 99164, USA
| | - McKenna A. Hull
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
| | - Anthony V. Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (K.A.G.); (A.O.M.); (C.W.C.)
| |
Collapse
|
2
|
Two Sides to Every Story: Herpes Simplex Type-1 Viral Glycoproteins gB, gD, gH/gL, gK, and Cellular Receptors Function as Key Players in Membrane Fusion. Viruses 2021; 13:v13091849. [PMID: 34578430 PMCID: PMC8472851 DOI: 10.3390/v13091849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) and type-2 (HSV-2) are prototypical alphaherpesviruses that are characterized by their unique properties to infect trigeminal and dorsal root ganglionic neurons, respectively, and establish life-long latent infections. These viruses initially infect mucosal epithelial tissues and subsequently spread to neurons. They are associated with a significant disease spectrum, including orofacial and ocular infections for HSV-1 and genital and neonatal infections for HSV-2. Viral glycoproteins within the virion envelope bind to specific cellular receptors to mediate virus entry into cells. This is achieved by the fusion of the viral envelope with the plasma membrane. Similarly, viral glycoproteins expressed on cell surfaces mediate cell-to-cell fusion and facilitate virus spread. An interactive complex of viral glycoproteins gB, gD/gH/gL, and gK and other proteins mediate these membrane fusion phenomena with glycoprotein B (gB), the principal membrane fusogen. The requirement for the virion to enter neuronal axons suggests that the heterodimeric protein complex of gK and membrane protein UL20, found only in alphaherpesviruses, constitute a critical determinant for neuronal entry. This hypothesis was substantiated by the observation that a small deletion in the amino terminus of gK prevents entry into neuronal axons while allowing entry into other cells via endocytosis. Cellular receptors and receptor-mediated signaling synergize with the viral membrane fusion machinery to facilitate virus entry and intercellular spread. Unraveling the underlying interactions among viral glycoproteins, envelope proteins, and cellular receptors will provide new innovative approaches for antiviral therapy against herpesviruses and other neurotropic viruses.
Collapse
|
3
|
Stanfield BA, Kousoulas KG, Fernandez A, Gershburg E. Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses. Viruses 2021; 13:1637. [PMID: 34452501 PMCID: PMC8402837 DOI: 10.3390/v13081637] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Diseases caused by human herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) affect millions of people worldwide and range from fatal encephalitis in neonates and herpes keratitis to orofacial and genital herpes, among other manifestations. The viruses can be shed efficiently by asymptomatic carriers, causing increased rates of infection. Viral transmission occurs through direct contact of mucosal surfaces followed by initial replication of the incoming virus in skin tissues. Subsequently, the viruses infect sensory neurons in the trigeminal and lumbosacral dorsal root ganglia, where they are primarily maintained in a transcriptionally repressed state termed "latency", which persists for the lifetime of the host. HSV DNA has also been detected in other sympathetic ganglia. Periodically, latent viruses can reactivate, causing ulcerative and often painful lesions primarily at the site of primary infection and proximal sites. In the United States, recurrent genital herpes alone accounts for more than a billion dollars in direct medical costs per year, while there are much higher costs associated with the socio-economic aspects of diseased patients, such as loss of productivity due to mental anguish. Currently, there are no effective FDA-approved vaccines for either prophylactic or therapeutic treatment of human herpes simplex infections, while several recent clinical trials have failed to achieve their endpoint goals. Historically, live-attenuated vaccines have successfully combated viral diseases, including polio, influenza, measles, and smallpox. Vaccines aimed to protect against the devastation of smallpox led to the most significant achievement in medical history: the eradication of human disease by vaccination. Recently, novel approaches toward developing safe and effective live-attenuated vaccines have demonstrated high efficacy in various preclinical models of herpetic disease. This next generation of live-attenuated vaccines has been tailored to minimize vaccine-associated side effects and promote effective and long-lasting immune responses. The ultimate goal is to prevent or reduce primary infections (prophylactic vaccines) or reduce the frequency and severity of disease associated with reactivation events (therapeutic vaccines). These vaccines' "rational" design is based on our current understanding of the immunopathogenesis of herpesviral infections that guide the development of vaccines that generate robust and protective immune responses. This review covers recent advances in the development of herpes simplex vaccines and the current state of ongoing clinical trials in pursuit of an effective vaccine against herpes simplex virus infections and associated diseases.
Collapse
Affiliation(s)
- Brent A. Stanfield
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Konstantin G. Kousoulas
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Rational Vaccines Inc., Woburn, MA 01801, USA;
| | | | | |
Collapse
|
4
|
Naidu SK, Nabi R, Cheemarla NR, Stanfield BA, Rider PJ, Jambunathan N, Chouljenko VN, Carter R, Del Piero F, Langohr I, Kousoulas KG. Intramuscular vaccination of mice with the human herpes simplex virus type-1(HSV-1) VC2 vaccine, but not its parental strain HSV-1(F) confers full protection against lethal ocular HSV-1 (McKrae) pathogenesis. PLoS One 2020; 15:e0228252. [PMID: 32027675 PMCID: PMC7004361 DOI: 10.1371/journal.pone.0228252] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/11/2020] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) can cause severe ocular infection and blindness. We have previously shown that the HSV-1 VC2 vaccine strain is protective in mice and guinea pigs against genital herpes infection following vaginal challenge with HSV-1 or HSV-2. In this study, we evaluated the efficacy of VC2 intramuscular vaccination in mice against herpetic keratitis following ocular challenge with lethal human clinical strain HSV-1(McKrae). VC2 vaccination in mice produced superior protection and morbidity control in comparison to its parental strain HSV-1(F). Specifically, after HSV-1(McKrae) ocular challenge, all VC2 vaccinated- mice survived, while 30% of the HSV-1(F)- vaccinated and 100% of the mock-vaccinated mice died post challenge. VC2-vaccinated mice did not exhibit any symptoms of ocular infection and completely recovered from initial conjunctivitis. In contrast, HSV-1(F)-vaccinated mice developed time-dependent progressive keratitis characterized by corneal opacification, while mock-vaccinated animals exhibited more severe stromal keratitis characterized by immune cell infiltration and neovascularization in corneal stroma with corneal opacification. Cornea in VC2-immunized mice exhibited significantly increased infiltration of CD3+ T lymphocytes and decreased infiltration of Iba1+ macrophages in comparison to mock- or HSV-1(F)-vaccinated groups. VC2 immunization produced higher virus neutralization titers than HSV-1(F) post challenge. Furthermore, VC-vaccination significantly increased the CD4 T central memory (TCM) subsets and CD8 T effector memory (TEM) subsets in the draining lymph nodes following ocular HSV-1 (McKrae) challenge, then mock- or HSV-1(F)-vaccination. These results indicate that VC2 vaccination produces a protective immune response at the site of challenge to protect against HSV-1-induced ocular pathogenesis.
Collapse
Affiliation(s)
- Shan K. Naidu
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Rafiq Nabi
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Nagarjuna R. Cheemarla
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Brent A. Stanfield
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Paul J. Rider
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Nithya Jambunathan
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Vladimir N. Chouljenko
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Renee Carter
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Fabio Del Piero
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ingeborg Langohr
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Konstantin G. Kousoulas
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
5
|
Rider PJF, Coghill LM, Naderi M, Brown JM, Brylinski M, Kousoulas KG. Identification and Visualization of Functionally Important Domains and Residues in Herpes Simplex Virus Glycoprotein K(gK) Using a Combination of Phylogenetics and Protein Modeling. Sci Rep 2019; 9:14625. [PMID: 31601827 PMCID: PMC6787236 DOI: 10.1038/s41598-019-50490-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/12/2019] [Indexed: 11/09/2022] Open
Abstract
Alphaherpesviruses are a subfamily of herpesviruses that include the significant human pathogens herpes simplex viruses (HSV) and varicella zoster virus (VZV). Glycoprotein K (gK), conserved in all alphaherpesviruses, is a multi-membrane spanning virion glycoprotein essential for virus entry into neuronal axons, virion assembly, and pathogenesis. Despite these critical functions, little is known about which gK domains and residues are most important for maintaining these functions across all alphaherpesviruses. Herein, we employed phylogenetic and structural analyses including the use of a novel model for evolutionary rate variation across residues to predict conserved gK functional domains. We found marked heterogeneity in the evolutionary rate at the level of both individual residues and domains, presumably as a result of varying selective constraints. To clarify the potential role of conserved sequence features, we predicted the structures of several gK orthologs. Congruent with our phylogenetic analysis, slowly evolving residues were identified at potentially structurally significant positions across domains. We found that using a quantitative measure of amino acid rate variation combined with molecular modeling we were able to identify amino acids predicted to be critical for gK protein structure/function. This analysis yields targets for the design of anti-herpesvirus therapeutic strategies across all alphaherpesvirus species that would be absent from more traditional analyses of conservation.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Lyndon M Coghill
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, USA
| | - Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Jeremy M Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.,Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
6
|
Jaggi U, Wang S, Tormanen K, Matundan H, Ljubimov AV, Ghiasi H. Role of Herpes Simplex Virus Type 1 (HSV-1) Glycoprotein K (gK) Pathogenic CD8 + T Cells in Exacerbation of Eye Disease. Front Immunol 2018; 9:2895. [PMID: 30581441 PMCID: PMC6292954 DOI: 10.3389/fimmu.2018.02895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022] Open
Abstract
HSV-1-induced corneal scarring (CS), also broadly referred to as Herpes Stromal Keratitis (HSK), is the leading cause of infectious blindness in developed countries. It is well-established that HSK is in fact an immunopathological disease. The contribution of the potentially harmful T cell effectors that lead to CS remains an area of intense study. Although the HSV-1 gene(s) involved in eye disease is not yet known, we have demonstrated that gK, which is one of the 12 known HSV-1 glycoproteins, has a crucial role in CS. Immunization of HSV-1 infected mice with gK, but not with any other known HSV-1 glycoprotein, significantly exacerbates CS, and dermatitis. The gK-induced eye disease occurs independently of the strain of the virus or mouse. HSV-1 mutants that lack gK are unable to efficiently infect and establish latency in neurons. HSV-1 recombinant viruses expressing two additional copies of the gK (total of three gK genes) exacerbated CS as compared with wild type HSV-1 strain McKrae that contains one copy of gK. Furthermore, we have shown that an 8mer (ITAYGLVL) within the signal sequence of gK enhanced CS in ocularly infected BALB/c mice, C57BL/6 mice, and NZW rabbits. In HSV-infected “humanized” HLA-A*0201 transgenic mice, this gK 8mer induced strong IFN-γ-producing cytotoxic CD8+ T cell responses. gK induced CS is dependent on gK binding to signal peptide peptidase (SPP). gK also binds to HSV-1 UL20, while UL20 binds GODZ (DHHC3) and these quadruple interactions are required for gK induced pathology. Thus, potential therapies might include blocking of gK-SPP, gK-UL20, UL20-GODZ interactions, or a combination of these strategies.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shaohui Wang
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kati Tormanen
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Harry Matundan
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Cedars-Sinai Medical Center, and David Geffen School of Medicine, Board of Governors Regenerative Medicine Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
7
|
Musarrat F, Jambunathan N, Rider PJF, Chouljenko VN, Kousoulas KG. The Amino Terminus of Herpes Simplex Virus 1 Glycoprotein K (gK) Is Required for gB Binding to Akt, Release of Intracellular Calcium, and Fusion of the Viral Envelope with Plasma Membranes. J Virol 2018; 92:e01842-17. [PMID: 29321326 PMCID: PMC5827371 DOI: 10.1128/jvi.01842-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/17/2017] [Indexed: 01/28/2023] Open
Abstract
Previously, we have shown that the amino terminus of glycoprotein K (gK) binds to the amino terminus of gB and that deletion of the amino-terminal 38 amino acids of gK prevents herpes simplex virus 1 (HSV-1) infection of mouse trigeminal ganglia after ocular infection and virus entry into neuronal axons. Recently, it has been shown that gB binds to Akt during virus entry and induces Akt phosphorylation and intracellular calcium release. Proximity ligation and two-way immunoprecipitation assays using monoclonal antibodies against gB and Akt-1 phosphorylated at S473 [Akt-1(S473)] confirmed that HSV-1(McKrae) gB interacted with Akt-1(S473) during virus entry into human neuroblastoma (SK-N-SH) cells and induced the release of intracellular calcium. In contrast, the gB specified by HSV-1(McKrae) gKΔ31-68, lacking the amino-terminal 38 amino acids of gK, failed to interact with Akt-1(S473) and induce intracellular calcium release. The Akt inhibitor miltefosine inhibited the entry of McKrae but not the gKΔ31-68 mutant into SK-N-SH cells. Importantly, the entry of the gKΔ31-68 mutant but not McKrae into SK-N-SH cells treated with the endocytosis inhibitors pitstop-2 and dynasore hydrate was significantly inhibited, indicating that McKrae gKΔ31-68 entered via endocytosis. These results suggest that the amino terminus of gK functions to regulate the fusion of the viral envelope with cellular plasma membranes.IMPORTANCE HSV-1 glycoprotein B (gB) functions in the fusion of the viral envelope with cellular membranes during virus entry. Herein, we show that a deletion in the amino terminus of glycoprotein K (gK) inhibits gB binding to Akt-1(S473), the release of intracellular calcium, and virus entry via fusion of the viral envelope with cellular plasma membranes.
Collapse
Affiliation(s)
- Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nithya Jambunathan
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - V N Chouljenko
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - K G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
8
|
Rider PJF, Musarrat F, Nabil R, Naidu S, Kousoulas KG. First Impressions-the Potential of Altering Initial Host-Virus Interactions for Rational Design of Herpesvirus Vaccine Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:55-65. [PMID: 30560044 DOI: 10.1007/s40588-018-0082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose The earliest host-virus interactions occur during virus attachment and entry into cells. These initial steps in the virus lifecycle influence the outcome of infection beyond delivery of the viral genome into the cell. Herpesviruses alter host signaling pathways and processes during attachment and entry to facilitate virus infection and modulate innate immune responses. We suggest in this review that understanding these early signaling events may inform the rational design of therapeutic and prevention strategies for herpesvirus infection, as well as the engineering of viral vectors for immunotherapy purposes. Recent Findings Recent reports demonstrate that modulation of Herpes Simplex Virus Type-1 (HSV-1) entry results in unexpected enhancement of antiviral immune responses. Summary A variety of evidence suggests that herpesviruses promote specific cellular signaling responses that facilitate viral replication after binding to cell surfaces, as well as during virus entry. Of particular interest is the ability of the virus to alter innate immune responses through these cellular signaling events. Uncovering the underlying immune evasion strategies may lead to the design of live-attenuated vaccines that can generate robust and protective anti-viral immune responses against herpesviruses. These adjuvant properties may be extended to a variety of heterologous antigens expressed by herpesviral vectors.
Collapse
Affiliation(s)
- Paul J F Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Farhana Musarrat
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Rafiq Nabil
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Shan Naidu
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge LA
| |
Collapse
|
9
|
Arii J, Kawaguchi Y. The Role of HSV Glycoproteins in Mediating Cell Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:3-21. [PMID: 29896660 DOI: 10.1007/978-981-10-7230-7_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The successful entry of herpes simplex virus (HSV) into a cell is a complex process requiring the interaction of several surface viral glycoproteins with host cell receptors. These viral glycoproteins are currently thought to work sequentially to trigger fusogenic activity, but the process is complicated by the fact that each glycoprotein is known to interact with a range of target cell surface receptor molecules. The glycoproteins concerned are gB, gD, and gH/gL, with at least four host cell receptor molecules known to bind to gB and gD alone. Redundancy among gD receptors is also evident and binding to both the gB and gD receptors simultaneously is known to be required for successful membrane fusion. Receptor type and tissue distribution are commonly considered to define the extent of viral tropism and thus the magnitude of pathogenesis. Viral entry receptors are therefore attractive pharmaceutical target molecules for the prevention and/or treatment of viral infections. However, the large number of HSV glycoprotein receptors makes a comprehensive understanding of HSV pathogenesis in vivo difficult. Here we summarize our current understanding of the various HSV glycoprotein cell surface receptors, define their redundancy and binding specificity, and discuss the significance of these interactions for viral pathogenesis.
Collapse
Affiliation(s)
- Jun Arii
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
10
|
Weed DJ, Nicola AV. Herpes simplex virus Membrane Fusion. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:29-47. [PMID: 28528438 PMCID: PMC5869023 DOI: 10.1007/978-3-319-53168-7_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Herpes simplex virus mediates multiple distinct fusion events during infection. HSV entry is initiated by fusion of the viral envelope with either the limiting membrane of a host cell endocytic compartment or the plasma membrane. In the infected cell during viral assembly, immature, enveloped HSV particles in the perinuclear space fuse with the outer nuclear membrane in a process termed de-envelopment. A cell infected with some strains of HSV with defined mutations spread to neighboring cells by a fusion event called syncytium formation. Two experimental methods, the transient cell-cell fusion approach and fusion from without, are useful surrogate assays of HSV fusion. These five fusion processes are considered in terms of their requirements, mechanism, and regulation. The execution and modulation of these events require distinct yet often overlapping sets of viral proteins and host cell factors. The core machinery of HSV gB, gD, and the heterodimer gH/gL is required for most if not all of the HSV fusion mechanisms.
Collapse
Affiliation(s)
- Darin J Weed
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
11
|
Nicola AV. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH. Traffic 2016; 17:965-75. [PMID: 27126894 PMCID: PMC5444542 DOI: 10.1111/tra.12408] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022]
Abstract
Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question.
Collapse
Affiliation(s)
- Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
12
|
Spadafora D, Kozhukhar N, Chouljenko VN, Kousoulas KG, Alexeyev MF. Methods for Efficient Elimination of Mitochondrial DNA from Cultured Cells. PLoS One 2016; 11:e0154684. [PMID: 27136098 PMCID: PMC4852919 DOI: 10.1371/journal.pone.0154684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
Here, we document that persistent mitochondria DNA (mtDNA) damage due to mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase as well as mitochondrial overexpression of bacterial Exonuclease III or Herpes Simplex Virus protein UL12.5M185 can induce a complete loss of mtDNA (ρ0 phenotype) without compromising the viability of cells cultured in media supplemented with uridine and pyruvate. Furthermore, we use these observations to develop rapid, sequence-independent methods for the elimination of mtDNA, and demonstrate utility of these methods for generating ρ0 cells of human, mouse and rat origin. We also demonstrate that ρ0 cells generated by each of these three methods can serve as recipients of mtDNA in fusions with enucleated cells.
Collapse
Affiliation(s)
- Domenico Spadafora
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
| | - Nataliya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Vladimir N. Chouljenko
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Konstantin G. Kousoulas
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
13
|
Jambunathan N, Charles AS, Subramanian R, Saied AA, Naderi M, Rider P, Brylinski M, Chouljenko VN, Kousoulas KG. Deletion of a Predicted β-Sheet Domain within the Amino Terminus of Herpes Simplex Virus Glycoprotein K Conserved among Alphaherpesviruses Prevents Virus Entry into Neuronal Axons. J Virol 2015; 90:2230-9. [PMID: 26656706 PMCID: PMC4810717 DOI: 10.1128/jvi.02468-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED We have shown previously that herpes simplex virus 1 (HSV-1) lacking expression of the entire glycoprotein K (gK) or expressing gK with a 38-amino-acid deletion (gKΔ31-68 mutation) failed to infect ganglionic neurons after ocular infection of mice. We constructed a new model for the predicted three-dimensional structure of gK, revealing that the gKΔ31-68 mutation spans a well-defined β-sheet structure within the amino terminus of gK, which is conserved among alphaherpesviruses. The HSV-1(McKrae) gKΔ31-68 virus was tested for the ability to enter into ganglionic neuronal axons in cell culture of explanted rat ganglia using a novel virus entry proximity ligation assay (VEPLA). In this assay, cell surface-bound virions were detected by the colocalization of gD and its cognate receptor nectin-1 on infected neuronal surfaces. Capsids that have entered into the cytoplasm were detected by the colocalization of the virion tegument protein UL37, with dynein required for loading of virion capsids onto microtubules for retrograde transport to the nucleus. HSV-1(McKrae) gKΔ31-68 attached to cell surfaces of Vero cells and ganglionic axons in cell culture as efficiently as wild-type HSV-1(McKrae). However, unlike the wild-type virus, the mutant virus failed to enter into the axoplasm of ganglionic neurons. This work suggests that the amino terminus of gK is a critical determinant for entry into neuronal axons and may serve similar conserved functions for other alphaherpesviruses. IMPORTANCE Alphaherpesviruses, unlike beta- and gammaherpesviruses, have the unique ability to infect and establish latency in neurons. Glycoprotein K (gK) and the membrane protein UL20 are conserved among all alphaherpesviruses. We show here that a predicted β-sheet domain, which is conserved among alphaherpesviruses, functions in HSV-1 entry into neuronal axons, suggesting that it may serve similar functions for other herpesviruses. These results are in agreement with our previous observations that deletion of this gK domain prevents the virus from successfully infecting ganglionic neurons after ocular infection of mice.
Collapse
Affiliation(s)
- Nithya Jambunathan
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Anu-Susan Charles
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ramesh Subramanian
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ahmad A Saied
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Misagh Naderi
- Department of Biological Sciences, College of Basic Science, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Paul Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Michal Brylinski
- Department of Biological Sciences, College of Basic Science, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Vladimir N Chouljenko
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
14
|
Contribution of N-linked glycans on HSV-2 gB to cell-cell fusion and viral entry. Virology 2015; 483:72-82. [PMID: 25965797 DOI: 10.1016/j.virol.2015.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/30/2015] [Accepted: 04/02/2015] [Indexed: 11/21/2022]
Abstract
HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell-cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 or N668 decreased cell-cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function.
Collapse
|
15
|
Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: Life cycle and development of inhibitors. BIOCHEMISTRY (MOSCOW) 2015; 79:1635-52. [DOI: 10.1134/s0006297914130124] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Stanfield BA, Stahl J, Chouljenko VN, Subramanian R, Charles AS, Saied AA, Walker JD, Kousoulas KG. A single intramuscular vaccination of mice with the HSV-1 VC2 virus with mutations in the glycoprotein K and the membrane protein UL20 confers full protection against lethal intravaginal challenge with virulent HSV-1 and HSV-2 strains. PLoS One 2014; 9:e109890. [PMID: 25350288 PMCID: PMC4211657 DOI: 10.1371/journal.pone.0109890] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/11/2014] [Indexed: 01/01/2023] Open
Abstract
Herpes Simplex Virus type-1 (HSV-1) and type-2 (HSV-2) establish life-long infections and cause significant orofacial and genital infections in humans. HSV-1 is the leading cause of infectious blindness in the western world. Currently, there are no available vaccines to protect against herpes simplex infections. Recently, we showed that a single intramuscular immunization with an HSV-1(F) mutant virus lacking expression of the viral glycoprotein K (gK), which prevents the virus from entering into distal axons of ganglionic neurons, conferred significant protection against either virulent HSV-1(McKrae) or HSV-2(G) intravaginal challenge in mice. Specifically, 90% of the mice were protected against HSV-1(McKrae) challenge, while 70% of the mice were protected against HSV-2(G) challenge. We constructed the recombinant virus VC2 that contains specific mutations in gK and the membrane protein UL20 preventing virus entry into axonal compartments of neurons, while allowing efficient replication in cell culture, unlike the gK-null virus, which has a major defect in virus replication and spread. Intramuscular injection of mice with 107 VC2 plaque forming units did not cause any significant clinical disease in mice. A single intramuscular immunization with the VC2 virus protected 100% of mice against lethal intravaginal challenge with either HSV-1(McKrae) or HSV-2(G) viruses. Importantly, vaccination with VC2 produced robust cross protective humoral and cellular immunity that fully protected vaccinated mice against lethal disease. Quantitative PCR did not detect any viral DNA in ganglionic tissues of vaccinated mice, while unvaccinated mice contained high levels of viral DNA. The VC2 virus may serve as an efficient vaccine against both HSV-1 and HSV-2 infections, as well as a safe vector for the production of vaccines against other viral and bacterial pathogens.
Collapse
Affiliation(s)
- Brent A. Stanfield
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jacque Stahl
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Vladimir N. Chouljenko
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ramesh Subramanian
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Anu-Susan Charles
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ahmad A. Saied
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jason D. Walker
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Konstantin G. Kousoulas
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
17
|
Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis. J Virol 2014; 88:13378-95. [PMID: 25210183 DOI: 10.1128/jvi.03631-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. IMPORTANCE After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the specific perturbation profiles vary for different host and viral cargo. In addition to an established entry pathway via acidic endosomes, we show here that HSV-1 internalization depended on sodium-proton exchangers at the plasma membrane and p21-activated kinases. These results suggest that HSV-1 requires a reorganization of the cortical actin cytoskeleton, either for productive cell entry via pH-independent fusion from macropinosomes or for fusion at the plasma membrane, and subsequent cytosolic passage to microtubules that mediate capsid transport to the nucleus for genome uncoating and replication.
Collapse
|
18
|
Saied AA, Chouljenko VN, Subramanian R, Kousoulas KG. A replication competent HSV-1(McKrae) with a mutation in the amino-terminus of glycoprotein K (gK) is unable to infect mouse trigeminal ganglia after cornea infection. Curr Eye Res 2014; 39:596-603. [PMID: 24401006 DOI: 10.3109/02713683.2013.855238] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To determine the role of the amino terminus of herpes simplex virus-1 (HSV-1) glycoprotein K (gK) in corneal infection, neuroinvasion, and establishment of virus latency in trigeminal ganglia of mice. METHODS The recombinant virus HSV-1 (McKΔgK31-68) was constructed by engineering gK genes encoding gK lacking 38 amino acids immediately after the gK signal sequence. A rescued virus was also produced. Mouse eyes were scarified and infected with 10(5) plaque forming units (PFU) in each eye. Clinical signs of ocular disease were monitored daily. Thirty days postinfection trigeminal ganglia were collected and processed for quantitative PCR (qPCR) analysis of viral DNA and recovery of infectious virions by cell culture of ganglionic tissues. RESULTS Deletion of the amino terminus of gK encoded by the McKΔgK31-68 mutant virus did not substantially affect its replication kinetics on African green monkey kidney cells (Vero), while it reduced cell-to-cell spread. McK viral infection of scarified mouse corneas with 10(5) PFU produced severe ocular disease. In contrast, McKΔgK31-68 viral infection with 10(5) PFU produced no significant ocular disease symptoms. All ganglia from mice infected with the McK virus produced high numbers of infectious virions upon explant culture in Vero cells, in agreement with qPCR results detecting high number of HSV-1 viral DNA in ganglionic tissues. In contrast, qPCR failed to detect any viral genomes in McKΔgK31-68 ganglia, while two of the ten ganglia revealed the presence of low numbers of infectious virions upon explant culture in Vero cells. CONCLUSIONS The results show that the amino terminus of gK is essential for neuroinvasiveness and acute herpes keratitis in the mouse eye model. It is likely that gK is involved in efficient infection of axonal termini, since mouse eye scarification provided a direct access to the high density of neuronal axons innervating mouse corneas.
Collapse
Affiliation(s)
- Ahmad A Saied
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University , Baton Rouge, LA , USA
| | | | | | | |
Collapse
|
19
|
Single dose of glycoprotein K (gK)-deleted HSV-1 live-attenuated virus protects mice against lethal vaginal challenge with HSV-1 and HSV-2 and induces lasting T cell memory immune responses. Virol J 2013; 10:317. [PMID: 24165088 PMCID: PMC3826548 DOI: 10.1186/1743-422x-10-317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/30/2013] [Indexed: 11/11/2022] Open
Abstract
Background Herpes simplex virus type-1(HSV-1) and HSV-2 are important human pathogens that cause significant ocular and urogenital complications, respectively. We have previously shown that HSV-1 virions lacking glycoprotein K (gK) are unable to enter into neurons via synaptic axonal membranes and be transported in either retrograde or anterograde manner. Here, we tested the ability of HSV-1 (F) gK-null to protect against lethal challenge with either highly virulent ocular HSV-1 (McKrae strain), or genital HSV-2 (G strain). The gK-null virus vaccine efficiently protected mice against lethal vaginal infection with either HSV-1(McKrae) or HSV-2 (G). Results Female mice were immunized via a single intramuscular injection with 106 PFU of the gK-null virus. Immunized mice were treated with Depo-Provera fourteen days after vaccination and were challenged via the vaginal route one week later. Ninety percent of mice vaccinated with the gK-null virus survived HSV-1 (McKrae) challenge, while 70% of these mice survived after HSV-2 (G) challenge. Moreover, all vaccinated mice exhibited substantially reduced disease symptoms irrespective of HSV-1 or HSV-2 challenge as compared to the mock vaccinated challenge group. T-cell memory immune responses to specific glycoprotein B (gB) and glycoprotein D (gD) peptide epitopes were detectable at 7 months post vaccination. Conclusions These results suggest that the highly attenuated, non-neurotropic gK-null virus may be used as an effective vaccine to protect against both virulent HSV-1 and HSV-2 genital infections and induce lasting immune responses.
Collapse
|
20
|
Herpes simplex virus 1 glycoprotein M and the membrane-associated protein UL11 are required for virus-induced cell fusion and efficient virus entry. J Virol 2013; 87:8029-37. [PMID: 23678175 DOI: 10.1128/jvi.01181-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) facilitates virus entry into cells and cell-to-cell spread by mediating fusion of the viral envelope with cellular membranes and fusion of adjacent cellular membranes. Although virus strains isolated from herpetic lesions cause limited cell fusion in cell culture, clinical herpetic lesions typically contain large syncytia, underscoring the importance of cell-to-cell fusion in virus spread in infected tissues. Certain mutations in glycoprotein B (gB), gK, UL20, and other viral genes drastically enhance virus-induced cell fusion in vitro and in vivo. Recent work has suggested that gB is the sole fusogenic glycoprotein, regulated by interactions with the viral glycoproteins gD, gH/gL, and gK, membrane protein UL20, and cellular receptors. Recombinant viruses were constructed to abolish either gM or UL11 expression in the presence of strong syncytial mutations in either gB or gK. Virus-induced cell fusion caused by deletion of the carboxyl-terminal 28 amino acids of gB or the dominant syncytial mutation in gK (Ala to Val at amino acid 40) was drastically reduced in the absence of gM. Similarly, syncytial mutations in either gB or gK did not cause cell fusion in the absence of UL11. Neither the gM nor UL11 gene deletion substantially affected gB, gC, gD, gE, and gH glycoprotein synthesis and expression on infected cell surfaces. Two-way immunoprecipitation experiments revealed that the membrane protein UL20, which is found as a protein complex with gK, interacted with gM while gM did not interact with other viral glycoproteins. Viruses produced in the absence of gM or UL11 entered into cells more slowly than their parental wild-type virus strain. Collectively, these results indicate that gM and UL11 are required for efficient membrane fusion events during virus entry and virus spread.
Collapse
|