1
|
von Creytz I, Rohde C, Biedenkopf N. The cellular protein phosphatase 2A is a crucial host factor for Marburg virus transcription. J Virol 2024; 98:e0104724. [PMID: 39194238 PMCID: PMC11406900 DOI: 10.1128/jvi.01047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known regarding the molecular mechanisms that highly pathogenic Marburg virus (MARV) utilizes to transcribe and replicate its genome. Previous studies assumed that dephosphorylation of the filoviral transcription factor VP30 supports transcription, while phosphorylated VP30 reduces transcription. Here, we focused on the role of the host protein phosphatase 2A (PP2A) for VP30 dephosphorylation and promotion of viral transcription. We could show that MARV NP interacts with the subunit B56 of PP2A, as previously shown for the Ebola virus, and that this interaction is important for MARV transcription activity. Inhibition of the interaction between PP2A and NP either by mutating the B56 binding motif encoded on NP, or the use of a PP2A inhibitor, induced VP30 hyperphosphorylation, and as a consequence a decrease of MARV transcription as well as viral growth. These results suggest that NP plays a key role in the dephosphorylation of VP30 by recruiting PP2A. Generation of recombinant (rec) MARV lacking the PP2A-B56 interaction motif on NP was not possible suggesting an essential role of PP2A-mediated VP30 dephosphorylation for the MARV replication cycle. Likewise, we were not able to generate recMARV containing VP30 phosphomimetic mutants indicating that dynamic cycles of VP30 de- and rephosphorylation are a prerequisite for an efficient viral life cycle. As the specific binding motifs of PP2A-B56 and VP30 within NP are highly conserved among the filoviral family, our data suggest a conserved mechanism for filovirus VP30 dephosphorylation by PP2A, revealing the host factor PP2A as a promising target for pan-filoviral therapies. IMPORTANCE Our study elucidates the crucial role of host protein phosphatase 2A (PP2A) in Marburg virus (MARV) transcription. The regulatory subunit B56 of PP2A facilitates VP30 dephosphorylation, and hence transcription activation, via binding to NP. Our results, together with previous data, reveal a conserved mechanism of filovirus VP30 dephosphorylation by host factor PP2A at the NP interface and provide novel insights into potential pan-filovirus therapies.
Collapse
Affiliation(s)
- Isabel von Creytz
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Liang J, Djurkovic MA, Leavitt CG, Shtanko O, Harty RN. Hippo signaling pathway regulates Ebola virus transcription and egress. Nat Commun 2024; 15:6953. [PMID: 39138205 PMCID: PMC11322314 DOI: 10.1038/s41467-024-51356-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Filovirus-host interactions play important roles in all stages of the virus lifecycle. Here, we identify LATS1/2 kinases and YAP, key components of the Hippo pathway, as critical regulators of EBOV transcription and egress. Specifically, we find that when YAP is phosphorylated by LATS1/2, it localizes to the cytoplasm (Hippo "ON") where it sequesters VP40 to prevent egress. In contrast, when the Hippo pathway is "OFF", unphosphorylated YAP translocates to the nucleus where it transcriptionally activates host genes and promotes viral egress. Our data reveal that LATS2 indirectly modulates filoviral VP40-mediated egress through phosphorylation of AMOTp130, a positive regulator of viral egress, but more surprisingly that LATS1/2 kinases directly modulate EBOV transcription by phosphorylating VP30, an essential regulator of viral transcription. In sum, our findings highlight the potential to exploit the Hippo pathway/filovirus axis for the development of host-oriented countermeasures targeting EBOV and related filoviruses.
Collapse
Affiliation(s)
- Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA
| | - Marija A Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA
| | - Carson G Leavitt
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX, 78227, USA.
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Bodmer BS, Hoenen T, Wendt L. Molecular insights into the Ebola virus life cycle. Nat Microbiol 2024; 9:1417-1426. [PMID: 38783022 DOI: 10.1038/s41564-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Ebola virus and other orthoebolaviruses cause severe haemorrhagic fevers in humans, with very high case fatality rates. Their non-segmented single-stranded RNA genome encodes only seven structural proteins and a small number of non-structural proteins to facilitate the virus life cycle. The basics of this life cycle are well established, but recent advances have substantially increased our understanding of its molecular details, including the viral and host factors involved. Here we provide a comprehensive overview of our current knowledge of the molecular details of the orthoebolavirus life cycle, with a special focus on proviral host factors. We discuss the multistep entry process, viral RNA synthesis in specialized phase-separated intracellular compartments called inclusion bodies, the expression of viral proteins and ultimately the assembly of new virus particles and their release at the cell surface. In doing so, we integrate recent studies into the increasingly detailed model that has developed for these fundamental aspects of orthoebolavirus biology.
Collapse
Affiliation(s)
- Bianca S Bodmer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
4
|
Corda PO, Bollen M, Ribeiro D, Fardilha M. Emerging roles of the Protein Phosphatase 1 (PP1) in the context of viral infections. Cell Commun Signal 2024; 22:65. [PMID: 38267954 PMCID: PMC10807198 DOI: 10.1186/s12964-023-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit Leuven, Louvain, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
5
|
Wu C, Wagner ND, Moyle AB, Feng A, Sharma N, Stubbs SH, Donahue C, Davey RA, Gross ML, Leung DW, Amarasinghe GK. Disruption of Ebola NP 0VP35 Inclusion Body-like Structures reduce Viral Infection. J Mol Biol 2023; 435:168241. [PMID: 37598728 PMCID: PMC11312838 DOI: 10.1016/j.jmb.2023.168241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Viral inclusion bodies (IBs) are potential sites of viral replication and assembly. How viral IBs form remains poorly defined. Here we describe a combined biophysical and cellular approach to identify the components necessary for IB formation during Ebola virus (EBOV) infection. We find that the eNP0VP35 complex containing Ebola nucleoprotein (eNP) and viral protein 35 (eVP35), the functional equivalents of nucleoprotein (N) and phosphoprotein (P) in non-segmented negative strand viruses (NNSVs), phase separates to form inclusion bodies. Phase separation of eNP0VP35 is reversible and modulated by ionic strength. The multivalency of eVP35, and not eNP, is also critical for phase separation. Furthermore, overexpression of an eVP35 peptide disrupts eNP0VP35 complex formation, leading to reduced frequency of IB formation and limited viral infection. Together, our results show that upon EBOV infection, the eNP0VP35 complex forms the minimum unit to drive IB formation and viral replication.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Austin B Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Annie Feng
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nitin Sharma
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sarah H Stubbs
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Callie Donahue
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Robert A Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Zheng K, Ren Z, Wang Y. Serine-arginine protein kinases and their targets in viral infection and their inhibition. Cell Mol Life Sci 2023; 80:153. [PMID: 37198350 PMCID: PMC10191411 DOI: 10.1007/s00018-023-04808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Accumulating evidence has consolidated the interaction between viral infection and host alternative splicing. Serine-arginine (SR) proteins are a class of highly conserved splicing factors critical for the spliceosome maturation, alternative splicing and RNA metabolism. Serine-arginine protein kinases (SRPKs) are important kinases that specifically phosphorylate SR proteins to regulate their distribution and activities in the central pre-mRNA splicing and other cellular processes. In addition to the predominant SR proteins, other cytoplasmic proteins containing a serine-arginine repeat domain, including viral proteins, have been identified as substrates of SRPKs. Viral infection triggers a myriad of cellular events in the host and it is therefore not surprising that viruses explore SRPKs-mediated phosphorylation as an important regulatory node in virus-host interactions. In this review, we briefly summarize the regulation and biological function of SRPKs, highlighting their involvement in the infection process of several viruses, such as viral replication, transcription and capsid assembly. In addition, we review the structure-function relationships of currently available inhibitors of SRPKs and discuss their putative use as antivirals against well-characterized viruses or newly emerging viruses. We also highlight the viral proteins and cellular substrates targeted by SRPKs as potential antiviral therapeutic candidates.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China.
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
7
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Phosphorylation of VP1 Mediated by CDK1-Cyclin B1 Facilitates Infectious Bursal Disease Virus Replication. J Virol 2023; 97:e0194122. [PMID: 36602364 PMCID: PMC9888224 DOI: 10.1128/jvi.01941-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infectious bursal disease virus (IBDV) is a double-stranded RNA (dsRNA) virus belonging to the genus Avibirnavirus in the family Birnaviridae. It can cause serious failure of vaccination in young poultry birds with impaired immune systems. Post-translational modifications of the VP1 protein are essential for viral RNA transcription, genome replication, and viral multiplication. Little information is available so far regarding the exact mechanism of phosphorylation of IBDV VP1 and its significance in the viral life cycle. Here, we provide several lines of evidence that the cyclin-dependent kinase 1 (CDK1)-cyclin B1 complex phosphorylates VP1, which facilitates viral replication. We show that the CDK1-cyclin B1 specifically interacts with VP1 and phosphorylates VP1 on the serine 7 residue, located in the N-terminal 7SPAQ10 region, which follows the optimal phosphorylation motif of CDK1, p-S/T-P. Additionally, IBDV infection drives the cytoplasmic accumulation of CDK1-cyclin B1, which co-localizes with VP1, supporting the kinase activity of CDK1-cyclin B1. Treatment with CDK1 inhibitor RO3306 and knockdown of CDK1-cyclin B1 severely disrupts the polymerase activity of VP1, resulting in diminished viral replication. Moreover, the replication of S7A mutant recombinant IBDV was significantly decreased compared to that of wild-type (WT) IBDV. Thus, CDK1-cyclin B1 is a crucial enzyme which phosphorylates IBDV VP1 on serine 7, which is necessary both for the polymerase activity of VP1 and for viral replication. IMPORTANCE Infectious bursal disease virus still poses a great economic threat to the global poultry farming industry. Detailed information on the steps of viral genome replication is essential for the development of antiviral therapeutics. Phosphorylation is a common post-translational modification in several viral proteins. There is a lack of information regarding the significance of VP1 phosphorylation and its role in modulating the viral life cycle. In this study, we found that CDK1-cyclin B1 accumulates in the cytoplasm and phosphorylates VP1 on serine 7. The presence of a CDK1 inhibitor and the silencing of CDK1-cyclin B1 decrease IBDV replication. The mutation of VP1 serine 7 to alanine reduces VP1 polymerase activity, disrupting the viral life cycle, which suggests that this residue serves an essential function. Our study offers novel insights into the regulatory mechanism of VP1 phosphorylation.
Collapse
|
9
|
Tong XK, Li H, Yang L, Xie SZ, Xie S, Gong Y, Peng C, Gao XX, Shi ZL, Yang XL, Zuo JP. Multiplication of defective Ebola virus in a complementary permissive cell line. Antiviral Res 2023; 209:105491. [PMID: 36526073 DOI: 10.1016/j.antiviral.2022.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
In an effort to develop safe and innovative in vitro models for Ebola virus (EBOV) research, we generated a recombinant Ebola virus where the glycoprotein (GP) gene was substituted with the Cre recombinase (Cre) gene by reverse genetics. This defective virus could multiply itself in a complementary permissive cell line, which could express GP and reporter protein upon exogenous Cre existence. The main features of this novel model for Ebola virus are intact viral life cycle, robust virus multiplication and normal virions morphology. The design of this model ensures its safety, excellent stability and maneuverability as a tool for virology research as well as for antiviral agent screening and drug discovery, and such a design could be further adapted to other viruses.
Collapse
Affiliation(s)
- Xian-Kun Tong
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Heng Li
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yang
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Zhe Xie
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sha Xie
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Gong
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiao-Xiao Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Jiangxia Lab, Wuhan, 430071, China.
| | - Jian-Ping Zuo
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
10
|
Heiden B, Mühlberger E, Lennon CW, Hume AJ. Labeling Ebola Virus with a Self-Splicing Fluorescent Reporter. Microorganisms 2022; 10:2110. [PMID: 36363701 PMCID: PMC9696229 DOI: 10.3390/microorganisms10112110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 07/21/2023] Open
Abstract
Inteins (intervening proteins) are polypeptides that interrupt the sequence of other proteins and remove themselves through protein splicing. In this intein-catalyzed reaction, the two peptide bonds surrounding the intein are rearranged to release the intein from the flanking protein sequences, termed N- and C-exteins, which are concurrently joined by a peptide bond. Because of this unique functionality, inteins have proven exceptionally useful in protein engineering. Previous work has demonstrated that heterologous proteins can be inserted within an intein, with both the intein and inserted protein retaining function, allowing for intein-containing genes to coexpress additional coding sequences. Here, we show that a fluorescent protein (ZsGreen) can be inserted within the Pyrococcus horikoshii RadA intein, with the hybrid protein (ZsG-Int) maintaining fluorescence and splicing capability. We used this system to create a recombinant Ebola virus expressing a fluorescent protein. We first tested multiple potential insertion sites for ZsG-Int within individual Ebola virus proteins, identifying a site within the VP30 gene that facilitated efficient intein splicing in mammalian cells while also preserving VP30 function. Next, we successfully rescued a virus containing the ZsG-Int-VP30 fusion protein, which displayed fluorescence in the infected cells. We thus report a new intein-based application for adding reporters to systems without the need to add additional genes. Further, this work highlights a novel reporter design, whereby the reporter is only made if the protein of interest is translated and does not remain fused to the protein of interest.
Collapse
Affiliation(s)
- Baylee Heiden
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | | | - Adam J. Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
- Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, MA 02118, USA
| |
Collapse
|
11
|
Edwards MR, Vogel OA, Mori H, Davey RA, Basler CF. Marburg Virus VP30 Is Required for Transcription Initiation at the Glycoprotein Gene. mBio 2022; 13:e0224322. [PMID: 35997284 PMCID: PMC9601197 DOI: 10.1128/mbio.02243-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Marburg virus (MARV) is an enveloped, negative-sense RNA virus from the filovirus family that causes outbreaks of severe, frequently fatal illness in humans. Of the seven MARV proteins, the VP30 protein stands out because it is essential for viral growth but lacks a definitive function. Here, we used model MARV genome RNAs for one or two reporter genes and the MARV VP40, glycoprotein (GP), and VP24 genes to demonstrate that VP30 is dispensable for the transcription of some genes but critical for transcription reinitiation at the GP gene. This results in the loss of the expression of GP and downstream genes and the impaired production of infectious particles when VP30 is absent. Bicistronic minigenome assays demonstrate that the VP40 gene end/GP gene start junction specifically confers VP30 dependence. A region at the GP gene start site predicted to form a stem-loop contributes to VP30 dependence because the replacement of the GP stem-loop with corresponding sequences from the MARV VP35 gene relieves VP30 dependence. Finally, a Cys3-His zinc binding motif characteristic of filovirus VP30 proteins was demonstrated to be critical for reinitiation at GP. These findings address a long-standing gap in our understanding of MARV biology by defining a critical role for VP30 in MARV transcription. IMPORTANCE Marburg virus and Ebola virus encode VP30 proteins. While the role of VP30 in Ebola virus transcription has been well studied, the role of VP30 in the Marburg virus life cycle is not well understood. The work here demonstrates that different gene start sites within the Marburg viral genome have variable levels of dependence on Marburg virus VP30, with its expression being critical for transcription reinitiation at the GP gene start site. These findings address a long-standing question regarding Marburg virus VP30 function and further our understanding of how Marburg virus gene expression is regulated.
Collapse
Affiliation(s)
- Megan R. Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Olivia A. Vogel
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hiroyuki Mori
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Robert A. Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Christopher F. Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Abstract
Ebola virus (EBOV) VP30 regulates viral genome transcription and replication by switching its phosphorylation status. However, the importance of VP30 phosphorylation and dephosphorylation in other viral replication processes such as nucleocapsid and virion assembly is unclear. Interestingly, VP30 is predominantly dephosphorylated by cellular phosphatases in viral inclusions, while it is phosphorylated in the released virions. Thus, uncertainties regarding how VP30 phosphorylation in nucleocapsids is achieved and whether VP30 phosphorylation provides any advantages in later steps in viral replication have arisen. In the present study, to characterize the roles of VP30 phosphorylation in nucleocapsid formation, we used electron microscopic analyses and live cell imaging systems. We identified VP30 localized to the surface of protrusions surrounding nucleoprotein (NP)-forming helical structures in the nucleocapsid, suggesting the involvement in assembly and transport of nucleocapsids. Interestingly, VP30 phosphorylation facilitated its association with nucleocapsid-like structures (NCLSs). On the contrary, VP30 phosphorylation does not influence the transport characteristics and NCLS number leaving from and coming back into viral inclusions, indicating that the phosphorylation status of VP30 is not a prerequisite for NCLS departure. Moreover, the phosphorylation status of VP30 did not cause major differences in nucleocapsid transport in authentic EBOV-infected cells. In the following budding step, the association of VP30 and its phosphorylation status did not influence the budding efficiency of virus-like particles. Taken together, it is plausible that EBOV may utilize the phosphorylation of VP30 for its selective association with nucleocapsids, without affecting nucleocapsid transport and virion budding processes. IMPORTANCE Ebola virus (EBOV) causes severe fevers with unusually high case fatality rates. The nucleocapsid provides the template for viral genome transcription and replication. Thus, understanding the regulatory mechanism behind its formation is important for the development of novel therapeutic approaches. Previously, we established a live-cell imaging system based on the ectopic expression of viral fluorescent fusion proteins, allowing the visualization and characterization of intracytoplasmic transport of nucleocapsid-like structures. EBOV VP30 is an essential transcriptional factor for viral genome synthesis, and, although its role in viral genome transcription and replication is well understood, the functional importance of VP30 phosphorylation in assembly of nucleocapsids is still unclear. Our work determines the localization of VP30 at the surface of ruffled nucleocapsids, which differs from the localization of polymerase in EBOV-infected cells. This study sheds light on the novel role of VP30 phosphorylation in nucleocapsid assembly, which is an important prerequisite for virion formation.
Collapse
|
13
|
Abstract
Filovirus-infected cells are characterized by typical cytoplasmic inclusion bodies (IBs) located in the perinuclear region. The formation of these IBs is induced mainly by the accumulation of the filoviral nucleoprotein NP, which recruits the other nucleocapsid proteins, the polymerase co-factor VP35, the polymerase L, the transcription factor VP30 and VP24 via direct or indirect protein-protein interactions. Replication of the negative-strand RNA genomes by the viral polymerase L and VP35 occurs in the IBs, resulting in the synthesis of positive-strand genomes, which are encapsidated by NP, thus forming ribonucleoprotein complexes (antigenomic RNPs). These newly formed antigenomic RNPs in turn serve as templates for the synthesis of negative-strand RNA genomes that are also encapsidated by NP (genomic RNPs). Still in the IBs, genomic RNPs mature into tightly packed transport-competent nucleocapsids (NCs) by the recruitment of the viral protein VP24. NCs are tightly coiled left-handed helices whose structure is mainly determined by the multimerization of NP at its N-terminus, and these helices form the inner layer of the NCs. The RNA genome is fixed by 2 lobes of the NP N-terminus and is thus guided by individual NP molecules along the turns of the helix. Direct interaction of the NP C-terminus with the VP35 and VP24 molecules forms the outer layer of the NCs. Once formed, NCs that are located at the border of the IBs recruit actin polymerization machinery to one of their ends to drive their transport to budding sites for their envelopment and final release. Here, we review the current knowledge on the structure, assembly, and transport of filovirus NCs.
Collapse
Affiliation(s)
- Olga Dolnik
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
14
|
Hu X, Chen Z, Wu X, Ding Z, Zeng Q, Wu H. An Improved, Dual-Direction, Promoter-Driven, Reverse Genetics System for the Infectious Bursal Disease Virus (IBDV). Viruses 2022; 14:v14071396. [PMID: 35891377 PMCID: PMC9324645 DOI: 10.3390/v14071396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
The infectious bursal disease virus (IBDV), one member of the Birnaviridae family, causes immunosuppression in young chickens by damaging the mature B cells of the bursa of Fabricius (BF), the central immune system of young chickens. The genome of IBDV is a bisegmented, double-strand RNA (dsRNA). Reverse genetics systems for IBDV allow the generation of genetically manipulated infectious virus via transfected plasmid DNA, encoding the two genomic viral RNA segments as well as major viral proteins. For this purpose, the minus-sense of both segment A and segment B are inserted into vectors between the polymerase I promoter and the corresponding terminator I. These plasmids facilitate the transcription of the viral minus-sense genome but copy the plus-sense genome as well viral protein translation depends on the activity of VP1 and VP3, when transfected into 293T cells. To further improve rescue efficiency, dual-direction promoters were generated based on the polymerase II promoter in the reverse direction in the backbone of the pCDNA3.0 vector. Therefore, the polymerase I promoter transcribes the viral minus-sense genome in the forward direction and the polymerase II promoter transcribes viral mRNA, translated into viral proteins that produce infectious IBDV. We also found that the rescue efficiency of transfecting two plasmids is significantly higher than that of transfecting four plasmids. In addition, this dual-direction promoter rescue system was used to generate R186A mutant IBDV since Arg186 is the arginine monomer-methylation site identified by LC–MS. Our data furtherly showed that the Arg186 monomer methylation mutant was due to a reduction in VP1 polymerase activity as well as virus replication, suggesting that the Arg186 methylation site is essential for IBDV replication.
Collapse
Affiliation(s)
- Xifeng Hu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiangdong Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghua Zeng
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huansheng Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
15
|
Alizadeh M, Amini-Khoei H, Tahmasebian S, Ghatrehsamani M, Ghatreh Samani K, Edalatpanah Y, Rostampur S, Salehi M, Ghasemi-Dehnoo M, Azadegan-Dehkordi F, Sanami S, Bagheri N. Designing a novel multi‑epitope vaccine against Ebola virus using reverse vaccinology approach. Sci Rep 2022; 12:7757. [PMID: 35545650 PMCID: PMC9094136 DOI: 10.1038/s41598-022-11851-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
Ebola virus (EBOV) is a dangerous zoonotic infectious disease. To date, more than 25 EBOV outbreaks have been documented, the majority of which have occurred in Central Africa. The rVSVG-ZEBOV-GP vaccine (ERVEBO), a live attenuated vaccine, has been approved by the US Food and Drug Administration (FDA) to combat EBOV. Because of the several drawbacks of live attenuated vaccines, multi-epitope vaccines probably appear to be safer than live attenuated vaccines. In this work, we employed immunoinformatics tools to design a multi-epitope vaccine against EBOV. We collected sequences of VP35, VP24, VP30, VP40, GP, and NP proteins from the NCBI database. T-cell and linear B-cell epitopes from target proteins were identified and tested for antigenicity, toxicity, allergenicity, and conservancy. The selected epitopes were then linked together in the vaccine's primary structure using appropriate linkers, and the 50S ribosomal L7/L12 (Locus RL7 MYCTU) sequence was added as an adjuvant to the vaccine construct's N-terminal. The physicochemical, antigenicity, and allergenicity parameters of the vaccine were all found to be satisfactory. The 3D model of the vaccine was predicted, refined, and validated. The vaccine construct had a stable and strong interaction with toll-like receptor 4 (TLR4) based on molecular docking and molecular dynamic simulation (MD) analysis. The results of codon optimization and in silico cloning revealed that the proposed vaccine was highly expressed in Escherichia coli (E. coli). The findings of this study are promising; however, experimental validations should be carried out to confirm these findings.
Collapse
Affiliation(s)
- Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatrehsamani
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Keihan Ghatreh Samani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yadolah Edalatpanah
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Susan Rostampur
- Department of Molecular Medicine, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maryam Ghasemi-Dehnoo
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Azadegan-Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
16
|
Liu CH, Hu YT, Wong SH, Lin LT. Therapeutic Strategies against Ebola Virus Infection. Viruses 2022; 14:v14030579. [PMID: 35336986 PMCID: PMC8954160 DOI: 10.3390/v14030579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Since the 2014–2016 epidemic, Ebola virus (EBOV) has spread to several countries and has become a major threat to global health. EBOV is a risk group 4 pathogen, which imposes significant obstacles for the development of countermeasures against the virus. Efforts have been made to develop anti-EBOV immunization and therapeutics, with three vaccines and two antibody-based therapeutics approved in recent years. Nonetheless, the high fatality of Ebola virus disease highlights the need to continuously develop antiviral strategies for the future management of EBOV outbreaks in conjunction with vaccination programs. This review aims to highlight potential EBOV therapeutics and their target(s) of inhibition, serving as a summary of the literature to inform readers of the novel candidates available in the continued search for EBOV antivirals.
Collapse
Affiliation(s)
- Ching-Hsuan Liu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Yee-Tung Hu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Shu Hui Wong
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Correspondence:
| |
Collapse
|
17
|
Li J, Zhang Z, Lv J, Ma Z, Pan L, Zhang Y. Global Phosphoproteomics Analysis of IBRS-2 Cells Infected With Senecavirus A. Front Microbiol 2022; 13:832275. [PMID: 35154063 PMCID: PMC8826396 DOI: 10.3389/fmicb.2022.832275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Phosphorylation is a widespread posttranslational modification that regulates numerous biological processes. Viruses can alter the physiological activities of host cells to promote virus particle replication, and manipulating phosphorylation is one of the mechanisms. Senecavirus A (SVA) is the causative agent of porcine idiopathic vesicular disease. Although numerous studies on SVA have been performed, comprehensive phosphoproteomics analysis of SVA infection is lacking. The present study performed a quantitative mass spectrometry-based phosphoproteomics survey of SVA infection in Instituto Biologico-Rim Suino-2 (IBRS-2) cells. Three parallel experiments were performed, and 4,520 phosphosites were quantified on 2,084 proteins. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many phosphorylated proteins were involved in apoptosis and spliceosome pathways, and subcellular structure localization analysis revealed that more than half were located in the nucleus. Motif analysis of proteins with differentially regulated phosphosites showed that proline, aspartic acid, and glutamic acid were the most abundant residues in the serine motif, while proline and arginine were the most abundant in the threonine motif. Forty phosphosites on 27 proteins were validated by parallel reaction monitoring (PRM) phosphoproteomics, and 30 phosphosites in 21 proteins were verified. Nine proteins with significantly altered phosphosites were further discussed, and eight [SRRM2, CDK13, DDX20, DDX21, BAD, ELAVL1, PDZ-binding kinase (PBK), and STAT3] may play a role in SVA infection. Finally, kinase activity prediction showed 10 kinases’ activity was reversed following SVA infection. It is the first phosphoproteomics analysis of SVA infection of IBRS-2 cells, and the results greatly expand our knowledge of SVA infection. The findings provide a basis for studying the interactions of other picornaviruses and their mammalian host cells.
Collapse
Affiliation(s)
- Jieyi Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhongwang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- *Correspondence: Zhongwang Zhang,
| | - Jianliang Lv
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Zhongyuan Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Pan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Li Pan,
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Respiratory Syncytial Virus Phosphoprotein Residue S156 Plays a Role in Regulating Genome Transcription and Replication. J Virol 2021; 95:e0120621. [PMID: 34613802 DOI: 10.1128/jvi.01206-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a single-stranded, negative-sense RNA virus in the family Pneumoviridae and genus Orthopneumovirus that can cause severe disease in infants, immunocompromised adults, and the elderly. The RSV viral RNA-dependent RNA polymerase (vRdRp) complex is composed of the phosphoprotein (P) and the large polymerase protein (L). The P protein is constitutively phosphorylated by host kinases and has 41 serine (S) and threonine (T) residues as potential phosphorylation sites. To identify important phosphorylation residues in the P protein, we systematically and individually mutated all S and T residues to alanine (A) and analyzed their effects on genome transcription and replication by using a minigenome system. We found that the mutation of eight residues resulted in minigenome activity significantly lower than that of wild-type (WT) P. We then incorporated these mutations (T210A, S203A, T151A, S156A, T160A, S23A, T188A, and T105A) into full-length genome cDNA to rescue recombinant RSV. We were able to recover four recombinant viruses (with T151A, S156A, T160A, or S23A), suggesting that RSV-P residues T210, S203, T188, and T105 are essential for viral RNA replication. Among the four recombinant viruses rescued, rRSV-T160A caused a minor growth defect relative to its parental virus while rRSV-S156A had severely restricted replication due to decreased levels of genomic RNA. During infection, P-S156A phosphorylation was decreased, and when passaged, the S156A virus acquired a known compensatory mutation in L (L795I) that enhanced both WT-P and P-S156A minigenome activity and was able to partially rescue the S156A viral growth defect. This work demonstrates that residues T210, S203, T188, and T105 are critical for RSV replication and that S156 plays a critical role in viral RNA synthesis. IMPORTANCE RSV-P is a heavily phosphorylated protein that is required for RSV replication. In this study, we identified several residues, including P-S156, as phosphorylation sites that play critical roles in efficient viral growth and genome replication. Future studies to identify the specific kinase(s) that phosphorylates these residues can lead to kinase inhibitors and antiviral drugs for this important human pathogen.
Collapse
|
19
|
Bach S, Demper JC, Klemm P, Schlereth J, Lechner M, Schoen A, Kämper L, Weber F, Becker S, Biedenkopf N, Hartmann RK. Identification and characterization of short leader and trailer RNAs synthesized by the Ebola virus RNA polymerase. PLoS Pathog 2021; 17:e1010002. [PMID: 34699554 PMCID: PMC8547711 DOI: 10.1371/journal.ppat.1010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Transcription of non-segmented negative sense (NNS) RNA viruses follows a stop-start mechanism and is thought to be initiated at the genome’s very 3’-end. The synthesis of short abortive leader transcripts (leaderRNAs) has been linked to transcription initiation for some NNS viruses. Here, we identified the synthesis of abortive leaderRNAs (as well as trailer RNAs) that are specifically initiated opposite to (anti)genome nt 2; leaderRNAs are predominantly terminated in the region of nt ~ 60–80. LeaderRNA synthesis requires hexamer phasing in the 3’-leader promoter. We determined a steady-state NP mRNA:leaderRNA ratio of ~10 to 30-fold at 48 h after Ebola virus (EBOV) infection, and this ratio was higher (70 to 190-fold) for minigenome-transfected cells. LeaderRNA initiation at nt 2 and the range of termination sites were not affected by structure and length variation between promoter elements 1 and 2, nor the presence or absence of VP30. Synthesis of leaderRNA is suppressed in the presence of VP30 and termination of leaderRNA is not mediated by cryptic gene end (GE) signals in the 3’-leader promoter. We further found different genomic 3’-end nucleotide requirements for transcription versus replication, suggesting that promoter recognition is different in the replication and transcription mode of the EBOV polymerase. We further provide evidence arguing against a potential role of EBOV leaderRNAs as effector molecules in innate immunity. Taken together, our findings are consistent with a model according to which leaderRNAs are abortive replicative RNAs whose synthesis is not linked to transcription initiation. Rather, replication and transcription complexes are proposed to independently initiate RNA synthesis at separate sites in the 3’-leader promoter, i.e., at the second nucleotide of the genome 3’-end and at the more internally positioned transcription start site preceding the first gene, respectively, as reported for Vesicular stomatitis virus. The RNA polymerase (RdRp) of Ebola virus (EBOV) initiates RNA synthesis at the 3’-leader promoter of its encapsidated, non-segmented negative sense (NNS) RNA genome, either at the penultimate 3’-end position of the genome in the replicative mode or more internally (position 56) at the transcription start site (TSS) in its transcription mode. Here we identified the synthesis of abortive replicative RNAs that are specifically initiated opposite to genome nt 2 (termed leaderRNAs) and predominantly terminated in the region of nt ~ 60–80 near the TSS. The functional role of abortive leaderRNA synthesis is still enigmatic; a role in interferon induction could be excluded. Our findings indirectly link leaderRNA termination to nucleoprotein (NP) availability for encapsidation of nascent replicative RNA or to NP removal from the template RNA. Our findings further argue against the model that leaderRNA synthesis is a prerequisite for each transcription initiation event at the TSS. Rather, our findings are in line with the existence of distinct replicase and transcriptase complexes of RdRp that interact differently with the 3’-leader promoter and intiate RNA synthesis independently at different sites (position 2 or 56 of the genome), mechanistically similar to another NNS virus, Vesicular stomatitis virus.
Collapse
Affiliation(s)
- Simone Bach
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Jana-Christin Demper
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Paul Klemm
- Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Julia Schlereth
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Marcus Lechner
- Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Schoen
- Institut für Virologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Lennart Kämper
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Friedemann Weber
- Institut für Virologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Biedenkopf
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail: (NB); (RKH)
| | - Roland K. Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail: (NB); (RKH)
| |
Collapse
|
20
|
Structural and Functional Aspects of Ebola Virus Proteins. Pathogens 2021; 10:pathogens10101330. [PMID: 34684279 PMCID: PMC8538763 DOI: 10.3390/pathogens10101330] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development.
Collapse
|
21
|
Batra J, Mori H, Small GI, Anantpadma M, Shtanko O, Mishra N, Zhang M, Liu D, Williams CG, Biedenkopf N, Becker S, Gross ML, Leung DW, Davey RA, Amarasinghe GK, Krogan NJ, Basler CF. Non-canonical proline-tyrosine interactions with multiple host proteins regulate Ebola virus infection. EMBO J 2021; 40:e105658. [PMID: 34260076 DOI: 10.15252/embj.2020105658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 01/08/2023] Open
Abstract
The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.
Collapse
Affiliation(s)
- Jyoti Batra
- J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Hiroyuki Mori
- Department of Microbiology, NEIDL, Boston University School of Medicine, Boston, MA, USA
| | - Gabriel I Small
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Manu Anantpadma
- Department of Microbiology, NEIDL, Boston University School of Medicine, Boston, MA, USA
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nawneet Mishra
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mengru Zhang
- Department of Chemistry, Washington University School of Medicine, St. Louis, MO, USA
| | - Dandan Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Caroline G Williams
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Nadine Biedenkopf
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Michael L Gross
- Department of Chemistry, Washington University School of Medicine, St. Louis, MO, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.,John T. Milliken Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert A Davey
- Department of Microbiology, NEIDL, Boston University School of Medicine, Boston, MA, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA, USA.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
22
|
Dolnik O, Gerresheim GK, Biedenkopf N. New Perspectives on the Biogenesis of Viral Inclusion Bodies in Negative-Sense RNA Virus Infections. Cells 2021; 10:cells10061460. [PMID: 34200781 PMCID: PMC8230417 DOI: 10.3390/cells10061460] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by negative strand RNA viruses (NSVs) induce the formation of viral inclusion bodies (IBs) in the host cell that segregate viral as well as cellular proteins to enable efficient viral replication. The induction of those membrane-less viral compartments leads inevitably to structural remodeling of the cellular architecture. Recent studies suggested that viral IBs have properties of biomolecular condensates (or liquid organelles), as have previously been shown for other membrane-less cellular compartments like stress granules or P-bodies. Biomolecular condensates are highly dynamic structures formed by liquid-liquid phase separation (LLPS). Key drivers for LLPS in cells are multivalent protein:protein and protein:RNA interactions leading to specialized areas in the cell that recruit molecules with similar properties, while other non-similar molecules are excluded. These typical features of cellular biomolecular condensates are also a common characteristic in the biogenesis of viral inclusion bodies. Viral IBs are predominantly induced by the expression of the viral nucleoprotein (N, NP) and phosphoprotein (P); both are characterized by a special protein architecture containing multiple disordered regions and RNA-binding domains that contribute to different protein functions. P keeps N soluble after expression to allow a concerted binding of N to the viral RNA. This results in the encapsidation of the viral genome by N, while P acts additionally as a cofactor for the viral polymerase, enabling viral transcription and replication. Here, we will review the formation and function of those viral inclusion bodies upon infection with NSVs with respect to their nature as biomolecular condensates.
Collapse
|
23
|
Bach S, Demper JC, Grünweller A, Becker S, Biedenkopf N, Hartmann RK. Regulation of VP30-Dependent Transcription by RNA Sequence and Structure in the Genomic Ebola Virus Promoter. J Virol 2021; 95:JVI.02215-20. [PMID: 33268520 PMCID: PMC8092829 DOI: 10.1128/jvi.02215-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 01/16/2023] Open
Abstract
Viral transcription and replication of Ebola virus (EBOV) is balanced by transcription factor VP30, an RNA binding protein. An RNA hairpin at the transcription start site (TSS) of the first gene (NP hairpin) in the 3'-leader promoter is thought to mediate the VP30 dependency of transcription. Here, we investigated the constraints of VP30 dependency using a series of monocistronic minigenomes with sequence, structure and length deviations from the native NP hairpin. Hairpin stabilizations decreased while destabilizations increased transcription in the absence of VP30, but in all cases, transcription activity was higher in the presence versus absence of VP30. This also pertains to a mutant that is unable to form any RNA secondary structure at the TSS, demonstrating that the activity of VP30 is not simply determined by the capacity to form a hairpin structure at the TSS. Introduction of continuous 3'-UN5 hexamer phasing between promoter elements PE1 and PE2 by a single point mutation in the NP hairpin boosted VP30-independent transcription. Moreover, this point mutation, but also hairpin stabilizations, impaired the relative increase of replication in the absence of VP30. Our results suggest that the native NP hairpin is optimized for tight regulation by VP30 while avoiding an extent of hairpin stability that impairs viral transcription, as well as for enabling the switch from transcription to replication when VP30 is not part of the polymerase complex.IMPORTANCE A detailed understanding is lacking how the Ebola virus (EBOV) protein VP30 regulates activity of the viral polymerase complex. Here, we studied how RNA sequence, length and structure at the transcription start site (TSS) in the 3'-leader promoter influence the impact of VP30 on viral polymerase activity. We found that hairpin stabilizations tighten the VP30 dependency of transcription but reduce transcription efficiency and attenuate the switch to replication in the absence of VP30. Upon hairpin destabilization, VP30-independent transcription - already weakly detectable at the native promoter - increases, but never reaches the same extent as in the presence of VP30. We conclude that the native hairpin structure involving the TSS (i) establishes an optimal balance between efficient transcription and tight regulation by VP30, (ii) is linked to hexamer phasing in the promoter, and (iii) favors the switch to replication when VP30 is absent.
Collapse
Affiliation(s)
- Simone Bach
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Jana-Christin Demper
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Arnold Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg
| | - Nadine Biedenkopf
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| |
Collapse
|
24
|
Bach S, Demper JC, Biedenkopf N, Becker S, Hartmann RK. RNA secondary structure at the transcription start site influences EBOV transcription initiation and replication in a length- and stability-dependent manner. RNA Biol 2020; 18:523-536. [PMID: 32882148 DOI: 10.1080/15476286.2020.1818459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ebola virus (EBOV) RNA has the potential to form hairpin structures at the transcription start sequence (TSS) and reinitiation sites of internal genes, both on the genomic and antigenomic/mRNA level. Hairpin formation involving the TSS and the spacer sequence between promotor elements (PE) 1 and 2 was suggested to regulate viral transcription. Here, we provide evidence that such RNA structures form during RNA synthesis by the viral polymerase and affect its activity. This was analysed using monocistronic minigenomes carrying hairpin structure variants in the TSS-spacer region that differ in length and stability. Transcription and replication were measured via reporter activity and by qRT-PCR quantification of the distinct viral RNA species. We demonstrate that viral RNA synthesis is remarkably tolerant to spacer extensions of up to ~54 nt, but declines beyond this length limit (~25% residual activity for a 66-nt extension). Minor incremental stabilizations of hairpin structures in the TSS-spacer region and on the mRNA/antigenomic level were found to rapidly abolish viral polymerase activity, which may be exploited for antisense strategies to inhibit viral RNA synthesis. Finally, balanced viral transcription and replication can still occur when any RNA structure formation potential at the TSS is eliminated, provided that hexamer phasing in the promoter region is maintained. Altogether, the findings deepen and refine our insight into structure and length constraints within the EBOV transcription and replication promoter and suggest a remarkable flexibility of the viral polymerase in recognition of PE1 and PE2.
Collapse
Affiliation(s)
- Simone Bach
- Institut fuür Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Jana-Christin Demper
- Institut fuür Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Nadine Biedenkopf
- Institut fuü;r Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Stephan Becker
- Institut fuü;r Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Roland K Hartmann
- Institut fuür Pharmazeutische Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
25
|
To B or Not to B: Mechanisms of Protection Conferred by rVSV-EBOV-GP and the Roles of Innate and Adaptive Immunity. Microorganisms 2020; 8:microorganisms8101473. [PMID: 32992829 PMCID: PMC7600878 DOI: 10.3390/microorganisms8101473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022] Open
Abstract
Zaire Ebola virus (EBOV) is a member of the Filoviridae family of negative sense, single-stranded RNA viruses. EBOV infection causes Ebola virus disease (EVD), characterized by coagulopathy, lymphopenia, and multi-organ failure, which can culminate in death. In 2019, the FDA approved the first vaccine against EBOV, a recombinant live-attenuated viral vector wherein the G protein of vesicular stomatitis virus is replaced with the glycoprotein (GP) of EBOV (rVSV-EBOV-GP, Ervebo® by Merck). This vaccine demonstrates high efficacy in nonhuman primates by providing prophylactic, rapid, and post-exposure protection. In humans, rVSV-EBOV-GP demonstrated 100% protection in several phase III clinical trials in over 10,000 individuals during the 2013–2016 West Africa epidemic. As of 2020, over 218,000 doses of rVSV-EBOV-GP have been administered to individuals with high risk of EBOV exposure. Despite licensure and robust preclinical studies, the mechanisms of rVSV-EBOV-GP-mediated protection are not fully understood. Such knowledge is crucial for understanding vaccine-mediated correlates of protection from EVD and to aid the further design and development of therapeutics against filoviruses. Here, we summarize the current literature regarding the host response to vaccination and EBOV exposure, and evidence regarding innate and adaptive immune mechanisms involved in rVSV-EBOV-GP-mediated protection, with a focus on the host transcriptional response. Current data strongly suggest a protective synergy between rapid innate and humoral immunity.
Collapse
|
26
|
Dawson AR, Wilson GM, Freiberger EC, Mondal A, Coon JJ, Mehle A. Phosphorylation controls RNA binding and transcription by the influenza virus polymerase. PLoS Pathog 2020; 16:e1008841. [PMID: 32881973 PMCID: PMC7494117 DOI: 10.1371/journal.ppat.1008841] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/16/2020] [Accepted: 07/25/2020] [Indexed: 12/03/2022] Open
Abstract
The influenza virus polymerase transcribes and replicates the viral genome. The proper timing and balance of polymerase activity is important for successful replication. Genome replication is controlled in part by phosphorylation of NP that regulates assembly of the replication machinery. However, it remains unclear whether phosphorylation directly regulated polymerase activity. Here we identified polymerase phosphosites that control its function. Mutating phosphosites in the catalytic subunit PB1 altered polymerase activity and virus replication. Biochemical analyses revealed phosphorylation events that disrupted global polymerase function by blocking the NTP entry channel or preventing RNA binding. We also identified a regulatory site that split polymerase function by specifically suppressing transcription. These experiments show that host kinases phospho-regulate viral RNA synthesis directly by modulating polymerase activity and indirectly by controlling assembly of replication machinery. Further, they suggest polymerase phosphorylation may bias replication versus transcription at discrete times or locations during the infectious cycle. The influenza virus polymerase is a multifunctional enzyme directing viral gene expression and genome replication. Immediately following infection, the polymerase primarily performs transcription to make the viral mRNAs that program the replication cycle. The polymerase then shifts output to produce more copies of the viral genome at later stages of infection. The balance between transcription and replication is critical for successful infection. Here we identify phosphorylation sites within the viral polymerase and describe how these post-translational modifications control polymerase activity. Cellular kinases modify the viral polymerase. We identified a phosphorylation site in the catalytic subunit PB1 that selectively disables transcription, but not replication. We also describe a phosphorylation site in PB1 that disrupts binding to viral RNAs, disabling all activities of the polymerase. These modifications may establish polymerases with specialized function, and help regulate the balance between transcription and replication throughout the viral life cycle.
Collapse
Affiliation(s)
- Anthony R. Dawson
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Gary M. Wilson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Elyse C. Freiberger
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Arindam Mondal
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
27
|
Grikscheit K, Dolnik O, Takamatsu Y, Pereira AR, Becker S. Ebola Virus Nucleocapsid-Like Structures Utilize Arp2/3 Signaling for Intracellular Long-Distance Transport. Cells 2020; 9:cells9071728. [PMID: 32707734 PMCID: PMC7407605 DOI: 10.3390/cells9071728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
The intracellular transport of nucleocapsids of the highly pathogenic Marburg, as well as Ebola virus (MARV, EBOV), represents a critical step during the viral life cycle. Intriguingly, a population of these nucleocapsids is distributed over long distances in a directed and polar fashion. Recently, it has been demonstrated that the intracellular transport of filoviral nucleocapsids depends on actin polymerization. While it was shown that EBOV requires Arp2/3-dependent actin dynamics, the details of how the virus exploits host actin signaling during intracellular transport are largely unknown. Here, we apply a minimalistic transfection system to follow the nucleocapsid-like structures (NCLS) in living cells, which can be used to robustly quantify NCLS transport in live cell imaging experiments. Furthermore, in cells co-expressing LifeAct, a marker for actin dynamics, NCLS transport is accompanied by pulsative actin tails appearing on the rear end of NCLS. These actin tails can also be preserved in fixed cells, and can be visualized via high resolution imaging using STORM in transfected, as well as EBOV infected, cells. The application of inhibitory drugs and siRNA depletion against actin regulators indicated that EBOV NCLS utilize the canonical Arp2/3-Wave1-Rac1 pathway for long-distance transport in cells. These findings highlight the relevance of the regulation of actin polymerization during directed EBOV nucleocapsid transport in human cells.
Collapse
Affiliation(s)
- Katharina Grikscheit
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- German Center for Infection Research (DZIF), Partner Site: Giessen-Marburg-Langen, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
| | - Yuki Takamatsu
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | | | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany; (K.G.); (O.D.); (Y.T.)
- German Center for Infection Research (DZIF), Partner Site: Giessen-Marburg-Langen, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
28
|
Ivanov A, Ramanathan P, Parry C, Ilinykh PA, Lin X, Petukhov M, Obukhov Y, Ammosova T, Amarasinghe GK, Bukreyev A, Nekhai S. Global phosphoproteomic analysis of Ebola virions reveals a novel role for VP35 phosphorylation-dependent regulation of genome transcription. Cell Mol Life Sci 2020; 77:2579-2603. [PMID: 31562565 PMCID: PMC7101265 DOI: 10.1007/s00018-019-03303-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
Abstract
Ebola virus (EBOV) causes severe human disease with a high case fatality rate. The balance of evidence implies that the virus circulates in bats. The molecular basis for host-viral interactions, including the role for phosphorylation during infections, is largely undescribed. To address this, and to better understand the biology of EBOV, the phosphorylation of EBOV proteins was analyzed in virions purified from infected monkey Vero-E6 cells and bat EpoNi/22.1 cells using high-resolution mass spectrometry. All EBOV structural proteins were detected with high coverage, along with phosphopeptides. Phosphorylation sites were identified in all viral structural proteins. Comparison of EBOV protein phosphorylation in monkey and bat cells showed only partial overlap of phosphorylation sites, with shared sites found in NP, VP35, and VP24 proteins, and no common sites in the other proteins. Three-dimensional structural models were built for NP, VP35, VP40, GP, VP30 and VP24 proteins using available crystal structures or by de novo structure prediction to elucidate the potential role of the phosphorylation sites. Phosphorylation of one of the identified sites in VP35, Thr-210, was demonstrated to govern the transcriptional activity of the EBOV polymerase complex. Thr-210 phosphorylation was also shown to be important for VP35 interaction with NP. This is the first study to compare phosphorylation of all EBOV virion proteins produced in primate versus bat cells, and to demonstrate the role of VP35 phosphorylation in the viral life cycle. The results uncover a novel mechanism of EBOV transcription and identify novel targets for antiviral drug development.
Collapse
Affiliation(s)
- Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA
| | - Christian Parry
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- Department of Microbiology, Howard University, Washington, D.C., 20059, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA
| | - Xionghao Lin
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- College of Dentistry, Howard University, Washington, D.C., 20059, USA
| | - Michael Petukhov
- Division of Molecular and Radiation Biophysics, Russian Nuclear Physics Institute Named After B. P. Konstantinov, National Research Center "Kurchatov Institute", Gatchina, 188300, Russia
- Russian Scientific Center of Radiology and Surgical Technologies Named After A. M. Granov, St. Petersburg, 197758, Russia
| | - Yuri Obukhov
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- Department of Medicine, Howard University, Washington, D.C., 20059, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
- Department of Microbiology and Immunology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
- Galveston National Laboratory, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA.
- Department of Microbiology, Howard University, Washington, D.C., 20059, USA.
- Department of Medicine, Howard University, Washington, D.C., 20059, USA.
| |
Collapse
|
29
|
Dong S, Wen K, Chu H, Li H, Yu Q, Wang C, Qin X. Crystal structure of the Měnglà virus VP30 C-terminal domain. Biochem Biophys Res Commun 2020; 525:392-397. [PMID: 32093889 DOI: 10.1016/j.bbrc.2020.02.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/26/2022]
Abstract
The family Filoviridae contains many important human viruses, including Marburg virus (MARV) and Ebola virus (EBOV). Měnglà virus (MLAV), a newly discovered filovirus, is considered a potential human pathogen. The VP30 C-terminal domain (CTD) of these filoviruses plays an essential role in virion assembly. In common with other filoviruses, MLAV VP30 CTD mainly exists as a dimer in solution. In this work, we determined the crystal structure of recombinant MLAV VP30 CTD monomer, verifying that C-terminal helix-7 (H7) is critical for the dimerization process. This study provides a preliminary model for investigation of MLAV VP30 CTD as an anti-filovirus drug development target.
Collapse
Affiliation(s)
- Shishang Dong
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| | - Kangning Wen
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hongguan Chu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hui Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Qianqian Yu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Changhui Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
30
|
The Integrity of the YxxL Motif of Ebola Virus VP24 Is Important for the Transport of Nucleocapsid-Like Structures and for the Regulation of Viral RNA Synthesis. J Virol 2020; 94:JVI.02170-19. [PMID: 32102881 DOI: 10.1128/jvi.02170-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
While it is well appreciated that late domains in the viral matrix proteins are crucial to mediate efficient virus budding, little is known about roles of late domains in the viral nucleocapsid proteins. Here, we characterized the functional relevance of a YxxL motif with potential late-domain function in the Ebola virus nucleocapsid protein VP24. Mutations in the YxxL motif had two opposing effects on the functions of VP24. On the one hand, the mutation affected the regulatory function of VP24 in viral RNA transcription and replication, which correlated with an increased incorporation of minigenomes into released transcription- and replication-competent virus-like particles (trVLPs). Consequently, cells infected with those trVLPs showed higher levels of viral transcription. On the other hand, mutations of the YxxL motif greatly impaired the intracellular transport of nucleocapsid-like structures (NCLSs) composed of the viral proteins NP, VP35, and VP24 and the length of released trVLPs. Attempts to rescue recombinant Ebola virus expressing YxxL-deficient VP24 failed, underlining the importance of this motif for the viral life cycle.IMPORTANCE Ebola virus (EBOV) causes a severe fever with high case fatality rates and, so far, no available specific therapy. Understanding the interplay between viral and host proteins is important to identify new therapeutic approaches. VP24 is one of the essential nucleocapsid components and is necessary to regulate viral RNA synthesis and condense viral nucleocapsids before their transport to the plasma membrane. Our functional analyses of the YxxL motif in VP24 suggested that it serves as an interface between nucleocapsid-like structures (NCLSs) and cellular proteins, promoting intracellular transport of NCLSs in an Alix-independent manner. Moreover, the YxxL motif is necessary for the inhibitory function of VP24 in viral RNA synthesis. A failure to rescue EBOV encoding VP24 with a mutated YxxL motif indicated that the integrity of the YxxL motif is essential for EBOV growth. Thus, this motif might represent a potential target for antiviral interference.
Collapse
|
31
|
Bach S, Biedenkopf N, Grünweller A, Becker S, Hartmann RK. Hexamer phasing governs transcription initiation in the 3'-leader of Ebola virus. RNA (NEW YORK, N.Y.) 2020; 26:439-453. [PMID: 31924730 PMCID: PMC7075260 DOI: 10.1261/rna.073718.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 05/05/2023]
Abstract
The genomic, bipartite replication promoter of Ebola virus (EBOV) consists of elements 1 (PE1) and 2 (PE2). PE1 (55 nt at the 3'-terminus) is separated from PE2 (harboring eight 3'-UN5 hexamers) by the transcription start sequence (TSS) of the first nucleoprotein (NP) gene plus a spacer sequence. Insertions or deletions in the spacer were reported to support genome replication if comprising 6 or 12, but not 1/2/3/5/9 nt. This gave rise to the formulation of the "rule of 6" for the EBOV replication promoter. Here, we studied the impact of such hexamer phasing on viral transcription using a series of replication-competent and -deficient monocistronic minigenomes, in which the spacer of the NP gene was mutated or replaced with that of internal EBOV genes and mutated variants thereof. Beyond reporter gene assays, we conducted qRT-PCR to determine the levels of mRNA, genomic and antigenomic RNA. We demonstrate that hexamer phasing is also essential for viral transcription, that UN5 hexamer periodicity extends into PE1 and that the spacer region can be expanded by 48 nt without losses of transcriptional activity. Making the UN5 hexamer phasing continuous between PE1 and PE2 enhanced the efficiency of transcription and replication. We show that the 2 nt preceding the TSS are essential for transcription. We further propose a role for UN5 hexamer phasing in positioning NP during initiation of RNA synthesis, or in dissociation/reassociation of NP from the template RNA strand while threading the RNA through the active site of the elongating polymerase during replication and transcription.
Collapse
Affiliation(s)
- Simone Bach
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Nadine Biedenkopf
- Institut für Virologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Arnold Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Stephan Becker
- Institut für Virologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Roland K Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35037 Marburg, Germany
| |
Collapse
|
32
|
Abstract
The largest Ebola virus (EBOV) epidemic in West Africa ever caused more than 28,000 cases and 11,000 deaths, and the current EBOV epidemic in the Democratic Republic of the Congo continues, with more than 3,000 cases to date. Therefore, it is essential to develop antivirals against EBOV. Recently, an inhibitor of the cellular phosphatase PP2A-mediated dephosphorylation of the EBOV transcription factor VP30 has been shown to suppress the spread of Ebola virus. Here, we identified the protein kinase SRPK1 as a VP30-specific kinase that phosphorylates serine 29, the same residue that is dephosphorylated by PP2A. SRPK1-mediated phosphorylation of serine 29 enabled primary viral transcription. Mutation of the SRPK1 recognition motif in VP30 resulted in significant growth inhibition of EBOV. Similarly, elevation of the phosphorylation status of serine 29 by overexpression of SRPK1 inhibited EBOV growth, highlighting the importance of reversible phosphorylation of VP30 as a potential therapeutic target. Ebola virus (EBOV) causes a severe and often fatal disease for which no approved vaccines or antivirals are currently available. EBOV VP30 has been described as a viral phosphoprotein, and nonphosphorylated VP30 is essential and sufficient to support secondary transcription in an EBOV-specific minigenome system; however, phosphorylatable serine residues near the N terminus of VP30 are required to support primary viral transcription as well as the reinitiation of VP30-mediated transcription at internal EBOV genes. While the dephosphorylation of VP30 by the cellular phosphatase PP2A was found to be mediated by nucleoprotein, the VP30-specific kinases and the role of phosphorylation remain unknown. Here, we report that serine-arginine protein kinase 1 (SRPK1) and SRPK2 phosphorylate serine 29 of VP30, which is located in an N-terminal R26xxS29 motif. Interaction with VP30 via the R26xxS29 motif recruits SRPK1 into EBOV-induced inclusion bodies, the sites of viral RNA synthesis, and an inhibitor of SRPK1/SRPK2 downregulates primary viral transcription. When the SRPK1 recognition motif of VP30 was mutated in a recombinant EBOV, virus replication was severely impaired. It is presumed that the interplay between SRPK1 and PP2A in the EBOV inclusions provides a comprehensive regulatory circuit to ensure the activity of VP30 in EBOV transcription. Thus, the identification of SRPK1 is an important mosaic stone that completes our picture of the players involved in Ebola virus transcription regulation.
Collapse
|
33
|
Chen J, He Z, Yuan Y, Huang F, Luo B, Zhang J, Pan T, Zhang H, Zhang J. Host factor SMYD3 is recruited by Ebola virus nucleoprotein to facilitate viral mRNA transcription. Emerg Microbes Infect 2020; 8:1347-1360. [PMID: 31516086 PMCID: PMC6758638 DOI: 10.1080/22221751.2019.1662736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polymerase complex of Ebola virus (EBOV) is the functional unit for transcription and replication of viral genome. Nucleoprotein (NP) is a multifunctional protein with high RNA binding affinity and recruits other viral proteins to form functional polymerase complex. In our study, we investigated host proteins associated with EBOV polymerase complex using NP as bait in a transcription and replication competent minigenome system by mass spectrometry analysis and identified SET and MYND domain-containing protein 3 (SMYD3) as a novel host protein which was required for the replication of EBOV. SMYD3 specifically interacted with NP and was recruited to EBOV inclusion bodies through NP. The depletion of SMYD3 dramatically suppressed EBOV mRNA production. A mimic of non-phosphorylated VP30, which is a transcription activator, could partially rescue the viral mRNA production downregulated by the depletion of SMYD3. In addition, SMYD3 promoted NP-VP30 interaction in a dose-dependent manner. These results revealed that SMYD3 was a novel host factor recruited by NP to supporting EBOV mRNA transcription through increasing the binding of VP30 to NP. Thus, our study provided a new understanding of mechanism underlying the transcription of EBOV genome, and a novel anti-EBOV drug design strategy by targeting SMYD3.
Collapse
Affiliation(s)
- Jingliang Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Zhangping He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Feng Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China.,Department of Respiration, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Baohong Luo
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Jianhua Zhang
- CAS Key Laboratory for Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Junsong Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| |
Collapse
|
34
|
Ebola virus-mediated T-lymphocyte depletion is the result of an abortive infection. PLoS Pathog 2019; 15:e1008068. [PMID: 31648236 PMCID: PMC6812753 DOI: 10.1371/journal.ppat.1008068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Ebola virus (EBOV) infections are characterized by a pronounced lymphopenia that is highly correlative with fatalities. However, the mechanisms leading to T-cell depletion remain largely unknown. Here, we demonstrate that both viral mRNAs and antigens are detectable in CD4+ T cells despite the absence of productive infection. A protein phosphatase 1 inhibitor, 1E7-03, and siRNA-mediated suppression of viral antigens were used to demonstrate de novo synthesis of viral RNAs and antigens in CD4+ T cells, respectively. Cell-to-cell fusion of permissive Huh7 cells with non-permissive Jurkat T cells impaired productive EBOV infection suggesting the presence of a cellular restriction factor. We determined that viral transcription is partially impaired in the fusion T cells. Lastly, we demonstrate that exposure of T cells to EBOV resulted in autophagy through activation of ER-stress related pathways. These data indicate that exposure of T cells to EBOV results in an abortive infection, which likely contributes to the lymphopenia observed during EBOV infections. Lymphopenia is a common characteristic of the disease caused by EBOV. We determined that despite the apparent lack of productive infection, EBOV is capable of entering T cells and producing both viral RNAs and proteins. Furthermore, we demonstrate that EBOV causes an abortive infection in T cells due to the presence of a cellular restriction factor. The abortive infection was associated with cell death following ER-stress induced autophagy. Collectively, these findings suggest that abortive infection in T cells is likely to contribute to lymphopenia during Ebola virus disease, which is uniformly linked with the severity of the disease. All EBOV vaccine candidates utilize GP as the sole antigen inducing a protective antibody response and in some clinical trials were shown to induce adverse side effects. The present study suggests that these effects can be associated with GP, which may lead to abortive infection of the vaccine construct in T cells contributing to the inflammatory response to the vaccines.
Collapse
|
35
|
Hume AJ, Mühlberger E. Distinct Genome Replication and Transcription Strategies within the Growing Filovirus Family. J Mol Biol 2019; 431:4290-4320. [PMID: 31260690 PMCID: PMC6879820 DOI: 10.1016/j.jmb.2019.06.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022]
Abstract
Research on filoviruses has historically focused on the highly pathogenic ebola- and marburgviruses. Indeed, until recently, these were the only two genera in the filovirus family. Recent advances in sequencing technologies have facilitated the discovery of not only a new ebolavirus, but also three new filovirus genera and a sixth proposed genus. While two of these new genera are similar to the ebola- and marburgviruses, the other two, discovered in saltwater fishes, are considerably more diverse. Nonetheless, these viruses retain a number of key features of the other filoviruses. Here, we review the key characteristics of filovirus replication and transcription, highlighting similarities and differences between the viruses. In particular, we focus on key regulatory elements in the genomes, replication and transcription strategies, and the conservation of protein domains and functions among the viruses. In addition, using computational analyses, we were able to identify potential homology and functions for some of the genes of the novel filoviruses with previously unknown functions. Although none of the newly discovered filoviruses have yet been isolated, initial studies of some of these viruses using minigenome systems have yielded insights into their mechanisms of replication and transcription. In general, the Cuevavirus and proposed Dianlovirus genera appear to follow the transcription and replication strategies employed by the ebola- and marburgviruses, respectively. While our knowledge of the fish filoviruses is currently limited to sequence analysis, the lack of certain conserved motifs and even entire genes necessitates that they have evolved distinct mechanisms of replication and transcription.
Collapse
Affiliation(s)
- Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
36
|
Abstract
This chapter reviews our current knowledge about the spatiotemporal assembly of filoviral particles. We will follow particles from nucleocapsid entry into the cytoplasm until the nucleocapsids are enveloped at the plasma membrane. We will also highlight the currently open scientific questions surrounding filovirus assembly.
Collapse
|
37
|
Identification of RUVBL1 and RUVBL2 as Novel Cellular Interactors of the Ebola Virus Nucleoprotein. Viruses 2019; 11:v11040372. [PMID: 31018511 PMCID: PMC6521077 DOI: 10.3390/v11040372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022] Open
Abstract
Ebola virus (EBOV) is a filovirus that has become a global public health threat in recent years. EBOV is the causative agent of a severe, often fatal hemorrhagic fever. A productive viral infection relies on the successful recruitment of host factors for various stages of the viral life cycle. To date, several investigations have discovered specific host-pathogen interactions for various EBOV proteins. However, relatively little is known about the EBOV nucleoprotein (NP) with regard to host interactions. In the present study, we aimed to elucidate NP-host protein-protein interactions (PPIs). Affinity purification-mass spectrometry (AP-MS) was used to identify candidate NP cellular interactors. Candidate interactors RUVBL1 and RUVBL2, partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) superfamily, were confirmed to interact with NP in co-immunoprecipitation (co-IP) and immunofluorescence (IF) experiments. Functional studies using a minigenome system revealed that the siRNA-mediated knockdown of RUVBL1 but not RUVBL2 moderately decreased EBOV minigenome activity. Super resolution structured illumination microscopy (SIM) was used to identify an association between NP and components of the R2TP complex, which includes RUVBL1, RUVBL2, RPAP3, and PIH1D1, suggesting a potential role for the R2TP complex in capsid formation. Moreover, the siRNA-mediated knockdown of RPAP3 and subsequent downregulation of PIH1D1 was shown to have no effect on minigenome activity, further suggesting a role in capsid formation. Overall, we identify RUVBL1 and RUVBL2 as novel interactors of EBOV NP and for the first time report EBOV NP recruitment of the R2TP complex, which may provide novel targets for broad-acting anti-EBOV therapeutics.
Collapse
|
38
|
Phosphorylated VP30 of Marburg Virus Is a Repressor of Transcription. J Virol 2018; 92:JVI.00426-18. [PMID: 30135121 DOI: 10.1128/jvi.00426-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022] Open
Abstract
The filoviruses Marburg virus (MARV) and Ebola virus (EBOV) cause hemorrhagic fever in humans and nonhuman primates, with high case fatality rates. MARV VP30 is known to be phosphorylated and to interact with nucleoprotein (NP), but its role in regulation of viral transcription is disputed. Here, we analyzed phosphorylation of VP30 by mass spectrometry, which resulted in identification of multiple phosphorylated amino acids. Modeling the full-length three-dimensional structure of VP30 and mapping the identified phosphorylation sites showed that all sites lie in disordered regions, mostly in the N-terminal domain of the protein. Minigenome analysis of the identified phosphorylation sites demonstrated that phosphorylation of a cluster of amino acids at positions 46 through 53 inhibits transcription. To test the effect of VP30 phosphorylation on its interaction with other MARV proteins, coimmunoprecipitation analyses were performed. They demonstrated the involvement of VP30 phosphorylation in interaction with two other proteins of the MARV ribonucleoprotein complex, NP and VP35. To identify the role of protein phosphatase 1 (PP1) in the identified effects, a small molecule, 1E7-03, targeting a noncatalytic site of the enzyme that previously was shown to increase EBOV VP30 phosphorylation was used. Treatment of cells with 1E7-03 increased phosphorylation of VP30 at a cluster of phosphorylated amino acids from Ser-46 to Thr-53, reduced transcription of MARV minigenome, enhanced binding to NP and VP35, and dramatically reduced replication of infectious MARV particles. Thus, MARV VP30 phosphorylation can be targeted for development of future antivirals such as PP1-targeting compounds. IMPORTANCE The largest outbreak of MARV occurred in Angola in 2004 to 2005 and had a 90% case fatality rate. There are no approved treatments available for MARV. Development of antivirals as therapeutics requires a fundamental understanding of the viral life cycle. Because of the close similarity of MARV to another member of Filoviridae family, EBOV, it was assumed that the two viruses have similar mechanisms of regulation of transcription and replication. Here, characterization of the role of VP30 and its phosphorylation sites in transcription of the MARV genome demonstrated differences from those of EBOV. The identified phosphorylation sites appeared to inhibit transcription and appeared to be involved in interaction with both NP and VP35 ribonucleoproteins. A small molecule targeting PP1 inhibited transcription of the MARV genome, effectively suppressing replication of the viral particles. These data demonstrate the possibility developing antivirals based on compounds targeting PP1.
Collapse
|
39
|
Staufen1 Interacts with Multiple Components of the Ebola Virus Ribonucleoprotein and Enhances Viral RNA Synthesis. mBio 2018; 9:mBio.01771-18. [PMID: 30301857 PMCID: PMC6178623 DOI: 10.1128/mbio.01771-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ebola virus (EBOV) is a negative-strand RNA virus with significant public health importance. Currently, no therapeutics are available for Ebola, which imposes an urgent need for a better understanding of EBOV biology. Here we dissected the virus-host interplay between EBOV and host RNA-binding proteins. We identified novel EBOV host factors, including Staufen1, which interacts with multiple viral factors and is required for efficient viral RNA synthesis. Ebola virus (EBOV) genome and mRNAs contain long, structured regions that could hijack host RNA-binding proteins to facilitate infection. We performed RNA affinity chromatography coupled with mass spectrometry to identify host proteins that bind to EBOV RNAs and identified four high-confidence proviral host factors, including Staufen1 (STAU1), which specifically binds both 3′ and 5′ extracistronic regions of the EBOV genome. We confirmed that EBOV infection rate and production of infectious particles were significantly reduced in STAU1-depleted cells. STAU1 was recruited to sites of EBOV RNA synthesis upon infection and enhanced viral RNA synthesis. Furthermore, STAU1 interacts with EBOV nucleoprotein (NP), virion protein 30 (VP30), and VP35; the latter two bridge the viral polymerase to the NP-coated genome, forming the viral ribonucleoprotein (RNP) complex. Our data indicate that STAU1 plays a critical role in EBOV replication by coordinating interactions between the viral genome and RNA synthesis machinery.
Collapse
|
40
|
Acetylation of lysine residues in the recombinant nucleoprotein and VP40 matrix protein of Zaire Ebolavirus by eukaryotic histone acetyltransferases. Biochem Biophys Res Commun 2018; 504:635-640. [DOI: 10.1016/j.bbrc.2018.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/01/2018] [Indexed: 11/19/2022]
|
41
|
Chery J, Petri A, Wagschal A, Lim SY, Cunningham J, Vasudevan S, Kauppinen S, Näär AM. Development of Locked Nucleic Acid Antisense Oligonucleotides Targeting Ebola Viral Proteins and Host Factor Niemann-Pick C1. Nucleic Acid Ther 2018; 28:273-284. [PMID: 30133337 DOI: 10.1089/nat.2018.0722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Ebola virus is a zoonotic pathogen that can cause severe hemorrhagic fever in humans, with up to 90% lethality. The deadly 2014 Ebola outbreak quickly made an unprecedented impact on human lives. While several vaccines and therapeutics are under development, current approaches contain several limitations, such as virus mutational escape, need for formulation or refrigeration, poor scalability, long lead-time, and high cost. To address these challenges, we developed locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs) to target critical Ebola viral proteins and the human intracellular host protein Niemann-Pick C1 (NPC1), required for viral entry into infected cells. We generated noninfectious viral luciferase reporter assays to identify LNA ASOs that inhibit translation of Ebola viral proteins in vitro and in human cells. We demonstrated specific inhibition of key Ebola genes VP24 and nucleoprotein, which inhibit a proper immune response and promote Ebola virus replication, respectively. We also identified LNA ASOs targeting human host factor NPC1 and demonstrated reduced infection by chimeric vesicular stomatitis virus harboring the Ebola glycoprotein, which directly binds to NPC1 for viral infection. These results support further in vivo testing of LNA ASOs in infectious Ebola virus disease animal models as potential therapeutic modalities for treatment of Ebola.
Collapse
Affiliation(s)
- Jessica Chery
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,2 Department of Cell Biology, Harvard Medical School , Boston, Massachusetts
| | - Andreas Petri
- 3 Department of Clinical Medicine, Center for RNA Medicine, Aalborg University , Aalborg, Denmark
| | - Alexandre Wagschal
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,2 Department of Cell Biology, Harvard Medical School , Boston, Massachusetts
| | - Sun-Young Lim
- 4 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,5 Department of Microbiology and Immunobiology and Harvard Medical School , Boston, Massachusetts
| | - James Cunningham
- 4 Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts.,5 Department of Microbiology and Immunobiology and Harvard Medical School , Boston, Massachusetts
| | - Shobha Vasudevan
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,6 Department of Medicine, Harvard Medical School , Boston, Massachusetts
| | - Sakari Kauppinen
- 3 Department of Clinical Medicine, Center for RNA Medicine, Aalborg University , Aalborg, Denmark
| | - Anders M Näär
- 1 Massachusetts General Hospital Cancer Center , Charlestown, Massachusetts.,2 Department of Cell Biology, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
42
|
Kumar D, Gauthami S, Uma M, Nagalekshmi K, Rao PP, Basu A, Ella KM, Hegde NR. Immunogenicity of a Candidate Ebola Hemorrhagic Fever Vaccine in Mice Based on Controlled In Vitro Expression of Ebolavirus Glycoprotein. Viral Immunol 2018; 31:500-512. [PMID: 30095362 DOI: 10.1089/vim.2017.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ebolavirus (EBOV) is the etiology of Ebola hemorrhagic fever (EHF). A major EHF outbreak in 2014-2015 in West Africa claimed >11,000 lives. A licensed vaccine is not available for EHF, although several vaccines have undergone clinical trials. We developed a human adenovirus (Ad) serotype 5-based candidate EHF vaccine based on controlled expression of the EBOV (Makona strain) glycoprotein (GP) as the immunogen. Two clones, AdGP72 and AdGP75, and a control Ad515 vector, were generated and tested for protein expression in vitro and immunogenicity in mice. Eight groups of mice were immunized with three doses of buffer, Ad515, AdGP72, and AdGP75, by two different dose regimens. Three different antigens (AdGP75-infected Vero E6 cell extract and two baculovirus expressed EBOV GP antigens, namely, GP alone or GP with EBOV VP40) were used to evaluate the immune response. Expression studies indicated that full-length GP was cleaved into its component subunits when expressed in mammalian cells through the Ad vectors. Moreover, in coimmunoprecipitation studies, EBOV GP was found to be associated with VP40 when expressed in baculoviruses. The candidate vaccines were immunogenic in mice, as evaluated by enzyme-linked immunosorbent assay using mammalian- or baculovirus-derived antigens. Further characterization and development of the candidate vaccines are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Atanu Basu
- 2 National Institute of Virology , Pune, India
| | | | | |
Collapse
|
43
|
Abstract
In 2014, the world witnessed the largest Ebolavirus outbreak in recorded history. The subsequent humanitarian effort spurred extensive research, significantly enhancing our understanding of ebolavirus replication and pathogenicity. The main functions of each ebolavirus protein have been studied extensively since the discovery of the virus in 1976; however, the recent expansion of ebolavirus research has led to the discovery of new protein functions. These newly discovered roles are revealing new mechanisms of virus replication and pathogenicity, whilst enhancing our understanding of the broad functions of each ebolavirus viral protein (VP). Many of these new functions appear to be unrelated to the protein's primary function during virus replication. Such new functions range from bystander T-lymphocyte death caused by VP40-secreted exosomes to new roles for VP24 in viral particle formation. This review highlights the newly discovered roles of ebolavirus proteins in order to provide a more encompassing view of ebolavirus replication and pathogenicity.
Collapse
Affiliation(s)
- Diego Cantoni
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jeremy S. Rossman
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
44
|
Novy K, Kilcher S, Omasits U, Bleck CKE, Beerli C, Vowinckel J, Martin CK, Syedbasha M, Maiolica A, White I, Mercer J, Wollscheid B. Proteotype profiling unmasks a viral signalling network essential for poxvirus assembly and transcriptional competence. Nat Microbiol 2018; 3:588-599. [DOI: 10.1038/s41564-018-0142-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2018] [Indexed: 11/09/2022]
|
45
|
Abstract
Ebolaviruses are the causative agent of a severe hemorrhagic fever with high case fatality rates, for which no approved specific therapy is available. As biosafety level 4 (BSL4) agents, work with live ebolaviruses is restricted to maximum containment laboratories. Transcription and replication-competent viruslike particle (trVLP) systems are reverse genetics-based life cycle modeling systems that allow researchers to model virtually the entire ebolavirus life cycle outside of a maximum containment laboratory. These systems can be used to dissect the virus life cycle, and thus increase our understanding of virus biology, as well as for more applied uses such as the screening and development of novel antivirals, and thus represent powerful tools for work on ebolaviruses.
Collapse
|
46
|
Su Z, Wu C, Shi L, Luthra P, Pintilie GD, Johnson B, Porter JR, Ge P, Chen M, Liu G, Frederick TE, Binning JM, Bowman GR, Zhou ZH, Basler CF, Gross ML, Leung DW, Chiu W, Amarasinghe GK. Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a Mechanism for Nucleocapsid-like Assembly. Cell 2018; 172:966-978.e12. [PMID: 29474922 PMCID: PMC5973842 DOI: 10.1016/j.cell.2018.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/27/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Abstract
Ebola virus nucleoprotein (eNP) assembles into higher-ordered structures that form the viral nucleocapsid (NC) and serve as the scaffold for viral RNA synthesis. However, molecular insights into the NC assembly process are lacking. Using a hybrid approach, we characterized the NC-like assembly of eNP, identified novel regulatory elements, and described how these elements impact function. We generated a three-dimensional structure of the eNP NC-like assembly at 5.8 Å using electron cryo-microscopy and identified a new regulatory role for eNP helices α22-α23. Biochemical, biophysical, and mutational analyses revealed that inter-eNP contacts within α22-α23 are critical for viral NC assembly and regulate viral RNA synthesis. These observations suggest that the N terminus and α22-α23 of eNP function as context-dependent regulatory modules (CDRMs). Our current study provides a framework for a structural mechanism for NC-like assembly and a new therapeutic target.
Collapse
Affiliation(s)
- Zhaoming Su
- Department of Bioengineering and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liuqing Shi
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Priya Luthra
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Grigore D Pintilie
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Britney Johnson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Justin R Porter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peng Ge
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Muyuan Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gai Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas E Frederick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer M Binning
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wah Chiu
- Department of Bioengineering and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA 94305, USA.
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Kruse T, Biedenkopf N, Hertz EPT, Dietzel E, Stalmann G, López-Méndez B, Davey NE, Nilsson J, Becker S. The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30. Mol Cell 2017; 69:136-145.e6. [PMID: 29290611 DOI: 10.1016/j.molcel.2017.11.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/01/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase through a B56-binding LxxIxE motif and that this motif is essential for VP30 dephosphorylation and viral transcription. The LxxIxE motif and the binding site of VP30 in NP are in close proximity, and both binding sites are required for the dephosphorylation of VP30. We generate a specific inhibitor of PP2A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Kruse
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nadine Biedenkopf
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Giessen-Marburg-Langen, Marburg, Germany
| | - Emil Peter Thrane Hertz
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Erik Dietzel
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Giessen-Marburg-Langen, Marburg, Germany
| | - Gertrud Stalmann
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Giessen-Marburg-Langen, Marburg, Germany
| | - Blanca López-Méndez
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Stephan Becker
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Giessen-Marburg-Langen, Marburg, Germany.
| |
Collapse
|
48
|
Lier C, Becker S, Biedenkopf N. Dynamic phosphorylation of Ebola virus VP30 in NP-induced inclusion bodies. Virology 2017; 512:39-47. [PMID: 28915404 DOI: 10.1016/j.virol.2017.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 12/22/2022]
Abstract
Zaire Ebolavirus (EBOV) causes a severe feverish disease with high case fatality rates. Transcription of EBOV is dependent on the activity of the nucleocapsid protein VP30 which represents an essential viral transcription factor. Activity of VP30 is regulated via phosphorylation at six N-terminal serine residues. Recent data demonstrated that dynamic phosphorylation and dephosphorylation of serine residue 29 is essential for transcriptional support activity of VP30. To analyze the spatio/temporal dynamics of VP30 phosphorylation, we generated a peptide antibody recognizing specifically VP30 phosphorylated at serine 29. Using this antibody we could demonstrate that (i) the majority of VP30 molecules in EBOV-infected cells is dephosphorylated at the crucial position serine 29, (ii) both, VP30 phosphorylation and dephosphorylation take place in viral inclusion bodies that are induced by the nucleoprotein NP and (iii) NP influences the phosphorylation state of VP30.
Collapse
Affiliation(s)
- Clemens Lier
- Institute of Virology, Philipps-University Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany.
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Marburg, Germany.
| |
Collapse
|
49
|
He F, Melén K, Maljanen S, Lundberg R, Jiang M, Österlund P, Kakkola L, Julkunen I. Ebolavirus protein VP24 interferes with innate immune responses by inhibiting interferon-λ1 gene expression. Virology 2017; 509:23-34. [PMID: 28595092 DOI: 10.1016/j.virol.2017.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Ebolaviruses (EBOV) cause severe disease with a recent outbreak in West Africa in 2014-2015 leading to more than 28 000 cases and 11 300 fatalities. This emphasizes the urgent need for better knowledge on these highly pathogenic RNA viruses. Host innate immune responses play a key role in restricting the spread of a viral disease. In this study we systematically analyzed the effects of cloned EBOV genes on the main host immune response to RNA viruses: the activation of RIG-I pathway and type I and III interferon (IFN) gene expression. EBOV VP24, in addition of inhibiting IFN-induced antiviral responses, was found to efficiently inhibit type III IFN-λ1 gene expression. This inhibition was found to occur downstream of IRF3 activation and to be dependent on VP24 importin binding residues. These results emphasize the importance of VP24 in EBOV infection cycle, making VP24 as an excellent target for drug development.
Collapse
Affiliation(s)
- Felix He
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Krister Melén
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland; Expert Microbiology Unit, National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland.
| | - Sari Maljanen
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Rickard Lundberg
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Miao Jiang
- Expert Microbiology Unit, National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland.
| | - Pamela Österlund
- Expert Microbiology Unit, National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland.
| | - Laura Kakkola
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Ilkka Julkunen
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| |
Collapse
|
50
|
|