1
|
Bengu N, Cromhout G, Adland E, Govender K, Herbert N, Lim N, Fillis R, Sprenger K, Vieira V, Kannie S, van Lobenstein J, Chinniah K, Kapongo C, Bhoola R, Krishna M, Mchunu N, Pascucci GR, Cotugno N, Palma P, Tagarro A, Rojo P, Roider J, Garcia-Guerrero MC, Ochsenbauer C, Groll A, Reddy K, Giaquinto C, Rossi P, Hong S, Dong K, Ansari MA, Puertas MC, Ndung'u T, Capparelli E, Lichterfeld M, Martinez-Picado J, Kappes JC, Archary M, Goulder P. Sustained aviremia despite anti-retroviral therapy non-adherence in male children after in utero HIV transmission. Nat Med 2024; 30:2796-2804. [PMID: 38843818 PMCID: PMC11485204 DOI: 10.1038/s41591-024-03105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
After sporadic reports of post-treatment control of HIV in children who initiated combination anti-retroviral therapy (cART) early, we prospectively studied 284 very-early-cART-treated children from KwaZulu-Natal, South Africa, after vertical HIV transmission to assess control of viremia. Eighty-four percent of the children achieved aviremia on cART, but aviremia persisting to 36 or more months was observed in only 32%. We observed that male infants have lower baseline plasma viral loads (P = 0.01). Unexpectedly, a subset (n = 5) of males maintained aviremia despite unscheduled complete discontinuation of cART lasting 3-10 months (n = 4) or intermittent cART adherence during 17-month loss to follow-up (n = 1). We further observed, in vertically transmitted viruses, a negative correlation between type I interferon (IFN-I) resistance and viral replication capacity (VRC) (P < 0.0001) that was markedly stronger for males than for females (r = -0.51 versus r = -0.07 for IFN-α). Although viruses transmitted to male fetuses were more IFN-I sensitive and of higher VRC than those transmitted to females in the full cohort (P < 0.0001 and P = 0.0003, respectively), the viruses transmitted to the five males maintaining cART-free aviremia had significantly lower replication capacity (P < 0.0001). These data suggest that viremic control can occur in some infants with in utero-acquired HIV infection after early cART initiation and may be associated with innate immune sex differences.
Collapse
Affiliation(s)
- Nomonde Bengu
- Queen Nandi Regional Hospital, Empangeni, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | | | - Nicholas Lim
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rowena Fillis
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Kenneth Sprenger
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Samantha Kannie
- General Justice Gizenga Mpanza Regional Hospital, Stanger, South Africa
| | | | | | | | - Roopesh Bhoola
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Malini Krishna
- Harry Gwala Regional Hospital, Pietermaritzburg, South Africa
| | - Noxolo Mchunu
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Giuseppe Rubens Pascucci
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Probiomics S.r.l., Rome, Italy
| | - Nicola Cotugno
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Paolo Palma
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Tagarro
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
- Department of Pediatrics, Infanta Sofia University Hospital and Henares University Hospital Foundation for Biomedical Research and Innovation, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - Pablo Rojo
- Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain
| | | | | | | | | | - Kavidha Reddy
- Africa Health Research Institute, Durban, South Africa
| | | | - Paolo Rossi
- Clinical Immunology and Vaccinology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Seohyun Hong
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Krista Dong
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - M Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maria C Puertas
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - John C Kappes
- University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL, USA
| | - Moherndran Archary
- Department of Paediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- Africa Health Research Institute, Durban, South Africa.
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA.
| |
Collapse
|
2
|
Farinre O, Gounder K, Reddy T, Tongo M, Hare J, Chaplin B, Gilmour J, Kanki P, Mann JK, Ndung'u T. Subtype-specific differences in Gag-protease replication capacity of HIV-1 isolates from East and West Africa. Retrovirology 2021; 18:11. [PMID: 33952315 PMCID: PMC8097975 DOI: 10.1186/s12977-021-00554-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The HIV-1 epidemic in sub-Saharan Africa is heterogeneous with diverse unevenly distributed subtypes and regional differences in prevalence. Subtype-specific differences in disease progression rate and transmission efficiency have been reported, but the underlying biological mechanisms have not been fully characterized. Here, we tested the hypothesis that the subtypes prevalent in the East Africa, where adult prevalence rate is higher, have lower viral replication capacity (VRC) than their West African counterparts where adult prevalence rates are lower. RESULTS Gag-protease sequencing was performed on 213 and 160 antiretroviral-naïve chronically infected participants from West and East Africa respectively and bioinformatic tools were used to infer subtypes and recombination patterns. VRC of patient-derived gag-protease chimeric viruses from West (n = 178) and East (n = 114) Africa were determined using a green fluorescent protein reporter-based cell assay. Subtype and regional differences in VRC and amino acid variants impacting VRC were identified by statistical methods. CRF02_AG (65%, n = 139), other recombinants (14%, n = 30) and pure subtypes (21%, n = 44) were identified in West Africa. Subtypes A1 (64%, n = 103), D (22%, n = 35), or recombinants (14%, n = 22) were identified in East Africa. Viruses from West Africa had significantly higher VRC compared to those from East Africa (p < 0.0001), with subtype-specific differences found among strains within West and East Africa (p < 0.0001). Recombination patterns showed a preference for subtypes D, G or J rather than subtype A in the p6 region of gag, with evidence that subtype-specific differences in this region impact VRC. Furthermore, the Gag A83V polymorphism was associated with reduced VRC in CRF02_AG. HLA-A*23:01 (p = 0.0014) and HLA-C*07:01 (p = 0.002) were associated with lower VRC in subtype A infected individuals from East Africa. CONCLUSIONS Although prevalent viruses from West Africa displayed higher VRC than those from East Africa consistent with the hypothesis that lower VRC is associated with higher population prevalence, the predominant CRF02_AG strain in West Africa displayed higher VRC than other prevalent strains suggesting that VRC alone does not explain population prevalence. The study identified viral and host genetic determinants of virus replication capacity for HIV-1 CRF02_AG and subtype A respectively, which may have relevance for vaccine strategies.
Collapse
Affiliation(s)
- Omotayo Farinre
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Kamini Gounder
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute, Durban, 4001, South Africa
| | - Tarylee Reddy
- Biostatistics Research Unit, South African Medical Research Council, Durban, South Africa
| | - Marcel Tongo
- Centre of Research for Emerging and Re-Emerging Diseases (CREMER), Yaoundé, Cameroon
| | - Jonathan Hare
- International AIDS Vaccine Initiative (IAVI) Human Immunology Laboratory (HIL), Imperial College, London, UK
- IAVI Global Headquarters, 125 Broad Street, 9th Floor,, New York, NY, USA
| | - Beth Chaplin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI) Human Immunology Laboratory (HIL), Imperial College, London, UK
- IAVI Global Headquarters, 125 Broad Street, 9th Floor,, New York, NY, USA
| | - Phyllis Kanki
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Africa Health Research Institute, Durban, 4001, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Max Planck Institute for Infection Biology, Berlin, Germany.
- Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
3
|
Clinical and evolutionary consequences of HIV adaptation to HLA: implications for vaccine and cure. Curr Opin HIV AIDS 2020; 14:194-204. [PMID: 30925534 DOI: 10.1097/coh.0000000000000541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent advances in our understanding of HIV adaptation to human leukocyte antigen (HLA)-associated immune pressures and its relevance to HIV prevention and cure research. RECENT FINDINGS Recent research has confirmed that HLA is a major driver of individual and population-level HIV evolution, that HIV strains are adapting to the immunogenetic profiles of the different human ethnic groups in which they circulate, and that HIV adaptation has substantial clinical and immunologic consequences. As such, adaptation represents a major challenge to HIV prevention and cure. At the same time, there are opportunities: Studies of HIV adaptation are revealing why certain HLA alleles are protective in some populations and not others; they are identifying immunogenic viral epitopes that harbor high mutational barriers to escape, and they may help illuminate novel, vaccine-relevant HIV epitopes in regions where circulating adaptation is extensive. Elucidation of HLA-driven adapted and nonadapted viral forms in different human populations and HIV subtypes also renders 'personalized' immunogen selection, as a component of HIV cure strategies, conceptually feasible. SUMMARY Though adaptation represents a major challenge to HIV prevention and cure, achieving an in-depth understanding of this phenomenon can help move the design of such strategies forward.
Collapse
|
4
|
Corleis B, Bucsan AN, Deruaz M, Vrbanac VD, Lisanti-Park AC, Gates SJ, Linder AH, Paer JM, Olson GS, Bowman BA, Schiff AE, Medoff BD, Tager AM, Luster AD, Khader SA, Kaushal D, Kwon DS. HIV-1 and SIV Infection Are Associated with Early Loss of Lung Interstitial CD4+ T Cells and Dissemination of Pulmonary Tuberculosis. Cell Rep 2020; 26:1409-1418.e5. [PMID: 30726727 PMCID: PMC6417097 DOI: 10.1016/j.celrep.2019.01.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/25/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung interstitial CD4+ T cells are critical for protection against pulmonary infections, but the fate of this population during HIV-1 infection is not well described. We studied CD4+ T cells in the setting of HIV-1 infection in human lung tissue, humanized mice, and a Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) nonhuman primate co-infection model. Infection with a CCR5-tropic strain of HIV-1 or SIV results in severe and rapid loss of lung interstitial CD4+ T cells but not blood or lung alveolar CD4+ T cells. This is accompanied by high HIV-1 production in these cells in vitro and in vivo. Importantly, during early SIV infection, loss of lung interstitial CD4+ T cells is associated with increased dissemination of pulmonary Mtb infection. We show that lung interstitial CD4+ T cells serve as an efficient target for HIV-1 and SIV infection that leads to their early depletion and an increased risk of disseminated tuberculosis. Corleis et al. show that lung parenchymal CD4+ T cells are permissive to HIV-1-dependent cell death. CD4+ T cell loss is highly significant in the interstitium but not the alveolar space, and loss of interstitial CD4+ T cells is associated with extrapulmonary dissemination of M. tuberculosis.
Collapse
Affiliation(s)
- Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Allison N Bucsan
- Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Maud Deruaz
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Vladimir D Vrbanac
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Antonella C Lisanti-Park
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samantha J Gates
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice H Linder
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey M Paer
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory S Olson
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany A Bowman
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail E Schiff
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew M Tager
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA, USA; Southwest National Primate Research Center, San Antonio, TX, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Claiborne DT, Scully EP, Palmer CD, Prince JL, Macharia GN, Kopycinski J, Michelo CM, Wiener HW, Parker R, Nganou-Makamdop K, Douek D, Altfeld M, Gilmour J, Price MA, Tang J, Kilembe W, Allen SA, Hunter E. Protective HLA alleles are associated with reduced LPS levels in acute HIV infection with implications for immune activation and pathogenesis. PLoS Pathog 2019; 15:e1007981. [PMID: 31449552 PMCID: PMC6730937 DOI: 10.1371/journal.ppat.1007981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/06/2019] [Accepted: 07/14/2019] [Indexed: 12/12/2022] Open
Abstract
Despite extensive research on the mechanisms of HLA-mediated immune control of HIV-1 pathogenesis, it is clear that much remains to be discovered, as exemplified by protective HLA alleles like HLA-B*81 which are associated with profound protection from CD4+ T cell decline without robust control of early plasma viremia. Here, we report on additional HLA class I (B*1401, B*57, B*5801, as well as B*81), and HLA class II (DQB1*02 and DRB1*15) alleles that display discordant virological and immunological phenotypes in a Zambian early infection cohort. HLA class I alleles of this nature were also associated with enhanced immune responses to conserved epitopes in Gag. Furthermore, these HLA class I alleles were associated with reduced levels of lipopolysaccharide (LPS) in the plasma during acute infection. Elevated LPS levels measured early in infection predicted accelerated CD4+ T cell decline, as well as immune activation and exhaustion. Taken together, these data suggest novel mechanisms for HLA-mediated immune control of HIV-1 pathogenesis that do not necessarily involve significant control of early viremia and point to microbial translocation as a direct driver of HIV-1 pathogenesis rather than simply a consequence. During acute HIV infection, there exists a complex interplay between the host immune response and the virus, and the balance of these interactions dramatically affects disease trajectory in infected individuals. Variations in Human Leukocyte Antigen (HLA) alleles dictate the potency of the cellular immune response to HIV, and certain well-studied alleles (HLA-B*57, B*27) are associated with control of HIV viremia. However, though plasma viral load is indicative of disease progression, the number of CD4+ T cells in the blood is a better measurement of disease severity. Through analysis of a large Zambian acute infection cohort, we identified HLA alleles that were associated with protection for CD4+ T cell loss, without dramatic affect on early plasma viremia. We further link these favorable HLA alleles to reduction in a well-known contributor to HIV pathogenesis, the presence of microbial products in the blood, which is indicative of damage to the gastrointestinal tract, a process which accelerates disease progression in HIV infected individuals. Ultimately, these results suggest a new mechanism by which the cellular immune response can combat HIV-associated pathogenesis, and further highlight the contribution of gut damage and microbial translocation to accelerating disease progression, even at early stages in HIV infection.
Collapse
Affiliation(s)
- Daniel T. Claiborne
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Eileen P. Scully
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christine D. Palmer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jessica L. Prince
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Gladys N. Macharia
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Jakub Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | | | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rachel Parker
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Krystelle Nganou-Makamdop
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcus Altfeld
- Virus Immunology Unit, Heinrich-Pette-Institut, Hamburg, Germany
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Matt A. Price
- International AIDS Vaccine Initiative, New York, New York, United States of America
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, California, United States of America
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Susan A. Allen
- Zambia-Emory HIV Research Project, Lusaka, Zambia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lima ENDC, Piqueira JRC, Camargo M, Galinskas J, Sucupira MC, Diaz RS. Impact of antiretroviral resistance and virological failure on HIV-1 informational entropy. J Antimicrob Chemother 2019; 73:1054-1059. [PMID: 29373694 DOI: 10.1093/jac/dkx508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/07/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives The present study investigated the relationship between genomic variability and resistance of HIV-1 sequences in protease (PR) and reverse transcriptase (RT) regions of the pol gene. In addition, we analysed the resistance among 651 individuals presenting antiretroviral virological failure, from 2009 to 2011, in the state of São Paulo, Brazil. Methods The genomic variability was quantified by using informational entropy methods and the relationship between resistance and replicative fitness, as inferred by the residual viral load and CD4+ T cell count. Results The number of antiretroviral schemes is related to the number of resistance mutations in the HIV-1 PR (α = 0.2511, P = 0.0003, R2 = 0.8672) and the RT (α = 0.7892, P = 0.0001, R2 = 0.9141). Increased informational entropy rate is related to lower levels of HIV-1 viral loads (α = -0.0121, P = 0.0471, R2 = 0.7923), lower levels of CD4+ T cell counts (α = -0.0120, P = 0.0335, R2 = 0.8221) and a higher number of antiretroviral resistance-related mutations. Conclusions Less organized HIV genomes as inferred by higher levels of informational entropy relate to less competent host immune systems, lower levels of HIV replication and HIV genetic evolution as a consequence of antiretroviral resistance.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Division of Infectious Diseases, Paulista School of Medicine, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil.,Telecommunication and Control Engineering Department, Engineering School, University of São Paulo, São Paulo, SP, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Engineering School, University of São Paulo, São Paulo, SP, Brazil
| | - Michelle Camargo
- Division of Infectious Diseases, Paulista School of Medicine, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Juliana Galinskas
- Division of Infectious Diseases, Paulista School of Medicine, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Maria Cecilia Sucupira
- Division of Infectious Diseases, Paulista School of Medicine, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil
| | - Ricardo Sobhie Diaz
- Division of Infectious Diseases, Paulista School of Medicine, Federal University of São Paulo-UNIFESP, São Paulo, SP, Brazil
| |
Collapse
|
7
|
High-Resolution Sequencing of Viral Populations during Early Simian Immunodeficiency Virus Infection Reveals Evolutionary Strategies for Rapid Escape from Emerging Env-Specific Antibody Responses. J Virol 2018; 92:JVI.01574-17. [PMID: 29343575 DOI: 10.1128/jvi.01574-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023] Open
Abstract
Primate lentiviruses, including the human and simian immunodeficiency viruses (HIV and SIV), produce infections marked by persistent, ongoing viral replication. This occurs despite the presence of virus-specific adaptive immune responses, including antibodies targeting the viral envelope glycoprotein (Env), and evolution of antibody-escape variants is a well-documented feature of lentiviral infection. Here, we examined the evolutionary dynamics of the SIV env gene during early infection (≤29 weeks postinfection) in a cohort of four SIVmac251-infected rhesus macaques. We tracked env evolution during acute and early infection using frequent sampling and ultradeep sequencing of viral populations, capturing a transmission bottleneck and the subsequent reestablishment of Env diversity. A majority of changes in the gp120 subunit mapped to two short clusters, one in the first variable region (V1) and one in V4, while most changes in the gp41 subunit appeared in the cytoplasmic domain. Variation in V1 was dominated by short duplications and deletions of repetitive sequence, while variation in V4 was marked by short in-frame deletions and closely overlapping substitutions. The most common substitutions in both patches did not alter viral replicative fitness when tested using a highly sensitive, deep-sequencing-based competition assay. Our results, together with the observation that very similar or identical patterns of sequence evolution also occur in different macaque species infected with related but divergent strains of SIV, suggest that resistance to early, strain-specific anti-Env antibodies is the result of temporally and mutationally predictable pathways of escape that occur during the early stages of infection.IMPORTANCE The envelope glycoprotein (Env) of primate lentiviruses mediates entry by binding to host cell receptors followed by fusion of the viral membrane with the cell membrane. The exposure of Env complexes on the surface of the virion results in targeting by antibodies, leading to selection for virus escape mutations. We used the SIV/rhesus macaque model to track in vivo evolution of variation in Env during acute/early infection in animals with and without antibody responses to Env, uncovering remarkable variation in animals with antibody responses within weeks of infection. Using a deep-sequencing-based fitness assay, we found substitutions associated with antibody escape had little to no effect on inherent replicative capacity. The ability to readily propagate advantageous changes that incur little to no replicative fitness costs may be a mechanism to maintain continuous replication under constant immune selection, allowing the virus to persist for months to years in the infected host.
Collapse
|
8
|
Weaker HLA Footprints on HIV in the Unique and Highly Genetically Admixed Host Population of Mexico. J Virol 2018; 92:JVI.01128-17. [PMID: 29093100 PMCID: PMC5752930 DOI: 10.1128/jvi.01128-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/27/2017] [Indexed: 01/24/2023] Open
Abstract
HIV circumvents HLA class I-restricted CD8+ T-cell responses through selection of escape mutations that leave characteristic mutational “footprints,” also known as HLA-associated polymorphisms (HAPs), on HIV sequences at the population level. While many HLA footprints are universal across HIV subtypes and human populations, others can be region specific as a result of the unique immunogenetic background of each host population. Using a published probabilistic phylogenetically informed model, we compared HAPs in HIV Gag and Pol (PR-RT) in 1,612 subtype B-infected, antiretroviral treatment-naive individuals from Mexico and 1,641 individuals from Canada/United States. A total of 252 HLA class I allele subtypes were represented, including 140 observed in both cohorts, 67 unique to Mexico, and 45 unique to Canada/United States. At the predefined statistical threshold of a q value of <0.2, 358 HAPs (201 in Gag, 157 in PR-RT) were identified in Mexico, while 905 (534 in Gag and 371 in PR-RT) were identified in Canada/United States. HAPs identified in Mexico included both canonical HLA-associated escape pathways and novel associations, in particular with HLA alleles enriched in Amerindian and mestizo populations. Remarkably, HLA footprints on HIV in Mexico were not only fewer but also, on average, significantly weaker than those in Canada/United States, although some exceptions were noted. Moreover, exploratory analyses suggested that the weaker HLA footprint on HIV in Mexico may be due, at least in part, to weaker and/or less reproducible HLA-mediated immune pressures on HIV in this population. The implications of these differences for natural and vaccine-induced anti-HIV immunity merit further investigation. IMPORTANCE HLA footprints on HIV identify viral regions under intense and consistent pressure by HLA-restricted immune responses and the common mutational pathways that HIV uses to evade them. In particular, HLA footprints can identify novel immunogenic regions and/or epitopes targeted by understudied HLA alleles; moreover, comparative analyses across immunogenetically distinct populations can illuminate the extent to which HIV immunogenic regions and escape pathways are shared versus population-specific pathways, information which can in turn inform the design of universal or geographically tailored HIV vaccines. We compared HLA-associated footprints on HIV in two immunogenetically distinct North American populations, those of Mexico and Canada/United States. We identify both shared and population-specific pathways of HIV adaptation but also make the surprising observation that HLA footprints on HIV in Mexico overall are fewer and weaker than those in Canada/United States, raising the possibility that HLA-restricted antiviral immune responses in Mexico are weaker, and/or escape pathways somewhat less consistent, than those in other populations.
Collapse
|
9
|
|
10
|
Effects of Mutations on Replicative Fitness and Major Histocompatibility Complex Class I Binding Affinity Are Among the Determinants Underlying Cytotoxic-T-Lymphocyte Escape of HIV-1 Gag Epitopes. mBio 2017; 8:mBio.01050-17. [PMID: 29184023 PMCID: PMC5705913 DOI: 10.1128/mbio.01050-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain “protective” major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8+ cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo. Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape.
Collapse
|
11
|
Leitman EM, Willberg CB, Tsai MH, Chen H, Buus S, Chen F, Riddell L, Haas D, Fellay J, Goedert JJ, Piechocka-Trocha A, Walker BD, Martin J, Deeks S, Wolinsky SM, Martinson J, Martin M, Qi Y, Sáez-Cirión A, Yang OO, Matthews PC, Carrington M, Goulder PJR. HLA-B*14:02-Restricted Env-Specific CD8 + T-Cell Activity Has Highly Potent Antiviral Efficacy Associated with Immune Control of HIV Infection. J Virol 2017; 91:e00544-17. [PMID: 28878089 PMCID: PMC5660483 DOI: 10.1128/jvi.00544-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Immune control of human immunodeficiency virus type 1 (HIV) infection is typically associated with effective Gag-specific CD8+ T-cell responses. We here focus on HLA-B*14, which protects against HIV disease progression, but the immunodominant HLA-B*14-restricted anti-HIV response is Env specific (ERYLKDQQL, HLA-B*14-EL9). A subdominant HLA-B*14-restricted response targets Gag (DRYFKTLRA, HLA-B*14-DA9). Using HLA-B*14/peptide-saporin-conjugated tetramers, we show that HLA-B*14-EL9 is substantially more potent at inhibiting viral replication than HLA-B*14-DA9. HLA-B*14-EL9 also has significantly higher functional avidity (P < 0.0001) and drives stronger selection pressure on the virus than HLA-B*14-DA9. However, these differences were HLA-B*14 subtype specific, applying only to HLA-B*14:02 and not to HLA-B*14:01. Furthermore, the HLA-B*14-associated protection against HIV disease progression is significantly greater for HLA-B*14:02 than for HLA-B*14:01, consistent with the superior antiviral efficacy of the HLA-B*14-EL9 response. Thus, although Gag-specific CD8+ T-cell responses may usually have greater anti-HIV efficacy, factors independent of protein specificity, including functional avidity of individual responses, are also critically important to immune control of HIV.IMPORTANCE In HIV infection, although cytotoxic T lymphocytes (CTL) play a potentially critical role in eradication of viral reservoirs, the features that constitute an effective response remain poorly defined. We focus on HLA-B*14, unique among HLAs associated with control of HIV in that the dominant CTL response is Env specific, not Gag specific. We demonstrate that Env-specific HLA-B*14-restricted activity is substantially more efficacious than the subdominant HLA-B*14-restricted Gag response. Env immunodominance over Gag and strong Env-mediated selection pressure on HIV are observed only in subjects expressing HLA-B*14:02, and not HLA-B*14:01. This reflects the increased functional avidity of the Env response over Gag, substantially more marked for HLA-B*14:02. Finally, we show that HLA-B*14:02 is significantly more strongly associated with viremic control than HLA-B*14:01. These findings indicate that, although Gag-specific CTL may usually have greater anti-HIV efficacy than Env responses, factors independent of protein specificity, including functional avidity, may carry greater weight in mediating effective control of HIV.
Collapse
Affiliation(s)
- Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ming-Han Tsai
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Huabiao Chen
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Lynn Riddell
- Integrated Sexual Health Services, Northamptonshire Healthcare NHS Trust, Northampton, United Kingdom
| | - David Haas
- Departments of Medicine, Pharmacology, Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - James J Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jeffrey Martin
- Department of Medicine, University of California San Francisco Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, California, USA
| | - Steven M Wolinsky
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maureen Martin
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Asier Sáez-Cirión
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Otto O Yang
- Department of Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- AIDS Healthcare Foundation, Los Angeles, California, USA
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
12
|
Kletenkov K, Hoffmann D, Böni J, Yerly S, Aubert V, Schöni-Affolter F, Struck D, Verheyen J, Klimkait T. Role of Gag mutations in PI resistance in the Swiss HIV cohort study: bystanders or contributors? J Antimicrob Chemother 2017; 72:866-875. [PMID: 27999036 DOI: 10.1093/jac/dkw493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/15/2016] [Indexed: 12/24/2022] Open
Abstract
Background HIV Gag mutations have been reported to confer PI drug resistance. However, clinical implications are still controversial and most current genotyping algorithms consider solely the protease gene for assessing PI resistance. Objectives Our goal was to describe for HIV infections in Switzerland the potential role of the C-terminus of Gag (NC-p6) in PI resistance. We aimed to characterize resistance-relevant mutational patterns in Gag and protease and their possible interactions. Methods Resistance information on plasma samples from 2004-12 was collected for patients treated by two diagnostic centres of the Swiss HIV Cohort Study. Sequence information on protease and the C-terminal Gag region was paired with the corresponding patient treatment history. The prevalence of Gag and protease mutations was analysed for PI treatment-experienced patients versus PI treatment-naive patients. In addition, we modelled multiple paths of an assumed ordered accumulation of genetic changes using random tree mixture models. Results More than half of all PI treatment-experienced patients in our sample set carried HIV variants with at least one of the known Gag mutations, and 17.9% (66/369) carried at least one Gag mutation for which a phenotypic proof of PI resistance by in vitro mutagenesis has been reported. We were able to identify several novel Gag mutations that are associated with PI exposure and therapy failure. Conclusions Our analysis confirmed the association of Gag mutations, well known and new, with PI exposure. This could have clinical implications, since the level of potential PI drug resistance might be underestimated.
Collapse
Affiliation(s)
- K Kletenkov
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | - D Hoffmann
- Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - J Böni
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Zurich, Zurich, Switzerland
| | - S Yerly
- Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - V Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - F Schöni-Affolter
- Swiss HIV Cohort Study, Data Centre, Institute for Social and Preventive Medicine, University of Lausanne, Lausanne, Switzerland
| | - D Struck
- Department of Population Health, Luxembourg Institute of Health, Luxembourg
| | - J Verheyen
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - T Klimkait
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | | |
Collapse
|
13
|
Leitman EM, Thobakgale CF, Adland E, Ansari MA, Raghwani J, Prendergast AJ, Tudor-Williams G, Kiepiela P, Hemelaar J, Brener J, Tsai MH, Mori M, Riddell L, Luzzi G, Jooste P, Ndung'u T, Walker BD, Pybus OG, Kellam P, Naranbhai V, Matthews PC, Gall A, Goulder PJR. Role of HIV-specific CD8 + T cells in pediatric HIV cure strategies after widespread early viral escape. J Exp Med 2017; 214:3239-3261. [PMID: 28983013 PMCID: PMC5679167 DOI: 10.1084/jem.20162123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/22/2017] [Accepted: 08/30/2017] [Indexed: 11/04/2022] Open
Abstract
Recent studies have suggested greater HIV cure potential among infected children than adults. A major obstacle to HIV eradication in adults is that the viral reservoir is largely comprised of HIV-specific cytotoxic T lymphocyte (CTL) escape variants. We here evaluate the potential for CTL in HIV-infected slow-progressor children to play an effective role in "shock-and-kill" cure strategies. Two distinct subgroups of children were identified on the basis of viral load. Unexpectedly, in both groups, as in adults, HIV-specific CTL drove the selection of escape variants across a range of epitopes within the first weeks of infection. However, in HIV-infected children, but not adults, de novo autologous variant-specific CTL responses were generated, enabling the pediatric immune system to "corner" the virus. Thus, even when escape variants are selected in early infection, the capacity in children to generate variant-specific anti-HIV CTL responses maintains the potential for CTL to contribute to effective shock-and-kill cure strategies in pediatric HIV infection.
Collapse
Affiliation(s)
- Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Christina F Thobakgale
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - M Azim Ansari
- Oxford Martin School, University of Oxford, Oxford, England, UK
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford, England, UK
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, England, UK.,Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Gareth Tudor-Williams
- Division of Medicine, Department of Paediatrics, Imperial College London, London, England, UK
| | - Photini Kiepiela
- Medical Research Council, Durban, South Africa.,Witwatersrand Health Consortium, Johannesburg, South Africa
| | - Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, England, UK.,Linacre Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Jacqui Brener
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Ming-Han Tsai
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Masahiko Mori
- Department of Paediatrics, University of Oxford, Oxford, England, UK.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Lynn Riddell
- Northampton Healthcare NHS Foundation Trust, Cliftonville, England, UK
| | - Graz Luzzi
- Buckinghampshire Healthcare NHS Foundation Trust, High Wycombe, England, UK
| | - Pieter Jooste
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Bruce D Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, England, UK
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Babraham, England, UK.,Department of Medicine, Division of Infectious Diseases, Imperial College Faculty of Medicine, London, England, UK
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA.,Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
| | - Philippa C Matthews
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, England, UK
| | - Astrid Gall
- Wellcome Trust Sanger Institute, Hinxton, England, UK
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford, England, UK .,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Seki S, Nomura T, Nishizawa M, Yamamoto H, Ishii H, Matsuoka S, Shiino T, Sato H, Mizuta K, Sakawaki H, Miura T, Naruse TK, Kimura A, Matano T. In vivo virulence of MHC-adapted AIDS virus serially-passaged through MHC-mismatched hosts. PLoS Pathog 2017; 13:e1006638. [PMID: 28931083 PMCID: PMC5624644 DOI: 10.1371/journal.ppat.1006638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/02/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023] Open
Abstract
CD8+ T-cell responses exert strong suppressive pressure on HIV replication and select for viral escape mutations. Some of these major histocompatibility complex class I (MHC-I)-associated mutations result in reduction of in vitro viral replicative capacity. While these mutations can revert after viral transmission to MHC-I-disparate hosts, recent studies have suggested that these MHC-I-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Here, we directly show an increase in the in vivo virulence of an MHC-I-adapted virus serially-passaged through MHC-I-mismatched hosts in a macaque AIDS model despite a reduction in in vitro viral fitness. The first passage simian immunodeficiency virus (1pSIV) obtained 1 year after SIVmac239 infection in a macaque possessing a protective MHC-I haplotype 90-120-Ia was transmitted into 90-120-Ia- macaques, whose plasma 1 year post-infection was transmitted into other 90-120-Ia- macaques to obtain the third passage SIV (3pSIV). Most of the 90-120-Ia-associated mutations selected in 1pSIV did not revert even in 3pSIV. 3pSIV showed lower in vitro viral fitness but induced persistent viremia in 90-120-Ia- macaques. Remarkably, 3pSIV infection in 90-120-Ia+ macaques resulted in significantly higher viral loads and reduced survival compared to wild-type SIVmac239. These results indicate that MHC-I-adapted SIVs serially-transmitted through MHC-I-mismatched hosts can have higher virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that multiply-passaged HIVs could result in loss of HIV-specific CD8+ T cell responses in human populations and the in vivo pathogenic potential of these escaped viruses may be enhanced. CD8+ T-cell responses exert considerable control over replication of HIV and select for viral escape mutations. Recent studies have suggested that these major histocompatibility complex class I (MHC-I)-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Other studies have shown that some of these escape mutations can revert after passage to MHC-I-disparate hosts. In an attempt to reconcile these apparently conflicting results, we serially passaged a virus isolate through MHC-I-mismatched hosts in the macaque AIDS model of simian immunodeficiency virus (SIV) infection. Here we show an increase in the in vivo virulence of an MHC-I-adapted virus despite a reduction in in vitro viral replication capacity. Only a few of the selected escape mutations reverted after transmission to MHC-I-disparate recipients. Results clearly showed that MHC-I-adapted SIVs that have been serially-transmitted through MHC-I-mismatched hosts can have higher in vivo virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that HIVs may become less sensitive to CD8+ T cell responses and could have increased in vivo virulence by adaptation to MHC-I in human populations.
Collapse
Affiliation(s)
- Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Tokyo, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuta Mizuta
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Sakawaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taeko K. Naruse
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Nomaguchi M, Doi N, Koma T, Adachi A. HIV-1 mutates to adapt in fluxing environments. Microbes Infect 2017; 20:610-614. [PMID: 28859896 DOI: 10.1016/j.micinf.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is specifically adapted for replication, persistence, transmission, and survival in humans. HIV-1 is highly mutable in nature, and well responds to a variety of environmental pressures by altering its genome sequences. In this review, we have described experimental evidence that demonstrates this phantasmagoric property of HIV-1.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan; Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan.
| |
Collapse
|
16
|
Gorin AM, Du Y, Liu FY, Zhang TH, Ng HL, Hofmann C, Cumberland WG, Sun R, Yang OO. HIV-1 epitopes presented by MHC class I types associated with superior immune containment of viremia have highly constrained fitness landscapes. PLoS Pathog 2017; 13:e1006541. [PMID: 28787455 PMCID: PMC5560751 DOI: 10.1371/journal.ppat.1006541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/17/2017] [Accepted: 07/19/2017] [Indexed: 01/11/2023] Open
Abstract
Certain Major Histocompatibility-I (MHC-I) types are associated with superior immune containment of HIV-1 infection by CD8+ cytotoxic T lymphocytes (CTLs), but the mechanisms mediating this containment are difficult to elucidate in vivo. Here we provide controlled assessments of fitness landscapes and CTL-imposed constraints for immunodominant epitopes presented by two protective (B*57 and B*27) and one non-protective (A*02) MHC-I types. Libraries of HIV-1 with saturation mutagenesis of CTL epitopes are propagated with and without CTL selective pressure to define the fitness landscapes for epitope mutation and escape from CTLs via deep sequencing. Immunodominant B*57- and B*27- present epitopes are highly limited in options for fit mutations, with most viable variants recognizable by CTLs, whereas an immunodominant A*02 epitope-presented is highly permissive for mutation, with many options for CTL evasion without loss of viability. Generally, options for evasion overlap considerably between CTL clones despite highly distinct T cell receptors. Finally, patterns of variant recognition suggest population-wide CTL selection for the A*02-presented epitope. Overall, these findings indicate that these protective MHC-I types yield CTL targeting of highly constrained epitopes, and underscore the importance of blocking public escape pathways for CTL-based interventions against HIV-1. Certain MHC class I types are associated with superior immune containment of HIV-1, underscoring the importance of CD8+ cytotoxic T lymphocytes (CTLs). Epitope escape mutations for these types is limited, indicating reduced immune evasion. Two proposed mechanisms are: 1) CTL targeting of highly sequence-constrained epitopes, or 2) more promiscuous CTLs for epitope variation. However, the in vivo complexity of undefined starting virus, multiple targeted epitopes, polyclonal CTL responses against each epitope, and post-hoc evaluation of the interaction renders examination of mechanisms difficult. Here we approach this question with controlled prospective in vitro experiments using saturation mutagenesis of epitopes in clonal HIV-1, propagated in the absence or presence of CTL clones to define the options for epitope mutation and immune evasion by deep sequencing. We find that two immunodominant epitopes presented by protective MHC types are highly mutation-constrained compared to one presented by a non-protective MHC type, whereas CTL promiscuity for epitope variation is not appreciably different. These results suggest that these protective MHC types are associated with limited HIV-1 escape predominately due to intrinsic constraints on epitope mutation, and underscore the importance of focusing the CTL response on highly conserved epitopes for immunotherapies and vaccines.
Collapse
Affiliation(s)
- Aleksandr M. Gorin
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Franklin Y. Liu
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tian-Hao Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hwee L. Ng
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Christian Hofmann
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - William G. Cumberland
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, California, United States of America
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Otto O. Yang
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- AIDS Healthcare Foundation, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Olabode AS, Kandathil SM, Lovell SC, Robertson DL. Adaptive HIV-1 evolutionary trajectories are constrained by protein stability. Virus Evol 2017; 3:vex019. [PMID: 28852572 PMCID: PMC5570062 DOI: 10.1093/ve/vex019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Despite the use of combination antiretroviral drugs for the treatment of HIV-1 infection, the emergence of drug resistance remains a problem. Resistance may be conferred either by a single mutation or a concerted set of mutations. The involvement of multiple mutations can arise due to interactions between sites in the amino acid sequence as a consequence of the need to maintain protein structure. To better understand the nature of such epistatic interactions, we reconstructed the ancestral sequences of HIV-1’s Pol protein, and traced the evolutionary trajectories leading to mutations associated with drug resistance. Using contemporary and ancestral sequences we modelled the effects of mutations (i.e. amino acid replacements) on protein structure to understand the functional effects of residue changes. Although the majority of resistance-associated sequences tend to destabilise the protein structure, we find there is a general tendency for protein stability to decrease across HIV-1’s evolutionary history. That a similar pattern is observed in the non-drug resistance lineages indicates that non-resistant mutations, for example, associated with escape from the immune response, also impacts on protein stability. Maintenance of optimal protein structure therefore represents a major constraining factor to the evolution of HIV-1.
Collapse
Affiliation(s)
- Abayomi S Olabode
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Shaun M Kandathil
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK.,Francis Crick Institute & Dept. of Computer Science, University College London, London, UK
| | - Simon C Lovell
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - David L Robertson
- Evolution & Genomic Sciences, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, UK.,MRC-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow, UK
| |
Collapse
|
18
|
Kløverpris HN, Leslie A, Goulder P. Role of HLA Adaptation in HIV Evolution. Front Immunol 2016; 6:665. [PMID: 26834742 PMCID: PMC4716577 DOI: 10.3389/fimmu.2015.00665] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/27/2015] [Indexed: 01/22/2023] Open
Abstract
Killing of HIV-infected cells by CD8+ T-cells imposes strong selection pressure on the virus toward escape. The HLA class I molecules that are successful in mediating some degree of control over the virus are those that tend to present epitopes in conserved regions of the proteome, such as in p24 Gag, in which escape also comes at a significant cost to viral replicative capacity (VRC). In some instances, compensatory mutations can fully correct for the fitness cost of such an escape variant; in others, correction is only partial. The consequences of these events within the HIV-infected host, and at the population level following transmission of escape variants, are discussed. The accumulation of escape mutants in populations over the course of the epidemic already shows instances of protective HLA molecules losing their impact, and in certain cases, a modest decline in HIV virulence in association with population-level increase in mutants that reduce VRC.
Collapse
Affiliation(s)
- Henrik N Kløverpris
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Composite Sequence-Structure Stability Models as Screening Tools for Identifying Vulnerable Targets for HIV Drug and Vaccine Development. Viruses 2015; 7:5718-35. [PMID: 26556362 PMCID: PMC4664974 DOI: 10.3390/v7112901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 02/03/2023] Open
Abstract
Rapid evolution and high sequence diversity enable Human Immunodeficiency Virus (HIV) populations to acquire mutations to escape antiretroviral drugs and host immune responses, and thus are major obstacles for the control of the pandemic. One strategy to overcome this problem is to focus drugs and vaccines on regions of the viral genome in which mutations are likely to cripple function through destabilization of viral proteins. Studies relying on sequence conservation alone have had only limited success in determining critically important regions. We tested the ability of two structure-based computational models to assign sites in the HIV-1 capsid protein (CA) that would be refractory to mutational change. The destabilizing mutations predicted by these models were rarely found in a database of 5811 HIV-1 CA coding sequences, with none being present at a frequency greater than 2%. Furthermore, 90% of variants with the low predicted stability (from a set of 184 CA variants whose replication fitness or infectivity has been studied in vitro) had aberrant capsid structures and reduced viral infectivity. Based on the predicted stability, we identified 45 CA sites prone to destabilizing mutations. More than half of these sites are targets of one or more known CA inhibitors. The CA regions enriched with these sites also overlap with peptides shown to induce cellular immune responses associated with lower viral loads in infected individuals. Lastly, a joint scoring metric that takes into account both sequence conservation and protein structure stability performed better at identifying deleterious mutations than sequence conservation or structure stability information alone. The computational sequence-structure stability approach proposed here might therefore be useful for identifying immutable sites in a protein for experimental validation as potential targets for drug and vaccine development.
Collapse
|
20
|
Consequences of HLA-B*13-Associated Escape Mutations on HIV-1 Replication and Nef Function. J Virol 2015; 89:11557-71. [PMID: 26355081 DOI: 10.1128/jvi.01955-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED HLA-B*13 is associated with superior in vivo HIV-1 viremia control. Protection is thought to be mediated by sustained targeting of key cytotoxic T lymphocyte (CTL) epitopes and viral fitness costs of CTL escape in Gag although additional factors may contribute. We assessed the impact of 10 published B*13-associated polymorphisms in Gag, Pol, and Nef, in 23 biologically relevant combinations, on HIV-1 replication capacity and Nef-mediated reduction of cell surface CD4 and HLA class I expression. Mutations were engineered into HIV-1NL4.3, and replication capacity was measured using a green fluorescent protein (GFP) reporter T cell line. Nef-mediated CD4 and HLA-A*02 downregulation was assessed by flow cytometry, and T cell recognition of infected target cells was measured via coculture with an HIV-specific luciferase reporter cell line. When tested individually, only Gag-I147L and Gag-I437L incurred replicative costs (5% and 17%, respectively), consistent with prior reports. The Gag-I437L-mediated replication defect was rescued to wild-type levels by the adjacent K436R mutation. A novel B*13 epitope, comprising 8 residues and terminating at Gag147, was identified in p24(Gag) (GQMVHQAIGag140-147). No other single or combination Gag, Pol, or Nef mutant impaired viral replication. Single Nef mutations did not affect CD4 or HLA downregulation; however, the Nef double mutant E24Q-Q107R showed 40% impairment in HLA downregulation with no evidence of Nef stability defects. Moreover, target cells infected with HIV-1-NefE24Q-Q107R were recognized better by HIV-specific T cells than those infected with HIV-1NL4.3 or single Nef mutants. Our results indicate that CTL escape in Gag and Nef can be functionally costly and suggest that these effects may contribute to long-term HIV-1 control by HLA-B*13. IMPORTANCE Protective effects of HLA-B*13 on HIV-1 disease progression are mediated in part by fitness costs of CTL escape mutations in conserved Gag epitopes, but other mechanisms remain incompletely known. We extend our knowledge of the impact of B*13-driven escape on HIV-1 replication by identifying Gag-K436R as a compensatory mutation for the fitness-costly Gag-I437L. We also identify Gag-I147L, the most rapidly and commonly selected B*13-driven substitution in HIV-1, as a putative C-terminal anchor residue mutation in a novel B*13 epitope. Most notably, we identify a novel escape-driven fitness defect: B*13-driven substitutions E24Q and Q107R in Nef, when present together, substantially impair this protein's ability to downregulate HLA class I. This, in turn, increases the visibility of infected cells to HIV-specific T cells. Our results suggest that B*13-associated escape mutations impair HIV-1 replication by two distinct mechanisms, that is, by reducing Gag fitness and dampening Nef immune evasion function.
Collapse
|
21
|
The Breadth of Expandable Memory CD8+ T Cells Inversely Correlates with Residual Viral Loads in HIV Elite Controllers. J Virol 2015; 89:10735-47. [PMID: 26269189 DOI: 10.1128/jvi.01527-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/27/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Previous studies have shown that elite controllers with minimal effector T cell responses harbor a low-frequency, readily expandable, highly functional, and broadly directed memory population. Here, we interrogated the in vivo relevance of this cell population by investigating whether the breadth of expandable memory responses is associated with the magnitude of residual viremia in individuals achieving durable suppression of HIV infection. HIV-specific memory CD8(+) T cells were expanded by using autologous epitopic and variant peptides. Viral load was measured by an ultrasensitive single-copy PCR assay. Following expansion, controllers showed a greater increase in the overall breadth of Gag responses than did untreated progressors (P = 0.01) as well as treated progressors (P = 0.0003). Nef- and Env-specific memory cells expanded poorly for all groups, and their expanded breadths were indistinguishable among groups (P = 0.9 for Nef as determined by a Kruskal-Wallis test; P = 0.6 for Env as determined by a Kruskal-Wallis test). More importantly, we show that the breadth of expandable, previously undetectable Gag-specific responses was inversely correlated with residual viral load (r = -0.6; P = 0.009). Together, these data reveal a direct link between the abundance of Gag-specific expandable memory responses and prolonged maintenance of low-level viremia. Our studies highlight a CD8(+) T cell feature that would be desirable in a vaccine-induced T cell response. IMPORTANCE Many studies have shown that the rare ability of some individuals to control HIV infection in the absence of antiretroviral therapy appears to be heavily dependent upon special HIV-specific killer T lymphocytes that are able to inhibit viral replication. The identification of key features of these immune cells has the potential to inform rational HIV vaccine design. This study shows that a special subset of killer lymphocytes, known as central memory CD8(+) T lymphocytes, is at least partially involved in the durable control of HIV replication. HIV controllers maintain a large proportion of Gag-specific expandable memory CD8(+) T cells involved in ongoing viral suppression. These data suggest that induction of this cell subset by future HIV vaccines may be important for narrowing possible routes of rapid escape from vaccine-induced CD8(+) T cell responses.
Collapse
|
22
|
Global Database-Driven Assessment of HIV-1 Adaptation to the Immune Repertoires of Human Populations. J Virol 2015; 89:10693-5. [PMID: 26246562 DOI: 10.1128/jvi.01355-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/27/2015] [Indexed: 11/20/2022] Open
Abstract
Associations between HIV-1 cytotoxic T lymphocyte (CTL) escape mutations and their restricting human leukocyte antigen (HLA) alleles imply that HIV could adapt to divergent HLA repertoires of human populations globally. Using publicly available databases, we examine the relationship between the frequencies of 19 experimentally validated CTL escape mutations in HIV-1 reverse transcriptase and their restricting HLA alleles in 59 countries. From these extensive data, we find evidence of differential HIV adaptations to human populations at only a limited number of the studied epitope sites.
Collapse
|
23
|
Fitness-Balanced Escape Determines Resolution of Dynamic Founder Virus Escape Processes in HIV-1 Infection. J Virol 2015. [PMID: 26223634 DOI: 10.1128/jvi.01876-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED To understand the interplay between host cytotoxic T-lymphocyte (CTL) responses and the mechanisms by which HIV-1 evades them, we studied viral evolutionary patterns associated with host CTL responses in six linked transmission pairs. HIV-1 sequences corresponding to full-length p17 and p24 gag were generated by 454 pyrosequencing for all pairs near the time of transmission, and seroconverting partners were followed for a median of 847 days postinfection. T-cell responses were screened by gamma interferon/interleukin-2 (IFN-γ/IL-2) FluoroSpot using autologous peptide sets reflecting any Gag variant present in at least 5% of sequence reads in the individual's viral population. While we found little evidence for the occurrence of CTL reversions, CTL escape processes were found to be highly dynamic, with multiple epitope variants emerging simultaneously. We found a correlation between epitope entropy and the number of epitope variants per response (r = 0.43; P = 0.05). In cases in which multiple escape mutations developed within a targeted epitope, a variant with no fitness cost became fixed in the viral population. When multiple mutations within an epitope achieved fitness-balanced escape, these escape mutants were each maintained in the viral population. Additional mutations found to confer escape but undetected in viral populations incurred high fitness costs, suggesting that functional constraints limit the available sites tolerable to escape mutations. These results further our understanding of the impact of CTL escape and reversion from the founder virus in HIV infection and contribute to the identification of immunogenic Gag regions most vulnerable to a targeted T-cell attack. IMPORTANCE Rapid diversification of the viral population is a hallmark of HIV-1 infection, and understanding the selective forces driving the emergence of viral variants can provide critical insight into the interplay between host immune responses and viral evolution. We used deep sequencing to comprehensively follow viral evolution over time in six linked HIV transmission pairs. We then mapped T-cell responses to explore if mutations arose due to adaption to the host and found that escape processes were often highly dynamic, with multiple mutations arising within targeted epitopes. When we explored the impact of these mutations on replicative capacity, we found that dynamic escape processes only resolve with the selection of mutations that conferred escape with no fitness cost to the virus. These results provide further understanding of the complicated viral-host interactions that occur during early HIV-1 infection and may help inform the design of future vaccine immunogens.
Collapse
|
24
|
Abstract
HIV-1 infection typically results from the transmission of a single viral variant, the transmitted/founder (T/F) virus. Studies of these HIV-1 variants provide critical information about the transmission bottlenecks and the selective pressures acting on the virus in the transmission fluid and in the recipient tissues. These studies reveal that T/F virus phenotypes are shaped by stochastic and selective forces that restrict transmission and may be targets for prevention strategies. In this Review, we highlight how studies of T/F viruses contribute to a better understanding of the biology of HIV-1 transmission and discuss how these findings affect HIV-1 prevention strategies.
Collapse
|
25
|
Adland E, Paioni P, Thobakgale C, Laker L, Mori L, Muenchhoff M, Csala A, Clapson M, Flynn J, Novelli V, Hurst J, Naidoo V, Shapiro R, Huang KHG, Frater J, Prendergast A, Prado JG, Ndung’u T, Walker BD, Carrington M, Jooste P, Goulder PJR. Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection. PLoS Pathog 2015; 11:e1004954. [PMID: 26076345 PMCID: PMC4468173 DOI: 10.1371/journal.ppat.1004954] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022] Open
Abstract
HLA class I polymorphism has a major influence on adult HIV disease progression. An important mechanism mediating this effect is the impact on viral replicative capacity (VRC) of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses. Factors that contribute to slow progression in pediatric HIV infection are less well understood. We here investigate the relationship between VRC and disease progression in pediatric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric infection. Studying a South African cohort of >350 ART-naïve, HIV-infected children and their mothers, we first observed that pediatric disease progression is significantly correlated with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004). The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01, resulted in significantly lower VRCs in adults (p<0.0001), but not in children. Similarly, in adults, but not in children, VRCs were significantly higher in subjects expressing the disease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007). Irrespective of the subject, VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002). In contrast to the impact of VRC common to progression in adults and children, the HLA effects on disease outcome, that are substantial in adults, are small and statistically insignificant in infected children. These data further highlight the important role that VRC plays both in adult and pediatric progression, and demonstrate that HLA-independent factors, yet to be fully defined, are predominantly responsible for pediatric non-progression.
Collapse
Affiliation(s)
- Emily Adland
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Paolo Paioni
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Christina Thobakgale
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Leana Laker
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Luisa Mori
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Maximilian Muenchhoff
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anna Csala
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Margaret Clapson
- Department of Paediatric Infectious Diseases, Great Ormond St Hospital for Children, London, United Kingdom
| | - Jacquie Flynn
- Department of Paediatric Infectious Diseases, Great Ormond St Hospital for Children, London, United Kingdom
| | - Vas Novelli
- Department of Paediatric Infectious Diseases, Great Ormond St Hospital for Children, London, United Kingdom
| | - Jacob Hurst
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- Oxford National Institute of Health Research, Biomedical Research Centre, Oxford, United Kingdom
| | - Vanessa Naidoo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Kuan-Hsiang Gary Huang
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - John Frater
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- Oxford National Institute of Health Research, Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew Prendergast
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Julia G. Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Boston, Massachusetts, United States of America
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Boston, Massachusetts, United States of America
| | - Mary Carrington
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Boston, Massachusetts, United States of America
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Pieter Jooste
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatric Infectious Diseases, Great Ormond St Hospital for Children, London, United Kingdom
| |
Collapse
|
26
|
Hancock G, Yang H, Yorke E, Wainwright E, Bourne V, Frisbee A, Payne TL, Berrong M, Ferrari G, Chopera D, Hanke T, Mothe B, Brander C, McElrath MJ, McMichael A, Goonetilleke N, Tomaras GD, Frahm N, Dorrell L. Identification of effective subdominant anti-HIV-1 CD8+ T cells within entire post-infection and post-vaccination immune responses. PLoS Pathog 2015; 11:e1004658. [PMID: 25723536 PMCID: PMC4344337 DOI: 10.1371/journal.ppat.1004658] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/05/2015] [Indexed: 01/01/2023] Open
Abstract
Defining the components of an HIV immunogen that could induce effective CD8+ T cell responses is critical to vaccine development. We addressed this question by investigating the viral targets of CD8+ T cells that potently inhibit HIV replication in vitro, as this is highly predictive of virus control in vivo. We observed broad and potent ex vivo CD8+ T cell-mediated viral inhibitory activity against a panel of HIV isolates among viremic controllers (VC, viral loads <5000 copies/ml), in contrast to unselected HIV-infected HIV Vaccine trials Network (HVTN) participants. Viral inhibition of clade-matched HIV isolates was strongly correlated with the frequency of CD8+ T cells targeting vulnerable regions within Gag, Pol, Nef and Vif that had been identified in an independent study of nearly 1000 chronically infected individuals. These vulnerable and so-called “beneficial” regions were of low entropy overall, yet several were not predicted by stringent conservation algorithms. Consistent with this, stronger inhibition of clade-matched than mismatched viruses was observed in the majority of subjects, indicating better targeting of clade-specific than conserved epitopes. The magnitude of CD8+ T cell responses to beneficial regions, together with viral entropy and HLA class I genotype, explained up to 59% of the variation in viral inhibitory activity, with magnitude of the T cell response making the strongest unique contribution. However, beneficial regions were infrequently targeted by CD8+ T cells elicited by vaccines encoding full-length HIV proteins, when the latter were administered to healthy volunteers and HIV-positive ART-treated subjects, suggesting that immunodominance hierarchies undermine effective anti-HIV CD8+ T cell responses. Taken together, our data support HIV immunogen design that is based on systematic selection of empirically defined vulnerable regions within the viral proteome, with exclusion of immunodominant decoy epitopes that are irrelevant for HIV control. Attempts to develop an HIV vaccine that elicits potent cell-mediated immunity have so far been unsuccessful. This is due in part to the use of immunogens that appear to recapitulate responses induced naturally by HIV that are, at best, partially effective. We previously showed that the capacity of CD8+ T cells from patients to block HIV replication in culture is strongly correlated with HIV control in vivo, therefore, we investigated the virological determinants of potent CD8+ T cell inhibitory activity. We observed that CD8+ T cells from patients with naturally low plasma viral loads (viremic controllers) were better able to inhibit the replication of diverse HIV strains in vitro than CD8+ T cells from HIV-noncontroller patients. Importantly, we also found that the potency of the antiviral activity in the latter group was strongly correlated with recognition of selected regions across the viral proteome that are critical to viral fitness. Vaccines that encode full-length viral proteins rarely elicited responses to these vulnerable regions. Taken together, our results provide insight into the characteristics of effective cell-mediated immune responses against HIV and how these may inform the design of better immunogens.
Collapse
Affiliation(s)
- Gemma Hancock
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Emma Wainwright
- Department of Sexual Health, Royal Berkshire NHS Foundation Trust, Reading, United Kingdom
| | - Victoria Bourne
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alyse Frisbee
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Tamika L. Payne
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Mark Berrong
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Denis Chopera
- Institute of Infectious Diseases and Molecular Medicine & Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Tomas Hanke
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Beatriz Mothe
- Irsicaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Christian Brander
- Irsicaixa AIDS Research Institute—HIVACAT, Hospital Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M. Juliana McElrath
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrew McMichael
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Georgia D. Tomaras
- Departments of Molecular Genetics and Microbiology, Surgery, Immunology, and Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Carlson JM, Le AQ, Shahid A, Brumme ZL. HIV-1 adaptation to HLA: a window into virus-host immune interactions. Trends Microbiol 2015; 23:212-24. [PMID: 25613992 DOI: 10.1016/j.tim.2014.12.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
HIV-1 develops specific mutations within its genome that allow it to escape detection by human leukocyte antigen (HLA) class I-restricted immune responses, notably those of CD8(+) cytotoxic T lymphocytes (CTL). HLA thus represents a major force driving the evolution and diversification of HIV-1 within individuals and at the population level. Importantly, the study of HIV-1 adaptation to HLA also represents an opportunity to identify what qualities constitute an effective immune response, how the virus in turn adapts to these pressures, and how we may harness this information to design HIV-1 vaccines that stimulate effective cellular immunity.
Collapse
Affiliation(s)
| | - Anh Q Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients. PLoS Pathog 2015; 11:e1004565. [PMID: 25569444 PMCID: PMC4287535 DOI: 10.1371/journal.ppat.1004565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/10/2014] [Indexed: 12/27/2022] Open
Abstract
Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/founder (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.
Collapse
|
29
|
Payne R, Muenchhoff M, Mann J, Roberts HE, Matthews P, Adland E, Hempenstall A, Huang KH, Brockman M, Brumme Z, Sinclair M, Miura T, Frater J, Essex M, Shapiro R, Walker BD, Ndung'u T, McLean AR, Carlson JM, Goulder PJR. Impact of HLA-driven HIV adaptation on virulence in populations of high HIV seroprevalence. Proc Natl Acad Sci U S A 2014; 111:E5393-400. [PMID: 25453107 PMCID: PMC4273423 DOI: 10.1073/pnas.1413339111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is widely believed that epidemics in new hosts diminish in virulence over time, with natural selection favoring pathogens that cause minimal disease. However, a tradeoff frequently exists between high virulence shortening host survival on the one hand but allowing faster transmission on the other. This is the case in HIV infection, where high viral loads increase transmission risk per coital act but reduce host longevity. We here investigate the impact on HIV virulence of HIV adaptation to HLA molecules that protect against disease progression, such as HLA-B*57 and HLA-B*58:01. We analyzed cohorts in Botswana and South Africa, two countries severely affected by the HIV epidemic. In Botswana, where the epidemic started earlier and adult seroprevalence has been higher, HIV adaptation to HLA including HLA-B*57/58:01 is greater compared with South Africa (P = 7 × 10(-82)), the protective effect of HLA-B*57/58:01 is absent (P = 0.0002), and population viral replicative capacity is lower (P = 0.03). These data suggest that viral evolution is occurring relatively rapidly, and that adaptation of HIV to the most protective HLA alleles may contribute to a lowering of viral replication capacity at the population level, and a consequent reduction in HIV virulence over time. The potential role in this process played by increasing antiretroviral therapy (ART) access is also explored. Models developed here suggest distinct benefits of ART, in addition to reducing HIV disease and transmission, in driving declines in HIV virulence over the course of the epidemic, thereby accelerating the effects of HLA-mediated viral adaptation.
Collapse
Affiliation(s)
- Rebecca Payne
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | | | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Hannah E Roberts
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford OX1 3BD, United Kingdom; Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Philippa Matthews
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Allison Hempenstall
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Kuan-Hsiang Huang
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford OX1 3BD, United Kingdom; Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Mark Brockman
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
| | - Zabrina Brumme
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
| | - Marc Sinclair
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | | | - John Frater
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford OX1 3BD, United Kingdom; Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom; Oxford National Institute of Health Research, Biomedical Research Centre, Oxford OX1 3SY, United Kingdom
| | - Myron Essex
- Botswana Harvard AIDS Institute Partnership, Gaborone BO 320, Botswana; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02215
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone BO 320, Botswana; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02215
| | - Bruce D Walker
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02139
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02139
| | - Angela R McLean
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford OX1 3BD, United Kingdom; Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; and
| | | | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa;
| |
Collapse
|
30
|
de Goede AL, Vulto AG, Osterhaus ADME, Gruters RA. Understanding HIV infection for the design of a therapeutic vaccine. Part I: Epidemiology and pathogenesis of HIV infection. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 73:87-99. [PMID: 25496723 DOI: 10.1016/j.pharma.2014.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/01/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
HIV infection leads to a gradual loss CD4+ T lymphocytes comprising immune competence and progression to AIDS. Effective treatment with combined antiretroviral drugs (cART) decreases viral load below detectable levels but is not able to eliminate the virus from the body. The success of cART is frustrated by the requirement of expensive life-long adherence, accumulating drug toxicities and chronic immune activation resulting in increased risk of several non-AIDS disorders, even when viral replication is suppressed. Therefore there is a strong need for therapeutic strategies as an alternative to cART. Immunotherapy, or therapeutic vaccination, aims to increase existing immune responses against HIV or induce de novo immune responses. These immune responses should provide a functional cure by controlling viral replication and preventing disease progression in the absence of cART. The key difficulty in the development of an HIV vaccine is our ignorance of the immune responses that control of viral replication, and thus how these responses can be elicited and how they can be monitored. Part one of this review provides an extensive overview of the (patho-) physiology of HIV infection. It describes the structure and replication cycle of HIV, the epidemiology and pathogenesis of HIV infection and the innate and adaptive immune responses against HIV. Part two of this review discusses therapeutic options for HIV. Prevention modalities and antiretroviral therapy are briefly touched upon, after which an extensive overview on vaccination strategies for HIV is provided, including the choice of immunogens and delivery strategies.
Collapse
Affiliation(s)
- A L de Goede
- Department of Viroscience, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands.
| | - A G Vulto
- Department of Hospital Pharmacy, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands
| | - R A Gruters
- Department of Viroscience, Erasmus MC 's-Gravendijkwal 230, 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
31
|
Pereyra F, Heckerman D, Carlson JM, Kadie C, Soghoian DZ, Karel D, Goldenthal A, Davis OB, DeZiel CE, Lin T, Peng J, Piechocka A, Carrington M, Walker BD. HIV control is mediated in part by CD8+ T-cell targeting of specific epitopes. J Virol 2014; 88:12937-48. [PMID: 25165115 PMCID: PMC4249072 DOI: 10.1128/jvi.01004-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED We investigated the hypothesis that the correlation between the class I HLA types of an individual and whether that individual spontaneously controls HIV-1 is mediated by the targeting of specific epitopes by CD8(+) T cells. By measuring gamma interferon enzyme-linked immunosorbent spot (ELISPOT) assay responses to a panel of 257 optimally defined epitopes in 341 untreated HIV-infected persons, including persons who spontaneously control viremia, we found that the correlation between HLA types and control is mediated by the targeting of specific epitopes. Moreover, we performed a graphical model-based analysis that suggested that the targeting of specific epitopes is a cause of such control--that is, some epitopes are protective rather than merely associated with control--and identified eight epitopes that are significantly protective. In addition, we use an in silico analysis to identify protein regions where mutations are likely to affect the stability of a protein, and we found that the protective epitopes identified by the ELISPOT analysis correspond almost perfectly to such regions. This in silico analysis thus suggests a possible mechanism for control and could be used to identify protective epitopes that are not often targeted in natural infection but that may be potentially useful in a vaccine. Our analyses thus argue for the inclusion (and exclusion) of specific epitopes in an HIV vaccine. IMPORTANCE Some individuals naturally control HIV replication in the absence of antiretroviral therapy, and this ability to control is strongly correlated with the HLA class I alleles that they express. Here, in a large-scale experimental study, we provide evidence that this correlation is mediated largely by the targeting of specific CD8(+) T-cell epitopes, and we identify eight epitopes that are likely to cause control. In addition, we provide an in silico analysis indicating that control occurs because mutations within these epitopes change the stability of the protein structures. This in silico analysis also identified additional epitopes that are not typically targeted in natural infection but may lead to control when included in a vaccine, provided that other epitopes that would otherwise distract the immune system from targeting them are excluded from the vaccine.
Collapse
Affiliation(s)
- Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Carl Kadie
- Microsoft Research, Redmond, Washington, USA
| | | | - Daniel Karel
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Ariel Goldenthal
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Oliver B Davis
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | | | - Tienho Lin
- Microsoft Research, Los Angeles, California, USA
| | - Jian Peng
- Microsoft Research, Los Angeles, California, USA
| | - Alicja Piechocka
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
32
|
The route of HIV escape from immune response targeting multiple sites is determined by the cost-benefit tradeoff of escape mutations. PLoS Comput Biol 2014; 10:e1003878. [PMID: 25356981 PMCID: PMC4214571 DOI: 10.1371/journal.pcbi.1003878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/21/2014] [Indexed: 12/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) are a major factor in the control of HIV replication. CTL arise in acute infection, causing escape mutations to spread rapidly through the population of infected cells. As a result, the virus develops partial resistance to the immune response. The factors controlling the order of mutating epitope sites are currently unknown and would provide a valuable tool for predicting conserved epitopes. In this work, we adapt a well-established mathematical model of HIV evolution under dynamical selection pressure from multiple CTL clones to include partial impairment of CTL recognition, , as well as cost to viral replication, . The process of escape is described in terms of the cost-benefit tradeoff of escape mutations and predicts a trajectory in the cost-benefit plane connecting sequentially escaped sites, which moves from high recognition loss/low fitness cost to low recognition loss/high fitness cost and has a larger slope for early escapes than for late escapes. The slope of the trajectory offers an interpretation of positive correlation between fitness costs and HLA binding impairment to HLA-A molecules and a protective subset of HLA-B molecules that was observed for clinically relevant escape mutations in the Pol gene. We estimate the value of from published experimental studies to be in the range (0.01–0.86) and show that the assumption of complete recognition loss () leads to an overestimate of mutation cost. Our analysis offers a consistent interpretation of the commonly observed pattern of escape, in which several escape mutations are observed transiently in an epitope. This non-nested pattern is a combined effect of temporal changes in selection pressure and partial recognition loss. We conclude that partial recognition loss is as important as fitness loss for predicting the order of escapes and, ultimately, for predicting conserved epitopes that can be targeted by vaccines. Like many viruses, HIV has evolved mechanisms to evade the host immune response. As early as a few weeks after infection is initiated, mutations appear in the viral genome that reduce the ability of cytotoxic T lymphocytes (CTL) to control virus replication. However, of the many mutations in the viral genome that could potentially mediate viral escape from the CTL response, a specific subset are typically observed. This suggests that some mutations either entail too high a fitness cost for the virus, or are relatively inefficient escape mutations. A successful vaccine would target the CTL response to these regions in such a way that escape would not be possible. We use a computational model of HIV infection in order to study the factors that determine whether a given escape mutation will occur, how long it will be maintained in the population, and how these changes in the viral genome will affect the CTL response. Our analysis highlights the important role of partial recognition loss conferred by a mutation in producing the complex dynamics of escape that are observed during the course of infection.
Collapse
|
33
|
Claiborne DT, Prince JL, Hunter E. A restriction enzyme based cloning method to assess the in vitro replication capacity of HIV-1 subtype C Gag-MJ4 chimeric viruses. J Vis Exp 2014:51506. [PMID: 25225725 PMCID: PMC4364379 DOI: 10.3791/51506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Collapse
Affiliation(s)
- Daniel T Claiborne
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University
| | - Jessica L Prince
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University; Department of Pathology and Laboratory Medicine, Emory University;
| |
Collapse
|
34
|
Song H, Hora B, Bhattacharya T, Goonetilleke N, Liu MKP, Wiehe K, Li H, Iyer SS, McMichael AJ, Perelson AS, Gao F. Reversion and T cell escape mutations compensate the fitness loss of a CD8+ T cell escape mutant in their cognate transmitted/founder virus. PLoS One 2014; 9:e102734. [PMID: 25028937 PMCID: PMC4100905 DOI: 10.1371/journal.pone.0102734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
Immune escape mutations that revert back to the consensus sequence frequently occur in newly HIV-1-infected individuals and have been thought to render the viruses more fit. However, their impact on viral fitness and their interaction with other immune escape mutations have not been evaluated in the background of their cognate transmitted/founder (T/F) viral genomes. To precisely determine the role of reversion mutations, we introduced reversion mutations alone or together with CD8+ T cell escape mutations in their unmodified cognate T/F viral genome and determined their impact on viral fitness in primary CD4+ T cells. Two reversion mutations, V247I and I64T, were identified in Gag and Tat, respectively, but neither had measurable effect on the fitness of their cognate T/F virus. The V247I and G248A mutations that were detected before and concurrently with the potent T cell escape mutation T242N, respectively, were selected by early T cell responses. The V247I or the G248A mutation alone partially restored the fitness loss caused by the T242N mutation. Together they could fully restore the fitness of the T242N mutant to the T/F level. These results demonstrate that the fitness loss caused by a T cell escape mutation could be compensated by preexisting or concurrent reversion and other T cell escape mutations. Our findings indicate that the overall viral fitness is modulated by the complex interplay among T cell escape, compensatory and reversion mutations to maintain the balance between immune escape and viral replication capacity.
Collapse
Affiliation(s)
- Hongshuo Song
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Nilu Goonetilleke
- Weatherall Institute of molecular Medicine, University of Oxford, Oxford, England, United Kingdom
| | - Michael K. P. Liu
- Weatherall Institute of molecular Medicine, University of Oxford, Oxford, England, United Kingdom
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hui Li
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shilpa S. Iyer
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew J. McMichael
- Weatherall Institute of molecular Medicine, University of Oxford, Oxford, England, United Kingdom
| | - Alan S. Perelson
- Theoretical Division, Los Alamos National laboratory, Los Alamos, New Mexico, United States of America
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
35
|
Carlson JM, Schaefer M, Monaco DC, Batorsky R, Claiborne DT, Prince J, Deymier MJ, Ende ZS, Klatt NR, DeZiel CE, Lin TH, Peng J, Seese AM, Shapiro R, Frater J, Ndung'u T, Tang J, Goepfert P, Gilmour J, Price MA, Kilembe W, Heckerman D, Goulder PJR, Allen TM, Allen S, Hunter E. HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science 2014; 345:1254031. [PMID: 25013080 DOI: 10.1126/science.1254031] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heterosexual transmission of HIV-1 typically results in one genetic variant establishing systemic infection. We compared, for 137 linked transmission pairs, the amino acid sequences encoded by non-envelope genes of viruses in both partners and demonstrate a selection bias for transmission of residues that are predicted to confer increased in vivo fitness on viruses in the newly infected, immunologically naïve recipient. Although tempered by transmission risk factors, such as donor viral load, genital inflammation, and recipient gender, this selection bias provides an overall transmission advantage for viral quasispecies that are dominated by viruses with high in vivo fitness. Thus, preventative or therapeutic approaches that even marginally reduce viral fitness may lower the overall transmission rates and offer long-term benefits even upon successful transmission.
Collapse
Affiliation(s)
| | - Malinda Schaefer
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Daniela C Monaco
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rebecca Batorsky
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA
| | - Daniel T Claiborne
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jessica Prince
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Martin J Deymier
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Zachary S Ende
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Nichole R Klatt
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | - Jian Peng
- Microsoft Research, Redmond, WA 98052, USA
| | - Aaron M Seese
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA
| | - Roger Shapiro
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - John Frater
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 7BN, UK. National Institute of Health Research, Oxford Biomedical Research Centre, Oxford OX3 7LE, UK. Oxford Martin School, University of Oxford, Oxford OX1 3BD, UK
| | - Thumbi Ndung'u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02114, USA. HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa. KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa. Max Planck Institute for Infection Biology, D-10117 Berlin, Germany
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative, London SW10 9NH, UK. Imperial College of Science Technology and Medicine, London SW10 9NH, UK
| | - Matt A Price
- International AIDS Vaccine Initiative, San Francisco, CA 94105, USA. Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94105, USA
| | - William Kilembe
- Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia
| | | | - Philip J R Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4013, South Africa. Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK
| | - Todd M Allen
- Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA. Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Susan Allen
- International AIDS Vaccine Initiative, San Francisco, CA 94105, USA. Microsoft Research, Los Angeles, CA 98117, USA. Department of Paediatrics, University of Oxford, Oxford OX1 3SY, UK
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA. Rwanda-Zambia HIV Research Group: Zambia-Emory HIV Research Project, Lusaka, Zambia. Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
36
|
Abstract
Previous studies have demonstrated that effective cytotoxic T lymphocyte (CTL) responses drive the selection of escape mutations that reduce viral replication capacity (VRC). Escape mutations, including those with reduced VRC, can be transmitted and accumulate in a population. Here we compared two antiretroviral therapy (ART)-naive HIV clade B-infected cohorts, in Mexico and Barbados, in which the most protective HLA alleles (HLA-B*27/57/58:01/81:01) are differentially expressed, at 8% and 34%, respectively. Viral loads were significantly higher in Mexico than in Barbados (median, 40,774 versus 14,200; P < 0.0001), and absolute CD4+ T-cell counts were somewhat lower (median, 380/mm3 versus 403/mm3; P = 0.007). We tested the hypothesis that the disparate frequencies of these protective HLA alleles would be associated with a higher VRC at the population level in Mexico. Analysis of VRC in subjects in each cohort, matched for CD4+ T-cell count, revealed that the VRC was indeed higher in the Mexican cohort (mean, 1.13 versus 1.03; P = 0.0025). Although CD4 counts were matched, viral loads remained significantly higher in the Mexican subjects (P = 0.04). This VRC difference was reflected by a significantly higher frequency in the Barbados cohort of HLA-B*27/57/58:01/81:01-associated Gag escape mutations previously shown to incur a fitness cost on the virus (P = 0.004), a difference between the two cohorts that remained statistically significant even in subjects not expressing these protective alleles (P = 0.01). These data suggest that viral set points and disease progression rates at the population level may be significantly influenced by the prevalence of protective HLA alleles such as HLA-B*27/57/58:01/81:01 and that CD4 count-based guidelines to initiate antiretroviral therapy may need to be modified accordingly, to optimize the effectiveness of treatment-for-prevention strategies and reduce HIV transmission rates to the absolute minimum. IMPORTANCE Immune control of HIV at an individual level is strongly influenced by the HLA class I genotype. HLA class I molecules mediating effective immune control, such as HLA-B*27 and HLA-B*57, are associated with the selection of escape mutants that reduce viral replicative capacity. The escape mutants selected in infected patients can be transmitted and affect the viral load and CD4 count in the recipient. These findings prompt the hypothesis that the frequency of protective alleles in a population may affect viral set points and rates of disease progression in that population. These studies in Mexico and Barbados, where the prevalence rates of protective HLA alleles are 8% and 34%, respectively, support this hypothesis. These data suggest that antiretroviral therapy (ART) treatment-for-prevention strategies will be less successful in populations such as those in Mexico, where viral loads are higher for a given CD4 count. Consideration may therefore usefully be given to ART initiation at higher absolute CD4 counts in such populations to optimize the impact of ART for prevention.
Collapse
|
37
|
Payne RP, Branch S, Kløverpris H, Matthews PC, Koofhethile CK, Strong T, Adland E, Leitman E, Frater J, Ndung'u T, Hunter E, Haubrich R, Mothe B, Edwards A, Riddell L, Chen F, Harrigan PR, Brumme ZL, Mallal S, John M, Jooste JP, Shapiro R, Deeks SG, Walker BD, Brander C, Landis C, Carlson JM, Prado JG, Goulder PJR. Differential escape patterns within the dominant HLA-B*57:03-restricted HIV Gag epitope reflect distinct clade-specific functional constraints. J Virol 2014; 88:4668-78. [PMID: 24501417 PMCID: PMC3993828 DOI: 10.1128/jvi.03303-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/02/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED HLA-B*57:01 and HLA-B*57:03, the most prevalent HLA-B*57 subtypes in Caucasian and African populations, respectively, are the HLA alleles most protective against HIV disease progression. Understanding the mechanisms underlying this immune control is of critical importance, yet they remain unclear. Unexplained differences are observed in the impact of the dominant cytotoxic T lymphocyte (CTL) response restricted by HLA-B*57:01 and HLA-B*57:03 in chronic infection on the Gag epitope KAFSPEVIPMF (KF11; Gag 162 to 172). We previously showed that the HLA-B*57:03-KF11 response is associated with a >1-log-lower viral setpoint in C clade virus infection and that this response selects escape mutants within the epitope. We first examined the relationship of KF11 responses in B clade virus-infected subjects with HLA-B*57:01 to immune control and observed that a detectable KF11 response was associated with a >1-log-higher viral load (P = 0.02). No evidence of HLA-B*57:01-KF11-associated selection pressure was identified in previous comprehensive analyses of >1,800 B clade virus-infected subjects. We then studied a B clade virus-infected cohort in Barbados, where HLA-B*57:03 is highly prevalent. In contrast to findings for B clade virus-infected subjects expressing HLA-B*57:01, we observed strong selection pressure driven by the HLA-B*57:03-KF11 response for the escape mutation S173T. This mutation reduces recognition of virus-infected cells by HLA-B*57:03-KF11 CTLs and is associated with a >1-log increase in viral load in HLA-B*57:03-positive subjects (P = 0.009). We demonstrate functional constraints imposed by HIV clade relating to the residue at Gag 173 that explain the differential clade-specific escape patterns in HLA-B*57:03 subjects. Further studies are needed to evaluate the role of the KF11 response in HLA-B*57:01-associated HIV disease protection. IMPORTANCE HLA-B*57 is the HLA class I molecule that affords the greatest protection against disease progression in HIV infection. Understanding the key mechanism(s) underlying immunosuppression of HIV is of importance in guiding therapeutic and vaccine-related approaches to improve the levels of HIV control occurring in nature. Numerous mechanisms have been proposed to explain the HLA associations with differential HIV disease outcome, but no consensus exists. These studies focus on two subtypes of HLA-B*57 prevalent in Caucasian and African populations, HLA-B*57:01 and HLA-B*57:03, respectively. These alleles appear equally protective against HIV disease progression. The CTL epitopes presented are in many cases identical, and the dominant response in chronic infection in each case is to the Gag epitope KF11. However, there the similarity ends. This study sought to better understand the reasons for these differences and what they teach us about which immune responses contribute to immune control of HIV infection.
Collapse
Affiliation(s)
- R. P. Payne
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - S. Branch
- Ladymeade Reference Unit, Queen Elizabeth Hospital, Bridgetown, Barbados
| | - H. Kløverpris
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- K-RITH, University of Kwa-Zulu Natal, Duran, South Africa
| | - P. C. Matthews
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - C. K. Koofhethile
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - T. Strong
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - E. Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - E. Leitman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - J. Frater
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - T. Ndung'u
- HIV Pathogenesis Program, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - E. Hunter
- Emory Vaccine Center, Yerkes National Primate Research Centre, Emory University, Atlanta, Georgia, USA
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - R. Haubrich
- Antiviral Research Center, University of California San Diego, San Diego, California, USA
| | - B. Mothe
- IrsiCaixa AIDS Research Institute-HIVCAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - A. Edwards
- Oxford Department of Genitourinary Medicine, The Churchill Hospital, Oxford, United Kingdom
| | - L. Riddell
- Department of Genitourinary Medicine, Northamptonshire Healthcare National Health Service Trust, Northampton General Hospital, Cliftonville, Northampton, United Kingdom
| | - F. Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - P. R. Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Z. L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - S. Mallal
- Centre for Clinical Immunology and Biomedical Statistics, Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - M. John
- Centre for Clinical Immunology and Biomedical Statistics, Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - J. P. Jooste
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - R. Shapiro
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - S. G. Deeks
- Department of Medicine, University of California, San Francisco, California, USA
| | - B. D. Walker
- HIV Pathogenesis Program, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, AIDS Research Center, Charlestown, Massachusetts, USA
| | - C. Brander
- IrsiCaixa AIDS Research Institute-HIVCAT, Hospital Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - C. Landis
- Ladymeade Reference Unit, Queen Elizabeth Hospital, Bridgetown, Barbados
| | - J. M. Carlson
- Microsoft Research, eScience Group, Los Angeles, California, USA
| | - J. G. Prado
- IrsiCaixa AIDS Research Institute-HIVCAT, Hospital Germans Trias i Pujol, Badalona, Spain
| | - P. J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Program, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
38
|
HLA-B27-mediated protection in HIV and hepatitis C virus infection and pathogenesis in spondyloarthritis: two sides of the same coin? Curr Opin Rheumatol 2014; 25:426-33. [PMID: 23656712 DOI: 10.1097/bor.0b013e328362018f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW HLA-B27 is associated with low viral load and long-term nonprogression in HIV infection as well as spontaneous clearance of hepatitis C virus (HCV) infection. This review summarizes mechanisms that have been suggested to be involved in this protective effect of HLA-B27, and highlights possible lessons for the role of HLA-B27 in spondyloarthritis. RECENT FINDINGS Recent studies linked protection by HLA-B27 in HIV and HCV infection to virological mechanisms such as a complicated pathways of viral escape from immunodominant HLA-B27-restricted virus-specific CD8+ T-cell epitopes. In addition, several immunological mechanisms have been proposed, including CD8+ T-cell polyfunctionality and functional avidity, thymic selection of CD8+ T-cell precursors, specific T-cell receptor repertoires and clonotypes, efficient antigen processing, and evasion from regulatory T-cell-mediated suppression. SUMMARY Multiple virological and immunological mechanisms have been suggested to contribute to HLA-B27-mediated protection in HIV and HCV infection. Some of these mechanisms may also be involved in HLA-B27-associated pathogenesis in spondyloarthritis.
Collapse
|
39
|
Tertiary mutations stabilize CD8+ T lymphocyte escape-associated compensatory mutations following transmission of simian immunodeficiency virus. J Virol 2013; 88:3598-604. [PMID: 24371068 DOI: 10.1128/jvi.03304-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Compensatory mutations offset fitness defects resulting from CD8(+) T lymphocyte (CD8(TL))-mediated escape, but their impact on viral evolution following transmission to naive hosts remains unclear. Here, we investigated the reversion kinetics of Gag(181-189)CM9 CD8(TL) escape-associated compensatory mutations in simian immunodeficiency virus (SIV)-infected macaques. Preexisting compensatory mutations did not result in acute-phase escape of the SIVmac239 CD8(TL) epitope Gag(181-189)CM9 and instead required a tertiary mutation for stabilization in the absence of Gag(181-189)CM9 escape mutations. Therefore, transmitted compensatory mutations do not necessarily predict rapid CD8(TL) escape.
Collapse
|
40
|
Fenton-May AE, Dibben O, Emmerich T, Ding H, Pfafferott K, Aasa-Chapman MM, Pellegrino P, Williams I, Cohen MS, Gao F, Shaw GM, Hahn BH, Ochsenbauer C, Kappes JC, Borrow P. Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology 2013; 10:146. [PMID: 24299076 PMCID: PMC3907080 DOI: 10.1186/1742-4690-10-146] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/22/2013] [Indexed: 12/24/2022] Open
Abstract
Background Following mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons (IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses replicating during chronic infection, when type 1 IFNs are produced at much lower levels. To address this hypothesis, the relative resistance of virus isolates derived from HIV-1-infected individuals during acute and chronic infection to control by type 1 IFNs was analysed. Results The replication of plasma virus isolates generated from subjects acutely infected with HIV-1 and molecularly cloned founder HIV-1 strains could be reduced but not fully suppressed by type 1 IFNs in vitro. The mean IC50 value for IFNα2 (22 U/ml) was lower than that for IFNβ (346 U/ml), although at maximally-inhibitory concentrations both IFN subtypes inhibited virus replication to similar extents. Individual virus isolates exhibited differential susceptibility to inhibition by IFNα2 and IFNβ, likely reflecting variation in resistance to differentially up-regulated IFN-stimulated genes. Virus isolates from subjects acutely infected with HIV-1 were significantly more resistant to in vitro control by IFNα than virus isolates generated from the same individuals during chronic, asymptomatic infection. Viral IFN resistance declined rapidly after the acute phase of infection: in five subjects, viruses derived from six-month consensus molecular clones were significantly more sensitive to the antiviral effects of IFNs than the corresponding founder viruses. Conclusions The establishment of systemic HIV-1 infection by relatively IFNα-resistant founder viruses lends strong support to the hypothesis that IFNα plays an important role in the control of HIV-1 replication during the earliest stages of infection, prior to systemic viral spread. These findings suggest that it may be possible to harness the antiviral activity of type 1 IFNs in prophylactic and potentially also therapeutic strategies to combat HIV-1 infection.
Collapse
Affiliation(s)
- Angharad E Fenton-May
- Nuffield Department of Medicine, University of Oxford, NDM Research Building, Old Road Campus, Headington, Oxford OX3 7FZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Increased sequence coverage through combined targeting of variant and conserved epitopes correlates with control of HIV replication. J Virol 2013; 88:1354-65. [PMID: 24227851 DOI: 10.1128/jvi.02361-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major challenge in the development of an HIV vaccine is that of contending with the extensive sequence variability found in circulating viruses. Induction of HIV-specific T-cell responses targeting conserved regions and induction of HIV-specific T-cell responses recognizing a high number of epitope variants have both been proposed as strategies to overcome this challenge. We addressed the ability of cytotoxic T lymphocytes from 30 untreated HIV-infected subjects with and without control of virus replication to recognize all clade B Gag sequence variants encoded by at least 5% of the sequences in the Los Alamos National Laboratory HIV database (1,300 peptides) using gamma interferon and interleukin-2 (IFN-γ/IL-2) FluoroSpot analysis. While targeting of conserved regions was similar in the two groups (P = 0.47), we found that subjects with control of virus replication demonstrated marginally lower recognition of Gag epitope variants than subjects with normal progression (P = 0.05). In viremic controllers and progressors, we found variant recognition to be associated with viral load (r = 0.62, P = 0.001). Interestingly, we show that increased overall sequence coverage, defined as the overall proportion of HIV database sequences targeted through the Gag-specific repertoire, is inversely associated with viral load (r = -0.38, P = 0.03). Furthermore, we found that sequence coverage, but not variant recognition, correlated with increased recognition of a panel of clade B HIV founder viruses (r = 0.50, P = 0.004). We propose sequence coverage by HIV Gag-specific immune responses as a possible correlate of protection that may contribute to control of virus replication. Additionally, sequence coverage serves as a valuable measure by which to evaluate the protective potential of future vaccination strategies.
Collapse
|
42
|
Adland E, Carlson JM, Paioni P, Kløverpris H, Shapiro R, Ogwu A, Riddell L, Luzzi G, Chen F, Balachandran T, Heckerman D, Stryhn A, Edwards A, Ndung’u T, Walker BD, Buus S, Goulder P, Matthews PC. Nef-specific CD8+ T cell responses contribute to HIV-1 immune control. PLoS One 2013; 8:e73117. [PMID: 24023819 PMCID: PMC3759414 DOI: 10.1371/journal.pone.0073117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/24/2013] [Indexed: 12/29/2022] Open
Abstract
Recent studies in the SIV-macaque model of HIV infection suggest that Nef-specific CD8+ T-cell responses may mediate highly effective immune control of viraemia. In HIV infection Nef recognition dominates in acute infection, but in large cohort studies of chronically infected subjects, breadth of T cell responses to Nef has not been correlated with significant viraemic control. Improved disease outcomes have instead been associated with targeting Gag and, in some cases, Pol. However analyses of the breadth of Nef-specific T cell responses have been confounded by the extreme immunogenicity and multiple epitope overlap within the central regions of Nef, making discrimination of distinct responses impossible via IFN-gamma ELISPOT assays. Thus an alternative approach to assess Nef as an immune target is needed. Here, we show in a cohort of >700 individuals with chronic C-clade infection that >50% of HLA-B-selected polymorphisms within Nef are associated with a predicted fitness cost to the virus, and that HLA-B alleles that successfully drive selection within Nef are those linked with lower viral loads. Furthermore, the specific CD8+ T cell epitopes that are restricted by protective HLA Class I alleles correspond substantially to effective SIV-specific epitopes in Nef. Distinguishing such individual HIV-specific responses within Nef requires specific peptide-MHC I tetramers. Overall, these data suggest that CD8+ T cell targeting of certain specific Nef epitopes contributes to HIV suppression. These data suggest that a re-evaluation of the potential use of Nef in HIV T-cell vaccine candidates would be justified.
Collapse
Affiliation(s)
- Emily Adland
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Jonathan M. Carlson
- Microsoft Research, eScience Group, Los Angeles, California, United States of America
| | - Paolo Paioni
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Henrik Kløverpris
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- KwaZulu-Natal Research Institute for Tuberculosis & HIV, K-RITH, Nelson R Mandela School of Medicine, University of KwaZuluNatal, Durban, South Africa
| | - Roger Shapiro
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Anthony Ogwu
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northamptonshire Healthcare NHS Trust,Northampton General Hospital, Northampton, United Kingdom
| | - Graz Luzzi
- Department of Genitourinary Medicine, Wycombe Hospital, High Wycombe, Bucks, United Kingdom
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Thambiah Balachandran
- Department of Genitourinary Medicine, Luton and Dunstable Hospital, Luton, United Kingdom
| | - David Heckerman
- Microsoft Research, eScience Group, Los Angeles, California, United States of America
| | - Anette Stryhn
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Edwards
- The Oxford Department of Genitourinary Medicine, the Churchill Hospital, Oxford, United Kingdom
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, the Doris Duke Medical Research Institute, University of KwaZuluNatal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Bruce D. Walker
- HIV Pathogenesis Programme, the Doris Duke Medical Research Institute, University of KwaZuluNatal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, the Doris Duke Medical Research Institute, University of KwaZuluNatal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Philippa C. Matthews
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|