1
|
Dafalla O, Abdulhaq AA, Almutairi H, Noureldin E, Ghzwani J, Mashi O, Shrwani KJ, Hobani Y, Sufyani O, Ayed R, Alamri A, Al-Mekhlafi HM, Eisa ZM. The emergence of an imported variant of dengue virus serotype 2 in the Jazan region, southwestern Saudi Arabia. Trop Dis Travel Med Vaccines 2023; 9:5. [PMID: 36922890 PMCID: PMC10018863 DOI: 10.1186/s40794-023-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/30/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) infection is a global economic and public health concern, particularly in tropical and subtropical countries where it is endemic. Saudi Arabia has seen an increase in DENV infections, especially in the western and southwestern regions. This study aims to investigate the genetic variants of DENV-2 that were circulating during a serious outbreak in Jazan region in 2019. METHODS A total of 482 serum samples collected during 2019 from Jazan region were tested with reverse transcription-polymerase chain reaction (RT-PCR) to detect and classify DENV; positive samples underwent sequencing and bioinformatics analyses. RESULTS Out of 294 positive samples, type-specific RT-PCR identified 58.8% as DENV-2 but could not identify 41.2%. Based on sequencing and bioinformatics analyses, the samples tested PCR positive in the first round but PCR negative in the second round were found to be imported genetic variant of DENV-2. The identified DENV-2 imported variant showed similarities to DENV-2 sequences reported in Malaysia, Singapore, Korea and China. The results revealed the imported genetic variant of DENV-2 was circulating in Jazan region that was highly prevalent and it was likely a major factor in this outbreak. CONCLUSIONS The emergence of imported DENV variants is a serious challenge for the dengue fever surveillance and control programmes in endemic areas. Therefore, further investigations and continuous surveillance of existing and new viral strains in the region are warranted.
Collapse
Affiliation(s)
- Ommer Dafalla
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia.
| | | | - Hatim Almutairi
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia.
| | | | - Jaber Ghzwani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Omar Mashi
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | | | - Yahya Hobani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Ohood Sufyani
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Reem Ayed
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | - Abdullah Alamri
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| | | | - Zaki M Eisa
- Saudi Public Health Authority, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Development and Characterization of a Genetically Stable Infectious Clone for a Genotype I Isolate of Dengue Virus Serotype 1. Viruses 2022; 14:v14092073. [PMID: 36146879 PMCID: PMC9501529 DOI: 10.3390/v14092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue virus (DENV) is primarily transmitted by the bite of an infected mosquito of Aedes aegypti and Aedes albopictus, and symptoms caused may range from mild dengue fever to severe dengue hemorrhagic fever and dengue shock syndrome. Reverse genetic system represents a valuable tool for the study of DENV virology, infection, pathogenesis, etc. Here, we generated and characterized an eukaryotic-activated full-length infectious cDNA clone for a DENV serotype 1 (DENV-1) isolate, D19044, collected in 2019. Initially, nearly the full genome was determined by sequencing overlapping RT-PCR products, and was classified to be genotype I DENV-1. D19044 wild-type cDNA clone (D19044_WT) was assembled by four subgenomic fragments, in a specific order, into a low-copy vector downstream the CMV promoter. D19044_WT released the infectious virus at a low level (1.26 × 103 focus forming units per milliliter [FFU/mL]) following plasmid transfection of BHK-21 cells. Further adaptation by consecutive virus passages up to passage 37, and seven amino acid substitutions (7M) were identified from passage-recovered viruses. The addition of 7M (D19044_7M) greatly improved viral titer (7.5 × 104 FFU/mL) in transfected BHK-21 culture, and virus infections in 293T, Huh7.5.1, and C6/36 cells were also efficient. D19044_7M plasmid was genetically stable in transformant bacteria after five transformation-purification cycles, which did not change the capacity of producing infectious virus. Moreover, the D19044_7M virus was inhibited by mycophenolic acid in a dose-dependent manner. In conclusion, we have developed a DNA-launched full-length infectious clone for a genotype I isolate of DENV-1, with genetic stability in transformant bacteria, thus providing a useful tool for the study of DENV-1.
Collapse
|
3
|
Natali EN, Babrak LM, Miho E. Prospective Artificial Intelligence to Dissect the Dengue Immune Response and Discover Therapeutics. Front Immunol 2021; 12:574411. [PMID: 34211454 PMCID: PMC8239437 DOI: 10.3389/fimmu.2021.574411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue virus (DENV) poses a serious threat to global health as the causative agent of dengue fever. The virus is endemic in more than 128 countries resulting in approximately 390 million infection cases each year. Currently, there is no approved therapeutic for treatment nor a fully efficacious vaccine. The development of therapeutics is confounded and hampered by the complexity of the immune response to DENV, in particular to sequential infection with different DENV serotypes (DENV1-5). Researchers have shown that the DENV envelope (E) antigen is primarily responsible for the interaction and subsequent invasion of host cells for all serotypes and can elicit neutralizing antibodies in humans. The advent of high-throughput sequencing and the rapid advancements in computational analysis of complex data, has provided tools for the deconvolution of the DENV immune response. Several types of complex statistical analyses, machine learning models and complex visualizations can be applied to begin answering questions about the B- and T-cell immune responses to multiple infections, antibody-dependent enhancement, identification of novel therapeutics and advance vaccine research.
Collapse
Affiliation(s)
- Eriberto N. Natali
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Lmar M. Babrak
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- aiNET GmbH, Basel, Switzerland
| |
Collapse
|
4
|
Torres MC, Lima de Mendonça MC, Damasceno dos Santos Rodrigues C, Fonseca V, Ribeiro MS, Brandão AP, Venâncio da Cunha R, Dias AI, Santos Vilas Boas L, Felix AC, Alves Pereira M, de Oliveira Pinto LM, Sakuntabhai A, Bispo de Filippis AM. Dengue Virus Serotype 2 Intrahost Diversity in Patients with Different Clinical Outcomes. Viruses 2021; 13:v13020349. [PMID: 33672226 PMCID: PMC7926750 DOI: 10.3390/v13020349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Intrahost genetic diversity is thought to facilitate arbovirus adaptation to changing environments and hosts, and it might also be linked to viral pathogenesis. Dengue virus serotype 2 (DENV-2) has circulated in Brazil since 1990 and is associated with severe disease and explosive outbreaks. Intending to shed light on the viral determinants for severe dengue pathogenesis, we sought to analyze the DENV-2 intrahost genetic diversity in 68 patient cases clinically classified as dengue fever (n = 31), dengue with warning signs (n = 19), and severe dengue (n = 18). Unlike previous DENV intrahost diversity studies whose approaches employed PCR, here we performed viral whole-genome deep sequencing from clinical samples with an amplicon-free approach, representing the real intrahost diversity scenario. Striking differences were detected in the viral population structure between the three clinical categories, which appear to be driven mainly by different infection times and selection pressures, rather than being linked with the clinical outcome itself. Diversity in the NS2B gene, however, showed to be constrained, irrespective of clinical outcome and infection time. Finally, 385 non-synonymous intrahost single-nucleotide variants located along the viral polyprotein, plus variants located in the untranslated regions, were consistently identified among the samples. Of them, 124 were exclusively or highly detected among cases with warning signs and among severe cases. However, there was no variant that by itself appeared to characterize the cases of greater severity, either due to its low intrahost frequency or the conservative effect on amino acid substitution. Although further studies are necessary to determine their real effect on viral proteins, this heightens the possibility of epistatic interactions. The present analysis represents an initial effort to correlate DENV-2 genetic diversity to its pathogenic potential and thus contribute to understanding the virus’s dynamics within its human host.
Collapse
Affiliation(s)
- Maria Celeste Torres
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (M.C.L.d.M.); (C.D.d.S.R.); (A.M.B.d.F.)
- Correspondence:
| | - Marcos Cesar Lima de Mendonça
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (M.C.L.d.M.); (C.D.d.S.R.); (A.M.B.d.F.)
| | | | - Vagner Fonseca
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 4041 Durban, South Africa;
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
- Coordenação Geral dos Laboratórios de Saúde Pública/Secretaria de Vigilância em Saúde, Ministério da Saúde, (CGLAB/SVS-MS) Brasília, 70719-040 Distrito Federal, Brazil
| | - Mario Sergio Ribeiro
- Superintendência Secretaria de Vigilância em Saúde do Estado do Rio de Janeiro, 20031-142 Rio de Janeiro, Brazil;
| | - Ana Paula Brandão
- Laboratório Central Noel Nutels/LACEN, 20231-092 Rio de Janeiro, Brazil;
| | - Rivaldo Venâncio da Cunha
- Coordenação de Vigilância em Saúde e Laboratórios de Referência da Fundação Oswaldo Cruz, FIOCRUZ, 21040-360 Rio de Janeiro, Brazil;
| | - Ana Isabel Dias
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, 05403-000 São Paulo, Brazil; (A.I.D.); (L.S.V.B.); (A.C.F.)
| | - Lucy Santos Vilas Boas
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, 05403-000 São Paulo, Brazil; (A.I.D.); (L.S.V.B.); (A.C.F.)
| | - Alvina Clara Felix
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, 05403-000 São Paulo, Brazil; (A.I.D.); (L.S.V.B.); (A.C.F.)
| | | | | | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases, Department of Global Health, Institut Pasteur, 75015 Paris, France;
| | - Ana Maria Bispo de Filippis
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (M.C.L.d.M.); (C.D.d.S.R.); (A.M.B.d.F.)
| | - on behalf of ZikAction Consortium
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil; (M.C.L.d.M.); (C.D.d.S.R.); (A.M.B.d.F.)
| |
Collapse
|
5
|
Dengue virus co-infections with multiple serotypes do not result in a different clinical outcome compared to mono-infections. Epidemiol Infect 2020; 148:e119. [PMID: 32594967 PMCID: PMC7325333 DOI: 10.1017/s0950268820000229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Circulation of multiple dengue virus (DENV) serotypes in a locale has resulted in individuals becoming infected with mixed serotypes. This research was undertaken to study the clinical presentation, presence of DENV serotypes and serological characteristics of DENV infected patients with co-infections from three Provinces of Sri Lanka where DENV-1 and -2 predominated during the study. A reverse transcription polymerase chain reaction was performed on 1249 patient samples and 301 were positive for DENV (24.1%). DENV-1 was the predominant serotype detected in 137 (45.51%) followed by DENV-2 in 65 (21.59%), DENV-3 in 59 (19.6%) and DENV-4 in 4 (1.32%) patients with mono-infections. Thirty-three patients (10.96%) had DENV co-infections with two or more serotypes. The highest number of co-infections was noted between DENV-1 and DENV-2 (57.57%) suggesting co-infection is driven by the frequency of the circulating serotypes. Platelet counts were significantly higher in DENV co-infected patients although clinical disease severity or white blood cell count, packed cell volume or viraemia were not significantly different in the co-infected compared to the mono-infected patients. Thus co-infection with multiple DENV serotypes does occur but with the exception of improved platelet counts in co-infected patients, there is no evidence that clinical or laboratory measures of disease are altered.
Collapse
|
6
|
Castro CJ, Marine RL, Ramos E, Ng TFF. The effect of variant interference on de novo assembly for viral deep sequencing. BMC Genomics 2020; 21:421. [PMID: 32571214 PMCID: PMC7306937 DOI: 10.1186/s12864-020-06801-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Viruses have high mutation rates and generally exist as a mixture of variants in biological samples. Next-generation sequencing (NGS) approaches have surpassed Sanger for generating long viral sequences, yet how variants affect NGS de novo assembly remains largely unexplored. RESULTS Our results from > 15,000 simulated experiments showed that presence of variants can turn an assembly of one genome into tens to thousands of contigs. This "variant interference" (VI) is highly consistent and reproducible by ten commonly-used de novo assemblers, and occurs over a range of genome length, read length, and GC content. The main driver of VI is pairwise identities between viral variants. These findings were further supported by in silico simulations, where selective removal of minor variant reads from clinical datasets allow the "rescue" of full viral genomes from fragmented contigs. CONCLUSIONS These results call for careful interpretation of contigs and contig numbers from de novo assembly in viral deep sequencing.
Collapse
Affiliation(s)
- Christina J Castro
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Rachel L Marine
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Edward Ramos
- General Dynamics Information Technology, Inc., contracting agency to the Office of Informatics, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Falls Church, VA, USA
| | - Terry Fei Fan Ng
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| |
Collapse
|
7
|
Abstract
The evolutionary dynamics of a virus can differ within hosts and across populations. Studies of within-host evolution provide an important link between experimental studies of virus evolution and large-scale phylodynamic analyses. They can determine the extent to which global processes are recapitulated on local scales and how accurately experimental infections model natural ones. They may also inform epidemiologic models of disease spread and reveal how host-level dynamics contribute to a virus's evolution at a larger scale. Over the last decade, advances in viral sequencing have enabled detailed studies of viral genetic diversity within hosts. I review how within-host diversity is sampled, measured, and expressed, and how comparative studies of viral diversity can be leveraged to elucidate a virus's evolutionary dynamics. These concepts are illustrated with detailed reviews of recent research on the within-host evolution of influenza virus, dengue virus, and cytomegalovirus.
Collapse
Affiliation(s)
- Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
8
|
Ahamed SF, Rosario V, Britto C, Dias M, Nayak K, Chandele A, Kaja MK, Shet A. Emergence of new genotypes and lineages of dengue viruses during the 2012-15 epidemics in southern India. Int J Infect Dis 2019; 84S:S34-S43. [PMID: 30639622 DOI: 10.1016/j.ijid.2019.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To genotypically characterize dengue virus (DENV) isolates among dengue-infected children from 2012-13/2014-15 outbreaks in southern India. METHODS Children hospitalized with suspected dengue were tested for dengue RT-PCR targeting Capsid-preMembrane (C-prM) and Envelope (Env) regions. Following virologic confirmation (n=612), a representative selection of DENV isolates (n=99) were sequenced for C-prM, aligned using ClustalW and subjected to phylogenetic analysis by maximum-likelihood method in MEGA6. RESULTS In 2012-13 (n=113), DENV-3 (44, 38.9%) and DENV-2 (43, 38.1%) predominated; DENV-1 (22, 19.5%) and DENV-4 (1, 0.9%) were less common. The pattern changed in 2014-15 (n=499), when DENV-1 (329, 65.7%) predominated, followed by DENV-2 (97, 21.2%), DENV-3 (36, 6.7%) and DENV-4 (10, 2.0%). Multiple-serotype co-infections occurred in 2.7% and 5.4% in 2012-13 and 2014-15, respectively. Genotype III (GIII) of DENV-1 predominated (85.7%) in 2012-13, ceding to GI predominance (80.8%) in 2014-15. Among DENV-2, 71.9% (23/32) showed distinct clustering suggesting a new lineage, 'GIVc'. All tested DENV-4 were GIC, whose clustering pattern showed the emergence of two distinct clades. CONCLUSIONS New genotypic/lineage variations in DENV-1 and DENV-2 may have influenced the magnitude and severity of dengue epidemics in southern India during this period. These findings emphasize the role of active surveillance of DENV serotypes/genotypes in aiding outbreak control and vaccine studies.
Collapse
Affiliation(s)
- Syed Fazil Ahamed
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India; The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bangalore, 560064, Karnataka, India.
| | - Vivek Rosario
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India.
| | - Carl Britto
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, UK.
| | - Mary Dias
- Division of Infectious Diseases, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India; Department of Microbiology, St. John's Medical College Hospital, St. John's National Academy of Health Sciences, Bangalore, 560034, Karnataka, India.
| | - Kaustuv Nayak
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Murali-Krishna Kaja
- ICGEB-Emory Vaccine Centre, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Pediatrics, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| | - Anita Shet
- International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, 415 N Washington St, Baltimore 21231, USA.
| |
Collapse
|
9
|
Genetic diversity of the enteroviruses detected from cerebrospinal fluid (CSF) samples of patients with suspected aseptic meningitis in northern West Bank, Palestine in 2017. PLoS One 2018; 13:e0202243. [PMID: 30532168 PMCID: PMC6287809 DOI: 10.1371/journal.pone.0202243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/21/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human enterovirus genus showed a wide range of genetic diversity. OBJECTIVES To investigate the genetic diversity of the enteroviruses isolated in 2017 in northern West Bank, Palestine. STUDY DESIGN 249 CSF samples from aseptic meningitis cases were investigated for HEV using two RT-PCR protocols targeting the 5' NCR and the VP1 region of the HEV genome. The phylogenetic characterization of the sequenced VP1 region of Echovirus18 (E18) and Coxsackievirus B5 (CVB5) isolated in Palestine along with 27 E18 and 27 CVB5 sequences available from the Genbank were described. RESULTS E18 and CVB5 account for 50% and 35% of the successfully HEV types, respectively. Phylogenetic tree of E18 and CVB5 showed three main clusters, with all Palestinian isolates uniquely clustering together with those from China and from different countries, respectively. Cluster I of E18, with 13 Palestinian and 6 Chinese isolates, showed the lowest haplotype-to-sequence ratio (0.6:1), haplotype diversity (Hd), nucleotide diversity (π), and number of segregating sites (S) compared to clusters II and III. Furthermore, cluster I showed negative Tajima's D and Fu-Li'sF tests with statistically significant departure from neutrality (P<0.01). In both E18 and CVB5 populations, high haplotype diversity, but low genetic diversity was evident. Inter-population pairwise genetic distance (Fst) and gene flow (Nm) showed that the Palestinian E18 and CVB5 clusters were highly differentiated from the other clusters. CONCLUSIONS The study divulged close genetic relationship between Palestinian HEV strains as confirmed by population genetics and phylogenetic analyses.
Collapse
|
10
|
Bah SY, Morang'a CM, Kengne-Ouafo JA, Amenga-Etego L, Awandare GA. Highlights on the Application of Genomics and Bioinformatics in the Fight Against Infectious Diseases: Challenges and Opportunities in Africa. Front Genet 2018; 9:575. [PMID: 30538723 PMCID: PMC6277583 DOI: 10.3389/fgene.2018.00575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023] Open
Abstract
Genomics and bioinformatics are increasingly contributing to our understanding of infectious diseases caused by bacterial pathogens such as Mycobacterium tuberculosis and parasites such as Plasmodium falciparum. This ranges from investigations of disease outbreaks and pathogenesis, host and pathogen genomic variation, and host immune evasion mechanisms to identification of potential diagnostic markers and vaccine targets. High throughput genomics data generated from pathogens and animal models can be combined with host genomics and patients’ health records to give advice on treatment options as well as potential drug and vaccine interactions. However, despite accounting for the highest burden of infectious diseases, Africa has the lowest research output on infectious disease genomics. Here we review the contributions of genomics and bioinformatics to the management of infectious diseases of serious public health concern in Africa including tuberculosis (TB), dengue fever, malaria and filariasis. Furthermore, we discuss how genomics and bioinformatics can be applied to identify drug and vaccine targets. We conclude by identifying challenges to genomics research in Africa and highlighting how these can be overcome where possible.
Collapse
Affiliation(s)
- Saikou Y Bah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.,Vaccine and Immunity Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Collins Misita Morang'a
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Jonas A Kengne-Ouafo
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
11
|
Intrahost Selection Pressures Drive Rapid Dengue Virus Microevolution in Acute Human Infections. Cell Host Microbe 2018; 22:400-410.e5. [PMID: 28910637 PMCID: PMC5616187 DOI: 10.1016/j.chom.2017.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/06/2017] [Accepted: 08/07/2017] [Indexed: 11/24/2022]
Abstract
Dengue, caused by four dengue virus serotypes (DENV-1 to DENV-4), is a highly prevalent mosquito-borne viral disease in humans. Yet, selection pressures driving DENV microevolution within human hosts (intrahost) remain unknown. We employed a whole-genome segmented amplification approach coupled with deep sequencing to profile DENV-3 intrahost diversity in peripheral blood mononuclear cell (PBMC) and plasma samples from 77 dengue patients. DENV-3 intrahost diversity appears to be driven by immune pressures as well as replicative success in PBMCs and potentially other replication sites. Hotspots for intrahost variation were detected in 59%-78% of patients in the viral Envelope and pre-Membrane/Membrane proteins, which together form the virion surface. Dominant variants at the hotspots arose via convergent microevolution, appear to be immune-escape variants, and were evolutionarily constrained at the macro level due to viral replication defects. Dengue is thus an example of an acute infection in which selection pressures within infected individuals drive rapid intrahost virus microevolution.
Collapse
|
12
|
Pollett S, Melendrez MC, Maljkovic Berry I, Duchêne S, Salje H, Cummings DAT, Jarman RG. Understanding dengue virus evolution to support epidemic surveillance and counter-measure development. INFECTION GENETICS AND EVOLUTION 2018; 62:279-295. [PMID: 29704626 DOI: 10.1016/j.meegid.2018.04.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022]
Abstract
Dengue virus (DENV) causes a profound burden of morbidity and mortality, and its global burden is rising due to the co-circulation of four divergent DENV serotypes in the ecological context of globalization, travel, climate change, urbanization, and expansion of the geographic range of the Ae.aegypti and Ae.albopictus vectors. Understanding DENV evolution offers valuable opportunities to enhance surveillance and response to DENV epidemics via advances in RNA virus sequencing, bioinformatics, phylogenetic and other computational biology methods. Here we provide a scoping overview of the evolution and molecular epidemiology of DENV and the range of ways that evolutionary analyses can be applied as a public health tool against this arboviral pathogen.
Collapse
Affiliation(s)
- S Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Marie Bashir Institute, University of Sydney, NSW, Australia; Institute for Global Health Sciences, University of California at San Francisco, CA, USA.
| | - M C Melendrez
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - I Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - S Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
| | - H Salje
- Institut Pasteur, Paris, France; Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - D A T Cummings
- Johns Hopkins School of Public Health, Baltimore, MD, USA; University of Florida, FL, USA
| | - R G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
13
|
Lourenço J, Tennant W, Faria NR, Walker A, Gupta S, Recker M. Challenges in dengue research: A computational perspective. Evol Appl 2018; 11:516-533. [PMID: 29636803 PMCID: PMC5891037 DOI: 10.1111/eva.12554] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/08/2017] [Indexed: 01/12/2023] Open
Abstract
The dengue virus is now the most widespread arbovirus affecting human populations, causing significant economic and social impact in South America and South-East Asia. Increasing urbanization and globalization, coupled with insufficient resources for control, misguided policies or lack of political will, and expansion of its mosquito vectors are some of the reasons why interventions have so far failed to curb this major public health problem. Computational approaches have elucidated on dengue's population dynamics with the aim to provide not only a better understanding of the evolution and epidemiology of the virus but also robust intervention strategies. It is clear, however, that these have been insufficient to address key aspects of dengue's biology, many of which will play a crucial role for the success of future control programmes, including vaccination. Within a multiscale perspective on this biological system, with the aim of linking evolutionary, ecological and epidemiological thinking, as well as to expand on classic modelling assumptions, we here propose, discuss and exemplify a few major computational avenues-real-time computational analysis of genetic data, phylodynamic modelling frameworks, within-host model frameworks and GPU-accelerated computing. We argue that these emerging approaches should offer valuable research opportunities over the coming years, as previously applied and demonstrated in the context of other pathogens.
Collapse
Affiliation(s)
| | - Warren Tennant
- Centre for Mathematics and the EnvironmentUniversity of ExeterPenrynUK
| | | | | | | | - Mario Recker
- Centre for Mathematics and the EnvironmentUniversity of ExeterPenrynUK
| |
Collapse
|
14
|
Pitaksajjakul P, Benjathummarak S, Son HN, Thongrungkiat S, Ramasoota P. Genomic studies of envelope gene sequences from mosquito and human samples from Bangkok, Thailand. SPRINGERPLUS 2016; 5:1960. [PMID: 27917342 PMCID: PMC5106416 DOI: 10.1186/s40064-016-3634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022]
Abstract
Dengue virus (DENV) is an RNA virus showing a high degree of genetic variation as a consequence of its proofreading inability. This variation plays an important role in virus evolution and pathogenesis. Although levels of within-host genetic variation are similar following equilibrium, variation among different hosts is frequently different. To identify dengue quasispecies present among two hosts, we collected patient samples from six acute DENV cases and two pools of Aedes aegypti mosquitoes and analyzed the genetic variation of regions of the viral envelope gene. Among human and mosquito samples, we found three major clusters originating from two subpopulations. Although several shared lineages were observed in the two hosts, only one lineage showing evidence of neutral selection was observed among two hosts. Taken together, our data provide evidence for the existence of a DENV quasispecies, with less genetic variation observed in mosquitoes than humans and with circulating lineages found in both host types.
Collapse
Affiliation(s)
- Pannamthip Pitaksajjakul
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchathewi, Bangkok, 10400 Thailand ; Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Surachet Benjathummarak
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchathewi, Bangkok, 10400 Thailand
| | - Hyun Ngoc Son
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supatra Thongrungkiat
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchathewi, Bangkok, 10400 Thailand ; Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Evolutionary dynamics of dengue virus populations within the mosquito vector. Curr Opin Virol 2016; 21:47-53. [DOI: 10.1016/j.coviro.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/05/2023]
|
16
|
Tabachnick WJ. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annu Rev Virol 2016; 3:125-145. [DOI: 10.1146/annurev-virology-110615-035630] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Walter J. Tabachnick
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, Florida 32962;
| |
Collapse
|
17
|
Sung C, Wei Y, Watanabe S, Lee HS, Khoo YM, Fan L, Rathore APS, Chan KWK, Choy MM, Kamaraj US, Sessions OM, Aw P, de Sessions PF, Lee B, Connolly JE, Hibberd ML, Vijaykrishna D, Wijaya L, Ooi EE, Low JGH, Vasudevan SG. Extended Evaluation of Virological, Immunological and Pharmacokinetic Endpoints of CELADEN: A Randomized, Placebo-Controlled Trial of Celgosivir in Dengue Fever Patients. PLoS Negl Trop Dis 2016; 10:e0004851. [PMID: 27509020 PMCID: PMC4980036 DOI: 10.1371/journal.pntd.0004851] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/24/2016] [Indexed: 12/20/2022] Open
Abstract
CELADEN was a randomized placebo-controlled trial of 50 patients with confirmed dengue fever to evaluate the efficacy and safety of celgosivir (A study registered at ClinicalTrials.gov, number NCT01619969). Celgosivir was given as a 400 mg loading dose and 200 mg bid (twice a day) over 5 days. Replication competent virus was measured by plaque assay and compared to reverse transcription quantitative PCR (qPCR) of viral RNA. Pharmacokinetics (PK) correlations with viremia, immunological profiling, next generation sequence (NGS) analysis and hematological data were evaluated as exploratory endpoints here to identify possible signals of pharmacological activity. Viremia by plaque assay strongly correlated with qPCR during the first four days. Immunological profiling demonstrated a qualitative shift in T helper cell profile during the course of infection. NGS analysis did not reveal any prominent signature that could be associated with drug treatment; however the phylogenetic spread of patients’ isolates underlines the importance of strain variability that may potentially confound interpretation of dengue drug trials conducted during different outbreaks and in different countries. Celgosivir rapidly converted to castanospermine (Cast) with mean peak and trough concentrations of 5727 ng/mL (30.2 μM) and 430 ng/mL (2.3 μM), respectively and cleared with a half-life of 2.5 (± 0.6) hr. Mean viral log reduction between day 2 and 4 (VLR2-4) was significantly greater in secondary dengue than primary dengue (p = 0.002). VLR2-4 did not correlate with drug AUC but showed a trend of greater response with increasing Cmin. PK modeling identified dosing regimens predicted to achieve 2.4 to 4.5 times higher Cmin. than in the CELADEN trial for only 13% to 33% increase in overall dose. A small, non-statistical trend towards better outcome on platelet nadir and difference between maximum and minimum hematocrit was observed in celgosivir-treated patients with secondary dengue infection. Optimization of the dosing regimen and patient stratification may enhance the ability of a clinical trial to demonstrate celgosivir activity in treating dengue fever based on hematological endpoints. A new clinical trial with a revised dosing regimen is slated to start in 2016 (NCT02569827). Furthermore celgosivir’s potential value for treatment of other flaviruses such as Zika virus should be investigated urgently. Trial Registration: ClinicalTrials.gov NCT01619969 Dengue virus is currently threatening 40% of the world’s population. An approximately 60% efficacious vaccine has been registered for use in Mexico, Brazil, the Philippines, Paraguay and El Salvador, but there are no approved antiviral treatments available. We have shown that celgosivir, an endoplasmic reticulum alpha glucosidase inhibitor, has submicromolar activity against all 4 serotypes of dengue virus (DENV) and also efficacious in mouse model of infection. The strong preclinical pharmacology motivated the conduct of an investigator-initiated, Phase 1b randomized, double-blind, placebo-controlled trial of celgosivir in 50 adult dengue patients. Although the trial did not meet the primary endpoints of lowering viremia or fever, the safety profile of the drug prompted extended hematological, pharmacokinetic, immunological and viral sequence profiling. Here we report several non-significant trends of pharmacological effect of celgosivir on platelet count, hematocrit, and NS1 clearance in secondary dengue patients. In addition, pharmacokinetic modeling identified an alternate dosing regimen that is predicted to achieve a 4.5-fold increase in minimum drug concentrations during treatment (Cmin) with only a modest increase in overall dose. A new Phase 2a clinical trial with an optimized dosing regimen of celgosivir (ClinicalTrials.gov number NCT02569827) is scheduled to start in the latter part of 2016.
Collapse
Affiliation(s)
- Cynthia Sung
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Vigilance and Compliance Branch, Health Sciences Authority, Singapore
| | - Yuan Wei
- Singapore Clinical Research Institute, Singapore
| | - Satoru Watanabe
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - How Sung Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yok Moi Khoo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Kitti Wing-Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Milly M. Choy
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore
| | - Uma S. Kamaraj
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Pauline Aw
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore
| | | | - Bernett Lee
- Institute of Molecular & Cellular Biology, A*STAR, Biopolis, Singapore
| | - John E. Connolly
- Institute of Molecular & Cellular Biology, A*STAR, Biopolis, Singapore
| | | | | | - Limin Wijaya
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Subhash G. Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- * E-mail:
| |
Collapse
|
18
|
Lequime S, Fontaine A, Ar Gouilh M, Moltini-Conclois I, Lambrechts L. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes. PLoS Genet 2016; 12:e1006111. [PMID: 27304978 PMCID: PMC4909269 DOI: 10.1371/journal.pgen.1006111] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/17/2016] [Indexed: 01/15/2023] Open
Abstract
Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. During infection of their arthropod vectors, arthropod-borne viruses (arboviruses) such as dengue viruses traverse several anatomical barriers that are believed to cause dramatic reductions in population size. Such population bottlenecks challenge the maintenance of viral genetic diversity, which is considered critical for fitness and adaptability of arboviruses. Anatomical barriers in the vector were previously associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. However, the relative role of random processes and natural selection, and the influence of vector genetic heterogeneity have not been elucidated. In this study, we used high-throughput sequencing to monitor dengue virus genetic diversity during infection of several genetic backgrounds of their mosquito vector. Our results show that initial infection of the vector is randomly founded by only a few tens of individual virus genomes. The overall level of viral genetic diversity generated during infection was predominantly under purifying selection but differed significantly between mosquito genetic backgrounds. Thus, in addition to random evolutionary forces and the purging of deleterious mutations that shape dengue virus genetic diversity during vector infection, our results also point to a novel role for vector genetic factors in the genetic breadth of virus populations.
Collapse
Affiliation(s)
- Sebastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
- * E-mail: (SL); (LL)
| | - Albin Fontaine
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- Equipe Résidente de Recherche d’Infectiologie Tropicale, Division Expertise, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Meriadeg Ar Gouilh
- Unité Environnement et Risques Infectieux, Cellule d’Intervention Biologique d’Urgence, Department of Infection and Epidemiology, Institut Pasteur, Paris, France
- EA4655, Unité Risques Microbiens U2RM, Université de Caen Normandie, Caen, France
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
- * E-mail: (SL); (LL)
| |
Collapse
|
19
|
Increasing Clinical Severity during a Dengue Virus Type 3 Cuban Epidemic: Deep Sequencing of Evolving Viral Populations. J Virol 2016; 90:4320-4333. [PMID: 26889031 PMCID: PMC4836355 DOI: 10.1128/jvi.02647-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/05/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED During the dengue virus type 3 (DENV-3) epidemic that occurred in Havana in 2001 to 2002, severe disease was associated with the infection sequence DENV-1 followed by DENV-3 (DENV-1/DENV-3), while the sequence DENV-2/DENV-3 was associated with mild/asymptomatic infections. To determine the role of the virus in the increasing severity demonstrated during the epidemic, serum samples collected at different time points were studied. A total of 22 full-length sequences were obtained using a deep-sequencing approach. Bayesian phylogenetic analysis of consensus sequences revealed that two DENV-3 lineages were circulating in Havana at that time, both grouped within genotype III. The predominant lineage is closely related to Peruvian and Ecuadorian strains, while the minor lineage is related to Venezuelan strains. According to consensus sequences, relatively few nonsynonymous mutations were observed; only one was fixed during the epidemic at position 4380 in the NS2B gene. Intrahost genetic analysis indicated that a significant minor population was selected and became predominant toward the end of the epidemic. In conclusion, greater variability was detected during the epidemic's progression in terms of significant minority variants, particularly in the nonstructural genes. An increasing trend of genetic diversity toward the end of the epidemic was observed only for synonymous variant allele rates, with higher variability in secondary cases. Remarkably, significant intrahost genetic variation was demonstrated within the same patient during the course of secondary infection with DENV-1/DENV-3, including changes in the structural proteins premembrane (PrM) and envelope (E). Therefore, the dynamic of evolving viral populations in the context of heterotypic antibodies could be related to the increasing clinical severity observed during the epidemic. IMPORTANCE Based on the evidence that DENV fitness is context dependent, our research has focused on the study of viral factors associated with intraepidemic increasing severity in a unique epidemiological setting. Here, we investigated the intrahost genetic diversity in acute human samples collected at different time points during the DENV-3 epidemic that occurred in Cuba in 2001 to 2002 using a deep-sequencing approach. We concluded that greater variability in significant minor populations occurred as the epidemic progressed, particularly in the nonstructural genes, with higher variability observed in secondary infection cases. Remarkably, for the first time significant intrahost genetic variation was demonstrated within the same patient during the course of secondary infection with DENV-1/DENV-3, including changes in structural proteins. These findings indicate that high-resolution approaches are needed to unravel molecular mechanisms involved in dengue pathogenesis.
Collapse
|
20
|
Hapuarachchi HC, Koo C, Kek R, Xu H, Lai YL, Liu L, Kok SY, Shi Y, Chuen RLT, Lee KS, Maurer-Stroh S, Ng LC. Intra-epidemic evolutionary dynamics of a Dengue virus type 1 population reveal mutant spectra that correlate with disease transmission. Sci Rep 2016; 6:22592. [PMID: 26940650 PMCID: PMC4778070 DOI: 10.1038/srep22592] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022] Open
Abstract
Dengue virus (DENV) is currently the most prevalent mosquito-borne viral pathogen. DENVs naturally exist as highly heterogeneous populations. Even though the descriptions on DENV diversity are plentiful, only a few studies have narrated the dynamics of intra-epidemic virus diversity at a fine scale. Such accounts are important to decipher the reciprocal relationship between viral evolutionary dynamics and disease transmission that shape dengue epidemiology. In the current study, we present a micro-scale genetic analysis of a monophyletic lineage of DENV-1 genotype III (epidemic lineage) detected from November 2012 to May 2014. The lineage was involved in an unprecedented dengue epidemic in Singapore during 2013–2014. Our findings showed that the epidemic lineage was an ensemble of mutants (variants) originated from an initial mixed viral population. The composition of mutant spectrum was dynamic and positively correlated with case load. The close interaction between viral evolution and transmission intensity indicated that tracking genetic diversity through time is potentially a useful tool to infer DENV transmission dynamics and thereby, to assess the epidemic risk in a disease control perspective. Moreover, such information is salient to understand the viral basis of clinical outcome and immune response variations that is imperative to effective vaccine design.
Collapse
Affiliation(s)
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Relus Kek
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Helen Xu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Yee Ling Lai
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Lilac Liu
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Suet Yheng Kok
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Yuan Shi
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Raphael Lee Tze Chuen
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore 138671
| | - Kim-Sung Lee
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Block 83, #04-00, 535 Clementi Road, Singapore 599489
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix Building, Singapore 138671.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551.,National Public Health Laboratory (NPHL), Ministry of Health (MOH), 3 Biopolis Drive, #05-14 to 16, Synapse, Singapore 138623
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
21
|
Sim S, Hibberd ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol 2016; 17:38. [PMID: 26931545 PMCID: PMC4774013 DOI: 10.1186/s13059-016-0907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host–pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
22
|
Choudhury MA, Lott WB, Banu S, Cheng AY, Teo YY, Ong RTH, Aaskov J. Nature and Extent of Genetic Diversity of Dengue Viruses Determined by 454 Pyrosequencing. PLoS One 2015; 10:e0142473. [PMID: 26566128 PMCID: PMC4643897 DOI: 10.1371/journal.pone.0142473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/22/2015] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) populations are characteristically highly diverse. Regular lineage extinction and replacement is an important dynamic DENV feature, and most DENV lineage turnover events are associated with increased incidence of disease. The role of genetic diversity in DENV lineage extinctions is not understood. We investigated the nature and extent of genetic diversity in the envelope (E) gene of DENV serotype 1 representing different lineages histories. A region of the DENV genome spanning the E gene was amplified and sequenced by Roche/454 pyrosequencing. The pyrosequencing results identified distinct sub-populations (haplotypes) for each DENV-1 E gene. A phylogenetic tree was constructed with the consensus DENV-1 E gene nucleotide sequences, and the sequences of each constructed haplotype showed that the haplotypes segregated with the Sanger consensus sequence of the population from which they were drawn. Haplotypes determined through pyrosequencing identified a recombinant DENV genome that could not be identified through Sanger sequencing. Nucleotide level sequence diversities of DENV-1 populations determined from SNP analysis were very low, estimated from 0.009–0.01. There were also no stop codon, frameshift or non-frameshift mutations observed in the E genes of any lineage. No significant correlations between the accumulation of deleterious mutations or increasing genetic diversity and lineage extinction were observed (p>0.5). Although our hypothesis that accumulation of deleterious mutations over time led to the extinction and replacement of DENV lineages was ultimately not supported by the data, our data does highlight the significant technical issues that must be resolved in the way in which population diversity is measured for DENV and other viruses. The results provide an insight into the within-population genetic structure and diversity of DENV-1 populations.
Collapse
Affiliation(s)
- Md Abu Choudhury
- Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- * E-mail:
| | - William B Lott
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- School of Chemistry, Physics, and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | - Shahera Banu
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Anthony Youzhi Cheng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - John Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
23
|
Sim S, Aw PPK, Wilm A, Teoh G, Hue KDT, Nguyen NM, Nagarajan N, Simmons CP, Hibberd ML. Tracking Dengue Virus Intra-host Genetic Diversity during Human-to-Mosquito Transmission. PLoS Negl Trop Dis 2015; 9:e0004052. [PMID: 26325059 PMCID: PMC4556672 DOI: 10.1371/journal.pntd.0004052] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/12/2015] [Indexed: 12/26/2022] Open
Abstract
Dengue virus (DENV) infection of an individual human or mosquito host produces a dynamic population of closely-related sequences. This intra-host genetic diversity is thought to offer an advantage for arboviruses to adapt as they cycle between two very different host species, but it remains poorly characterized. To track changes in viral intra-host genetic diversity during horizontal transmission, we infected Aedes aegypti mosquitoes by allowing them to feed on DENV2-infected patients. We then performed whole-genome deep-sequencing of human- and matched mosquito-derived DENV samples on the Illumina platform and used a sensitive variant-caller to detect single nucleotide variants (SNVs) within each sample. >90% of SNVs were lost upon transition from human to mosquito, as well as from mosquito abdomen to salivary glands. Levels of viral diversity were maintained, however, by the regeneration of new SNVs at each stage of transmission. We further show that SNVs maintained across transmission stages were transmitted as a unit of two at maximum, suggesting the presence of numerous variant genomes carrying only one or two SNVs each. We also present evidence for differences in selection pressures between human and mosquito hosts, particularly on the structural and NS1 genes. This analysis provides insights into how population drops during transmission shape RNA virus genetic diversity, has direct implications for virus evolution, and illustrates the value of high-coverage, whole-genome next-generation sequencing for understanding viral intra-host genetic diversity.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Pauline P. K. Aw
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Andreas Wilm
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Garrett Teoh
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Kien Duong Thi Hue
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nguyet Minh Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Niranjan Nagarajan
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Cameron P. Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Department of Microbiology and Immunology, University of Melbourne, Carlton, Victoria, Australia
| | - Martin L. Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
de Bruycker-Nogueira F, Nogueira RMR, Faria NRDC, Simões JBS, Nunes PCG, de Filippis AMB, dos Santos FB. Insights of the genetic diversity of DENV-1 detected in Brazil in 25 years: Analysis of the envelope domain III allows lineages characterization. INFECTION GENETICS AND EVOLUTION 2015; 34:126-36. [PMID: 26160541 DOI: 10.1016/j.meegid.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 01/03/2023]
Abstract
Dengue virus type 1 (DENV-1) was first isolated in Brazil in 1986 in the state of Rio de Janeiro (RJ) and during 25years, this serotype emerged and re-emerged causing explosive epidemics in the country. Here, we aimed to present the phylogeny and molecular characterization based on the envelope gene (E) of DENV-1 (n=48) isolated during epidemics occurred from 1986 to 2011. Six full coding region genomes of DENV-1 were fully sequenced and possible genomic recombination events were analyzed. The results showed that the Brazilian DENV-1 isolates analyzed belong to genotype V (Americas/Africa), but grouping into distinct clades. Three groups were identified, one dating from 1986 to 2002 (lineage 1a), a second group isolated from 2009 to 2011 and a representative strain isolated in 2002 (lineage 2), and a group of strains isolated from 2010 to 2011 (lineage 1b). The lineages 1a and 1b were more closely related to the American strains, while lineage 2 to the Asian strains. Amino acids (aa) substitutions were observed in the domains I and III of the E protein and were associated to the lineages segregation. A substitution on E297 differentiated the lineage 1a from the lineages 1b and 2. Substitutions on E338, E394 (domain III), E428 and E436 (stem region) differentiated lineages 1a, 1b and 2. With the exception of the C gene, all the others genes analyzed allowed the DENV-1 classification into the distinct genotypes. Interestingly, the E gene's domain III and stem regions alone were able to characterize the distinct lineages, as observed by the analysis of the entire E gene and the complete coding region. No recombinant events were detected, but a strain belonging to lineage 1a was closely related to a known recombinant strain (AF513110/BR/2001).
Collapse
Affiliation(s)
| | - Rita Maria Ribeiro Nogueira
- Laboratory of Flavivirus, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | - Ana Maria Bispo de Filippis
- Laboratory of Flavivirus, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil
| | - Flávia Barreto dos Santos
- Laboratory of Flavivirus, Oswaldo Cruz Institute-FIOCRUZ, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
25
|
Sarkar A, Datta S, Pathak BK, Mukhopadhyay SK, Chatterjee S. Japanese encephalitis associated acute encephalitis syndrome cases in West Bengal, India: A sero-molecular evaluation in relation to clinico-pathological spectrum. J Med Virol 2015; 87:1258-67. [PMID: 25939919 DOI: 10.1002/jmv.24165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 11/07/2022]
Abstract
Japanese encephalitis (JE) is a major public health problem in Asia and worldwide and it is responsible mainly for viral acute encephalitis syndrome (AES). The sole etiologic agent of JE is Japanese encephalitis virus (JEV). Although JE/AES cases have been regarded traditionally as a disease of children, a growing number of patients with JE/AES cases are also seen in the adult age group every year in the state of West Bengal, India in spite of vaccination. Therefore, a systematic study was performed to differentiate and characterize the clinico-pathological parameters and viral diversity among the patients of different age groups. Viral diversity was also evaluated from the JE/AES cases, depending on their disease severity. A total of 441 JE/AES cases were included in this study. By MAC-ELISA, 111 samples were found JEV IgM positive and among the IgM negative cases, 26 samples were found RT-PCR positive against JEV infection. Neck rigidity, abnormal behavior, convulsion, protein in CSF, WBC in CSF, and aspartate transaminase in blood differed significantly among the patients of pediatric-adolescent and adult group in both IgM positive and RT-PCR positive cases. Viral diversity was increased significantly in the pediatric-adolescent group compared to adult patients. Interestingly, with the rise in disease severity the viral diversity was found to be increased among the patients, irrespective of their age distribution. Based on clinico-pathological parameters and analysis of viral diversity, it can be concluded that viral diversity which occurs naturally is likely to affect disease severity, especially in the patients of pediatric-adolescent group.
Collapse
Affiliation(s)
- Arindam Sarkar
- ICMR Virus, ID & BG Hospital, Kolkata, West Bengal, India
| | | | - Bani K Pathak
- Department of Biotechnology, St. Xavier's College, Kolkata, West Bengal, India
| | - Subhra K Mukhopadhyay
- Department of Microbiology, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
| | | |
Collapse
|
26
|
Hapuarachchi HC, Chua RCR, Shi Y, Thein TL, Lee LK, Lee KS, Lye DC, Ng LC, Leo YS. Clinical outcome and genetic differences within a monophyletic Dengue virus type 2 population. PLoS One 2015; 10:e0121696. [PMID: 25811657 PMCID: PMC4374945 DOI: 10.1371/journal.pone.0121696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 12/28/2022] Open
Abstract
The exact mechanisms of interplay between host and viral factors leading to severe dengue are yet to be fully understood. Even though previous studies have implicated specific genetic differences of Dengue virus (DENV) in clinical severity and virus attenuation, similar studies with large-scale, whole genome screening of monophyletic virus populations are limited. Therefore, in the present study, we compared 89 whole genomes of DENV-2 cosmopolitan clade III isolates obtained from patients diagnosed with dengue fever (DF, n = 58), dengue hemorrhagic fever (DHF, n = 30) and dengue shock syndrome (DSS, n = 1) in Singapore between July 2010 and January 2013, in order to determine the correlation of observed viral genetic differences with clinical outcomes. Our findings showed no significant difference between the number of primary and secondary infections that progressed to DHF and DSS (p>0.05) in our study cohort. Despite being highly homogenous, study isolates possessed 39 amino acid substitutions of which 10 substitutions were fixed in three main groups of virus isolates. None of those substitutions were specifically associated with DHF and DSS. Notably, two evolutionarily unique virus groups possessing C-P43T+NS1-S103T+NS2A-V83I+NS3-R337K+ NS3-I600T+ NS5-P136S and NS2A-T119N mutations were exclusively found in patients with DF, the benign form of DENV infections. Those mutants were significantly associated with mild disease outcome. These observations indicated that disease progression into DHF and DSS within our patient population was more likely to be due to host than virus factors. We hypothesize that selection for potentially less virulent groups of DENV-2 in our study cohort may be an evolutionary adaptation of viral strains to extend their survival in the human-mosquito transmission cycle.
Collapse
Affiliation(s)
| | - Rachel Choon Rong Chua
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
| | - Yuan Shi
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
| | - Tun Lin Thein
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Linda Kay Lee
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Kim Sung Lee
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489
| | - David Chien Lye
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667
- * E-mail:
| | - Yee Sin Leo
- Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433
| |
Collapse
|
27
|
Barzon L, Pacenti M, Ulbert S, Palù G. Latest developments and challenges in the diagnosis of human West Nile virus infection. Expert Rev Anti Infect Ther 2015; 13:327-42. [PMID: 25641365 DOI: 10.1586/14787210.2015.1007044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus responsible for an increasing number of human outbreaks of neuroinvasive disease in Europe and in North America. Notwithstanding the improvements in the knowledge of virus epidemiology and clinical course of infection and the development of new laboratory tests, the diagnosis of WNV infection remains challenging and many cases still remain unrecognized. WNV genome diversity, transient viremia with low viral load and cross-reactivity with other flaviviruses of the antibodies induced by WNV infection are important hurdles that require the diagnosis to be performed by experienced laboratories. Herein, we present and discuss the novel findings on the molecular epidemiology and clinical features of WNV infection in humans with special focus on Europe, the performance of diagnostic tests and the novel methods that have been developed for the diagnosis of WNV infection. A view on how the field might evolve in the future is also presented.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | | | | | | |
Collapse
|
28
|
Beasley DWC, McAuley AJ, Bente DA. Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy. Antiviral Res 2014; 115:48-70. [PMID: 25545072 DOI: 10.1016/j.antiviral.2014.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Abstract
Yellow fever virus (YFV) is the prototypical hemorrhagic fever virus, yet our understanding of its phenotypic diversity and any molecular basis for observed differences in disease severity and epidemiology is lacking, when compared to other arthropod-borne and haemorrhagic fever viruses. This is, in part, due to the availability of safe and effective vaccines resulting in basic YFV research taking a back seat to those viruses for which no effective vaccine occurs. However, regular outbreaks occur in endemic areas, and the spread of the virus to new, previously unaffected, areas is possible. Analysis of isolates from endemic areas reveals a strong geographic association for major genotypes, and recent epidemics have demonstrated the emergence of novel sequence variants. This review aims to outline the current understanding of YFV genetic and phenotypic diversity and its sources, as well as the available animal models for characterizing these differences in vivo. The consequences of genetic diversity for detection and diagnosis of yellow fever and development of new vaccines and therapeutics are discussed.
Collapse
Affiliation(s)
- David W C Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States.
| | - Alexander J McAuley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| | - Dennis A Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, United States
| |
Collapse
|
29
|
Nitsche C, Holloway S, Schirmeister T, Klein CD. Biochemistry and medicinal chemistry of the dengue virus protease. Chem Rev 2014; 114:11348-81. [PMID: 25268322 DOI: 10.1021/cr500233q] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christoph Nitsche
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Steven Holloway
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz , Staudingerweg 5, D-55128 Mainz, Germany
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz , Staudingerweg 5, D-55128 Mainz, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
30
|
Choudhury MA, Lott WB, Aaskov J. Distribution of fitness in populations of dengue viruses. PLoS One 2014; 9:e107264. [PMID: 25222471 PMCID: PMC4164612 DOI: 10.1371/journal.pone.0107264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 08/11/2014] [Indexed: 11/22/2022] Open
Abstract
Genetically diverse RNA viruses like dengue viruses (DENVs) segregate into multiple, genetically distinct, lineages that temporally arise and disappear on a regular basis. Lineage turnover may occur through multiple processes such as, stochastic or due to variations in fitness. To determine the variation of fitness, we measured the distribution of fitness within DENV populations and correlated it with lineage extinction and replacement. The fitness of most members within a population proved lower than the aggregate fitness of populations from which they were drawn, but lineage replacement events were not associated with changes in the distribution of fitness. These data provide insights into variations in fitness of DENV populations, extending our understanding of the complexity between members of individual populations.
Collapse
Affiliation(s)
- Md Abu Choudhury
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - William B Lott
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; School of Chemistry, Physics, and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - John Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Increased replicative fitness of a dengue virus 2 clade in native mosquitoes: potential contribution to a clade replacement event in Nicaragua. J Virol 2014; 88:13125-34. [PMID: 25187539 DOI: 10.1128/jvi.01822-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED The four dengue virus (DENV) serotypes (DENV serotype 1 [DENV-1] to DENV-4) are transmitted by Aedes aegypti and A. albopictus mosquitoes, causing up to 390 million DENV infections worldwide each year. We previously reported a clade replacement of the DENV-2 Asian-American genotype NI-1 clade by the NI-2B clade in Managua, Nicaragua. Here, we describe our studies of the replicative ability of NI-1 and NI-2B viruses in an A. aegypti cell line (Aag2) and A. aegypti mosquitoes reared from eggs collected in Managua. In coinfection experiments, several different pairs of NI-1 and NI-2B clinical isolates were used to infect Aag2 cells or blood-fed A. aegypti mosquitoes. Results consistently showed a significant replicative advantage of NI-2B over NI-1 viruses early after infection in vitro, and in mosquitoes, NI-2B viruses attained a higher replicative index than NI-1 isolates 3 to 7 days postinfection (dpi). At 7 dpi, NI-2B viruses displayed a significantly higher replicative index in legs and salivary glands; however, this advantage was lost by 14 and 21 dpi. We also found that the percentage of mosquitoes in which NI-2B viruses were dominant was significantly higher than that in which NI-1 viruses were dominant on day 7 but not at later time points. Taken together, these data demonstrate that clade NI-2B holds a replicative advantage over clade NI-1 early in infection that wanes at later time points. This early fitness advantage of NI-2B viruses over NI-1 viruses in the native vector, A. aegypti, suggests a shorter extrinsic incubation period for NI-2B viruses, which could have contributed to the clade replacement event in Managua. IMPORTANCE Dengue virus (DENV), one of the most medically important arthropod-borne viruses, is transmitted to humans by Aedes aegypti and A. albopictus mosquitoes in tropical and subtropical regions worldwide. Dengue epidemics continue to increase in frequency, geographic range, and severity and are a major public health concern. This is due to globalization, unplanned urbanization, and climate change, as well as host genetics and immune responses and viral genetic changes. DENV consists of four serotypes, in turn composed of genotypes and genetically distinct clades. What drives the frequent replacement of a previously circulating DENV clade by another is unclear. Here, we investigate the replicative fitness of two clades of DENV serotype 2 in Aedes aegypti cells and mosquitoes collected from the region where the viruses circulated and conclude that increased replicative fitness could have contributed to a DENV clade replacement event in Nicaragua. These findings provide insight into vector-driven evolution of DENV epidemics.
Collapse
|
32
|
Stern A, Bianco S, Yeh MT, Wright C, Butcher K, Tang C, Nielsen R, Andino R. Costs and benefits of mutational robustness in RNA viruses. Cell Rep 2014; 8:1026-36. [PMID: 25127138 DOI: 10.1016/j.celrep.2014.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 05/18/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022] Open
Abstract
The accumulation of mutations in RNA viruses is thought to facilitate rapid adaptation to changes in the environment. However, most mutations have deleterious effects on fitness, especially for viruses. Thus, tolerance to mutations should determine the nature and extent of genetic diversity that can be maintained in the population. Here, we combine population genetics theory, computer simulation, and experimental evolution to examine the advantages and disadvantages of tolerance to mutations, also known as mutational robustness. We find that mutational robustness increases neutral diversity and, as expected, can facilitate adaptation to a new environment. Surprisingly, under certain conditions, robustness may also be an impediment for viral adaptation, if a highly diverse population contains a large proportion of previously neutral mutations that are deleterious in the new environment. These findings may inform therapeutic strategies that cause extinction of otherwise robust viral populations.
Collapse
Affiliation(s)
- Adi Stern
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Simone Bianco
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; IBM Research-Almaden, Industrial and Applied Genomics, 650 Harry Road, San Jose, CA 95120-6099, USA
| | - Ming Te Yeh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caroline Wright
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kristin Butcher
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chao Tang
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
33
|
Grange L, Simon-Loriere E, Sakuntabhai A, Gresh L, Paul R, Harris E. Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections. Front Immunol 2014; 5:280. [PMID: 24966859 PMCID: PMC4052743 DOI: 10.3389/fimmu.2014.00280] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/28/2014] [Indexed: 02/04/2023] Open
Abstract
Dengue is a major international public health concern, and the number of outbreaks has escalated greatly. Human migration and international trade and travel are constantly introducing new vectors and pathogens into novel geographic areas. Of particular interest is the extent to which dengue virus (DENV) infections are subclinical or inapparent. Not only may such infections contribute to the global spread of DENV by human migration, but also seroprevalence rates in naïve populations may be initially high despite minimal numbers of detectable clinical cases. As the probability of severe disease is increased in secondary infections, populations may thus be primed, with serious public health consequences following introduction of a new serotype. In addition, pre-existing immunity from inapparent infections may affect vaccine uptake, and the ratio of clinically apparent to inapparent infection could affect the interpretation of vaccine trials. We performed a literature search for inapparent DENV infections and provide an analytical review of their frequency and associated risk factors. Inapparent rates were highly variable, but “inapparent” was the major outcome of infection in all prospective studies. Differences in the epidemiological context and type of surveillance account for much of the variability in inapparent infection rates. However, one particular epidemiological pattern was shared by four longitudinal cohort studies: the rate of inapparent DENV infections was positively correlated with the incidence of disease the previous year, strongly supporting an important role for short-term heterotypic immunity in determining the outcome of infection. Primary and secondary infections were equally likely to be inapparent. Knowledge of the extent to which viruses from inapparent infections are transmissible to mosquitoes is urgently needed. Inapparent infections need to be considered for their impact on disease severity, transmission dynamics, and vaccine efficacy and uptake.
Collapse
Affiliation(s)
- Laura Grange
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur , Paris , France ; URA3012, Centre National de la Recherche Scientifique , Paris , France
| | - Etienne Simon-Loriere
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur , Paris , France ; URA3012, Centre National de la Recherche Scientifique , Paris , France
| | - Anavaj Sakuntabhai
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur , Paris , France ; URA3012, Centre National de la Recherche Scientifique , Paris , France
| | - Lionel Gresh
- Sustainable Sciences Institute , Managua , Nicaragua
| | - Richard Paul
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur , Paris , France ; URA3012, Centre National de la Recherche Scientifique , Paris , France
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California , Berkeley, CA , USA
| |
Collapse
|
34
|
Descloux E, La Fuentez C, Roca Y, De Lamballerie X. Clinical significance of intra-host variability of Dengue-1 virus in venous and capillary blood. Clin Microbiol Infect 2014; 20:O167-75. [PMID: 24397875 DOI: 10.1111/1469-0691.12368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/05/2013] [Accepted: 08/10/2013] [Indexed: 11/27/2022]
Abstract
Dengue fever represents a major public health problem. Both viral and host immune factors are involved in severe infections. Humans and mosquito-vectors are infected with diverse viral populations that may play a role in viral adaptation and disease pathogenesis. Our objective was to analyse the intra-host genetic variability of dengue virus type 1 (DENV-1) in the venous and capillary blood and its relationships with the clinical presentation of dengue fever. Early serum samples were collected in 2009 from ten DENV-1-infected patients hospitalized in Santa Cruz de la Sierra, Bolivia. Partial viral envelope sequences were analysed at the inter-host and intra-host level. For each patient, an average of 56 clone sequences was analysed both in the venous sector and the capillary sector (from right and left hands). The ten consensus sequences were highly similar. The intra-host DENV-1 genetic variability was significantly lower in the venous sector than in the capillary sector, and in patients with haemorrhagic symptoms than in those without haemorrhagic symptoms, particularly in capillary samples. No relation was found with sex, age, dengue IgG-serological status, day of serum sampling, or viral load. Significant relationships were found between the clinical presentation of dengue fever and the variability of viral populations within hosts, particularly in capillary samples. The observed variability of envelope sequences at the early phase of dengue infection was not critically influenced by the previous dengue serological status of patients. An important part of viral microevolution may occur in the capillary sector and influence the mechanisms of severe forms.
Collapse
Affiliation(s)
- E Descloux
- IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 "Emergence des Pathologies Virales" Aix-Marseille Université, Marseille, France; Service de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Territorial de Nouvelle Calédonie, Noumea, New Caledonia
| | | | | | | |
Collapse
|
35
|
Romano CM, Lauck M, Salvador FS, Lima CR, Villas-Boas LS, Araújo ESA, Levi JE, Pannuti CS, O'Connor D, Kallas EG. Inter- and intra-host viral diversity in a large seasonal DENV2 outbreak. PLoS One 2013; 8:e70318. [PMID: 23936406 PMCID: PMC3732279 DOI: 10.1371/journal.pone.0070318] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/18/2013] [Indexed: 01/28/2023] Open
Abstract
Background High genetic diversity at both inter- and intra-host level are hallmarks of RNA viruses due to the error-prone nature of their genome replication. Several groups have evaluated the extent of viral variability using different RNA virus deep sequencing methods. Although much of this effort has been dedicated to pathogens that cause chronic infections in humans, few studies investigated arthropod-borne, acute viral infections. Methods and Principal Findings We deep sequenced the complete genome of ten DENV2 isolates from representative classical and severe cases sampled in a large outbreak in Brazil using two different approaches. Analysis of the consensus genomes confirmed the larger extent of the 2010 epidemic in comparison to a previous epidemic caused by the same viruses in another city two years before (genetic distance = 0.002 and 0.0008 respectively). Analysis of viral populations within the host revealed a high level of conservation. After excluding homopolymer regions of 454/Roche generated sequences, we found 10 to 44 variable sites per genome population at a frequency of >1%, resulting in very low intra-host genetic diversity. While up to 60% of all variable sites at intra-host level were non-synonymous changes, only 10% of inter-host variability resulted from non-synonymous mutations, indicative of purifying selection at the population level. Conclusions and Significance Despite the error-prone nature of RNA-dependent RNA-polymerase, dengue viruses maintain low levels of intra-host variability.
Collapse
Affiliation(s)
- Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo e Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias (LIMHC), Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Coffey LL, Forrester N, Tsetsarkin K, Vasilakis N, Weaver SC. Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiol 2013; 8:155-76. [PMID: 23374123 DOI: 10.2217/fmb.12.139] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many examples of the emergence or re-emergence of infectious diseases involve the adaptation of zoonotic viruses to new amplification hosts or to humans themselves. These include several instances of simple mutational adaptations, often to hosts closely related to the natural reservoirs. However, based on theoretical grounds, arthropod-borne viruses, or arboviruses, may face several challenges for adaptation to new hosts. Here, we review recent findings regarding adaptive evolution of arboviruses and its impact on disease emergence. We focus on the zoonotic alphaviruses Venezuelan equine encephalitis and chikungunya viruses, which have undergone adaptive evolution that mediated recent outbreaks of disease, as well as the flaviviruses dengue and West Nile viruses, which have emerged via less dramatic adaptive mechanisms.
Collapse
Affiliation(s)
- Lark L Coffey
- Blood Systems Research Institute, Department of Laboratory Medicine University of California, San Francisco, San Francisco, CA 94118, USA
| | | | | | | | | |
Collapse
|
37
|
Rodriguez-Roche R, Gould EA. Understanding the dengue viruses and progress towards their control. BIOMED RESEARCH INTERNATIONAL 2013; 2013:690835. [PMID: 23936833 PMCID: PMC3722981 DOI: 10.1155/2013/690835] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023]
Abstract
Traditionally, the four dengue virus serotypes have been associated with fever, rash, and the more severe forms, haemorrhagic fever and shock syndrome. As our knowledge as well as understanding of these viruses increases, we now recognise not only that they are causing increasing numbers of human infections but also that they may cause neurological and other clinical complications, with sequelae or fatal consequences. In this review we attempt to highlight some of these features in the context of dengue virus pathogenesis. We also examine some of the efforts currently underway to control this "scourge" of the tropical and subtropical world.
Collapse
Affiliation(s)
- Rosmari Rodriguez-Roche
- Pedro Kouri Tropical Medicine Institute, WHO/PAHO Collaborating Centre for the Study of Dengue and Its Vector, Havana, Cuba.
| | | |
Collapse
|
38
|
Tu Z, He YL, Lu H, Xu L, Yang ZB, Yang C, Chen WJ. Mutant spectrum of dengue type 1 virus in the plasma of patients from the 2006 epidemic in South China. Int J Infect Dis 2013; 17:e1080-1. [PMID: 23827321 DOI: 10.1016/j.ijid.2013.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of the present study was to explore the mutant spectrum of dengue type 1 virus (DENV-1) within individuals during the 2006 dengue epidemic in South China. A 513-bp fragment including most of domain III of the envelope (E) gene was amplified directly from clinical samples, then cloned and sequenced. A total of 89 clones from six patients (range 11-17 clones per patient) were sequenced. Genetic diversity was calculated using MEGA 4 package. The total number of nucleotide mutations was 113 (3.7%) within the sequenced 513-bp E gene, with a range of 15 (3%) to 24 (4.7%) within individual viral populations, harboring more non-synonymous than synonymous mutations. The extent of sequence diversity varied among patients, with the mean diversity ranging from 0.19% to 0.32%, and the mean pairwise p-distance ranging from 0.34% to 0.65%. No genome-defective virus was detected in any clone in this study. Purifying selection may be the main driving force for the intrahost evolution: the mean dN/dS ratio was 0.532. Our findings contribute to the understanding of the genetic variation of DENV-1 in South China.
Collapse
Affiliation(s)
- Zeng Tu
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Villabona-Arenas CJ, de Brito AF, de Andrade Zanotto PM. Genomic mosaicism in two strains of Dengue virus type 3. INFECTION GENETICS AND EVOLUTION 2013; 18:202-12. [PMID: 23727343 DOI: 10.1016/j.meegid.2013.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022]
Abstract
Recombination is a significant factor driving genomic evolution, but it is not well understood in Dengue virus. We used phylogenetic methods to search for recombination in 636 Dengue virus type 3 (DENV-3) genomes and unveiled complex recombination patterns in two strains, which appear to be the outcome of recombination between genotype II and genotype I parental DENV-3 lineages. Our findings of genomic mosaic structures suggest that strand switching during RNA synthesis may be involved in the generation of genetic diversity in dengue viruses.
Collapse
Affiliation(s)
- Christian Julián Villabona-Arenas
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1734, CEP: 05508-000, São Paulo, SP, Brazil
| | | | | |
Collapse
|
40
|
Waggoner JJ, Abeynayake J, Sahoo MK, Gresh L, Tellez Y, Gonzalez K, Ballesteros G, Pierro AM, Gaibani P, Guo FP, Sambri V, Balmaseda A, Karunaratne K, Harris E, Pinsky BA. Single-reaction, multiplex, real-time rt-PCR for the detection, quantitation, and serotyping of dengue viruses. PLoS Negl Trop Dis 2013; 7:e2116. [PMID: 23638191 PMCID: PMC3630127 DOI: 10.1371/journal.pntd.0002116] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/31/2013] [Indexed: 12/17/2022] Open
Abstract
Background Dengue fever results from infection with one or more of four different serotypes of dengue virus (DENV). Despite the widespread nature of this infection, available molecular diagnostics have significant limitations. The aim of this study was to develop a multiplex, real-time, reverse transcriptase-PCR (rRT-PCR) for the detection, quantitation, and serotyping of dengue viruses in a single reaction. Methodology/Principal Findings An rRT-PCR assay targeting the 5′ untranslated region and capsid gene of the DENV genome was designed using molecular beacons to provide serotype specificity. Using reference DENV strains, the assay was linear from 7.0 to 1.0 log10 cDNA equivalents/µL for each serotype. The lower limit of detection using genomic RNA was 0.3, 13.8, 0.8, and 12.4 cDNA equivalents/µL for serotypes 1–4, respectively, which was 6- to 275-fold more analytically sensitive than a widely used hemi-nested RT-PCR. Using samples from Nicaragua collected within the first five days of illness, the multiplex rRT-PCR was positive in 100% (69/69) of specimens that were positive by the hemi-nested assay, with full serotype agreement. Furthermore, the multiplex rRT-PCR detected DENV RNA in 97.2% (35/36) of specimens from Sri Lanka positive for anti-DENV IgM antibodies compared to just 44.4% (16/36) by the hemi-nested RT-PCR. No amplification was observed in 80 clinical samples sent for routine quantitative hepatitis C virus testing or when genomic RNA from other flaviviruses was tested. Conclusions/Significance This single-reaction, quantitative, multiplex rRT-PCR for DENV serotyping demonstrates superior analytical and clinical performance, as well as simpler workflow compared to the hemi-nested RT-PCR reference. In particular, this multiplex rRT-PCR detects viral RNA and provides serotype information in specimens collected more than five days after fever onset and from patients who had already developed anti-DENV IgM antibodies. The implementation of this assay in dengue-endemic areas has the potential to improve both dengue diagnosis and epidemiologic surveillance. Dengue, or break-bone fever, is the most common mosquito-borne viral disease of humans with over half the world's population at risk for infection. Dengue has a wide spectrum of clinical manifestations, from self-limited febrile illness to fatal hypovolemic shock, and because of this, dengue is difficult to distinguish from many other infections based on clinical characteristics alone. Diagnostic testing is therefore critical to accurately identify dengue virus (DENV)-infected patients and also rule out dengue in patients with undifferentiated fever. Unfortunately, current diagnostics for early DENV detection consist of point-of-care or laboratory-based antigen tests that lack sensitivity or molecular assays that are laborious to perform or lack the test characteristics necessary for routine use. To address these limitations, we developed a single-reaction, multiplex, real-time RT-PCR for the detection, quantitation, and serotyping of dengue viruses from patient serum or plasma. We demonstrate that this diagnostic test is more analytically sensitive than a commonly used reference molecular assay, and is able to detect viral RNA and provide serotype information in specimens collected more than 5 days after fever onset and from patients who had already developed anti-DENV IgM antibodies. This unique combination of sensitivity and serotyping capability in a simple, single-reaction format represents a step forward in dengue diagnostics.
Collapse
Affiliation(s)
- Jesse J. Waggoner
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janaki Abeynayake
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Yolanda Tellez
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Karla Gonzalez
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Gabriela Ballesteros
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Anna M. Pierro
- Clinical Microbiology Unit, Regional Reference Centre for Microbiological Emergencies – CRREM, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Paolo Gaibani
- Clinical Microbiology Unit, Regional Reference Centre for Microbiological Emergencies – CRREM, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Frances P. Guo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Vittorio Sambri
- Clinical Microbiology Unit, Regional Reference Centre for Microbiological Emergencies – CRREM, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Angel Balmaseda
- National Virology Laboratory, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Kumudu Karunaratne
- Department of Medical Microbiology, Lady Ridgeway Hospital, Colombo, Sri Lanka
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Benjamin A. Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Phylodynamic analysis of the emergence and epidemiological impact of transmissible defective dengue viruses. PLoS Pathog 2013; 9:e1003193. [PMID: 23468631 PMCID: PMC3585136 DOI: 10.1371/journal.ppat.1003193] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/28/2012] [Indexed: 12/11/2022] Open
Abstract
Intra-host sequence data from RNA viruses have revealed the ubiquity of defective viruses in natural viral populations, sometimes at surprisingly high frequency. Although defective viruses have long been known to laboratory virologists, their relevance in clinical and epidemiological settings has not been established. The discovery of long-term transmission of a defective lineage of dengue virus type 1 (DENV-1) in Myanmar, first seen in 2001, raised important questions about the emergence of transmissible defective viruses and their role in viral epidemiology. By combining phylogenetic analyses and dynamical modeling, we investigate how evolutionary and ecological processes at the intra-host and inter-host scales shaped the emergence and spread of the defective DENV-1 lineage. We show that this lineage of defective viruses emerged between June 1998 and February 2001, and that the defective virus was transmitted primarily through co-transmission with the functional virus to uninfected individuals. We provide evidence that, surprisingly, this co-transmission route has a higher transmission potential than transmission of functional dengue viruses alone. Consequently, we predict that the defective lineage should increase overall incidence of dengue infection, which could account for the historically high dengue incidence reported in Myanmar in 2001–2002. Our results show the unappreciated potential for defective viruses to impact the epidemiology of human pathogens, possibly by modifying the virulence-transmissibility trade-off, or to emerge as circulating infections in their own right. They also demonstrate that interactions between viral variants, such as complementation, can open new pathways to viral emergence. Defective viruses are viral particles with genetic mutations or deletions that eliminate essential functions, so that they cannot complete their life cycles independently. They can reproduce only by co-infecting host cells with functional viruses and ‘borrowing’ their functional elements. Defective viruses have been observed for many human pathogens, but they have not been thought to impact epidemiological outcomes. Recently it was reported that a lineage of defective dengue virus spread through humans and mosquitoes in Myanmar for at least 18 months in 2001–2002. In this study, we investigate the emergence and epidemiological impact of this defective lineage by combining genetic sequence analyses with mathematical models. We show that the defective lineage emerged from circulating dengue viruses between June 1998 and February 2001, and that it spreads because—surprisingly—its presence causes functional dengue viruses to transmit more efficiently. Our model shows that this would cause a substantial rise in total dengue infections, consistent with historically high levels of dengue cases reported in Myanmar during 2001 and 2002. Our study yields new insights into the biology of dengue virus, and demonstrates a previously unappreciated potential for defective viruses to impact the epidemiology of infectious diseases.
Collapse
|
42
|
Hughes J, Allen RC, Baguelin M, Hampson K, Baillie GJ, Elton D, Newton JR, Kellam P, Wood JLN, Holmes EC, Murcia PR. Transmission of equine influenza virus during an outbreak is characterized by frequent mixed infections and loose transmission bottlenecks. PLoS Pathog 2012; 8:e1003081. [PMID: 23308065 PMCID: PMC3534375 DOI: 10.1371/journal.ppat.1003081] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/25/2012] [Indexed: 12/30/2022] Open
Abstract
The ability of influenza A viruses (IAVs) to cross species barriers and evade host immunity is a major public health concern. Studies on the phylodynamics of IAVs across different scales – from the individual to the population – are essential for devising effective measures to predict, prevent or contain influenza emergence. Understanding how IAVs spread and evolve during outbreaks is critical for the management of epidemics. Reconstructing the transmission network during a single outbreak by sampling viral genetic data in time and space can generate insights about these processes. Here, we obtained intra-host viral sequence data from horses infected with equine influenza virus (EIV) to reconstruct the spread of EIV during a large outbreak. To this end, we analyzed within-host viral populations from sequences covering 90% of the infected yards. By combining gene sequence analyses with epidemiological data, we inferred a plausible transmission network, in turn enabling the comparison of transmission patterns during the course of the outbreak and revealing important epidemiological features that were not apparent using either approach alone. The EIV populations displayed high levels of genetic diversity, and in many cases we observed distinct viral populations containing a dominant variant and a number of related minor variants that were transmitted between infectious horses. In addition, we found evidence of frequent mixed infections and loose transmission bottlenecks in these naturally occurring populations. These frequent mixed infections likely influence the size of epidemics. Influenza A viruses (IAVs) are major pathogens of humans and animals. Understanding how IAVs spread and evolve at different scales (individual, regional, global) in natural conditions is critical for preventing or managing influenza epidemics. A vast body of knowledge has been generated on the evolution of IAVs at the global scale. Additionally, recent experimental transmission studies have examined the diversity and transmission of influenza viruses within and between hosts. However, most studies on the spread of IAVs during epidemics have been based on consensus viral sequences, an approach that does not have enough discriminatory power to reveal exact transmission pathways. Here, we analyzed multiple within-host viral populations from different horses infected with equine influenza virus (EIV) during the course of an outbreak in a population within a confined area. This provided an opportunity to examine the genetic diversity of the viruses within single animals, the transmission of the viruses between each closely confined population within a yard, and the transmission between horses in different yards. We show that individual horses can be infected by viruses from more than one other horse, which has important implications for facilitating segment reassortment and the evolution of EIV. Additionally, by combining viral sequencing data and epidemiological data we show that the high levels of mixed infections can reveal the underlying epidemiological dynamics of the outbreak, and that epidemic size could be underestimated if only epidemiological data is considered. As sequencing technologies become cheaper and faster, these analyses could be undertaken almost in real-time and help control future outbreaks.
Collapse
Affiliation(s)
- Joseph Hughes
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard C. Allen
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marc Baguelin
- Immunisation, Hepatitis and Blood Safety Department, Health Protection Agency, London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Katie Hampson
- Boyd Orr Centre for Population and Ecosystem Health, Institute for Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Gregory J. Baillie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Debra Elton
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, United Kingdom
| | - J. Richard Newton
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, United Kingdom
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James L. N. Wood
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edward C. Holmes
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Fogarty International Center, National Institute of Health, Bethesda, Maryland, United States of America
| | - Pablo R. Murcia
- Medical Research Council-University of Glasgow Centre for Virus Research, Institute of Infection, Inflammation and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Crucial role of the N-glycans on the viral E-envelope glycoprotein in DC-SIGN-mediated dengue virus infection. Antiviral Res 2012; 96:280-7. [PMID: 23124109 DOI: 10.1016/j.antiviral.2012.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/16/2012] [Accepted: 10/21/2012] [Indexed: 12/17/2022]
Abstract
We generated in the mosquito cell line C6/36 a dengue virus (DENV) resistant to Hippeastrum hybrid agglutinin (HHA), a carbohydrate-binding agent (CBA). The genotype and phenotype were characterized of the HHA resistant (HHA(res)) DENV compared to the wild-type (WT) DENV. Sequencing the structural proteins of HHA(res) resulted in two mutations, N67D and T155I, indicating a deletion of both N-glycosylation sites on the viral envelope E-glycoprotein. The HHA(res) DENV could replicate in mammalian and mosquito cells that are lacking dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) expression. In contrast, DC-SIGN expressing human cells namely monocyte-derived dendritic cells as well as DC-SIGN-transfected cells were no longer susceptible to HHA(res) DENV. This demonstrates a crucial role of the N-glycans in the E-glycoprotein in the infection of dendritic cells, which constitute primary target cells of DENV during viral pathogenesis in the human body.
Collapse
|
44
|
Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, Khor CC, Petric R, Hibberd ML, Nagarajan N. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 2012; 40:11189-201. [PMID: 23066108 PMCID: PMC3526318 DOI: 10.1093/nar/gks918] [Citation(s) in RCA: 889] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The study of cell-population heterogeneity in a range of biological systems, from viruses to bacterial isolates to tumor samples, has been transformed by recent advances in sequencing throughput. While the high-coverage afforded can be used, in principle, to identify very rare variants in a population, existing ad hoc approaches frequently fail to distinguish true variants from sequencing errors. We report a method (LoFreq) that models sequencing run-specific error rates to accurately call variants occurring in <0.05% of a population. Using simulated and real datasets (viral, bacterial and human), we show that LoFreq has near-perfect specificity, with significantly improved sensitivity compared with existing methods and can efficiently analyze deep Illumina sequencing datasets without resorting to approximations or heuristics. We also present experimental validation for LoFreq on two different platforms (Fluidigm and Sequenom) and its application to call rare somatic variants from exome sequencing datasets for gastric cancer. Source code and executables for LoFreq are freely available at http://sourceforge.net/projects/lofreq/.
Collapse
Affiliation(s)
- Andreas Wilm
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yang X, Charlebois P, Gnerre S, Coole MG, Lennon NJ, Levin JZ, Qu J, Ryan EM, Zody MC, Henn MR. De novo assembly of highly diverse viral populations. BMC Genomics 2012; 13:475. [PMID: 22974120 PMCID: PMC3469330 DOI: 10.1186/1471-2164-13-475] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/06/2012] [Indexed: 01/14/2023] Open
Abstract
Background Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage. Results We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at:
http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software. Conclusions We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research.
Collapse
Affiliation(s)
- Xiao Yang
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dugan VG, Saira K, Ghedin E. Large-scale sequencing and the natural history of model human RNA viruses. Future Virol 2012; 7:563-573. [PMID: 23682295 DOI: 10.2217/fvl.12.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA virus exploration within the field of medical virology has greatly benefited from technological developments in genomics, deepening our understanding of viral dynamics and emergence. Large-scale first-generation technology sequencing projects have expedited molecular epidemiology studies at an unprecedented scale for two pathogenic RNA viruses chosen as models: influenza A virus and dengue. Next-generation sequencing approaches are now leading to a more in-depth analysis of virus genetic diversity, which is greater for RNA than DNA viruses because of high replication rates and the absence of proofreading activity of the RNA-dependent RNA polymerase. In the field of virus discovery, technological advancements and metagenomic approaches are expanding the catalogs of novel viruses by facilitating our probing into the RNA virus world.
Collapse
Affiliation(s)
- Vivien G Dugan
- Viral Genomics, J Craig Venter Institute, Rockville, MD, USA
| | | | | |
Collapse
|
47
|
Genome-wide patterns of intrahuman dengue virus diversity reveal associations with viral phylogenetic clade and interhost diversity. J Virol 2012; 86:8546-58. [PMID: 22647702 DOI: 10.1128/jvi.00736-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analogous to observations in RNA viruses such as human immunodeficiency virus, genetic variation associated with intrahost dengue virus (DENV) populations has been postulated to influence viral fitness and disease pathogenesis. Previous attempts to investigate intrahost genetic variation in DENV characterized only a few viral genes or a limited number of full-length genomes. We developed a whole-genome amplification approach coupled with deep sequencing to capture intrahost diversity across the entire coding region of DENV-2. Using this approach, we sequenced DENV-2 genomes from the serum of 22 Nicaraguan individuals with secondary DENV infection and captured ∼75% of the DENV genome in each sample (range, 40 to 98%). We identified and quantified variants using a highly sensitive and specific method and determined that the extent of diversity was considerably lower than previous estimates. Significant differences in intrahost diversity were detected between genes and also between antigenically distinct domains of the Envelope gene. Interestingly, a strong association was discerned between the extent of intrahost diversity in a few genes and viral clade identity. Additionally, the abundance of viral variants within a host, as well as the impact of viral mutations on amino acid encoding and predicted protein function, determined whether intrahost variants were observed at the interhost level in circulating Nicaraguan DENV-2 populations, strongly suggestive of purifying selection across transmission events. Our data illustrate the value of high-coverage genome-wide analysis of intrahost diversity for high-resolution mapping of the relationship between intrahost diversity and clinical, epidemiological, and virological parameters of viral infection.
Collapse
|