1
|
Migueles SA, Nettere DM, Gavil NV, Wang LT, Toulmin SA, Kelly EP, Ward AJ, Lin S, Thompson SA, Peterson BA, Abdeen CS, Sclafani CR, Pryal PF, Leach BG, Ludwig AK, Rogan DC, Przygonska PA, Cattani A, Imamichi H, Sachs A, Cafri G, Huang NN, Patamawenu A, Liang CJ, Hallahan CW, Kambach DM, Han EX, Coupet T, Chen J, Moir SL, Chun TW, Coates EE, Ledgerwood J, Schmidt J, Taillandier-Coindard M, Michaux J, Pak H, Bassani-Sternberg M, Frahm N, McElrath MJ, Connors M. HIV vaccines induce CD8 + T cells with low antigen receptor sensitivity. Science 2023; 382:1270-1276. [PMID: 38096385 DOI: 10.1126/science.adg0514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Current HIV vaccines designed to stimulate CD8+ T cells have failed to induce immunologic control upon infection. The functions of vaccine-induced HIV-specific CD8+ T cells were investigated here in detail. Cytotoxic capacity was significantly lower than in HIV controllers and was not a consequence of low frequency or unaccumulated functional cytotoxic proteins. Low cytotoxic capacity was attributable to impaired degranulation in response to the low antigen levels present on HIV-infected targets. The vaccine-induced T cell receptor (TCR) repertoire was polyclonal and transduction of these TCRs conferred the same reduced functions. These results define a mechanism accounting for poor antiviral activity induced by these vaccines and suggest that an effective CD8+ T cell response may require a vaccination strategy that drives further TCR clonal selection.
Collapse
Affiliation(s)
- Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danielle M Nettere
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Noah V Gavil
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence T Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sushila A Toulmin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth P Kelly
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Addison J Ward
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Siying Lin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah A Thompson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bennett A Peterson
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cassidy S Abdeen
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carina R Sclafani
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick F Pryal
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin G Leach
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amanda K Ludwig
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Rogan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paulina A Przygonska
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angela Cattani
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hiromi Imamichi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Abraham Sachs
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gal Cafri
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ning-Na Huang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andy Patamawenu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claire W Hallahan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Susan L Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily E Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marie Taillandier-Coindard
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nicole Frahm
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Medler TR, Blair TC, Alice AF, Dowdell AK, Piening BD, Crittenden MR, Gough MJ. Myeloid MyD88 restricts CD8 + T cell response to radiation therapy in pancreatic cancer. Sci Rep 2023; 13:8634. [PMID: 37244938 PMCID: PMC10224952 DOI: 10.1038/s41598-023-35834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Radiation therapy induces immunogenic cell death in cancer cells, whereby released endogenous adjuvants are sensed by immune cells to direct adaptive immune responses. TLRs expressed on several immune subtypes recognize innate adjuvants to direct downstream inflammatory responses in part via the adapter protein MyD88. We generated Myd88 conditional knockout mice to interrogate its contribution to the immune response to radiation therapy in distinct immune populations in pancreatic cancer. Surprisingly, Myd88 deletion in Itgax (CD11c)-expressing dendritic cells had little discernable effects on response to RT in pancreatic cancer and elicited normal T cell responses using a prime/boost vaccination strategy. Myd88 deletion in Lck-expressing T cells resulted in similar or worsened responses to radiation therapy compared to wild-type mice and lacked antigen-specific CD8+ T cell responses from vaccination, similar to observations in Myd88-/- mice. Lyz2-specific loss of Myd88 in myeloid populations rendered tumors more susceptible to radiation therapy and elicited normal CD8+ T cell responses to vaccination. scRNAseq in Lyz2-Cre/Myd88fl/fl mice revealed gene signatures in macrophages and monocytes indicative of enhanced type I and II interferon responses, and improved responses to RT were dependent on CD8+ T cells and IFNAR1. Together, these data implicate MyD88 signaling in myeloid cells as a critical source of immunosuppression that hinders adaptive immune tumor control following radiation therapy.
Collapse
Affiliation(s)
- Terry R Medler
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Tiffany C Blair
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Alexa K Dowdell
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Brian D Piening
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA
- The Oregon Clinic, Portland, OR, USA
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan Street, Suite 2N100, Portland, OR, 97213, USA.
| |
Collapse
|
3
|
Qiu C, Wang J, Zhu L, Cheng X, Xia B, Jin Y, Qin R, Zhang L, Hu H, Yan J, Zhao C, Zhang X, Xu J. Improving the ex vivo expansion of human tumor-reactive CD8 + T cells by targeting toll-like receptors. Front Bioeng Biotechnol 2022; 10:1027619. [DOI: 10.3389/fbioe.2022.1027619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) are important pattern recognition receptor(s) known to mediate the sensing of invading pathogens and subsequent immune responses. In this study, we investigate whether TLRs could be explored for the preparation of human CD8+ T cell products used in adoptive cell therapy (ACT). Following characterization of TLRs expression on human CD8+ T cells, we screened TLR-specific agonists for their ability to act in concert with anti-CD3 to stimulate the proliferation of these cells and corroborated the observed co-stimulatory effect by transcriptional profiling analyses. Consequently, we developed an optimal formulation for human CD8+ T cell amplification by combining CD3/CD28 antibody, interleukin 7 (IL-7), interleukin 15 (IL-15), and three agonists respectively targeting TLR1/2, TLR2/6, and TLR5. This new formulation performed better in amplifying PD-1+CD8+ T cells, a potential repertoire of tumor-reactive CD8+ T cells, from tumor patients than the conventional formulation. Importantly, the expanded CD8+ T cells showed restored functionality and consequently a robust anti-tumor activity in an in vitro co-culturing system. Together, our study established the utility of TLR agonists in ex vivo expansion of tumor-targeting CD8+ T cells, thus providing a new avenue toward a more effective ACT.
Collapse
|
4
|
Hu Z, Lu SH, Lowrie DB, Fan XY. Research Advances for Virus-vectored Tuberculosis Vaccines and Latest Findings on Tuberculosis Vaccine Development. Front Immunol 2022; 13:895020. [PMID: 35812383 PMCID: PMC9259874 DOI: 10.3389/fimmu.2022.895020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis, remains a major global health threat. The only licensed TB vaccine, the one-hundred-year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an optimal TB vaccine is one of the key barriers to TB control. Recently, the development of highly efficacious COVID-19 vaccines within one year accelerated the vaccine development process in human use, with the notable example of mRNA vaccines and adenovirus-vectored vaccines, and increased the public acceptance of the concept of the controlled human challenge model. In the TB vaccine field, recent progress also facilitated the deployment of an effective TB vaccine. In this review, we provide an update on the current virus-vectored TB vaccine pipeline and summarize the latest findings that might facilitate TB vaccine development. In detail, on the one hand, we provide a systematic literature review of the virus-vectored TB vaccines are in clinical trials, and other promising candidate vaccines at an earlier stage of development are being evaluated in preclinical animal models. These research sharply increase the likelihood of finding a more effective TB vaccine in the near future. On the other hand, we provide an update on the latest tools and concept that facilitating TB vaccine research development. We propose that a pre-requisite for successful development may be a better understanding of both the lung-resident memory T cell-mediated mucosal immunity and the trained immunity of phagocytic cells. Such knowledge could reveal novel targets and result in the innovative vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We also summarized the research on controlled human infection and ultra-low-dose aerosol infection murine models, which may provide more realistic assessments of vaccine utility at earlier stages. In addition, we believe that the success in the ongoing efforts to identify correlates of protection would be a game-changer for streamlining the triage of multiple next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB vaccine research, we remain hopeful that a more effective TB vaccine will eventually be developed in the near future.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Douglas B. Lowrie
- National Medical Center for Infectious Diseases of China, Shenzhen Third People Hospital, South Science & Technology University, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE)/Ministry of Health (MOH), Fudan University, Shanghai, China
- *Correspondence: Zhidong Hu, ; Xiao-Yong Fan,
| |
Collapse
|
5
|
Abstract
The immune (innate and adaptive) system has evolved to protect the host from any danger present in the surrounding outer environment (microbes and associated MAMPs or PAMPs, xenobiotics, and allergens) and dangers originated within the host called danger or damage-associated molecular patterns (DAMPs) and recognizing and clearing the cells dying due to apoptosis. It also helps to lower the tissue damage during trauma and initiates the healing process. The pattern recognition receptors (PRRs) play a crucial role in recognizing different PAMPs or MAMPs and DAMPs to initiate the pro-inflammatory immune response to clear them. Toll-like receptors (TLRs) are first recognized PRRs and their discovery proved milestone in the field of immunology as it filled the gap between the first recognition of the pathogen by the immune system and the initiation of the appropriate immune response required to clear the infection by innate immune cells (macrophages, neutrophils, dendritic cells or DCs, and mast cells). However, in addition to their expression by innate immune cells and controlling their function, TLRs are also expressed by adaptive immune cells. We have identified 10 TLRs (TLR1-TLR10) in humans and 12 TLRs (TLR1-TLR13) in laboratory mice till date as TLR10 in mice is present only as a defective pseudogene. The present chapter starts with the introduction of innate immunity, timing of TLR evolution, and the evolution of adaptive immune system and its receptors (T cell receptors or TCRs and B cell receptors or BCRs). The next section describes the role of TLRs in the innate immune function and signaling involved in the generation of inflammation. The subsequent sections describe the expression and function of different TLRs in murine and human adaptive immune cells (B cells and different types of T cells, including CD4+T cells, CD8+T cells, CD4+CD25+Tregs, and CD8+CD25+Tregs, etc.). The modulation of TLRs expressed on T and B cells has a great potential to develop different vaccine candidates, adjuvants, immunotherapies to target various microbial infections, including current COVID-19 pandemic, cancers, and autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA.
| |
Collapse
|
6
|
Therapeutic Vaccines for the Treatment of HIV. Transl Res 2020; 223:61-75. [PMID: 32438074 PMCID: PMC8188575 DOI: 10.1016/j.trsl.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Despite the success of anti-retroviral therapy (ART) in transforming HIV into a manageable disease, it has become evident that long-term ART will not eliminate the HIV reservoir and cure the infection. Alternative strategies to eradicate HIV infection, or at least induce a state of viral control and drug-free remission are therefore needed. Therapeutic vaccination aims to induce or enhance immunity to alter the course of a disease. In this review we provide an overview of the current state of therapeutic HIV vaccine research and summarize the obstacles that the field faces while highlighting potential ways forward for a strategy to cure HIV infection.
Collapse
|
7
|
Teck AT, Urban S, Quass P, Nelde A, Schuster H, Letsch A, Busse A, Walz JS, Keilholz U, Ochsenreither S. Cancer testis antigen Cyclin A1 harbors several HLA-A*02:01-restricted T cell epitopes, which are presented and recognized in vivo. Cancer Immunol Immunother 2020; 69:1217-1227. [PMID: 32157447 PMCID: PMC8222032 DOI: 10.1007/s00262-020-02519-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/12/2020] [Indexed: 01/22/2023]
Abstract
Cyclin A1 is a promising antigen for T cell therapy being selectively expressed in high-grade ovarian cancer (OC) and acute myeloid leukemia (AML) stem cells. For adoptive T cell therapy, a single epitope has to be selected, with high affinity to MHC class I and adequate processing and presentation by malignant cells to trigger full activation of specific T cells. In silico prediction with three algorithms indicated 13 peptides of Cyclin A1 9 to 11 amino acids of length to have high affinity to HLA-A*02:01. Ten of them proved to be affine in an HLA stabilization assay using TAP-deficient T2 cells. Their immunogenicity was assessed by repetitive stimulation of CD8+ T cells from two healthy donors with single-peptide-pulsed dendritic cells or monocytes. Intracellular cytokine staining quantified the enrichment of peptide-specific functional T cells. Seven peptides were immunogenic, three of them against both donors. Specific cell lines were cloned and used in killing assays to demonstrate recognition of endogenous Cyclin A1 in the HLA-A*02:01-positive AML cell line THP-1. Immunopeptidome analysis based on direct isolation of HLA-presented peptides by mass spectrometry of primary AML and OC samples identified four naturally presented epitopes of Cyclin A1. The immunopeptidome of HeLa cells transfected with Cyclin A1 and HLA-A*02:01 revealed six Cyclin A1-derived HLA ligands. Epitope p410–420 showed high affinity to HLA-A*02:01 and immunogenicity in both donors. It proved to be naturally presented on primary AML blast and provoked spontaneous functional response of T cells from treatment naïve OC and, therefore, warrants further development for clinical application.
Collapse
Affiliation(s)
- Anja Tatjana Teck
- Department of Hematology and Oncology, Campus Benjamin Franklin, Charité Berlin, Berlin, Germany
| | - Sabrina Urban
- Department of Hematology and Oncology, Campus Benjamin Franklin, Charité Berlin, Berlin, Germany
| | - Petra Quass
- Department of Hematology and Oncology, Campus Benjamin Franklin, Charité Berlin, Berlin, Germany.,Charité Comprehensive Cancer Center, Charitéplatz 1, 10117, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annika Nelde
- Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), University Hospital Tübingen, Tübingen, Germany
| | - Heiko Schuster
- Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Anne Letsch
- Department of Hematology and Oncology, Campus Benjamin Franklin, Charité Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonia Busse
- Department of Hematology and Oncology, Campus Benjamin Franklin, Charité Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juliane Sarah Walz
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charitéplatz 1, 10117, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Ochsenreither
- Department of Hematology and Oncology, Campus Benjamin Franklin, Charité Berlin, Berlin, Germany. .,Charité Comprehensive Cancer Center, Charitéplatz 1, 10117, Berlin, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Hu Z, Jiang W, Gu L, Qiao D, Shu T, Lowrie DB, Lu SH, Fan XY. Heterologous prime-boost vaccination against tuberculosis with recombinant Sendai virus and DNA vaccines. J Mol Med (Berl) 2019; 97:1685-1694. [PMID: 31786669 DOI: 10.1007/s00109-019-01844-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/22/2019] [Accepted: 10/05/2019] [Indexed: 11/30/2022]
Abstract
In an earlier study, a novel Sendai virus-vectored anti-tuberculosis vaccine encoding Ag85A and Ag85B (SeV85AB) was constructed and shown to elicit antigen-specific T cell responses and protection against Mycobacterium tuberculosis (Mtb) infection in a murine model. In this study, we evaluate whether the immune responses induced by this novel vaccine might be elevated by a recombinant DNA vaccine expressing the same antigen in a heterologous prime-boost vaccination strategy. The results showed that both SeV85AB prime-DNA boost (SeV85AB-DNA) and DNA prime-SeV85AB boost (DNA-SeV85AB) vaccination strategies significantly enhanced the antigen-specific T cell responses induced by the separate vaccines. The SeV85AB-DNA immunization regimen induced higher levels of recall T cell responses after Mtb infection and conferred better immune protection compared with DNA-SeV85AB or a single immunization. Collectively, our study lends strong evidence that a DNA vaccine boost might be included in a novel SeV85AB immunization strategy designed to enhance the immune protection against Mtb. KEY MESSAGES: A heterologous prime-boost regimen with a novel recombinant SeV85AB and a DNA vaccine increase the T cell responses above those from a single vaccine. The heterologous prime-boost regimen provided protection against Mtb infection. The DNA vaccine might be included in a novel SeV85AB immunization strategy designed to enhance the immune protection against Mtb.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China
| | - Weimin Jiang
- Departments of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ling Gu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China.,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China
| | - Dan Qiao
- Ruijin Hospital (North), Shanghai Jiaotong University, Shanghai, 201801, China
| | | | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China.,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China. .,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China. .,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China.
| | - Xiao-Yong Fan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, China. .,TB Center, Shanghai Emerging and Re-emerging Institute, Shanghai, 201508, China.
| |
Collapse
|
9
|
Hu Z, Zhao HM, Li CL, Liu XH, Barkan D, Lowrie DB, Lu SH, Fan XY. The Role of KLRG1 in Human CD4+ T-Cell Immunity Against Tuberculosis. J Infect Dis 2019; 217:1491-1503. [PMID: 29373700 DOI: 10.1093/infdis/jiy046] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/22/2017] [Indexed: 01/29/2023] Open
Abstract
Background KLRG1 is a marker of terminally differentiated CD8+ T cells in viral infection, but its role in human Mycobacterium tuberculosis infection remains elusive. Methods A set of cohorts of patients with tuberculosis was designed, and the expression profiles and functions of KLRG1+CD4+ T cells were determined with and without antibody blocking. Results KLRG1 expression on CD4+ T cells was significantly increased in patients with active tuberculosis, compared with healthy controls and patients without tuberculosis. Upon M. tuberculosis-specific stimulation, the ability to secrete interferon γ, interleukin 2, and tumor necrosis factor α was significantly greater in KLRG1-expressing CD4+ T cells than in their KLRG-negative counterparts and was accompanied by a decreased proportion of regulatory T cells and increased Akt signaling. However, KLRG1-expressing CD4+ T cells had a shorter life-span, which was associated with a higher apoptosis rate but a similar proliferative response. Blockade of KLRG1 signaling significantly enhanced interferon γ and interleukin 2 secretion without affecting either cell apoptosis or multiplication. Addition of a specific Akt inhibitor prevented this increased cytokine response, implicating the Akt signaling pathway. Conclusions Our study delineated the profile of KLRG1+CD4+ T cells in patients with tuberculosis and suggests that M. tuberculosis infection drives CD4+ T cells to acquire increased effector function in a terminally differentiated state, which is restrained by KLRG1 via KLRG1/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University.,TB Center, Shanghai Emerging and Reemerging Infectious Disease Institute, Shanghai
| | - Hui-Min Zhao
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University
| | - Chun-Ling Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xu-Hui Liu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University.,TB Center, Shanghai Emerging and Reemerging Infectious Disease Institute, Shanghai
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Hebrew University, Rehovot, Israel
| | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University.,TB Center, Shanghai Emerging and Reemerging Infectious Disease Institute, Shanghai
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University.,TB Center, Shanghai Emerging and Reemerging Infectious Disease Institute, Shanghai.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University.,TB Center, Shanghai Emerging and Reemerging Infectious Disease Institute, Shanghai.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Billeskov R, Beikzadeh B, Berzofsky JA. The effect of antigen dose on T cell-targeting vaccine outcome. Hum Vaccin Immunother 2018; 15:407-411. [PMID: 30277831 DOI: 10.1080/21645515.2018.1527496] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
During the past 3-4 decades, an increasing amount of evidence has pointed to the complex role of the antigen dose or T cell receptor (TCR) stimulation strength on the subsequent type, duration and "flavor" or quality of the response. Antigen dose was initially shown to impact Th1/Th2 bias, and later also shown to differentially affect development and induction of Tregs, Th17, T-follicular helper (Tfh), cells, and others. In recent years the quality of both CD4/8 T cells during infections, cancer and/or autoimmunity has turned out to be critical for subsequent disease outcome. Importantly, different vaccination strategies also lead to different types of T cell responses, and the role of the antigen dose is emerging as an important factor as well as a tool for investigators to utilize in fine-tuning vaccine efficacy. This commentary will highlight essential background of how antigen dose can impact and affect the quality of T cell responses, and discuss how this translates in different vaccine settings.
Collapse
Affiliation(s)
- Rolf Billeskov
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA.,c Department of Infectious Disease Immunology , Statens Serum Institut , Copenhagen , Denmark
| | - Babak Beikzadeh
- b Department of Microbiology and Immunology, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran.,c Department of Infectious Disease Immunology , Statens Serum Institut , Copenhagen , Denmark
| | - Jay A Berzofsky
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
11
|
Hu Z, Gu L, Li CL, Shu T, Lowrie DB, Fan XY. The Profile of T Cell Responses in Bacille Calmette-Guérin-Primed Mice Boosted by a Novel Sendai Virus Vectored Anti-Tuberculosis Vaccine. Front Immunol 2018; 9:1796. [PMID: 30123219 PMCID: PMC6085409 DOI: 10.3389/fimmu.2018.01796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
The kinds of vaccine-induced T cell responses that are beneficial for protection against Mycobacterium tuberculosis (Mtb) infection are not adequately defined. We had shown that a novel Sendai virus vectored vaccine, SeV85AB, was able to enhance immune protection induced by bacille Calmette–Guérin (BCG) in a prime-boost model. However, the profile of T cell responses boosted by SeV85AB was not determined. Herein, we show that the antigen-specific CD4+ and CD8+ T cell responses were both enhanced by the SeV85AB boost after BCG. Different profiles of antigen-specific po T cell subsets were induced in the local (lung) and systemic (spleen) sites. In the spleen, the CD4+ T cell responses that were enhanced by the SeV85AB boost were predominately IL-2 responses, whereas in the lung the greater increases were in IFN-γ- and TNF-α-producing CD4+ T cells; in CD8+ T cells, although IFN-γ was enhanced in both the spleen and lung, only IL-2+TNF-α+CD8+ T subset was boosted in the latter. After a challenge Mtb infection, there were significantly higher levels of recall IL-2 responses in T cells. In contrast, IFN-γ-producing cells were barely boosted by SeV85AB. After Mtb challenge a central memory phenotype of responding CD4+ T cells was a prominent feature in SeV85AB-boosted mice. Thus, our data strongly suggest that the enhanced immune protection induced by SeV85AB boosting was associated with establishment of an increased capacity to recall antigen-specific IL-2-mediated T cell responses and confirms this Sendai virus vector system as a promising candidate to be used in a heterologous prime-boost immunization regimen against TB.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Ling Gu
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Chun-Ling Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | | | - Douglas B Lowrie
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yong Fan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China.,Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Xiang B, Baybutt TR, Berman-Booty L, Magee MS, Waldman SA, Alexeev VY, Snook AE. Prime-Boost Immunization Eliminates Metastatic Colorectal Cancer by Producing High-Avidity Effector CD8 + T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3507-3514. [PMID: 28341670 PMCID: PMC5435941 DOI: 10.4049/jimmunol.1502672] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/27/2017] [Indexed: 11/19/2022]
Abstract
Heterologous prime-boost immunization with plasmid DNA and viral vector vaccines is an emerging approach to elicit CD8+ T cell-mediated immunity targeting pathogens and tumor Ags that is superior to either monotherapy. Yet, the mechanisms underlying the synergy of prime-boost strategies remain incompletely defined. In this study, we examine a DNA and adenovirus (Ad5) combination regimen targeting guanylyl cyclase C (GUCY2C), a receptor expressed by intestinal mucosa and universally expressed by metastatic colorectal cancer. DNA immunization efficacy was optimized by i.m. delivery via electroporation, yet it remained modest compared with Ad5. Sequential immunization with DNA and Ad5 produced superior antitumor efficacy associated with increased TCR avidity, whereas targeted disruption of TCR avidity enhancement eliminated GUCY2C-specific antitumor efficacy, without affecting responding T cell number or cytokine profile. Indeed, functional TCR avidity of responding GUCY2C-specific CD8+ T cells induced by various prime or prime-boost regimens correlated with antitumor efficacy, whereas T cell number and cytokine profile were not. Importantly, although sequential immunization with DNA and Ad5 maximized antitumor efficacy through TCR avidity enhancement, it produced no autoimmunity, reflecting sequestration of GUCY2C to intestinal apical membranes and segregation of mucosal and systemic immunity. Together, TCR avidity enhancement may be leveraged by prime-boost immunization to improve GUCY2C-targeted colorectal cancer immunotherapeutic efficacy and patient outcomes without concomitant autoimmune toxicity.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CD8-Positive T-Lymphocytes/physiology
- CD8-Positive T-Lymphocytes/transplantation
- Cells, Cultured
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/therapy
- Cytotoxicity, Immunologic
- Immunity, Mucosal
- Immunization, Secondary
- Immunotherapy, Adoptive/methods
- Intestinal Mucosa/physiology
- Mice
- Mice, Inbred BALB C
- Neoplasm Metastasis
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Enterotoxin
- Receptors, Guanylate Cyclase-Coupled/genetics
- Receptors, Guanylate Cyclase-Coupled/metabolism
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Tumor Burden
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Bo Xiang
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Trevor R Baybutt
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lisa Berman-Booty
- Department of Discovery Toxicology, Bristol-Myers Squibb, Princeton, NJ 08543
| | - Michael S Magee
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
- Bluebird Bio, Cambridge, MA 02141; and
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107
| | - Vitali Y Alexeev
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107;
| |
Collapse
|
13
|
Billeskov R, Wang Y, Solaymani-Mohammadi S, Frey B, Kulkarni S, Andersen P, Agger EM, Sui Y, Berzofsky JA. Low Antigen Dose in Adjuvant-Based Vaccination Selectively Induces CD4 T Cells with Enhanced Functional Avidity and Protective Efficacy. THE JOURNAL OF IMMUNOLOGY 2017; 198:3494-3506. [PMID: 28348274 DOI: 10.4049/jimmunol.1600965] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
T cells with high functional avidity can sense and respond to low levels of cognate Ag, a characteristic that is associated with more potent responses against tumors and many infections, including HIV. Although an important determinant of T cell efficacy, it has proven difficult to selectively induce T cells of high functional avidity through vaccination. Attempts to induce high-avidity T cells by low-dose in vivo vaccination failed because this strategy simply gave no response. Instead, selective induction of high-avidity T cells has required in vitro culturing of specific T cells with low Ag concentrations. In this study, we combined low vaccine Ag doses with a novel potent cationic liposomal adjuvant, cationic adjuvant formulation 09, consisting of dimethyldioctadecylammonium liposomes incorporating two immunomodulators (monomycolyl glycerol analog and polyinosinic-polycytidylic acid) that efficiently induces CD4 Th cells, as well as cross-primes CD8 CTL responses. We show that vaccination with low Ag dose selectively primes CD4 T cells of higher functional avidity, whereas CD8 T cell functional avidity was unrelated to vaccine dose in mice. Importantly, CD4 T cells of higher functional avidity induced by low-dose vaccinations showed higher cytokine release per cell and lower inhibitory receptor expression (PD-1, CTLA-4, and the apoptosis-inducing Fas death receptor) compared with their lower-avidity CD4 counterparts. Notably, increased functional CD4 T cell avidity improved antiviral efficacy of CD8 T cells. These data suggest that potent adjuvants, such as cationic adjuvant formulation 09, render low-dose vaccination a feasible and promising approach for generating high-avidity T cells through vaccination.
Collapse
Affiliation(s)
- Rolf Billeskov
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; .,Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen S, DK-2300, Denmark; and
| | - Yichuan Wang
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Corporation, Frederick, MD 21702
| | - Shahram Solaymani-Mohammadi
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Blake Frey
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shweta Kulkarni
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen S, DK-2300, Denmark; and
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen S, DK-2300, Denmark; and
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
14
|
Hu Z, Zhu L, Wang J, Wan Y, Yuan S, Chen J, Ding X, Qiu C, Zhang X, Qiu C, Xu J. Immune Signature of Enhanced Functional Avidity CD8 + T Cells in vivo Induced by Vaccinia Vectored Vaccine. Sci Rep 2017; 7:41558. [PMID: 28155878 PMCID: PMC5290741 DOI: 10.1038/srep41558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022] Open
Abstract
Functional avidity of T cells is a critical determinant for clearing viral infection and eliminating tumor. Understanding how functional avidity is maintained in T cells is imperative for immunotherapy. However, studies systematically characterize T cell with high functional avidity induced in vivo are still lacking. Previously, we and others found vaccinia vectored vaccine (VACV) induced antigen-specific CD8+ T cells with relatively high functional avidity to those from DNA vaccine. Herein, we used functional, immune phenotyping and transcriptomic studies to define the immune signature of these CD8+ T cells with high functional avidity. Antigen-specific CD8+ T cells induced by VACV executed superior in vivo killing activity and displayed a distinct transcriptional profile, whereas no significantly differences were found in composition of memory sub-populations and cytokine poly-functionality. Transcriptional analyses revealed unique features of VACV induced CD8+ T cells in several biological processes, including transport, cell cycle, cell communication and metabolic processes. In summary, we characterize CD8+ T cells of high functional avidity induced in vivo by VACV, which not only improves our understanding of adaptive T cell immunity in VACV vaccination, but also provides clues to modulate functional avidity of CD8+ T cells for T cell based immunotherapy.
Collapse
Affiliation(s)
- Zhidong Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lingyan Zhu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jing Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanmin Wan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Songhua Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jian Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chenli Qiu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of MOE/ MOH, Fudan University, Shanghai, China
| | - Chao Qiu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of MOE/ MOH, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of MOE/ MOH, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia. PLoS Pathog 2015; 11:e1005161. [PMID: 26367276 PMCID: PMC4569330 DOI: 10.1371/journal.ppat.1005161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
Fungal infections have skyrocketed in immune-compromised patients lacking CD4+ T cells, underscoring the need for vaccine prevention. An understanding of the elements that promote vaccine immunity in this setting is essential. We previously demonstrated that vaccine-induced IL-17A+ CD8+ T cells (Tc17) are required for resistance against lethal fungal pneumonia in CD4+ T cell-deficient hosts, whereas the individual type I cytokines IFN-γ, TNF-α and GM-CSF, are dispensable. Here, we report that T cell-intrinsic MyD88 signals are crucial for these Tc17 cell responses and vaccine immunity against lethal fungal pneumonia in mice. In contrast, IFN-γ+ CD8+ cell (Tc1) responses are largely normal in the absence of intrinsic MyD88 signaling in CD8+ T cells. The poor accumulation of MyD88-deficient Tc17 cells was not linked to an early onset of contraction, nor to accelerated cell death or diminished expression of anti-apoptotic molecules Bcl-2 or Bcl-xL. Instead, intrinsic MyD88 was required to sustain the proliferation of Tc17 cells through the activation of mTOR via Akt1. Moreover, intrinsic IL-1R and TLR2, but not IL-18R, were required for MyD88 dependent Tc17 responses. Our data identify unappreciated targets for augmenting adaptive immunity against fungi. Our findings have implications for designing fungal vaccines and immune-based therapies in immune-compromised patients. Patients with AIDS, cancer or immune suppressive treatments are vulnerable to infection with invasive fungi. We have found that even when helper CD4 T cells are profoundly reduced in a mouse model that mimics this defect in AIDS, other remaining T cells are capable of mounting vaccine immunity against a deadly fungal infection, and they do so by producing the powerful, soluble product, IL-17. It has been widely believed that the activation and instruction of such cells, called Tc17 cells, is governed by another population of immune cells in the body, but we have found here that pathways within these Tc17 cells themselves mediate their activation and ability to produce the IL-17 needed for resistance to infection. We have also identified elements of the circuitry controlling this pathway—elements called MyD88, Akt1 and mTOR—and found that they control the production of IL-17 and not other products such as IFN-γ often produced by these cells. Further, we determined that this circuitry controls the development of Tc17 cells by regulating their ability to divide and expand. Thus, in a mouse model of vaccination against lethal fungal pneumonia caused by Blastomyces dermatitidis, we uncovered an important cellular arsenal that can be recruited to bolster resistance against a fungal infection, and identified novel ways in which the cells develop and expand into potent killers of fungi.
Collapse
|