1
|
Ding D, Zhao Y, Jia Y, Niu M, Li X, Zheng X, Chen H. Identification of novel genes associated with atherosclerosis in Bama miniature pig. Animal Model Exp Med 2024; 7:377-387. [PMID: 38720469 PMCID: PMC11228093 DOI: 10.1002/ame2.12412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/20/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic cardiovascular disease of great concern. However, it is difficult to establish a direct connection between conventional small animal models and clinical practice. The pig's genome, physiology, and anatomy reflect human biology better than other laboratory animals, which is crucial for studying the pathogenesis of atherosclerosis. METHODS We used whole-genome sequencing data from nine Bama minipigs to perform a genome-wide linkage analysis, and further used bioinformatic tools to filter and identify underlying candidate genes. Candidate gene function prediction was performed using the online prediction tool STRING 12.0. Immunohistochemistry and immunofluorescence were used to detect the expression of proteins encoded by candidate genes. RESULTS We mapped differential single nucleotide polymorphisms (SNPs) to genes and obtained a total of 102 differential genes, then we used GO and KEGG pathway enrichment analysis to identify four candidate genes, including SLA-1, SLA-2, SLA-3, and TAP2. nsSNPs cause changes in the primary and tertiary structures of SLA-I and TAP2 proteins, the primary structures of these two proteins have undergone amino acid changes, and the tertiary structures also show slight changes. In addition, immunohistochemistry and immunofluorescence results showed that the expression changes of TAP2 protein in coronary arteries showed a trend of increasing from the middle layer to the inner layer. CONCLUSIONS We have identified SLA-I and TAP2 as potential susceptibility genes of atherosclerosis, highlighting the importance of antigen processing and immune response in atherogenesis.
Collapse
Affiliation(s)
- Dengfeng Ding
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Yuqiong Zhao
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Yunxiao Jia
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Miaomiao Niu
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Xuezhuang Li
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Xinou Zheng
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Hua Chen
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
2
|
Luo T, Xin C, Liu H, Li C, Chen H, Xia C, Gao C. Potential SLA Hp-4.0 haplotype-restricted CTL epitopes identified from the membrane protein of PRRSV induce cell immune responses. Front Microbiol 2024; 15:1404558. [PMID: 38841061 PMCID: PMC11150780 DOI: 10.3389/fmicb.2024.1404558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Swine leukocyte antigen (SLA) class I molecule-restricted T-cell epitopes, which induce cytotoxic T lymphocyte (CTL) responses, play a critical role in the clearance of porcine reproductive and respiratory syndrome virus (PRRSV) and the development of efficient protective vaccines. The SLA-1*04:01:01, SLA-2*04:01, and SLA-3*04:01 alleles, assigned the Hp-4.0 haplotype, are highly prevalent and usually present in all pig breeds. However, the SLA Hp-4.0 haplotype-restricted CTL epitopes in the structural membrane (M) protein of PRRSV are still unknown. In this study, we predicted 27 possible 9-mer epitope peptides in M protein with high binding scores for SLA-1*04:01:01 using CTL epitope prediction tools. In total, 45 SLA class I complexes, comprising the predicted peptide, extracellular region of the SLA-I molecules, and β2-microglobulin, were constructed in vitro to detect the specific binding of these peptides to SLA-1*04:01:01 (27 complexes), SLA-2*04:01 (9 complexes), and SLA-3*04:01 (9 complexes), respectively. Our results showed that the M27 (T91WKFITSRC), M39 (N130HAFVVRRP), and M49 (G158RKAVKQGV) peptides bind specifically to SLA-1*04:01:01, SLA-2*04:01, and SLA-3*04:01, respectively. Subsequently, using peripheral blood mononuclear cells (PBMCs) isolated from the homozygous Hp-4.0 and Hp-26.0 haplotype piglets vaccinated with commercial PRRSV HuN4-F112 strain, we determined the capacities of these 27 potential peptides to stimulate their proliferation with a Cell Counting Kit-8 and their secretion and expression of interferon gamma (IFN-γ) with an ELISpot assay and real-time qPCR, respectively. The immunological activities of M27, M39, and M49 were therefore confirmed when they efficiently induced PBMC proliferation and IFN-γ secretion in PBMCs from piglets with the prevalent SLA Hp-4.0 haplotype. The amino acid sequence alignment revealed that M27, M39, and M49 are highly conserved among 248 genotype II PRRSV strains collected between 1998 and 2019. These findings contribute to the understanding of the mechanisms of cell-mediated immune responses to PRRSV. Our study also provides a novel strategy for identifying and confirming potential SLA haplotype-restricted CTL epitopes that could be used to develop novel peptide-based vaccines against swine diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Caixia Gao
- State Key Laboratory for Animal Disease Control and Prevention, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| |
Collapse
|
3
|
Simbulan AM, Banico EC, Sira EMJS, Odchimar NMO, Orosco FL. Immunoinformatics-guided approach for designing a pan-proteome multi-epitope subunit vaccine against African swine fever virus. Sci Rep 2024; 14:1354. [PMID: 38228670 DOI: 10.1038/s41598-023-51005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024] Open
Abstract
Despite being identified over a hundred years ago, there is still no commercially available vaccine for the highly contagious and deadly African swine fever virus (ASFV). This study used immunoinformatics for the rapid and inexpensive designing of a safe and effective multi-epitope subunit vaccine for ASFV. A total of 18,858 proteins from 100 well-annotated ASFV proteomes were screened using various computational tools to identify potential epitopes, or peptides capable of triggering an immune response in swine. Proteins from genotypes I and II were prioritized for their involvement in the recent global ASFV outbreaks. The screened epitopes exhibited promising qualities that positioned them as effective components of the ASFV vaccine. They demonstrated antigenicity, immunogenicity, and cytokine-inducing properties indicating their ability to induce potent immune responses. They have strong binding affinities to multiple swine allele receptors suggesting a high likelihood of yielding more amplified responses. Moreover, they were non-allergenic and non-toxic, a crucial prerequisite for ensuring safety and minimizing any potential adverse effects when the vaccine is processed within the host. Integrated with an immunogenic 50S ribosomal protein adjuvant and linkers, the epitopes formed a 364-amino acid multi-epitope subunit vaccine. The ASFV vaccine construct exhibited notable immunogenicity in immune simulation and molecular docking analyses, and stable profiles in secondary and tertiary structure assessments. Moreover, this study designed an optimized codon for efficient translation of the ASFV vaccine construct into the Escherichia coli K-12 expression system using the pET28a(+) vector. Overall, both sequence and structural evaluations suggested the potential of the ASFV vaccine construct as a candidate for controlling and eradicating outbreaks caused by the pathogen.
Collapse
Affiliation(s)
- Alea Maurice Simbulan
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Edward C Banico
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Ella Mae Joy S Sira
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Nyzar Mabeth O Odchimar
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines
| | - Fredmoore L Orosco
- Department of Science and Technology, Virology and Vaccine Research and Development Program, Industrial Technology Development Institute, Bicutan, 1634, Taguig, Metro Manila, Philippines.
- Department of Science and Technology, S&T Fellows Program, Bicutan, 1634, Taguig, Metro Manila, Philippines.
- Department of Biology, University of the Philippines Manila, 1000, Manila, Philippines.
| |
Collapse
|
4
|
Khatooni Z, Teymourian N, Wilson HL. Using a novel structure/function approach to select diverse swine major histocompatibility complex 1 alleles to predict epitopes for vaccine development. Bioinformatics 2023; 39:btad590. [PMID: 37740287 PMCID: PMC10551226 DOI: 10.1093/bioinformatics/btad590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
MOTIVATION Swine leukocyte antigens (SLAs) (i.e. swine major histocompatibility complex proteins) conduct a fundamental role in swine immunity. To generate a protective vaccine across an outbred species, such as pigs, it is critical that epitopes that bind to diverse SLA alleles are used in the vaccine development process. We introduced a new strategy for epitope prediction. RESULTS We employed molecular dynamics simulation to identify key amino acids for interactions with epitopes. We developed an algorithm wherein each SLA-1 is compared to a crystalized reference allele with unique weighting for non-conserved amino acids based on R group and position. We then performed homology modeling and electrostatic contact mapping to visualize how relatively small changes in sequences impacted the charge distribution in the binding site. We selected eight diverse SLA-1 alleles and performed homology modeling followed, by protein-peptide docking and binding affinity analyses, to identify porcine reproductive and respiratory syndrome virus matrix protein epitopes that bind with high affinity to these alleles. We also performed docking analysis on the epitopes identified as strong binders using NetMHCpan 4.1. Epitopes predicted to bind to our eight SLA-1 alleles had equivalent or higher energetic interactions than those predicted to bind to the NetMHCpan 4.1 allele repertoire. This approach of selecting diverse SLA-1 alleles, followed by homology modeling, and docking simulations, can be used as a novel strategy for epitope prediction that complements other available tools and is especially useful when available tools do not offer a prediction for SLAs/major histocompatibility complex. AVAILABILITY AND IMPLEMENTATION The data underlying this article are available in the online Supplementary Material.
Collapse
Affiliation(s)
- Zahed Khatooni
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Computer Science, University of Kurdistan, Sanandaj, Iran
| | - Navid Teymourian
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Computer Science, University of Kurdistan, Sanandaj, Iran
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
5
|
Feng L, Gao YY, Sun M, Li ZB, Zhang Q, Yang J, Qiao C, Jin H, Feng HS, Xian YH, Qi J, Gao GF, Liu WJ, Gao FS. The Parallel Presentation of Two Functional CTL Epitopes Derived from the O and Asia 1 Serotypes of Foot-and-Mouth Disease Virus and Swine SLA-2*HB01: Implications for Universal Vaccine Development. Cells 2022; 11:cells11244017. [PMID: 36552780 PMCID: PMC9777387 DOI: 10.3390/cells11244017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) poses a significant threat to the livestock industry. Through their recognition of the conserved epitopes presented by the swine leukocyte antigen (SLA), T cells play a pivotal role in the antiviral immunity of pigs. Herein, based on the peptide binding motif of SLA-2*HB01, from an original SLA-2 allele, a series of functional T-cell epitopes derived from the dominant antigen VP1 of FMDV with high binding capacity to SLA-2 were identified. Two parallel peptides, Hu64 and As64, from the O and Asia I serotypes, respectively, were both crystallized with SLA-2*HB01. Compared to SLA-1 and SLA-3, the SLA-2 structures showed the flexibility of residues in the P4, P6, and P8 positions and in their potential interface with TCR. Notably, the peptides Hu64 and As64 adopted quite similar overall conformation when bound to SLA-2*HB01. Hu64 has two different conformations, a more stable 'chair' conformation and an unstable 'boat' conformation observed in the two molecules of one asymmetric unit, whereas only a single 'chair' conformation was observed for As64. Both Hu64 and As64 could induce similar dominant T-cell activities. Our interdisciplinary study establishes a basis for the in-depth interpretation of the peptide presentation of SLA-I, which can be used toward the development of universal vaccines.
Collapse
Affiliation(s)
- Lei Feng
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yong-Yu Gao
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Mingwei Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Zi-Bin Li
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Qiang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jie Yang
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Cui Qiao
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Hang Jin
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
| | - Hong-Sheng Feng
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
| | - Yu-Han Xian
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Correspondence: (G.F.G.); (W.J.L.); (F.-S.G.)
| | - William J. Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Correspondence: (G.F.G.); (W.J.L.); (F.-S.G.)
| | - Feng-Shan Gao
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- Correspondence: (G.F.G.); (W.J.L.); (F.-S.G.)
| |
Collapse
|
6
|
Sun H, Deng G, Sun H, Song J, Zhang W, Li H, Wei X, Li F, Zhang X, Liu J, Pu J, Sun Y, Tong Q, Bi Y, Xie Y, Qi J, Chang KC, Gao GF, Liu J. N-linked glycosylation enhances hemagglutinin stability in avian H5N6 influenza virus to promote adaptation in mammals. PNAS NEXUS 2022; 1:pgac085. [PMID: 36741455 PMCID: PMC9896958 DOI: 10.1093/pnasnexus/pgac085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/05/2022] [Indexed: 02/07/2023]
Abstract
Clade 2.3.4.4 avian H5Ny viruses, namely H5N2, H5N6, and H5N8, have exhibited unprecedented intercontinental spread in poultry. Among them, only H5N6 viruses are frequently reported to infect mammals and cause serious human infections. In this study, the genetic and biological characteristics of surface hemagglutinin (HA) from clade 2.3.4.4 H5Ny avian influenza viruses (AIVs) were examined for adaptation in mammalian infection. Phylogenetic analysis identified an amino acid (AA) deletion at position 131 of HA as a distinctive feature of H5N6 virus isolated from human patients. This single AA deletion was found to enhance H5N6 virus replication and pathogenicity in vitro and in mammalian hosts (mice and ferrets) through HA protein acid and thermal stabilization that resulted in reduced pH threshold from pH 5.7 to 5.5 for viral-endosomal membrane fusion. Mass spectrometry and crystal structure revealed that the AA deletion in HA at position 131 introduced an N-linked glycosylation site at 129, which increases compactness between HA monomers, thus stabilizes the trimeric structure. Our findings provide a molecular understanding of how HA protein stabilization promotes cross-species avian H5N6 virus infection to mammalian hosts.
Collapse
Affiliation(s)
| | | | | | | | | | - Han Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaohui Wei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Fangtao Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiyu Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Tong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China,WHO Collaborating Center for Reference and Research on Influenza, Beijing 102206, China
| | - Jinhua Liu
- To whom correspondence should be addressed:
| |
Collapse
|
7
|
Wei X, Li S, Wang S, Feng G, Xie X, Li Z, Zhang N. Peptidomes and Structures Illustrate How SLA-I Micropolymorphism Influences the Preference of Binding Peptide Length. Front Immunol 2022; 13:820881. [PMID: 35296092 PMCID: PMC8918614 DOI: 10.3389/fimmu.2022.820881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 12/03/2022] Open
Abstract
Polymorphisms can affect MHC-I binding peptide length preferences, but the mechanism remains unclear. Using a random peptide library combined with LC-MS/MS and de novo sequencing (RPLD-MS) technique, we found that two swine MHC-I molecules with high sequence homology, SLA-1*04:01 and SLA-1*13:01, had significant differences in length preference of the binding peptides. Compared with SLA-1*04:01, SLA-1*13:01 binds fewer short peptides with 8-10 amino acids, but more long peptides. A dodecapeptide peptide (RW12) can bind to both SLA-1*04:01 and SLA-1*13:01, but their crystal structures indicate that the binding modes are significantly different: the entirety of RW12 is embedded in the peptide binding groove of SLA-1*04:01, but it obviously protrudes from the peptide binding groove of SLA-1*13:01. The structural comparative analysis showed that only five differential amino acids of SLA-1*13:01 and SLA-1*04:01 were involved in the binding of RW12, and they determine the different ways of long peptides binding, which makes SLA-1*04:01 more restrictive on long peptides than SLA-1*13:01, and thus binds fewer long peptides. In addition, we found that the N terminus of RW12 extends from the groove of SLA-1*13:01, which is similar to the case previously found in SLA-1*04:01. However, this unusual peptide binding does not affect their preferences of binding peptide length. Our study will be helpful to understand the effect of polymorphisms on the length distribution of MHC-I binding peptides, and to screen SLA-I-restricted epitopes of different lengths and to design effective epitope vaccines.
Collapse
Affiliation(s)
- Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Suqiu Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guojiao Feng
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoli Xie
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuolin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Nianzhi Zhang,
| |
Collapse
|
8
|
Predicted 3D model of the M protein of Porcine Epidemic Diarrhea Virus and analysis of its immunogenic potential. PLoS One 2022; 17:e0263582. [PMID: 35139120 PMCID: PMC8827446 DOI: 10.1371/journal.pone.0263582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/23/2022] [Indexed: 11/19/2022] Open
Abstract
The membrane protein M of the Porcine Epidemic Diarrhea Virus (PEDV) is the most abundant component of the viral envelope. The M protein plays a central role in the morphogenesis and assembly of the virus through protein interactions of the M-M, M-Spike (S) and M-nucleocapsid (N) type. The M protein is known to induce protective antibodies in pigs and to participate in the antagonistic response of the cellular antiviral system coordinated by the type I and type III interferon pathways. The 3D structure of the PEDV M protein is still unknown. The present work exposes a predicted 3D model of the M protein generated using the Robetta protocol. The M protein model is organized into a transmembrane and a globular region. The obtained 3D model of the PEDV M protein was compared with 3D models of the SARS-CoV-2 M protein created using neural networks and with initial machine learning-based models created using trRosetta. The 3D model of the present study predicted four linear B-cell epitopes (RSVNASSGTG and KHGDYSAVSNPSALT peptides are noteworthy), six discontinuous B-cell epitopes, forty weak binding and fourteen strong binding T-cell epitopes in the CV777 M protein. A high degree of conservation of the epitopes predicted in the PEDV M protein was observed among different PEDV strains isolated in different countries. The data suggest that the M protein could be a potential candidate for the development of new treatments or strategies that activate protective cellular mechanisms against viral diseases.
Collapse
|
9
|
Wei X, Wang S, Wang S, Xie X, Zhang N. Structure and Peptidomes of Swine MHC Class I with Long Peptides Reveal the Cross-Species Characteristics of the Novel N-Terminal Extension Presentation Mode. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:480-491. [PMID: 34937745 DOI: 10.4049/jimmunol.2001207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/05/2021] [Indexed: 11/19/2022]
Abstract
Antigenic peptide presentation by the MHC is essential for activating T cells. The current view is that the peptide termini are tethered within the closed Ag-binding groove of MHC class I (MHC-I). Recently, the N-terminal extension mode of peptide presentation has been observed in human MHC-I (HLA-I). In this study, we found that the N terminus of the long peptide can extend beyond the groove of swine MHC-I (SLA-1*0401), confirming that this phenomenon can occur across species. Removal of the N-terminal extra (P-1) residue of the RW12 peptide significantly reduced the folding efficiency of the complex, but truncation of the second half of the peptide did not. Consistent with previous reports, the second (P1) residue of the peptide is twisted, and its side chain is inserted into the A pocket to form two hydrogen bonds with polymorphic E63 and conserved Y159. Mutations of E63 disrupt the binding of the peptide, indicating that E63 is necessary for this peptide-binding mode. Compared with W167, which exists in most MHC-Is, SLA-I-specific S167 ensures an open N-terminal groove of SLA-1*0401, enabling the P-1 residue to extend from the groove. In this MHC class II-like peptide-binding mode, the A pocket is restrictive to the P1 residue and is affected by the polymorphic residues. The peptidomes and refolding data indicated that the open N-terminal groove of SLA-1*0401 allows one to three residues to extend out of the Ag-binding groove. These cross-species comparisons can help us better understand the characteristics of this N-terminal extension presentation mode.
Collapse
Affiliation(s)
- Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and.,NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Song Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Suqiu Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xiaoli Xie
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| |
Collapse
|
10
|
Mooring stone-like Arg 114 pulls diverse bulged peptides: first insight into African swine fever virus-derived T cell epitopes presented by swine MHC class I. J Virol 2021; 96:e0137821. [PMID: 34851145 DOI: 10.1128/jvi.01378-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), which is a devastating pig disease threatening the global pork industry. However, currently no commercial vaccines are available. During the immune response, major histocompatibility complex (MHC) class I molecules select viral peptide epitopes and present them to host cytotoxic T lymphocytes, thereby playing critical roles in eliminating viral infections. Here we screened peptides derived from ASFV and determined the molecular basis of ASFV-derived peptides presented by the swine leukocyte antigen (SLA)-1*0101. We found that peptide binding in SLA-1*0101 differs from the traditional mammalian binding patterns. Unlike the typical B and F pockets used by the common MHC-I molecule, SLA-1*0101 uses the D and F pockets as major peptide anchor pockets. Furthermore, the conformationally stable Arg114 residue located in the peptide-binding groove (PBG) was highly selective for the peptides. Arg114 draws negatively charged residues at positions P5 to P7 of the peptides, which led to multiple bulged conformations of different peptides binding to SLA-1*0101 and creating diversity for T cells receptor docking. Thus, the solid Arg114 residue acts as a "mooring stone" and pulls the peptides into the PBG of SLA-1*0101. Notably, the T cells recognition and activation of p72-derived peptides were verified by SLA-1*0101 tetramer-based flow cytometry in peripheral blood mononuclear cells (PBMCs) of the donor pigs. These results refresh our understanding of MHC I molecular anchor peptides, and provide new insights into vaccine development for the prevention and control of ASF. IMPORTANCE The spread of African swine fever virus (ASFV) has caused enormous losses to the pork industry worldwide. Here, a series of ASFV-derived peptides were identified, which could bind to swine leukocyte antigen SLA-1*0101, a prevalent SLA allele among Yorkshire pigs. The crystal structure of four ASFV-derived peptides and one foot-and-mouth disease virus (FMDV)-derived peptide complexed with SLA-1*0101 revealed an unusual peptide anchoring mode of SLA-1*0101 with D and F pockets as anchoring pockets. Negatively-charged residues are preferred within the middle portion of SLA-1*0101-binding peptides. Notably, we determined an unexpected role of Arg114 of SLA-1*0101 as a "mooring stone" which pulls the peptide anchoring into the PBG in diverse "M" or "n" shaped conformation. Furthermore, T cells from donor pigs could activate through the recognition of ASFV-derived peptides. Our study sheds light on the uncommon presentation of ASFV peptides by swine MHC I and benefits the development of ASF vaccines.
Collapse
|
11
|
The Function of the PRRSV-Host Interactions and Their Effects on Viral Replication and Propagation in Antiviral Strategies. Vaccines (Basel) 2021; 9:vaccines9040364. [PMID: 33918746 PMCID: PMC8070056 DOI: 10.3390/vaccines9040364] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) affects the global swine industry and causes disastrous economic losses each year. The genome of PRRSV is an enveloped single-stranded positive-sense RNA of approximately 15 kb. The PRRSV replicates primarily in alveolar macrophages of pig lungs and lymphatic organs and causes reproductive problems in sows and respiratory symptoms in piglets. To date, studies on how PRRSV survives in the host, the host immune response against viral infections, and pathogenesis, have been reported. PRRSV vaccines have been developed, including inactive virus, modified live virus, attenuated live vaccine, DNA vaccine, and immune adjuvant vaccines. However, there are certain problems with the durability and effectiveness of the licensed vaccines. Moreover, the high variability and fast-evolving populations of this RNA virus challenge the design of PRRSV vaccines, and thus effective vaccines against PRRSV have not been developed successfully. As is well known, viruses interact with the host to escape the host’s immune response and then replicate and propagate in the host, which is the key to virus survival. Here, we review the complex network and the mechanism of PRRSV–host interactions in the processes of virus infection. It is critical to develop novel antiviral strategies against PRRSV by studying these host–virus interactions and structures to better understand the molecular mechanisms of PRRSV immune escape.
Collapse
|
12
|
Picoli T, Peter C, Lopes M, Barcelos L, Varela Júnior A, Corcini C, Hübner S, Vargas G, Lima M, Fischer G. Melittin-induced metabolic changes on the Madin-Darby Bovine Kidney cell line. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT In this study, the toxic effects of melittin on Madin-Darby Bovine Kidney cells (MDBK) were analyzed with respect to mitochondrial functionality by reduction of MTT and flow cytometry, apoptosis potential, necrosis, oxygen reactive species (ROS) production, lipid peroxidation, and DNA fragmentation using flow cytometry and cell membrane destabilization by confocal microscopy. The toxicity presented dose-dependent characteristics and mitochondrial activity was inhibited by up to 78.24 ±3.59% (P<0.01, n = 6) in MDBK cells exposed to melittin (10μg/mL). Flow cytometry analysis revealed that melittin at 2μg/mL had the highest necrosis rate (P<0.05) for the cells. The lipoperoxidation of the membranes was also higher at 2μg/mL of melittin (P<0.05), which was further confirmed by the microphotographs obtained by confocal microscopy. The highest ROS production occurred when the cells were exposed to 2.5μg/mL melittin (P<0.05), and this concentration also increased DNA fragmentation (P<0.05). There was a significative and positive correlation between the lipoperoxidation of membranes with ROS (R=0.4158), mitochondrial functionality (R=0.4149), and apoptosis (R=0.4978). Thus, the oxidative stress generated by melittin culminates in the elevation of intracellular ROS that initiates a cascade of toxic events in MDBK cells.
Collapse
Affiliation(s)
- T. Picoli
- Universidade Federal de Pelotas, Brazil
| | | | | | | | | | | | | | | | - M. Lima
- Universidade Federal de Pelotas, Brazil
| | | |
Collapse
|
13
|
Wei X, Wang S, Li Z, Li Z, Qu Z, Wang S, Zou B, Liang R, Xia C, Zhang N. Peptidomes and Structures Illustrate Two Distinguishing Mechanisms of Alternating the Peptide Plasticity Caused by Swine MHC Class I Micropolymorphism. Front Immunol 2021; 12:592447. [PMID: 33717070 PMCID: PMC7952875 DOI: 10.3389/fimmu.2021.592447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/13/2021] [Indexed: 01/24/2023] Open
Abstract
The micropolymorphism of major histocompatibility complex class I (MHC-I) can greatly alter the plasticity of peptide presentation, but elucidating the underlying mechanism remains a challenge. Here we investigated the impact of the micropolymorphism on peptide presentation of swine MHC-I (termed swine leukocyte antigen class I, SLA-I) molecules via immunopeptidomes that were determined by our newly developed random peptide library combined with the mass spectrometry (MS) de novo sequencing method (termed RPLD–MS) and the corresponding crystal structures. The immunopeptidomes of SLA-1*04:01, SLA-1*13:01, and their mutants showed that mutations of residues 156 and 99 could expand and narrow the ranges of peptides presented by SLA-I molecules, respectively. R156A mutation of SLA-1*04:01 altered the charge properties and enlarged the volume size of pocket D, which eliminated the harsh restriction to accommodate the third (P3) anchor residue of the peptide and expanded the peptide binding scope. Compared with 99Tyr of SLA-1*0401, 99Phe of SLA-1*13:01 could not form a conservative hydrogen bond with the backbone of the P3 residues, leading to fewer changes in the pocket properties but a significant decrease in quantitative of immunopeptidomes. This absent force could be compensated by the salt bridge formed by P1-E and 170Arg. These data illustrate two distinguishing manners that show how micropolymorphism alters the peptide-binding plasticity of SLA-I alleles, verifying the sensitivity and accuracy of the RPLD-MS method for determining the peptide binding characteristics of MHC-I in vitro and helping to more accurately predict and identify MHC-I restricted epitopes.
Collapse
Affiliation(s)
- Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Song Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhuolin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zibin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zehui Qu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Suqiu Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baohua Zou
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Bosch-Camós L, López E, Navas MJ, Pina-Pedrero S, Accensi F, Correa-Fiz F, Park C, Carrascal M, Domínguez J, Salas ML, Nikolin V, Collado J, Rodríguez F. Identification of Promiscuous African Swine Fever Virus T-Cell Determinants Using a Multiple Technical Approach. Vaccines (Basel) 2021; 9:29. [PMID: 33430316 PMCID: PMC7825812 DOI: 10.3390/vaccines9010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
The development of subunit vaccines against African swine fever (ASF) is mainly hindered by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As a good example, the identity of ASFV-specific CD8+ T-cell determinants remains largely unknown, despite their protective role being established a long time ago. Aiming to identify them, we implemented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1. As stimuli for the ELISpot, ASFV-specific peptides or full-length proteins identified by three complementary strategies were used. In silico prediction of specific CD8+ T-cell epitopes allowed identifying a 19-mer peptide from MGF100-1L, as frequently recognized by surviving pigs. Complementarily, the repertoire of SLA I-bound peptides identified in ASFV-infected porcine alveolar macrophages (PAMs), allowed the characterization of five additional SLA I-restricted ASFV-specific epitopes. Finally, in vitro stimulation studies using fibroblasts transfected with plasmids encoding full-length ASFV proteins, led to the identification of MGF505-7R, A238L and MGF100-1L as promiscuously recognized antigens. Interestingly, each one of these proteins contain individual peptides recognized by surviving pigs. Identification of the same ASFV determinants by means of such different approaches reinforce the results presented here.
Collapse
Affiliation(s)
- Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Elisabet López
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - María Jesús Navas
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Sonia Pina-Pedrero
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Francesc Accensi
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| | - Chankyu Park
- Department of Stem Cells and Regenerative Biology, Konkuk University, Seoul 05029, Korea;
| | - Montserrat Carrascal
- Instituto de Investigaciones Biomédicas de Barcelona-Unidad de Espectrometría de Masas Biológica y Proteómica, Consejo Superior de Investigaciones Científicas (CSIC), 08193 Bellaterra, Spain;
| | - Javier Domínguez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28049 Madrid, Spain;
| | - Maria Luisa Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autònoma de Madrid, 28049 Madrid, Spain;
| | - Veljko Nikolin
- Boehringer Ingelheim Veterinary Research Center (BIVRC) GmbH & Co. KG, 30559 Hannover, Germany;
| | - Javier Collado
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (L.B.-C.); (E.L.); (M.J.N.); (S.P.-P.); (F.C.-F.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain;
| |
Collapse
|
15
|
Yuan H, Ma L, Zhang L, Li X, Xia C. Crystal structure of the giant panda MHC class I complex: First insights into the viral peptide presentation profile in the bear family. Protein Sci 2020; 29:2468-2481. [PMID: 33078460 DOI: 10.1002/pro.3980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023]
Abstract
The viral cytotoxic T lymphocyte (CTL) epitope peptides presented by classical MHC-I molecules require the assembly of a peptide-MHC-I-β2m (pMHC-I) trimolecular complex for T cell receptor (TCR) recognition, which is the critical activation link for triggering antiviral T cell immunity. Research on T cell immunology in the Ursidae family, especially structural immunology, is still lacking. In this study, the structure of the key trimolecular complex pMHC-I, which binds a peptide from canine distemper virus, was solved for the first time using giant panda as a representative species of Ursidae. The structural characteristics of the giant panda pMHC-I complex (pAime-128), including the unique pockets in the peptide-binding groove (PBG), were analyzed in detail. Comparing the pAime-128 to others in the bear family and extending the comparison to other mammals revealed distinct features. The interaction between MHC-I and β2m, the features of pAime-128 involved in TCR docking and cluster of differentiation 8 (CD8) binding, the anchor sites in the PBG, and the CTL epitopes of potential viruses that infect pandas were clarified. Unique features of pMHC-I viral antigen presentation in the panda were revealed by solving the three-dimensional (3D) structure of pAime-128. The distinct characteristics of pAime-128 indicate an unusual event that emerged during the evolution of the MHC system in the bear family. These results provide a new platform for research on panda CTL immunity and the design of vaccines for application in the bear family.
Collapse
Affiliation(s)
- Hongyu Yuan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Beijing Institute of Biotechnology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoying Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengzhou New District, Zhengzhou, Henan, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Siañez-Estrada LI, Rivera-Benítez JF, Rosas-Murrieta NH, Reyes-Leyva J, Santos-López G, Herrera-Camacho I. Immunoinformatics approach for predicting epitopes in HN and F proteins of Porcine rubulavirus. PLoS One 2020; 15:e0239785. [PMID: 32976525 PMCID: PMC7518572 DOI: 10.1371/journal.pone.0239785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Porcine rubulavirus (PRV), which belongs to the family Paramyxoviridae, causes blue eye disease in pigs, characterized by encephalitis and reproductive failure in newborn and adult pigs, respectively. There is no effective treatment against PRV and no information on the effectiveness of the available vaccines. Continuous outbreaks have occurred in Mexico since the early 1980s, which have caused serious economic losses to pig producers. Vaccination can be used to control this disease. Searching for effective antigen candidates against PRV, we first sequenced the PAC1 F protein, then we used various immunoinformatics tools to predict antigenic determinants of B-cells and T-cells against the two glycoproteins of the virus (HN and F proteins). Finally, we used AutoDock Vina to determine the binding energies. We obtained the F gene sequence of a PRV strain collected in the early 1990s in Mexico and compared its amino acid profile with previous and more recent strains, obtaining an identity similarity of 97.78 to 99.26%. For the F proteins, seven linear B-cell epitopes, six conformational B-cell epitopes and twenty-nine T-cell MHC class I epitopes were predicted. For the HN proteins, sixteen linear B-cell epitopes, seven conformational B-cell epitopes and thirty-four T-cell MHC class I epitopes were predicted. The ATRSETDYY and AAYTTTTCF epitopes of the HN protein might be important for neutralizing the viral infection. We determined the in silico binding energy between the predicted epitopes on the F and HN proteins and swine MHC-I molecules. The binding energy of these epitopes ranged from -5.8 to -7.8 kcal/mol. The present study aimed to assess the use of HN and F proteins as antigens, either as recombinant proteins or as a series of peptides that could activate different responses of the immune system. This may help identify relevant immunogens, saving time and costs in the development of new vaccines or diagnostic tools.
Collapse
Affiliation(s)
- Luis I. Siañez-Estrada
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - José F. Rivera-Benítez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Ciudad de México, México
| | - Nora H. Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social (IMSS), Metepec, México
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
17
|
HLA Class I-sensitized Renal Transplant Patients Have Antibody Binding to SLA Class I Epitopes. Transplantation 2020; 103:1620-1629. [PMID: 30951017 DOI: 10.1097/tp.0000000000002739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Highly sensitized patients are difficult to match with suitable renal allograft donors and may benefit from xenotransplant trials. We evaluate antibody binding from sensitized patients to pig cells and engineered single allele cells to identify anti-human leukocyte antigen (HLA) antibody cross-species reactivity with swine leukocyte antigen (SLA). These novel testing strategies assess HLA/SLA epitopes and antibody-binding patterns and introduce genetic engineering of SLA epitopes. METHODS Sensitized patient sera were grouped by calculated panel reactive antibody and luminex single antigen reactivity profile and were tested with cloned GGTA1/CMAH/B4GalNT2 glycan knockout porcine cells. Pig reactivity was assessed by direct flow cytometric crossmatch and studied following elution from pig cells. To study the antigenicity of individual class I HLA and SLA alleles in cells, irrelevant sera binding to lymphoblastoid cells were minimized by CRISPR/Cas9 elimination of endogenous class I and class II HLA, B-cell receptor, and Fc receptor genes. Native HLA, SLA, and mutants of these proteins after mutating 144K to Q were assessed for antibody binding. RESULTS Those with predominately anti-HLA-B&C antibodies, including Bw6 and Bw4 sensitization, frequently have low pig reactivity. Conversely, antibodies eluted from porcine cells are more commonly anti-HLA-A. Single HLA/SLA expressing engineered cells shows variable antigenicity and mutation of 144K to Q reduces antibody binding for some sensitized patients. CONCLUSIONS Anti-HLA antibodies cross-react with SLA class I in predictable patterns, which can be identified with histocompatibility strategies, and SLA class I is a possible target of genetic engineering.
Collapse
|
18
|
Ba L, Wang Z, Liu WJ, Wu D, Xiang W, Qi P, Dong C, Hu Y, Lu P, Xiao J, Yu C. Polymorphism analysis and supertype definition of swine leukocyte antigen class I molecules in three-way crossbred (Landrace, Duroc, and Yorkshire) pigs: implications for the vaccine development of African swine fever virus. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1604-1607. [PMID: 32399768 PMCID: PMC7222080 DOI: 10.1007/s11427-019-1696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/21/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Limin Ba
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.,Zhongmu Research Institute, China Animal Husbandry Industry Co., LTD, Beijing, 100095, China
| | - Zhenbao Wang
- Zhongmu Research Institute, China Animal Husbandry Industry Co., LTD, Beijing, 100095, China
| | - William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Dongxun Wu
- China Animal Husbandry Industry Co., LTD, Beijing, 100095, China
| | - Wangzhen Xiang
- Zhongmu Research Institute, China Animal Husbandry Industry Co., LTD, Beijing, 100095, China
| | - Peng Qi
- Zhongmu Research Institute, China Animal Husbandry Industry Co., LTD, Beijing, 100095, China
| | - Chunna Dong
- Zhongmu Research Institute, China Animal Husbandry Industry Co., LTD, Beijing, 100095, China
| | - Yanxin Hu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100094, China
| | - Ping Lu
- China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Jin Xiao
- Zhongmu Research Institute, China Animal Husbandry Industry Co., LTD, Beijing, 100095, China.
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
19
|
Pan X, Zhang N, Wei X, Jiang Y, Chen R, Li Q, Liang R, Zhang L, Ma L, Xia C. Illumination of PRRSV Cytotoxic T Lymphocyte Epitopes by the Three-Dimensional Structure and Peptidome of Swine Lymphocyte Antigen Class I (SLA-I). Front Immunol 2020; 10:2995. [PMID: 31969884 PMCID: PMC6960135 DOI: 10.3389/fimmu.2019.02995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/05/2019] [Indexed: 01/03/2023] Open
Abstract
To investigate CTL epitope applications in swine, SLA-1*1502-restricted peptide epitopes matching porcine reproductive and respiratory syndrome virus (PRRSV) strains were explored by crystallography, biochemistry, and the specific pathogen-free (SPF) swine experiments. First, nine predicted PRRSV peptides were tested by assembly of the peptide-SLA-1*1502 (pSLA-1*1502) complexes, and the crystal structure of the SLA-1*1502 complex with one peptide (NSP9-TMP9) was determined. The NSP9-TMP9 peptide conformation presented by pSLA-1*1502 is different from that of the peptides presented by the known pSLA-1*0401 and pSLA-3*hs0202 complexes. Two consecutive Pro residues make the turn between P3 and P4 of NSP9-TMP9 much sharper. The D pocket of pSLA-1*1502 is unique and is important for peptide binding. Next, the potential SLA-1*1502-restricted peptide epitopes matching four typical genetic PRRSV strains were identified based on the peptide-binding motif of SLA-1*1502 determined by structural analysis and alanine scanning of the NSP9-TMP9 peptide. The tetrameric complex of SLA-1*1502 and NSP9-TMP9 was constructed and examined. Finally, taking NSP9-TMP9 as an example, the CTL immunogenicity of the identified PRRSV peptide epitope was evaluated. The SPF swine expressing the SLA-1*1502 alleles were divided into three groups: modified live vaccine (MLV), MLV+NSP9-TMP9, and the blank control group. NSP9-TMP9 was determined as a PRRSV CTL epitope with strong immunogenicity by flow cytometry and IFN-γ expression. Our study developed an integrated approach to identify SLA-I-restricted CTL epitopes from various important viruses and is helpful in designing and applying effective peptide-based vaccines for swine.
Collapse
Affiliation(s)
- Xiaocheng Pan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yinan Jiang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qirun Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruiying Liang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Hammer SE, Ho CS, Ando A, Rogel-Gaillard C, Charles M, Tector M, Tector AJ, Lunney JK. Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and Biomedical Research. Annu Rev Anim Biosci 2019; 8:171-198. [PMID: 31846353 DOI: 10.1146/annurev-animal-020518-115014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In pigs, the major histocompatibility complex (MHC), or swine leukocyte antigen (SLA) complex, maps to Sus scrofa chromosome 7. It consists of three regions, the class I and class III regions mapping to 7p1.1 and the class II region mapping to 7q1.1. The swine MHC is divided by the centromere, which is unique among mammals studied to date. The SLA complexspans between 2.4 and 2.7 Mb, depending on haplotype, and encodes approximately 150 loci, with at least 120 genes predicted to be functional. Here we update the whole SLA complex based on the Sscrofa11.1 build and annotate the organization for all recognized SLA genes and their allelic sequences. We present SLA nomenclature and typing methods and discuss the expression of SLA proteins, as well as their role in antigen presentation and immune, disease, and vaccine responses. Finally, we explore the role of SLA genes in transplantation and xenotransplantation and their importance in swine biomedical models.
Collapse
Affiliation(s)
- Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Chak-Sum Ho
- Gift of Hope Organ & Tissue Donor Network, Itasca, Illinois 60143, USA
| | - Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | | | - Mathieu Charles
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,Current address: Makana Therapeutics, Wilmington, Delaware 19801, USA
| | - A Joseph Tector
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,Current address: Department of Surgery, University of Miami, Miami, Florida 33136, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA;
| |
Collapse
|
21
|
Ning S, Wang ZB, Qi P, Xiao J, Wang XJ. Crystallization of SLA-2*04:02:02 complexed with a CTL epitope derived from FMDV. Res Vet Sci 2019; 128:90-98. [PMID: 31760318 DOI: 10.1016/j.rvsc.2019.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/23/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
Presentation of viral epitopes by swine MHC I (termed leukocyte antigen class I, SLA I) to cytotoxic T lymphocytes (CTLs) is crucial for swine immunity. The SLA-2 structure, however, remains largely unknown. To illustrate the structural basis of swine CTL epitope presentation, the crystal structure of SLA-2*04:02:02 complexed with one peptide, derived from foot-and-mouth disease virus (FMDV), was analyzed in this study. SLA-2*04:02:02 and swine β2-microglobulin (sβ2m) were refolded in vitro in the presence of peptides. X-ray diffraction data of SLA-2*04:02:02-peptide-sβ2m (referred to as p/SLA-2*04:02:02) were collected. The diffraction dataset was 2.3 Å in resolution and the space group was P3(2)21. Relevant data included a = 101.8 Å, b = 101.8 Å, c = 73.455 Å,α = 90.00°, β = 90.00°, γ = 120.00°. The structure of p/SLA-2*04:02:02 was analyzed. The results revealed that Glu24, Met68, Gly76, and Gln173 in PBG of SLA-2*04:02:02 are different from other MHC I. Furthermore, Asn63 is different from other SLA I. Gln57, Met174 and Gln180 in PBG of SLA I are different from other species' MHC I. All of these features are different from known mammalian peptide-MHC class I complexes (referred to as p/MHC I). In addition, P4-His, P6-Val, and P8-Pro in the peptide were exposed, and these residues as epitopes can be presented by SLA-2*04:02:02. This study not only provides a structural basis for peptide presentation by SLA-2, but also screens one potential FMDV CTL epitope. The results may be of interest in future vaccine development.
Collapse
Affiliation(s)
- Shuo Ning
- Key Laboratory of Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China
| | - Zhen-Bao Wang
- Key Laboratory of Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., 100095 Beijing, China
| | - Peng Qi
- Key Laboratory of Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., 100095 Beijing, China.
| | - Jin Xiao
- Key Laboratory of Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., 100095 Beijing, China.
| | - Xiao-Jia Wang
- Key Laboratory of Epidemiology of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, China.
| |
Collapse
|
22
|
Ji W, Niu L, Peng W, Zhang Y, Cheng H, Gao F, Shi Y, Qi J, Gao GF, Liu WJ. Salt bridge-forming residues positioned over viral peptides presented by MHC class I impacts T-cell recognition in a binding-dependent manner. Mol Immunol 2019; 112:274-282. [PMID: 31226552 PMCID: PMC7112684 DOI: 10.1016/j.molimm.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 11/28/2022]
Abstract
Crystal structure of HLA-B*4001 was determined. The salt bridges in HLA-B*4001 and H-2Kd have different structural characteristics. MHC I mutations that disrupt the salt bridge alleviate peptide binding. Mutations of the salt bridge-forming residues may impact TCR recognition, directly or indirectly.
The viral peptides presentation by major histocompatibility complex class I (MHC I) molecules play a pivotal role in T-cell recognition and the subsequent virus clearance. This process is delicately adjusted by the variant residues of MHC I, especially the residues in the peptide binding groove (PBG). In a series of MHC I molecules, a salt bridge is formed above the N-terminus of the peptides. However, the potential impact of the salt bridge on peptide binding and T-cell receptor (TCR) recognition of MHC I, as well as the corresponding molecular basis, are still largely unknown. Herein, we determined the structures of HLA-B*4001 and H-2Kd in which two different types of salt bridges (Arg62-Glu163 or Arg66-Glu163) across the PBG were observed. Although the two salt bridges led to different conformation shifts of both the MHC I α helix and the peptides, binding of the peptides with the salt bridge residues was relatively conserved. Furthermore, through a series of in vitro and in vivo investigations, we found that MHC I mutations that disrupt the salt bridge alleviate peptide binding and can weaken the TCR recognition of MHC I-peptide complexes. Our study may provide key references for understanding MHC I-restricted peptide recognition by T-cells.
Collapse
Affiliation(s)
- Wei Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Ling Niu
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiyu Peng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Yongli Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hao Cheng
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - George F Gao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; CAS Key Laboratory for Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| | - William J Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
23
|
Gao C, Xin C, Wang X, Quan J, Li C, Wang J, Chen H. Molecular genetic characterization and haplotype diversity of swine leukocyte antigen in Chinese Rongshui miniature pigs. Mol Immunol 2019; 112:215-222. [PMID: 31177058 DOI: 10.1016/j.molimm.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/30/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
The Rongshui miniature pig is an important model animal for studying livestock disease prevention and control in China. The highly polymorphic swine leukocyte antigen (SLA) has been the focus of considerable interest because of the strong, reproducible associations between particular SLA haplotypes and infectious diseases. In this study, we identified 42 alleles at eight polymorphic SLA loci (SLA-1, SLA-3, SLA-2, SLA-6, DRA, DRB1, DQA, and DQB1) representing seven class I and six class II haplotypes using reverse transcription-polymerase chain reaction (RT-PCR) sequence-based typing and PCR-sequence specific primers in Rongshui miniature pigs. The official names were designated by the SLA Nomenclature Committee of the International Society for Animal Genetics. Seven class I haplotypes, Hp-5b.0, 86.0, 87.0, 88.0, 89.0, 90.0 and 91.0, and four class II haplotypes, Hp-0.18b, 0.19c, 0.41 and 0.47, had not previously been reported in other pig breeds. We also comprehensively analyzed the molecular genetic characterization and phylogenies of the identified alleles and the SLA haplotype diversity in Rongshui miniature pigs. SLA-1 and SLA-6 genes were under positive selection, while SLA-2 was under neutral selection, and the other five genes were under purifying selection. The highly polymorphic new alleles may be derived by nucleotide mutations, insertions and deletions, and fragment recombination, and alleles segregated based on sequence differences and peptide-binding motifs, rather than on pig breed. SLA haplotype diversity was generated by allele/gene conversion and recombination. These results will be helpful for elucidating the molecular genetic mechanisms influencing differential disease resistance among pigs with different SLA haplotypes.
Collapse
Affiliation(s)
- Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Chang Xin
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Xiuying Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Jinqiang Quan
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Changwen Li
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, 116027, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, China.
| |
Collapse
|
24
|
Gao FS, Feng L, Jiang P, Li ZB, Gao H, Zhai XX, Zhang ZH, Hu X. Expression, purification, crystallization and preliminary X-ray diffraction analysis of swine leukocyte antigen 2 complexed with a CTL epitope AS64 derived from Asia1 serotype of foot-and-mouth disease virus. BMC Vet Res 2018; 14:407. [PMID: 30563524 PMCID: PMC6299498 DOI: 10.1186/s12917-018-1742-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 12/07/2018] [Indexed: 02/05/2023] Open
Abstract
Background Currently, the structural characteristics of the swine major histocompatibility complex (MHC) class I molecule, also named swine leukocyte antigen class I (SLA-I) molecule need to be further clarified. Results A complex of SLA-I constituted by an SLA-2*HB01 molecule with swine β2-microglobulin and a cytotoxic T lymphocyte (CTL) epitope FMDV-AS64 (ALLRSATYY) derived from VP1 protein (residues 64–72) of Asia 1 serotype of foot-and-mouth disease virus (FMDV) was expressed, refolded, purified and crystallized. By preliminary X-ray diffraction analysis, it was shown that the diffraction resolution of the crystal was 2.4 Å and the space group belonged to P212121 with unit cell parameters a = 48.37, b = 97.75, c = 166.163 Å. Conclusion This research will be in favor of illuminating the structural characteristics of an SLA-2 molecule associated with a CTL epitope derived from Asia1 serotype of FMDV.
Collapse
Affiliation(s)
- Feng-Shan Gao
- Department of Bioengineering,
- College of Life Science and Technology, Dalian University, Xuefu street 10, Dalian, Liaoning, 116622, People's Republic of China.
| | - Lei Feng
- Department of Bioengineering,
- College of Life Science and Technology, Dalian University, Xuefu street 10, Dalian, Liaoning, 116622, People's Republic of China
| | - Ping Jiang
- Department of Bioengineering,
- College of Life Science and Technology, Dalian University, Xuefu street 10, Dalian, Liaoning, 116622, People's Republic of China
| | - Zi-Bin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, 100094, People's Republic of China
| | - Hua Gao
- Department of Bioengineering,
- College of Life Science and Technology, Dalian University, Xuefu street 10, Dalian, Liaoning, 116622, People's Republic of China
| | - Xiao-Xin Zhai
- Department of Bioengineering,
- College of Life Science and Technology, Dalian University, Xuefu street 10, Dalian, Liaoning, 116622, People's Republic of China
| | - Zong-Hui Zhang
- Department of Bioengineering,
- College of Life Science and Technology, Dalian University, Xuefu street 10, Dalian, Liaoning, 116622, People's Republic of China
| | - Xiao Hu
- Department of Bioengineering,
- College of Life Science and Technology, Dalian University, Xuefu street 10, Dalian, Liaoning, 116622, People's Republic of China
| |
Collapse
|
25
|
Dhakal S, Cheng X, Salcido J, Renu S, Bondra K, Lakshmanappa YS, Misch C, Ghimire S, Feliciano-Ruiz N, Hogshead B, Krakowka S, Carson K, McDonough J, Lee CW, Renukaradhya GJ. Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protective immune response in pigs. Int J Nanomedicine 2018; 13:6699-6715. [PMID: 30425484 PMCID: PMC6205527 DOI: 10.2147/ijn.s178809] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Influenza (flu) is a constant threat to humans and animals, and vaccination is one of the most effective ways to mitigate the disease. Due to incomplete protection induced by current flu vaccines, development of novel flu vaccine candidates is warranted to achieve greater efficacy against constantly evolving flu viruses. Methods In the present study, we used liposome nanoparticle (<200 nm diameter)-based subunit flu vaccine containing ten encapsulated highly conserved B and T cell epitope peptides to induce protective immune response against a zoonotic swine influenza A virus (SwIAV) H1N1 challenge infection in a pig model. Furthermore, we used monosodium urate (MSU) crystals as an adjuvant and co-administered the vaccine formulation as an intranasal mist to flu-free nursery pigs, twice at 3-week intervals. Results Liposome peptides flu vaccine delivered with MSU adjuvant improved the hemagglutination inhibition antibody titer and mucosal IgA response against the SwIAV challenge and also against two other highly genetically variant IAVs. Liposomal vaccines also enhanced the frequency of peptides and virus-specific T-helper/memory cells and IFN-γ response. The improved specific cellular and mucosal humoral immune responses in adjuvanted liposomal peptides flu vaccine partially protected pigs from flu-induced fever and pneumonic lesions, and reduced the nasal virus shedding and viral load in the lungs. Conclusion Overall, our study shows great promise for using liposome and MSU adjuvant- based subunit flu vaccine through the intranasal route, and provides scope for future, pre-clinical investigations in a pig model for developing potent human intranasal subunit flu vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Xingguo Cheng
- Pharmaceuticals and Bioengineering Department, Chemistry and Chemical Engineering Division, Southwest Research Institute, San Antonio, TX 78238-0510, USA,
| | - John Salcido
- Pharmaceuticals and Bioengineering Department, Chemistry and Chemical Engineering Division, Southwest Research Institute, San Antonio, TX 78238-0510, USA,
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Kathy Bondra
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Yashavantha Shaan Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Christina Misch
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Shristi Ghimire
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Bradley Hogshead
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Steven Krakowka
- The Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Kenneth Carson
- Pharmaceuticals and Bioengineering Department, Chemistry and Chemical Engineering Division, Southwest Research Institute, San Antonio, TX 78238-0510, USA,
| | - Joseph McDonough
- Pharmaceuticals and Bioengineering Department, Chemistry and Chemical Engineering Division, Southwest Research Institute, San Antonio, TX 78238-0510, USA,
| | - Chang Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA, .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| |
Collapse
|
26
|
Feng L, Sun MW, Jiang P, Li ZB, Gao H, Zhai XX, Han Y, Zhang ZH, Gao FS. Purification, crystallization and preliminary X-ray crystallographic studies of swine MHC class I complexed with an FMDV CTL epitope Hu64. Res Vet Sci 2018; 119:205-208. [DOI: 10.1016/j.rvsc.2018.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/08/2023]
|
27
|
Gutiérrez AH, Rapp-Gabrielson VJ, Terry FE, Loving CL, Moise L, Martin WD, De Groot AS. T-cell epitope content comparison (EpiCC) of swine H1 influenza A virus hemagglutinin. Influenza Other Respir Viruses 2018; 11:531-542. [PMID: 29054116 PMCID: PMC5705686 DOI: 10.1111/irv.12513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 02/03/2023] Open
Abstract
Background Predicting vaccine efficacy against emerging pathogen strains is a significant problem in human and animal vaccine design. T‐cell epitope cross‐conservation may play an important role in cross‐strain vaccine efficacy. While influenza A virus (IAV) hemagglutination inhibition (HI) antibody titers are widely used to predict protective efficacy of 1 IAV vaccine against new strains, no similar correlate of protection has been identified for T‐cell epitopes. Objective We developed a computational method (EpiCC) that facilitates pairwise comparison of protein sequences based on an immunological property—T‐cell epitope content—rather than sequence identity, and evaluated its ability to classify swine IAV strain relatedness to estimate cross‐protective potential of a vaccine strain for circulating viruses. Methods T‐cell epitope relatedness scores were assessed for 23 IAV HA sequences representing the major H1 swine IAV phylo‐clusters circulating in North American swine and HA sequences in a commercial inactivated vaccine (FluSure XP®). Scores were compared to experimental data from previous efficacy studies. Results Higher EpiCC scores were associated with greater protection by the vaccine against strains for 23 field IAV strain vaccine comparisons. A threshold for EpiCC relatedness associated with full or partial protection in the absence of cross‐reactive HI antibodies was identified. EpiCC scores for field strains for which FluSure protective efficacy is not yet available were also calculated. Conclusion EpiCC thresholds can be evaluated for predictive accuracy of protection in future efficacy studies. EpiCC may also complement HI cross‐reactivity and phylogeny for selection of influenza strains in vaccine development.
Collapse
Affiliation(s)
- Andres H Gutiérrez
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | | | | | - Crystal L Loving
- Virus and Prion Diseases Research Unit, NADC, USDA ARS, Ames, IA, USA
| | - Leonard Moise
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA.,EpiVax Inc., Providence, RI, USA
| | | | - Anne S De Groot
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA.,EpiVax Inc., Providence, RI, USA
| |
Collapse
|
28
|
Fan S, Wang Y, Wang X, Huang L, Zhang Y, Liu X, Zhu W. Analysis of the affinity of influenza A virus protein epitopes for swine MHC I by a modified in vitro refolding method indicated cross-reactivity between swine and human MHC I specificities. Immunogenetics 2018; 70:671-680. [PMID: 29992375 DOI: 10.1007/s00251-018-1070-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/20/2018] [Indexed: 11/28/2022]
Abstract
In vitro refolding assays can be used to investigate the affinity and stability of the binding of epitope peptides to major histocompatibility complex (MHC) class I molecules, which are key factors in the presentation of peptides to cytotoxic T lymphocytes (CTLs). The recognition of peptide epitopes by CTLs is crucial for protection against influenza A virus (IAV) infection. The peptide-binding motif of the swine SLA-3*hs0202 molecule has been previously reported and partly overlaps with the binding motif of the most abundant human MHC allele, HLA-A*0201. In this study, we screened all the protein sequences of the swine-origin epidemic IAV strain A/Beijing/01/2009 (H1N1), and a total of 73 9-mer epitope peptides were predicted to fit the consensus motif of the swine SLA-3*hs0202 or HLA-A*0201 molecule. Then, 14 peptides were selected, and their affinities to SLA-3*hs0202 were tested by a modified in vitro refolding assay. Our results show that ten epitopes could tolerate gel filtration, indicating that these epitopes formed stable or partly stable complexes with SLA-3*hs0202. Eight out of the ten epitopes have been previously reported as HLA-A2-restricted epitopes, which implied cross-reactivity between swine and human MHC I specificities. Furthermore, the modified mini-system refolding method could be applied for the screening of peptides because the refolding efficiency remained almost unchanged with the positive peptide (HA-KMN9) subjected to size-exclusion chromatography and Resource Q anion-exchange chromatography. The results presented here provide new insight into the development of epitope-based vaccines to control IAV and increase our understanding of swine molecular immunology.
Collapse
Affiliation(s)
- Shuhua Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China. .,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China.
| | - Yongli Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Xian Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Li Huang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Xiaomeng Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| | - Wenshuai Zhu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.,Institute of Neuroscience and Translational Medicine, Zhoukou Normal University, Zhoukou, People's Republic of China
| |
Collapse
|
29
|
Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig. PLoS Pathog 2018; 14:e1007017. [PMID: 29772011 PMCID: PMC5957346 DOI: 10.1371/journal.ppat.1007017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/10/2018] [Indexed: 12/04/2022] Open
Abstract
There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens. Influenza virus infection in pigs represents a significant problem to industry and also carries substantial risks to human health. Pigs can be infected with both bird and human forms of influenza where these viruses can mix with swine influenza viruses to generate new pandemic strains that can spread quickly and kill many millions of people across the globe. To date, the study of immunology and vaccination against flu in pigs has been hampered by a lack of suitable tools and reagents. Here, we have built a complete molecular toolset that allows such study. These tools could also be applied to other important infections in pigs such as foot-and-mouth disease and the normally fatal African Swine Fever virus. Finally, pigs are set to become an important model organism for study of influenza A virus infection. Here, we make use of a new research toolset to study a Broadly Protective Influenza Vaccine (BPIV) candidate, S-FLU, which could offer protection against all influenza A viruses. These new tools have been used to demonstrate the induction of large numbers of antigen specific CD8+ T cells to conserved NP epitopes in the respiratory tract after aerosol immunization.
Collapse
|
30
|
Fan S, Wang Y, Wang X. X-ray Crystallographic Characterization of the Swine MHC I Molecule SLA-3*0202 Complexed with IAV-HA Nonapeptide. CRYSTALLOGR REP+ 2018. [DOI: 10.1134/s106377451803032x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Major Histocompatibility Complex Class I (FLA-E*01801) Molecular Structure in Domestic Cats Demonstrates Species-Specific Characteristics in Presenting Viral Antigen Peptides. J Virol 2018; 92:JVI.01631-17. [PMID: 29263258 DOI: 10.1128/jvi.01631-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Feline immunodeficiency virus (FIV) infection in domestic cats is the smallest usable natural model for lentiviral infection studies. FLA-E*01801 was applied to FIV AIDS vaccine research. We determined the crystal structure of FLA-E*01801 complexed with a peptide derived from FIV (gag positions 40 to 48; RMANVSTGR [RMA9]). The A pocket of the FLA-E*01801 complex plays a valuable restrictive role in peptide binding. Mutation experiments and circular-dichroism (CD) spectroscopy revealed that peptides with Asp at the first position (P1) could not bind to FLA-E*01801. The crystal structure and in vitro refolding of the mutant FLA-E*01801 complex demonstrated that Glu63 and Trp167 in the A pocket play important roles in restricting P1D. The B pocket of the FLA-E*01801 complex accommodates M/T/A/V/I/L/S residues, whereas the negatively charged F pocket prefers R/K residues. Based on the peptide binding motif, 125 FLA-E*01801-restricted FIV nonapeptides (San Diego isolate) were identified. Our results provide the structural basis for peptide presentation by the FLA-E*01801 molecule, especially A pocket restriction on peptide binding, and identify the potential cytotoxic T lymphocyte (CTL) epitope peptides of FIV presented by FLA-E*01801. These results will benefit both the reasonable design of FLA-E*01801-restricted CTL epitopes and the further development of the AIDS vaccine.IMPORTANCE Feline immunodeficiency virus (FIV) is a viral pathogen in cats, and this infection is the smallest usable natural model for lentivirus infection studies. To examine how FLA I presents FIV epitope peptides, we crystallized and solved the first classic feline major histocompatibility complex class I (MHC-I) molecular structure. Surprisingly, pocket A restricts peptide binding. Trp167 blocks the left side of pocket A, causing P1D to conflict with Glu63 We also identified the FLA-E*01801 binding motif X (except D)-(M/T/A/V/I/L/S)-X-X-X-X-X-X-(R/K) based on structural and biochemical experiments. We identified 125 FLA-E*01801-restricted nonapeptides from FIV. These results are valuable for developing peptide-based FIV and human immunodeficiency virus (HIV) vaccines and for studying how MHC-I molecules present peptides.
Collapse
|
32
|
Lamont EA, Poulin E, Sreevatsan S, Cheeran MCJ. Major histocompatibility complex I of swine respiratory cells presents conserved regions of influenza proteins. J Gen Virol 2018; 99:303-308. [PMID: 29458525 DOI: 10.1099/jgv.0.001008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus in swine (IAV-S) is a prevalent respiratory pathogen in pigs that has deleterious consequences to animal and human health. Pigs represent an important reservoir for influenza and potential mixing vessel for novel gene reassortments. Despite the central role of pigs in recent influenza outbreaks, much remains unknown about the impact of swine immunity on IAV-S transmission, pathogenesis, and evolution. An incomplete understanding of interactions between the porcine immune system and IAV-S has hindered development of new diagnostic tools and vaccines. In order to address this gap in knowledge, we identified swine leukocyte antigen (SLA) restricted IAV-S peptides presented by porcine airway epithelial cells using an immunoproteomics approach. The majority of MHC-associated peptides belonged to matrix 1, nucleoprotein and nonstructural 1 proteins. Future investigation of the potential cross-reactive nature of these peptides is needed to confirm antigen recognition by cytotoxic T lymphocytes and their utility as vaccine candidates.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Microbiology and Immunology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erin Poulin
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
33
|
Fan S, Wang Y, Wang S, Wang X, Wu Y, Li Z, Zhang N, Xia C. Polymorphism and peptide-binding specificities of porcine major histocompatibility complex (MHC) class I molecules. Mol Immunol 2018; 93:236-245. [DOI: 10.1016/j.molimm.2017.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/07/2017] [Accepted: 06/10/2017] [Indexed: 10/19/2022]
|
34
|
Gao C, He X, Quan J, Jiang Q, Lin H, Chen H, Qu L. Specificity Characterization of SLA Class I Molecules Binding to Swine-Origin Viral Cytotoxic T Lymphocyte Epitope Peptides in Vitro. Front Microbiol 2017; 8:2524. [PMID: 29326671 PMCID: PMC5741678 DOI: 10.3389/fmicb.2017.02524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/05/2017] [Indexed: 02/03/2023] Open
Abstract
Swine leukocyte antigen (SLA) class I molecules play a crucial role in generating specific cellular immune responses against viruses and other intracellular pathogens. They mainly bind and present antigens of intracellular origin to circulating MHC I-restricted cytotoxic T lymphocytes (CTLs). Binding of an appropriate epitope to an SLA class I molecule is the single most selective event in antigen presentation and the first step in the killing of infected cells by CD8+ CTLs. Moreover, the antigen epitopes are strictly restricted to specific SLA molecules. In this study, we constructed SLA class I complexes in vitro comprising viral epitope peptides, the extracellular region of the SLA-1 molecules, and β2-microglobulin (β2m) using splicing overlap extension polymerase chain reaction (SOE-PCR). The protein complexes were induced and expressed in an Escherichia coli prokaryotic expression system and subsequently purified and refolded. Specific binding of seven SLA-1 proteins to one classical swine fever virus (CSFV) and four porcine reproductive and respiratory syndrome virus (PRRSV) epitope peptides was detected by enzyme-linked immunosorbent assay (ELISA)-based method. The SLA-1∗13:01, SLA-1∗11:10, and SLA-1∗11:01:02 proteins were able to bind specifically to different CTL epitopes of CSFV and PRRSV and the MHC restrictions of the five epitopes were identified. The fixed combination of Asn151Val152 residues was identified as the potentially key amino acid residues influencing the binding of viral several CTL epitope peptides to SLA-1∗13:01 and SLA-1∗04:01:01 proteins. The more flexible pocket E in the SLA-1∗13:01 protein might have fewer steric limitations and therefore be able to accommodate more residues of viral CTL epitope peptides, and may thus play a critical biochemical role in determining the peptide-binding motif of SLA-1∗13:01. Characterization of the binding specificity of peptides to SLA class I molecules provides an important basis for epitope studies of infectious diseases in swine, and for the rational development of novel porcine vaccines, as well as for detailed studies of CTL responses in pigs used as animal models.
Collapse
Affiliation(s)
- Caixia Gao
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiwen He
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinqiang Quan
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Jiang
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huan Lin
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liandong Qu
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
35
|
Schimunek L, Serve R, Teuben MPJ, Störmann P, Auner B, Woschek M, Pfeifer R, Horst K, Simon TP, Kalbitz M, Sturm R, Pape HC, Hildebrand F, Marzi I, Relja B. Early decreased TLR2 expression on monocytes is associated with their reduced phagocytic activity and impaired maturation in a porcine polytrauma model. PLoS One 2017; 12:e0187404. [PMID: 29125848 PMCID: PMC5681268 DOI: 10.1371/journal.pone.0187404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
In their post-traumatic course, trauma patients suffering from multiple injuries have a high risk for immune dysregulation, which may contribute to post-injury complications and late mortality. Monocytes as specific effector cells of the innate immunity play a crucial role in inflammation. Using their Pattern Recognition Receptors (PRRs), notably Toll-Like Receptors (TLR), the monocytes recognize pathogens and/or pathogen-associated molecular patterns (PAMPs) and organize their clearance. TLR2 is the major receptor for particles of gram-positive bacteria, and initiates their phagocytosis. Here, we investigated the phagocytizing capability of monocytes in a long-term porcine severe trauma model (polytrauma, PT) with regard to their TLR2 expression. Polytrauma consisted of femur fracture, unilateral lung contusion, liver laceration, hemorrhagic shock with subsequent resuscitation and surgical fracture fixation. After induction of PT, peripheral blood was withdrawn before (-1 h) and directly after trauma (0 h), as well as 3.5 h, 5.5 h, 24 h and 72 h later. CD14+ monocytes were identified and the expression levels of H(S)LA-DR and TLR2 were investigated by flow cytometry. Additionally, the phagocytizing activity of monocytes by applying S. aureus particles labelled with pHrodo fluorescent reagent was also assessed by flow cytometry. Furthermore, blood samples from 10 healthy pigs were exposed to a TLR2-neutralizing antibody and subsequently to S. aureus particles. Using flow cytometry, phagocytizing activity was determined. P below 0.05 was considered significant. The number of CD14+ monocytes of all circulating leukocytes remained constant during the observational time period, while the percentage of CD14+H(S)LA-DR+ monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of TLR2+ expressing cells out of all monocytes significantly decreased directly, 3.5 h and 5.5 h after trauma. The percentage of phagocytizing monocytes decreased immediately and remained lower during the first 3.5 h after trauma, but increased after 24 h. Antagonizing TLR2 significantly decreased the phagocytizing activity of monocytes. Both, decreased percentage of activated as well as TLR2 expressing monocytes persisted as long as the reduced phagocytosis was observed. Moreover, neutralizing TLR2 led to a reduced capability of phagocytosis as well. Therefore, we assume that reduced TLR2 expression may be responsible for the decreased phagocytizing capacity of circulating monocytes in the early post-traumatic phase.
Collapse
Affiliation(s)
- Lukas Schimunek
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Rafael Serve
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Michel P. J. Teuben
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Störmann
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Birgit Auner
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Mathias Woschek
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Roman Pfeifer
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klemens Horst
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Tim-P. Simon
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | - Miriam Kalbitz
- Department of Orthopedic Trauma, Hand, Plastic, and Reconstructive Surgery, University of Ulm, Ulm, Germany
| | - Ramona Sturm
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Hans-C. Pape
- Department of Orthopaedic Trauma Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Borna Relja
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
36
|
Lighten J, Papadopulos AST, Mohammed RS, Ward BJ, G Paterson I, Baillie L, Bradbury IR, Hendry AP, Bentzen P, van Oosterhout C. Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen. Nat Commun 2017; 8:1294. [PMID: 29101318 PMCID: PMC5670221 DOI: 10.1038/s41467-017-01183-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022] Open
Abstract
Red Queen host-parasite co-evolution can drive adaptations of immune genes by positive selection that erodes genetic variation (Red Queen arms race) or results in a balanced polymorphism (Red Queen dynamics) and long-term preservation of genetic variation (trans-species polymorphism). These two Red Queen processes are opposite extremes of the co-evolutionary spectrum. Here we show that both Red Queen processes can operate simultaneously by analysing the major histocompatibility complex (MHC) in guppies (Poecilia reticulata and P. obscura) and swamp guppies (Micropoecilia picta). Sub-functionalisation of MHC alleles into 'supertypes' explains how polymorphisms persist during rapid host-parasite co-evolution. Simulations show the maintenance of supertypes as balanced polymorphisms, consistent with Red Queen dynamics, whereas alleles within supertypes are subject to positive selection in a Red Queen arms race. Building on the divergent allele advantage hypothesis, we show that functional aspects of allelic diversity help to elucidate the evolution of polymorphic genes involved in Red Queen co-evolution.
Collapse
Affiliation(s)
- Jackie Lighten
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| | - Alexander S T Papadopulos
- Molecular Ecology and Fisheries Genetics Laboratory, Environment Centre Wales, School of Biological Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Ryan S Mohammed
- Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Ben J Ward
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich, NR4 7UZ, UK
| | - Ian G Paterson
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada, B3H 4R2
| | - Lyndsey Baillie
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Ian R Bradbury
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada, B3H 4R2.,Science Branch, Department of Fisheries and Oceans Canada, 80 East White Hills Road, St. John's, NL, Canada, A1C 5X1
| | - Andrew P Hendry
- McGill University, 859 Sherbrooke Street West, Montreal, QC, Canada, H3A 0C4.,Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, QC, Canada, H3A 0C4
| | - Paul Bentzen
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, NS, Canada, B3H 4R2
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK.
| |
Collapse
|
37
|
Picoli T, Peter CM, Zani JL, Waller SB, Lopes MG, Boesche KN, Vargas GD, Hübner SDO, Fischer G. Melittin and its potential in the destruction and inhibition of the biofilm formation by Staphylococcus aureus , Escherichia coli and Pseudomonas aeruginosa isolated from bovine milk. Microb Pathog 2017; 112:57-62. [DOI: 10.1016/j.micpath.2017.09.046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/22/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
|
38
|
Chen Z, Zhang N, Qi J, Chen R, Dijkstra JM, Li X, Wang Z, Wang J, Wu Y, Xia C. The Structure of the MHC Class I Molecule of Bony Fishes Provides Insights into the Conserved Nature of the Antigen-Presenting System. THE JOURNAL OF IMMUNOLOGY 2017; 199:3668-3678. [PMID: 29055007 DOI: 10.4049/jimmunol.1600229] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/15/2017] [Indexed: 01/02/2023]
Abstract
MHC molecules evolved with the descent of jawed fishes some 350-400 million years ago. However, very little is known about the structural features of primitive MHC molecules. To gain insight into these features, we focused on the MHC class I Ctid-UAA of the evolutionarily distant grass carp (Ctenopharyngodon idella). The Ctid-UAA H chain and β2-microglobulin (Ctid-β2m) were refolded in vitro in the presence of peptides from viruses that infect carp. The resulting peptide-Ctid-UAA (p/Ctid-UAA) structures revealed the classical MHC class I topology with structural variations. In comparison with known mammalian and chicken peptide-MHC class I (p/MHC I) complexes, p/Ctid-UAA structure revealed several distinct features. Notably, 1) although the peptide ligand conventionally occupied all six pockets (A-F) of the Ag-binding site, the binding mode of the P3 side chain to pocket D was not observed in other p/MHC I structures; 2) the AB loop between β strands of the α1 domain of p/Ctid-UAA complex comes into contact with Ctid-β2m, an interaction observed only in chicken p/BF2*2101-β2m complex; and 3) the CD loop of the α3 domain, which in mammals forms a contact with CD8, has a unique position in p/Ctid-UAA that does not superimpose with the structures of any known p/MHC I complexes, suggesting that the p/Ctid-UAA to Ctid-CD8 binding mode may be distinct. This demonstration of the structure of a bony fish MHC class I molecule provides a foundation for understanding the evolution of primitive class I molecules, how they present peptide Ags, and how they might control T cell responses.
Collapse
Affiliation(s)
- Zhaosan Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; and
| | - Xiaoying Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Zhenbao Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Junya Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100193, China; .,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Haidian District, Beijing 100094, China
| |
Collapse
|
39
|
Arellano-Llamas R, Alfaro-Ruiz L, Arriaga Canon C, Imaz Rosshandler I, Cruz-Lagunas A, Zúñiga J, Rebollar Vega R, Wong CW, Maurer-Stroh S, Romero Córdoba S, Liu ET, Hidalgo-Miranda A, Vázquez-Pérez JA. Molecular features of influenza A (H1N1)pdm09 prevalent in Mexico during winter seasons 2012-2014. PLoS One 2017; 12:e0180419. [PMID: 28692701 PMCID: PMC5503254 DOI: 10.1371/journal.pone.0180419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022] Open
Abstract
Since the emergence of the pandemic H1N1pdm09 virus in Mexico and California, biannual increases in the number of cases have been detected in Mexico. As observed in previous seasons, pandemic A/H1N1 09 virus was detected in severe cases during the 2011-2012 winter season and finally, during the 2013-2014 winter season it became the most prevalent influenza virus. Molecular and phylogenetic analyses of the whole viral genome are necessary to determine the antigenic and pathogenic characteristics of influenza viruses that cause severe outcomes of the disease. In this paper, we analyzed the evolution, antigenic and genetic drift of Mexican isolates from 2009, at the beginning of the pandemic, to 2014. We found a clear variation of the virus in Mexico from the 2011-2014 season due to different markers and in accordance with previous reports. In this study, we identified 13 novel substitutions with important biological effects, including virulence, T cell epitope presented by MHC and host specificity shift and some others substitutions might have more than one biological function. The systematic monitoring of mutations on whole genome of influenza A pH1N1 (2009) virus circulating at INER in Mexico City might provide valuable information to predict the emergence of new pathogenic influenza virus.
Collapse
Affiliation(s)
| | | | | | | | - Alfredo Cruz-Lagunas
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | | | | | - Edison T. Liu
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Joel A. Vázquez-Pérez
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
40
|
Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus. J Virol 2017; 91:JVI.02511-16. [PMID: 28490583 PMCID: PMC5487541 DOI: 10.1128/jvi.02511-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/26/2017] [Indexed: 01/16/2023] Open
Abstract
A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I (Anpl-UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl-UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys95 and Cys112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl-UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl-UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl-UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl-UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (pAnpl-UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl-UAA*01 binding to IAV peptides. Anpl-UAA*01 has a much wider recognition spectrum of IAV epitope peptides than do chickens. The IAV peptides bound by Anpl-UAA*01 display distinctive conformations that can help induce an extensive cytotoxic T lymphocyte (CTL) response. In addition, the interface area between the duck MHC I and β2m is larger than in other species. These results indicate that HP-IAV resistance in ducks is due to extensive CTL responses induced by MHC I.
Collapse
|
41
|
Gao C, Quan J, Jiang X, Li C, Lu X, Chen H. Swine Leukocyte Antigen Diversity in Canadian Specific Pathogen-Free Yorkshire and Landrace Pigs. Front Immunol 2017; 8:282. [PMID: 28360911 PMCID: PMC5350106 DOI: 10.3389/fimmu.2017.00282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/28/2017] [Indexed: 01/09/2023] Open
Abstract
The highly polymorphic swine major histocompatibility complex (MHC), termed swine leukocyte antigen (SLA), is associated with different levels of immunologic responses to infectious diseases, vaccines, and transplantation. Pig breeds with known SLA haplotypes are important genetic resources for biomedical research. Canadian Yorkshire and Landrace pigs represent the current specific pathogen-free (SPF) breeding stock maintained in the isolation environment at the Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences. In this study, we identified 61 alleles at five polymorphic SLA loci (SLA-1, SLA-2, SLA-3, DRB1, and DQB1) representing 17 class I haplotypes and 11 class II haplotypes using reverse transcription-polymerase chain reaction (RT-PCR) sequence-based typing and PCR-sequence specific primers methods in 367 Canadian SPF Yorkshire and Landrace pigs. The official designation of the alleles has been assigned by the SLA Nomenclature Committee of the International Society for Animal Genetics and released in updated Immuno Polymorphism Database-MHC SLA sequence database [Release 2.0.0.3 (2016-11-03)]. The submissions confirmed some unassigned alleles and standardized nomenclatures of many previously unconfirmed alleles in the GenBank database. Three class I haplotypes, Hp-37.0, 63.0, and 73.0, appeared to be novel and have not previously been reported in other pig populations. One crossover within the class I region and two between class I and class II regions were observed, resulting in three new recombinant haplotypes. The presence of the duplicated SLA-1 locus was confirmed in three class I haplotypes Hp-28.0, Hp-35.0, and Hp-63.0. Furthermore, we also analyzed the functional diversities of 19 identified frequent SLA class I molecules in this study and confirmed the existence of four supertypes using the MHCcluster method. These results will be useful for studying the adaptive immune response and immunological phenotypic differences in pigs, screening potential T-cell epitopes, and further developing the more effective vaccines.
Collapse
Affiliation(s)
- Caixia Gao
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Jinqiang Quan
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Xinjie Jiang
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Changwen Li
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Xiaoye Lu
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| | - Hongyan Chen
- Laboratory Animal and Comparative Medicine Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS) , Harbin , China
| |
Collapse
|
42
|
Lopera-Madrid J, Osorio JE, He Y, Xiang Z, Adams LG, Laughlin RC, Mwangi W, Subramanya S, Neilan J, Brake D, Burrage TG, Brown WC, Clavijo A, Bounpheng MA. Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine. Vet Immunol Immunopathol 2017; 185:20-33. [PMID: 28241999 PMCID: PMC7112906 DOI: 10.1016/j.vetimm.2017.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/06/2023]
Abstract
Reverse vaccinology was applied to identify and rank ASFV immunogenic candidates . Selected ASFV immunogenic candidate proteins were expressed in HEK-293 mammalian cells and MVA constructs . Immunizations with antigens purified from HEK-293 cells and MVA constructs in swine were safe . Immunizations with selected antigens induced ASFV-specific antibodies and T-cell responses in swine.
A reverse vaccinology system, Vaxign, was used to identify and select a subset of five African Swine Fever (ASF) antigens that were successfully purified from human embryonic kidney 293 (HEK) cells and produced in Modified vaccinia virus Ankara (MVA) viral vectors. Three HEK-purified antigens [B646L (p72), E183L (p54), and O61R (p12)], and three MVA-vectored antigens [B646L, EP153R, and EP402R (CD2v)] were evaluated using a prime-boost immunization regimen swine safety and immunogenicity study. Antibody responses were detected in pigs following prime-boost immunization four weeks apart with the HEK-293-purified p72, p54, and p12 antigens. Notably, sera from the vaccinees were positive by immunofluorescence on ASFV (Georgia 2007/1)-infected primary macrophages. Although MVA-vectored p72, CD2v, and EP153R failed to induce antibody responses, interferon-gamma (IFN-γ+) spot forming cell responses against all three antigens were detected one week post-boost. The highest IFN-γ+ spot forming cell responses were detected against p72 in pigs primed with MVA-p72 and boosted with the recombinant p72. Antigen-specific (p12, p72, CD2v, and EP153R) T-cell proliferative responses were also detected post-boost. Collectively, these results are the first demonstration that ASFV subunit antigens purified from mammalian cells or expressed in MVA vectors are safe and can induce ASFV-specific antibody and T-cell responses following a prime-boost immunization regimen in swine.
Collapse
Affiliation(s)
- Jaime Lopera-Madrid
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, United States.
| | - Zuoshuang Xiang
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, United States.
| | - L Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, United States.
| | - Richard C Laughlin
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, United States.
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4467, United States.
| | - Sandesh Subramanya
- Bioo Scientific Corporation, 7050 Burleson Rd., Austin, TX, 78744, United States.
| | - John Neilan
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology, Greenport, New York, United States.
| | - David Brake
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology, Greenport, New York, United States.
| | - Thomas G Burrage
- Plum Island Animal Disease Center, U. S. Department of Homeland Security Science and Technology, Greenport, New York, United States.
| | - William Clay Brown
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, United States.
| | - Alfonso Clavijo
- Institute for Infectious Animal Disease, 2501 Earl Rudder Hwy, Suite 701, College Station, TX, 77845, United States.
| | - Mangkey A Bounpheng
- Texas A&M Veterinary Medical Diagnostic Laboratory,1 Sippel Rd., College Station, TX, 77843, United States.
| |
Collapse
|
43
|
Kametani Y, Ohshima S, Miyamoto A, Shigenari A, Takasu M, Imaeda N, Matsubara T, Tanaka M, Shiina T, Kamiguchi H, Suzuki R, Kitagawa H, Kulski JK, Hirayama N, Inoko H, Ando A. Production of a Locus- and Allele-Specific Monoclonal Antibody for the Characterization of SLA-1*0401 mRNA and Protein Expression Levels in MHC-Defined Microminipigs. PLoS One 2016; 11:e0164995. [PMID: 27760184 PMCID: PMC5070868 DOI: 10.1371/journal.pone.0164995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/04/2016] [Indexed: 12/17/2022] Open
Abstract
The class I major histocompatibility complex (MHC) presents self-developed peptides to specific T cells to induce cytotoxity against infection. The MHC proteins are encoded by multiple loci that express numerous alleles to preserve the variability of the antigen-presenting ability in each species. The mechanism regulating MHC mRNA and protein expression at each locus is difficult to analyze because of the structural and sequence similarities between alleles. In this study, we examined the correlation between the mRNA and surface protein expression of swine leukocyte antigen (SLA)-1*0401 after the stimulation of peripheral blood mononuclear cells (PBMCs) by Staphylococcus aureus superantigen toxic shock syndrome toxin-1 (TSST-1). We prepared a monoclonal antibody (mAb) against a domain composed of Y102, L103 and L109 in the α2 domain. The Hp-16.0 haplotype swine possess only SLA-1*0401, which has the mAb epitope, while other haplotypes possess 0 to 3 SLA classical class I loci with the mAb epitopes. When PBMCs from SLA-1*0401 homozygous pigs were stimulated, the SLA-1*0401 mRNA expression level increased until 24 hrs and decreased at 48 hrs. The kinetics of the interferon regulatory transcription factor-1 (IRF-1) mRNA level were similar to those of the SLA-1*0401 mRNA. However, the surface protein expression level continued to increase until 72 hrs. Similar results were observed in the Hp-10.0 pigs with three mAb epitopes. These results suggest that TSST-1 stimulation induced both mRNA and surface protein expression of class I SLA in the swine PBMCs differentially and that the surface protein level was sustained independently of mRNA regulation.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Institute of Advanced Biosciences, Tokai University, Kanagawa, Japan
- * E-mail:
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Teaching and Research Support Center, Tokai University School of Medicine, Isehara, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Kanagawa, Japan
| | - Hitoshi Kitagawa
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley WA, Australia
| | - Noriaki Hirayama
- Institute of Glycoscience, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
44
|
Xiao J, Xiang W, Chai Y, Haywood J, Qi J, Ba L, Qi P, Wang M, Liu J, Gao GF. Diversified Anchoring Features the Peptide Presentation of DLA-88*50801: First Structural Insight into Domestic Dog MHC Class I. THE JOURNAL OF IMMUNOLOGY 2016; 197:2306-15. [PMID: 27511732 DOI: 10.4049/jimmunol.1600887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
Abstract
Canines represent a crucial animal model for studying human diseases and organ transplantation, as well as the evolution of domestic animals. MHCs, with a central role in cellular immunity, are commonly used in the study of dog population genetics and genome evolution. However, the molecular basis for the peptide presentation of dog MHC remains largely unknown. In this study, peptide presentation by canine MHC class I DLA-88*50801 was structurally determined, revealing diversified anchoring modes of the binding peptides. Flexible and large pockets composed of both hydrophobic and hydrophilic residues can accommodate pathogen-derived peptides with diverse anchor residues, as confirmed by thermostability measurements. Furthermore, DLA-88*50801 contains an unusual α2 helix with a large coil in the TCR contact region. These results further our understanding of canine T cell immunity through peptide presentation of MHC class I and shed light on the molecular basis for vaccine development for canine infectious diseases, for example, canine distemper virus.
Collapse
Affiliation(s)
- Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd, Beijing 100095, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; China Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Wangzhen Xiang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd, Beijing 100095, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yan Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Joel Haywood
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Ba
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd, Beijing 100095, China
| | - Peng Qi
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd, Beijing 100095, China
| | - Ming Wang
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd, Beijing 100095, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Liu
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; and National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - George F Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; China Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; and National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| |
Collapse
|
45
|
Gutiérrez AH, Loving C, Moise L, Terry FE, Brockmeier SL, Hughes HR, Martin WD, De Groot AS. In Vivo Validation of Predicted and Conserved T Cell Epitopes in a Swine Influenza Model. PLoS One 2016; 11:e0159237. [PMID: 27411061 PMCID: PMC4943726 DOI: 10.1371/journal.pone.0159237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/29/2016] [Indexed: 01/10/2023] Open
Abstract
Swine influenza is a highly contagious respiratory viral infection in pigs that is responsible for significant financial losses to pig farmers annually. Current measures to protect herds from infection include: inactivated whole-virus vaccines, subunit vaccines, and alpha replicon-based vaccines. As is true for influenza vaccines for humans, these strategies do not provide broad protection against the diverse strains of influenza A virus (IAV) currently circulating in U.S. swine. Improved approaches to developing swine influenza vaccines are needed. Here, we used immunoinformatics tools to identify class I and II T cell epitopes highly conserved in seven representative strains of IAV in U.S. swine and predicted to bind to Swine Leukocyte Antigen (SLA) alleles prevalent in commercial swine. Epitope-specific interferon-gamma (IFNγ) recall responses to pooled peptides and whole virus were detected in pigs immunized with multi-epitope plasmid DNA vaccines encoding strings of class I and II putative epitopes. In a retrospective analysis of the IFNγ responses to individual peptides compared to predictions specific to the SLA alleles of cohort pigs, we evaluated the predictive performance of PigMatrix and demonstrated its ability to distinguish non-immunogenic from immunogenic peptides and to identify promiscuous class II epitopes. Overall, this study confirms the capacity of PigMatrix to predict immunogenic T cell epitopes and demonstrate its potential for use in the design of epitope-driven vaccines for swine. Additional studies that match the SLA haplotype of animals with the study epitopes will be required to evaluate the degree of immune protection conferred by epitope-driven DNA vaccines in pigs.
Collapse
Affiliation(s)
- Andres H. Gutiérrez
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, United States of America
| | - Crystal Loving
- Virus and Prion Diseases Research Unit, NADC, USDA ARS, Ames, IA, United States of America
| | - Leonard Moise
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, United States of America
- EpiVax Inc., Providence, RI, United States of America
| | | | - Susan L. Brockmeier
- Virus and Prion Diseases Research Unit, NADC, USDA ARS, Ames, IA, United States of America
| | - Holly R. Hughes
- Virus and Prion Diseases Research Unit, NADC, USDA ARS, Ames, IA, United States of America
| | | | - Anne S. De Groot
- Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, United States of America
- EpiVax Inc., Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
46
|
Structural and Biochemical Analyses of Swine Major Histocompatibility Complex Class I Complexes and Prediction of the Epitope Map of Important Influenza A Virus Strains. J Virol 2016; 90:6625-6641. [PMID: 27170754 DOI: 10.1128/jvi.00119-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/03/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The lack of a peptide-swine leukocyte antigen class I (pSLA I) complex structure presents difficulties for the study of swine cytotoxic T lymphocyte (CTL) immunity and molecule vaccine development to eliminate important swine viral diseases, such as influenza A virus (IAV). Here, after cloning and comparing 28 SLA I allelic genes from Chinese Heishan pigs, pSLA-3*hs0202 was crystalized and solved. SLA-3*hs0202 binding with sβ2m and a KMNTQFTAV (hemagglutinin [HA]-KMN9) peptide from the 2009 pandemic swine H1N1 strain clearly displayed two distinct conformations with HA-KMN9 peptides in the structures, which are believed to be beneficial to stimulate a broad spectrum of CTL immune responses. Notably, we found that different HA-KMN9 conformations are caused, not only by the flexibility of the side chains of residues in the peptide-binding groove (PBG), but also by the skewing of α1 and α2 helixes forming the PBG. In addition, alanine scanning and circular-dichroism (CD) spectra confirmed that the B, D, and F pockets play critical biochemical roles in determining the peptide-binding motif of SLA-3*hs0202. Based on biochemical parameters and comparisons to similar pockets in other known major histocompatibility complex class I (MHC-I) structures, the fundamental motif for SLA-3*hs0202 was determined to be X-(M/A/R)-(N/Q/R/F)-X-X-X-X-X-(V/I) by refolding in vitro and multiple mutant peptides. Finally, 28 SLA-3*hs0202-restricted epitope candidates were identified from important IAV strains, and two of them have been found in humans as HLA-A*0201-specific IAV epitopes. Structural and biochemical illumination of pSLA-3*hs0202 can benefit vaccine development to control IAV in swine. IMPORTANCE We crystalized and solved the first SLA-3 structure, SLA-3*hs0202, and found that it could present the same IAV peptide with two distinct conformations. Unlike previous findings showing that variable peptide conformations are caused only by the flexibility of the side chains in the groove, the skewing of the α1 and α2 helixes is important in the different peptide conformations in SLA-3*hs0202. We also determined the fundamental motif for SLA-3*hs0202 to be X-(M/A/R)-(N/Q/R/F)-X-X-X-X-X-(V/I) based on a series of structural and biochemical analyses, and 28 SLA-3*hs0202-restricted epitope candidates were identified from important IAV strains. We believe our structure and analyses of pSLA-3*hs0202 can benefit vaccine development to control IAV in swine.
Collapse
|
47
|
Liu Y, Li X, Qi J, Zhang N, Xia C. The structural basis of chicken, swine and bovine CD8αα dimers provides insight into the co-evolution with MHC I in endotherm species. Sci Rep 2016; 6:24788. [PMID: 27122108 PMCID: PMC4848529 DOI: 10.1038/srep24788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/05/2016] [Indexed: 01/05/2023] Open
Abstract
It is unclear how the pivotal molecules of the adaptive immune system (AIS) maintain their inherent characteristics and relationships with their co-receptors over the course of co-evolution. CD8α, a fundamental but simple AIS component with only one immunoglobulin variable (IgV) domain, is a good example with which to explore this question because it can fold correctly to form homodimers (CD8αα) and interact with peptide-MHC I (p/MHC I) with low sequence identities between different species. Hereby, we resolved the crystal structures of chicken, swine and bovine CD8αα. They are typical homodimers consisting of two symmetric IgV domains with distinct species specificities. The CD8αα structures indicated that a few highly conserved residues are important in CD8 dimerization and in interacting with p/MHC I. The dimerization of CD8αα mainly depends on the pivotal residues on the dimer interface; in particular, four aromatic residues provide many intermolecular forces and contact areas. Three residues on the surface of CD8α connecting cavities that formed most of the hydrogen bonds with p/MHC I were also completely conserved. Our data propose that a few key conserved residues are able to ensure the CD8α own structural characteristics despite the great sequence variation that occurs during evolution in endotherms.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China.,Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apiculture, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China.,The Key Laboratory Zoonosis of Ministry of Agriculture of China, Beijing 100094, China
| |
Collapse
|
48
|
Hiremath J, Kang KI, Xia M, Elaish M, Binjawadagi B, Ouyang K, Dhakal S, Arcos J, Torrelles JB, Jiang X, Lee CW, Renukaradhya GJ. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs. PLoS One 2016; 11:e0151922. [PMID: 27093541 PMCID: PMC4836704 DOI: 10.1371/journal.pone.0151922] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.
Collapse
Affiliation(s)
- Jagadish Hiremath
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Kyung-il Kang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Ming Xia
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Mohamed Elaish
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Basavaraj Binjawadagi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Kang Ouyang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Jesus Arcos
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Jordi B. Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - X. Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Chang Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, Ohio, 44691, United States of America, and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, 43210, United States of America
| |
Collapse
|
49
|
Yao S, Liu J, Qi J, Chen R, Zhang N, Liu Y, Wang J, Wu Y, Gao GF, Xia C. Structural Illumination of Equine MHC Class I Molecules Highlights Unconventional Epitope Presentation Manner That Is Evolved in Equine Leukocyte Antigen Alleles. THE JOURNAL OF IMMUNOLOGY 2016; 196:1943-54. [DOI: 10.4049/jimmunol.1501352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/03/2015] [Indexed: 01/20/2023]
|
50
|
Skalickova S, Heger Z, Krejcova L, Pekarik V, Bastl K, Janda J, Kostolansky F, Vareckova E, Zitka O, Adam V, Kizek R. Perspective of Use of Antiviral Peptides against Influenza Virus. Viruses 2015; 7:5428-42. [PMID: 26492266 PMCID: PMC4632391 DOI: 10.3390/v7102883] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 01/13/2023] Open
Abstract
The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.
Collapse
Affiliation(s)
- Sylvie Skalickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Ludmila Krejcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Vladimir Pekarik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Karel Bastl
- Wool and Knitting Research Institute, Brno, Sujanovo namesti 3, Brno CZ-602 00, Czech Republic.
| | - Jozef Janda
- Laboratory of Tumour Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov CZ-277 21, Czech Republic.
| | - Frantisek Kostolansky
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Eva Vareckova
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| |
Collapse
|