1
|
de Souza Cardoso R, Ono A. The Effects of Viral Structural Proteins on Acidic Phospholipids in Host Membranes. Viruses 2024; 16:1714. [PMID: 39599829 PMCID: PMC11599007 DOI: 10.3390/v16111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Enveloped viruses rely on host membranes for trafficking and assembly. A substantial body of literature published over the years supports the involvement of cellular membrane lipids in the enveloped virus assembly processes. In particular, the knowledge regarding the relationship between viral structural proteins and acidic phospholipids has been steadily increasing in recent years. In this review, we will briefly review the cellular functions of plasma membrane-associated acidic phospholipids and the mechanisms that regulate their local distribution within this membrane. We will then explore the interplay between viruses and the plasma membrane acidic phospholipids in the context of the assembly process for two enveloped viruses, the influenza A virus (IAV) and the human immunodeficiency virus type 1 (HIV-1). Among the proteins encoded by these viruses, three viral structural proteins, IAV hemagglutinin (HA), IAV matrix protein-1 (M1), and HIV-1 Gag protein, are known to interact with acidic phospholipids, phosphatidylserine and/or phosphatidylinositol (4,5)-bisphosphate. These interactions regulate the localization of the viral proteins to and/or within the plasma membrane and likely facilitate the clustering of the proteins. On the other hand, these viral proteins, via their ability to multimerize, can also alter the distribution of the lipids and may induce acidic-lipid-enriched membrane domains. We will discuss the potential significance of these interactions in the virus assembly process and the property of the progeny virions. Finally, we will outline key outstanding questions that need to be answered for a better understanding of the relationships between enveloped virus assembly and acidic phospholipids.
Collapse
Affiliation(s)
| | - Akira Ono
- Department of Microbiology and Immunology, The University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
2
|
Detection and Characterization of an H9N2 Influenza A Virus in the Egyptian Rousette Bat in Limpopo, South Africa. Viruses 2023; 15:v15020498. [PMID: 36851712 PMCID: PMC9958621 DOI: 10.3390/v15020498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, bats have been shown to host various novel bat-specific influenza viruses, including H17N10 and H18N11 in the Americas and the H9N2 subtype from Africa. Rousettus aegyptiacus (Egyptian Rousette bat) is recognized as a host species for diverse viral agents. This study focused on the molecular surveillance of a maternal colony in Limpopo, South Africa, between 2017-2018. A pan-influenza hemi-nested RT-PCR assay targeting the PB1 gene was established, and influenza A virus RNA was identified from one fecal sample out of 860 samples. Genome segments were recovered using segment-specific amplification combined with standard Sanger sequencing and Illumina unbiased sequencing. The identified influenza A virus was closely related to the H9N2 bat-influenza virus, confirming the circulation of this subtype among Egyptian fruit bat populations in Southern Africa. This bat H9N2 subtype contained amino acid residues associated with transmission and virulence in either mammalian or avian hosts, though it will likely require additional adaptations before spillover.
Collapse
|
3
|
Ghanam RH, Eastep GN, Saad JS. Structural Insights into the Mechanism of HIV-1 Tat Secretion from the Plasma Membrane. J Mol Biol 2023; 435:167880. [PMID: 36370804 PMCID: PMC9822876 DOI: 10.1016/j.jmb.2022.167880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription (Tat) is a small, intrinsically disordered basic protein that plays diverse roles in the HIV-1 replication cycle, including promotion of efficient viral RNA transcription. Tat is released by infected cells and subsequently absorbed by healthy cells, thereby contributing to HIV-1 pathogenesis including HIV-associated neurocognitive disorder. It has been shown that, in HIV-1-infected primary CD4 T-cells, Tat accumulates at the plasma membrane (PM) for secretion, a mechanism mediated by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural basis for Tat interaction with the PM and thereby secretion is lacking. Herein, we employed NMR and biophysical methods to characterize Tat86 (86 amino acids) interactions with PI(4,5)P2 and lipid nanodiscs (NDs). Our data revealed that Arg49, Lys50 and Lys51 (RKK motif) constitute the PI(4,5)P2 binding site, that Tat86 interaction with lipid NDs is dependent on PI(4,5)P2 and phosphatidylserine (PS), and that the arginine-rich motif (RRQRRR) preferentially interacts with PS. Furthermore, we show that Trp11, previously implicated in Tat secretion, penetrates deeply in the membrane; substitution of Trp11 severely reduced Tat86 interaction with membranes. Deletion of the entire highly basic region and Trp11 completely abolished Tat86 binding to lipid NDs. Our data support a mechanism by which HIV-1 Tat secretion from the PM is mediated by a tripartite signal consisting of binding of the RKK motif to PI(4,5)P2, arginine-rich motif to PS, and penetration of Trp11 in the membrane. Altogether, these findings provide new insights into the molecular requirements for Tat binding to membranes during secretion.
Collapse
Affiliation(s)
- Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gunnar N Eastep
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
4
|
Petrich A, Dunsing V, Bobone S, Chiantia S. Influenza A M2 recruits M1 to the plasma membrane: A fluorescence fluctuation microscopy study. Biophys J 2021; 120:5478-5490. [PMID: 34808098 PMCID: PMC8715234 DOI: 10.1016/j.bpj.2021.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) is a respiratory pathogen that causes seasonal epidemics with significant mortality. One of the most abundant proteins in IAV particles is the matrix protein 1 (M1), which is essential for the virus structural stability. M1 organizes virion assembly and budding at the plasma membrane (PM), where it interacts with other viral components. The recruitment of M1 to the PM as well as its interaction with the other viral envelope proteins (hemagglutinin [HA], neuraminidase, matrix protein 2 [M2]) is controversially discussed in previous studies. Therefore, we used fluorescence fluctuation microscopy techniques (i.e., scanning fluorescence cross-correlation spectroscopy and number and brightness) to quantify the oligomeric state of M1 and its interactions with other viral proteins in co-transfected as well as infected cells. Our results indicate that M1 is recruited to the PM by M2, as a consequence of the strong interaction between the two proteins. In contrast, only a weak interaction between M1 and HA was observed. M1-HA interaction occurred only in the event that M1 was already bound to the PM. We therefore conclude that M2 initiates the assembly of IAV by recruiting M1 to the PM, possibly allowing its further interaction with other viral proteins.
Collapse
Affiliation(s)
- Annett Petrich
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Valentin Dunsing
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Sara Bobone
- University of Rome Tor Vergata, Department of Chemical Science and Technologies, Roma, Italy
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany.
| |
Collapse
|
5
|
Gao R, Gu M, Shi L, Liu K, Li X, Wang X, Hu J, Liu X, Hu S, Chen S, Peng D, Jiao X, Liu X. N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. Vet Res 2021; 52:8. [PMID: 33436086 PMCID: PMC7805195 DOI: 10.1186/s13567-020-00879-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2014, clade 2.3.4.4 has become the dominant epidemic branch of the Asian lineage H5 subtype highly pathogenic avian influenza virus (HPAIV) in southern and eastern China, while the H5N6 subtype is the most prevalent. We have shown earlier that lack of glycosylation at position 158 of the hemagglutinin (HA) glycoprotein due to the T160A mutation is a key determinant of the dual receptor binding property of clade 2.3.4.4 H5NX subtypes. Our present study aims to explore other effects of this site among H5N6 viruses. Here we report that N-linked glycosylation at site 158 facilitated the assembly of virus-like particles and enhanced virus replication in A549, MDCK, and chicken embryonic fibroblast (CEF) cells. Consistently, the HA-glycosylated H5N6 virus induced higher levels of inflammatory factors and resulted in stronger pathogenicity in mice than the virus without glycosylation at site 158. However, H5N6 viruses without glycosylation at site 158 were more resistant to heat and bound host cells better than the HA-glycosylated viruses. H5N6 virus without glycosylation at this site triggered the host immune response mechanism to antagonize the viral infection, making viral pathogenicity milder and favoring virus spread. These findings highlight the importance of glycosylation at site 158 of HA for the pathogenicity of the H5N6 viruses.
Collapse
Affiliation(s)
- Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Liwei Shi
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiuli Li
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
6
|
Mohd-Kipli F, Claridge JK, Habjanič J, Jiang A, Schnell JR. Conformational triggers associated with influenza matrix protein 1 polymerization. J Biol Chem 2021; 296:100316. [PMID: 33516724 PMCID: PMC7949140 DOI: 10.1016/j.jbc.2021.100316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022] Open
Abstract
A central role for the influenza matrix protein 1 (M1) is to form a polymeric coat on the inner leaflet of the host membrane that ultimately provides shape and stability to the virion. M1 polymerizes upon binding membranes, but triggers for conversion of M1 from a water-soluble component of the nucleus and cytosol into an oligomer at the membrane surface are unknown. While full-length M1 is required for virus viability, the N-terminal domain (M1NT) retains membrane binding and pH-dependent oligomerization. We studied the structural plasticity and oligomerization of M1NT in solution using NMR spectroscopy. We show that the isolated domain can be induced by sterol-containing compounds to undergo a conformational change and self-associate in a pH-dependent manner consistent with the stacked dimer oligomeric interface. Surface-exposed residues at one of the stacked dimer interfaces are most sensitive to sterols. Several perturbed residues are at the interface between the N-terminal subdomains and are also perturbed by changes in pH. The effects of sterols appear to be indirect and most likely mediated by reduction in water activity. The local changes are centered on strictly conserved residues and consistent with a priming of the N-terminal domain for polymerization. We hypothesize that M1NT is sensitive to changes in the aqueous environment and that this sensitivity is part of a mechanism for restricting polymerization to the membrane surface. Structural models combined with information from chemical shift perturbations indicate mechanisms by which conformational changes can be transmitted from one polymerization interface to the other.
Collapse
Affiliation(s)
- Faiz Mohd-Kipli
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom; Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Jolyon K Claridge
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jelena Habjanič
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alex Jiang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jason R Schnell
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
7
|
The native structure of the assembled matrix protein 1 of influenza A virus. Nature 2020; 587:495-498. [PMID: 32908308 DOI: 10.1038/s41586-020-2696-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/19/2020] [Indexed: 02/03/2023]
Abstract
Influenza A virus causes millions of severe cases of disease during annual epidemics. The most abundant protein in influenza virions is matrix protein 1 (M1), which mediates virus assembly by forming an endoskeleton beneath the virus membrane1. The structure of full-length M1, and how it oligomerizes to mediate the assembly of virions, is unknown. Here we determine the complete structure of assembled M1 within intact virus particles, as well as the structure of M1 oligomers reconstituted in vitro. We find that the C-terminal domain of M1 is disordered in solution but can fold and bind in trans to the N-terminal domain of another M1 monomer, thus polymerizing M1 into linear strands that coat the interior surface of the membrane of the assembling virion. In the M1 polymer, five histidine residues-contributed by three different monomers of M1-form a cluster that can serve as the pH-sensitive disassembly switch after entry into a target cell. These structures therefore reveal mechanisms of influenza virus assembly and disassembly.
Collapse
|
8
|
Mecate-Zambrano A, Sukumar S, Seebohm G, Ciminski K, Schreiber A, Anhlan D, Greune L, Wixler L, Grothe S, Stein NC, Schmidt MA, Langer K, Schwemmle M, Shi T, Ludwig S, Boergeling Y. Discrete spatio-temporal regulation of tyrosine phosphorylation directs influenza A virus M1 protein towards its function in virion assembly. PLoS Pathog 2020; 16:e1008775. [PMID: 32866218 PMCID: PMC7485975 DOI: 10.1371/journal.ppat.1008775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 09/11/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Small RNA viruses only have a very limited coding capacity, thus most viral proteins have evolved to fulfill multiple functions. The highly conserved matrix protein 1 (M1) of influenza A viruses is a prime example for such a multifunctional protein, as it acts as a master regulator of virus replication whose different functions have to be tightly regulated. The underlying mechanisms, however, are still incompletely understood. Increasing evidence points towards an involvement of posttranslational modifications in the spatio-temporal regulation of M1 functions. Here, we analyzed the role of M1 tyrosine phosphorylation in genuine infection by using recombinant viruses expressing M1 phosphomutants. Presence of M1 Y132A led to significantly decreased viral replication compared to wildtype and M1 Y10F. Characterization of phosphorylation dynamics by mass spectrometry revealed the presence of Y132 phosphorylation in M1 incorporated into virions that is most likely mediated by membrane-associated Janus kinases late upon infection. Molecular dynamics simulations unraveled a potential phosphorylation-induced exposure of the positively charged linker domain between helices 4 and 5, supposably acting as interaction platform during viral assembly. Consistently, M1 Y132A showed a defect in lipid raft localization due to reduced interaction with viral HA protein resulting in a diminished structural stability of viral progeny and the formation of filamentous particles. Importantly, reduced M1-RNA binding affinity resulted in an inefficient viral genome incorporation and the production of non-infectious virions that interferes with virus pathogenicity in mice. This study advances our understanding of the importance of dynamic phosphorylation as a so far underestimated level of regulation of multifunctional viral proteins and emphasizes the potential feasibility of targeting posttranslational modifications of M1 as a novel antiviral intervention.
Collapse
Affiliation(s)
- Angeles Mecate-Zambrano
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
| | - Swathi Sukumar
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - André Schreiber
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
| | - Darisuren Anhlan
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Lilo Greune
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Ludmilla Wixler
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
| | - Stephanie Grothe
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | - Nora Caroline Stein
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | - M. Alexander Schmidt
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Klaus Langer
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Muenster, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center–University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tianlai Shi
- Immunology, Inflammation and Infectious Diseases (I3) DTA, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Ludwig
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
- * E-mail:
| | - Yvonne Boergeling
- Institute of Virology Muenster, University of Muenster, Muenster, Germany
- Cells in Motion Interfaculty Centre (CiM), University of Muenster, Muenster, Germany
| |
Collapse
|
9
|
Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization. Biosci Rep 2019; 39:BSR20191024. [PMID: 31324731 PMCID: PMC6682550 DOI: 10.1042/bsr20191024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
The matrix protein M1 of the Influenza A virus (IAV) is supposed to mediate viral assembly and budding at the plasma membrane (PM) of infected cells. In order for a new viral particle to form, the PM lipid bilayer has to bend into a vesicle toward the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. In the present study, we use a combination of fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), cryo-electron tomography (cryo-ET) and scanning fluorescence correlation spectroscopy (sFCS) to investigate M1-induced membrane deformation in biophysical models of the PM. Our results indicate that M1 is indeed able to cause membrane curvature in lipid bilayers containing negatively charged lipids, in the absence of other viral components. Furthermore, we prove that protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1-M1 interactions and multimer formation are required in order to alter the bilayer three-dimensional structure, through the formation of a protein scaffold. Finally, our results suggest that, in a physiological context, M1-induced membrane deformation might be modulated by the initial bilayer curvature and the lateral organization of membrane components (i.e. the presence of lipid domains).
Collapse
|
10
|
Höfer CT, Di Lella S, Dahmani I, Jungnick N, Bordag N, Bobone S, Huang Q, Keller S, Herrmann A, Chiantia S. Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1123-1134. [PMID: 30902626 DOI: 10.1016/j.bbamem.2019.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
Abstract
Influenza A virus is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. One of the ten major proteins encoded by the viral genome, the matrix protein M1, is abundantly produced in infected cells and plays a structural role in determining the morphology of the virus. During assembly of new viral particles, M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. The structure of M1 is only partially known. In particular, structural details of M1 interactions with the cellular plasma membrane as well as M1-protein interactions and multimerization have not been clarified, yet. In this work, we employed a set of complementary experimental and theoretical tools to tackle these issues. Using raster image correlation, surface plasmon resonance and circular dichroism spectroscopies, we quantified membrane association and oligomerization of full-length M1 and of different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region, residues 95-105). Furthermore, we report novel information on structural changes in M1 occurring upon binding to membranes. Our experimental results are corroborated by an all-atom model of the full-length M1 protein bound to a negatively charged lipid bilayer.
Collapse
Affiliation(s)
- C T Höfer
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - S Di Lella
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - I Dahmani
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - N Jungnick
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany
| | - N Bordag
- Leibniz-Institute for Molecular Pharmacology (FMP), Biophysics of Membrane Proteins, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - S Bobone
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Q Huang
- School of Life Sciences, Fudan University, 220 Handan Rd, WuJiaoChang, Yangpu Qu, Shanghai Shi 200433, China
| | - S Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - A Herrmann
- Institute for Biology, IRI Life Sciences, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
| | - S Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
11
|
Martínez-Sobrido L, Peersen O, Nogales A. Temperature Sensitive Mutations in Influenza A Viral Ribonucleoprotein Complex Responsible for the Attenuation of the Live Attenuated Influenza Vaccine. Viruses 2018; 10:E560. [PMID: 30326610 PMCID: PMC6213772 DOI: 10.3390/v10100560] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 01/29/2023] Open
Abstract
Live attenuated influenza vaccines (LAIV) have prevented morbidity and mortality associated with influenza viral infections for many years and represent the best therapeutic option to protect against influenza viral infections in humans. However, the development of LAIV has traditionally relied on empirical methods, such as the adaptation of viruses to replicate at low temperatures. These approaches require an extensive investment of time and resources before identifying potential vaccine candidates that can be safely implemented as LAIV to protect humans. In addition, the mechanism of attenuation of these vaccines is poorly understood in some cases. Importantly, LAIV are more efficacious than inactivated vaccines because their ability to mount efficient innate and adaptive humoral and cellular immune responses. Therefore, the design of potential LAIV based on known properties of viral proteins appears to be a highly appropriate option for the treatment of influenza viral infections. For that, the viral RNA synthesis machinery has been a research focus to identify key amino acid substitutions that can lead to viral attenuation and their use in safe, immunogenic, and protective LAIV. In this review, we discuss the potential to manipulate the influenza viral RNA-dependent RNA polymerase (RdRp) complex to generate attenuated forms of the virus that can be used as LAIV for the treatment of influenza viral infections, one of the current and most effective prophylactic options for the control of influenza in humans.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, NY 14642, USA.
| | - Olve Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, CO 80523, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, NY 14642, USA.
| |
Collapse
|
12
|
Kordyukova LV, Shtykova EV, Baratova LA, Svergun DI, Batishchev OV. Matrix proteins of enveloped viruses: a case study of Influenza A virus M1 protein. J Biomol Struct Dyn 2018; 37:671-690. [PMID: 29388479 DOI: 10.1080/07391102.2018.1436089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Eleonora V Shtykova
- b Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences , Moscow , Russian Federation.,c Semenov Institute of Chemical Physics , Russian Academy of Sciences , Moscow , Russian Federation
| | - Lyudmila A Baratova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | | | - Oleg V Batishchev
- e Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Moscow , Russian Federation.,f Moscow Institute of Physics and Technology , Dolgoprudniy , Russian Federation
| |
Collapse
|
13
|
Gonzàlez-Parra G, De Ridder F, Huntjens D, Roymans D, Ispas G, Dobrovolny HM. A comparison of RSV and influenza in vitro kinetic parameters reveals differences in infecting time. PLoS One 2018; 13:e0192645. [PMID: 29420667 PMCID: PMC5805318 DOI: 10.1371/journal.pone.0192645] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/26/2018] [Indexed: 11/19/2022] Open
Abstract
Influenza and respiratory syncytial virus (RSV) cause acute infections of the respiratory tract. Since the viruses both cause illnesses with similar symptoms, researchers often try to apply knowledge gleaned from study of one virus to the other virus. This can be an effective and efficient strategy for understanding viral dynamics or developing treatment strategies, but only if we have a full understanding of the similarities and differences between the two viruses. This study used mathematical modeling to quantitatively compare the viral kinetics of in vitro RSV and influenza virus infections. Specifically, we determined the viral kinetics parameters for RSV A2 and three strains of influenza virus, A/WSN/33 (H1N1), A/Puerto Rico/8/1934 (H1N1), and pandemic H1N1 influenza virus. We found that RSV viral titer increases at a slower rate and reaches its peak value later than influenza virus. Our analysis indicated that the slower increase of RSV viral titer is caused by slower spreading of the virus from one cell to another. These results provide estimates of dynamical differences between influenza virus and RSV and help provide insight into the virus-host interactions that cause observed differences in the time courses of the two illnesses in patients.
Collapse
Affiliation(s)
- Gilberto Gonzàlez-Parra
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States of America
- Department of Mathematics, New Mexico Tech, Socorro, NM, United States of America
| | | | | | | | | | - Hana M. Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States of America
- * E-mail:
| |
Collapse
|
14
|
Duh D, Blažič B. Single mutation in the matrix gene of seasonal influenza A viruses critically affects the performance of diagnostic molecular assay. J Virol Methods 2018; 251:43-45. [DOI: 10.1016/j.jviromet.2017.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
15
|
Mutations in the Influenza A Virus M1 Protein Enhance Virus Budding To Complement Lethal Mutations in the M2 Cytoplasmic Tail. J Virol 2017; 92:JVI.00858-17. [PMID: 29046451 DOI: 10.1128/jvi.00858-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/12/2017] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus M1 and M2 proteins play important roles in virus assembly and in the morphology of virus particles. Mutations in the distal cytoplasmic tail region of M2, and in particular a tyrosine-to-alanine mutation at residue 76 (Y76A), were essential for infectious virus production and filament formation while having limited effects on total virus particle budding. Using a novel selection method, mutations at seven different M1 amino acids (residue 73, 94, 135, 136, or 138 or a double mutation, 93/244) that are not found in circulating influenza virus strains or have not been previously identified to play a role in influenza A virus assembly were found to complement the lethal M2Y76A mutation. These M1 suppressor mutations restored infectious virus production in the presence of M2Y76A and mediated increased budding and filament formation even in the absence of M2. However, the efficiency of infectious virus replication was still dependent on the presence of the distal region of the M2 cytoplasmic tail. The data suggest that influenza A virus budding and genome incorporation can occur independently and provide further support for complementary roles of the M1 and M2 proteins in virus assembly.IMPORTANCE Influenza virus particle assembly involves the careful coordination of various viral and host factors to optimally produce infectious virus particles. We have previously identified a mutation at position 76 of the influenza A virus M2 protein that drastically reduces infectious virus production and filament formation with minimal effects on virus budding. In this work, we identified suppressor mutations in the M1 protein which complement this lethal M2 mutation by increasing the efficiency with which virus particles bud from infected cells and restoring filament formation at the infected-cell surface. M2 distal cytoplasmic domain sequences were still required for optimal infectivity. This indicates that M1 and M2 can functionally replace each other in some, but not all, aspects of virus particle assembly.
Collapse
|
16
|
A Single-Amino-Acid Substitution at Position 225 in Hemagglutinin Alters the Transmissibility of Eurasian Avian-Like H1N1 Swine Influenza Virus in Guinea Pigs. J Virol 2017; 91:JVI.00800-17. [PMID: 28814518 PMCID: PMC5640871 DOI: 10.1128/jvi.00800-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/07/2017] [Indexed: 11/24/2022] Open
Abstract
Efficient transmission from human to human is the prerequisite for an influenza virus to cause a pandemic; however, the molecular determinants of influenza virus transmission are still largely unknown. In this study, we explored the molecular basis for transmission of Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses by comparing two viruses that are genetically similar but differ in their transmissibility in guinea pigs: the A/swine/Guangxi/18/2011 virus (GX/18) is highly transmissible by respiratory droplet in guinea pigs, whereas the A/swine/Heilongjiang/27/2012 virus (HLJ/27) does not transmit in this animal model. We used reverse genetics to generate a series of reassortants and mutants in the GX/18 background and tested their transmissibility in guinea pigs. We found that a single-amino-acid substitution of glycine (G) for glutamic acid (E) at position 225 (E225G) in the HA1 protein completely abolished the respiratory droplet transmission of GX/18, whereas the substitution of E for G at the same position (G225E) in HA1 enabled HLJ/27 to transmit in guinea pigs. We investigated the underlying mechanism and found that viruses bearing 225E in HA1 replicated more rapidly than viruses bearing 225G due to differences in assembly and budding efficiencies. Our study indicates that the amino acid 225E in HA1 plays a key role in EAH1N1 swine influenza virus transmission and provides important information for evaluating the pandemic potential of field influenza virus strains. IMPORTANCE Efficient transmission among humans is a prerequisite for a novel influenza virus to cause a human pandemic. Transmissibility of influenza viruses is a polygenic trait, and understanding the genetic determinants for transmissibility will provide useful insights for evaluating the pandemic potential of influenza viruses in the field. Several amino acids in the hemagglutinin (HA) protein of influenza viruses have been shown to be important for transmissibility, usually by increasing virus affinity for human-type receptors. In this study, we explored the genetic basis of the transmissibility difference between two Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses in guinea pigs and found that the amino acid glutamic acid at position 225 in the HA1 protein plays a critical role in the transmission of EAH1N1 virus by increasing the efficiency of viral assembly and budding.
Collapse
|
17
|
Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes. J Virol 2017; 91:JVI.00267-17. [PMID: 28356535 DOI: 10.1128/jvi.00267-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/21/2017] [Indexed: 01/21/2023] Open
Abstract
Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Förster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells.IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still not well understood. In this work, we show that phosphatidylserine can form lipid domains in physical models of the inner leaflet of the PM. Furthermore, the spatial organization of PS in the plane of the bilayer modulates M1-M1 interactions. Finally, we show that PS domains appear to be present in the PM of living cells and that M1 seems to display a high affinity for them.
Collapse
|
18
|
Glycosylation of the Hemagglutinin Protein of H5N1 Influenza Virus Increases Its Virulence in Mice by Exacerbating the Host Immune Response. J Virol 2017; 91:JVI.02215-16. [PMID: 28100622 PMCID: PMC5355609 DOI: 10.1128/jvi.02215-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to circulate in nature and threaten public health. Although several viral determinants and host factors that influence the virulence of HPAI H5N1 viruses in mammals have been identified, the detailed molecular mechanism remains poorly defined and requires further clarification. In our previous studies, we characterized two naturally isolated HPAI H5N1 viruses that had similar viral genomes but differed substantially in their lethality in mice. In this study, we explored the molecular determinants and potential mechanism for this difference in virulence. By using reverse genetics, we found that a single amino acid at position 158 of the hemagglutinin (HA) protein substantially affected the systemic replication and pathogenicity of these H5N1 influenza viruses in mice. We further found that the G158N mutation introduced an N-linked glycosylation at positions 158 to 160 of the HA protein and that this N-linked glycosylation enhanced viral productivity in infected mammalian cells and induced stronger host immune and inflammatory responses to viral infection. These findings further our understanding of the determinants of pathogenicity of H5N1 viruses in mammals. IMPORTANCE Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to evolve in nature and threaten human health. Key mutations in the virus hemagglutinin (HA) protein or reassortment with other pandemic viruses endow HPAI H5N1 viruses with the potential for aerosol transmissibility in mammals. A thorough understanding of the pathogenic mechanisms of these viruses will help us to develop more effective control strategies; however, such mechanisms and virulent determinants for H5N1 influenza viruses have not been fully elucidated. In this study, we identified glycosylation at positions 158 to 160 of the HA protein of two naturally occurring H5N1 viruses as an important virulence determinant. This glycosylation event enhanced viral productivity, exacerbated the host response, and thereby contributed to the high pathogenicity of H5N1 virus in mice.
Collapse
|
19
|
Saletti D, Radzimanowski J, Effantin G, Midtvedt D, Mangenot S, Weissenhorn W, Bassereau P, Bally M. The Matrix protein M1 from influenza C virus induces tubular membrane invaginations in an in vitro cell membrane model. Sci Rep 2017; 7:40801. [PMID: 28120862 PMCID: PMC5264427 DOI: 10.1038/srep40801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
Matrix proteins from enveloped viruses play an important role in budding and stabilizing virus particles. In order to assess the role of the matrix protein M1 from influenza C virus (M1-C) in plasma membrane deformation, we have combined structural and in vitro reconstitution experiments with model membranes. We present the crystal structure of the N-terminal domain of M1-C and show by Small Angle X-Ray Scattering analysis that full-length M1-C folds into an elongated structure that associates laterally into ring-like or filamentous polymers. Using negatively charged giant unilamellar vesicles (GUVs), we demonstrate that M1-C full-length binds to and induces inward budding of membrane tubules with diameters that resemble the diameter of viruses. Membrane tubule formation requires the C-terminal domain of M1-C, corroborating its essential role for M1-C polymerization. Our results indicate that M1-C assembly on membranes constitutes the driving force for budding and suggest that M1-C plays a key role in facilitating viral egress.
Collapse
Affiliation(s)
- David Saletti
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Jens Radzimanowski
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, avenue des Martyrs, 38000 Grenoble, France
| | - Gregory Effantin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, avenue des Martyrs, 38000 Grenoble, France
| | - Daniel Midtvedt
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Stéphanie Mangenot
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, avenue des Martyrs, 38000 Grenoble, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Marta Bally
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
20
|
Kerviel A, Dash S, Moncorgé O, Panthu B, Prchal J, Décimo D, Ohlmann T, Lina B, Favard C, Decroly E, Ottmann M, Roingeard P, Muriaux D. Involvement of an Arginine Triplet in M1 Matrix Protein Interaction with Membranes and in M1 Recruitment into Virus-Like Particles of the Influenza A(H1N1)pdm09 Virus. PLoS One 2016; 11:e0165421. [PMID: 27814373 PMCID: PMC5096668 DOI: 10.1371/journal.pone.0165421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022] Open
Abstract
The influenza A(H1N1)pdm09 virus caused the first influenza pandemic of the 21st century. In this study, we wanted to decipher the role of conserved basic residues of the viral M1 matrix protein in virus assembly and release. M1 plays many roles in the influenza virus replication cycle. Specifically, it participates in viral particle assembly, can associate with the viral ribonucleoprotein complexes and can bind to the cell plasma membrane and/or the cytoplasmic tail of viral transmembrane proteins. M1 contains an N-terminal domain of 164 amino acids with two basic domains: the nuclear localization signal on helix 6 and an arginine triplet (R76/77/78) on helix 5. To investigate the role of these two M1 basic domains in influenza A(H1N1)pdm09 virus molecular assembly, we analyzed M1 attachment to membranes, virus-like particle (VLP) production and virus infectivity. In vitro, M1 binding to large unilamellar vesicles (LUVs), which contain negatively charged lipids, decreased significantly when the M1 R76/77/78 motif was mutated. In cells, M1 alone was mainly observed in the nucleus (47%) and in the cytosol (42%). Conversely, when co-expressed with the viral proteins NS1/NEP and M2, M1 was relocated to the cell membranes (55%), as shown by subcellular fractionation experiments. This minimal system allowed the production of M1 containing-VLPs. However, M1 with mutations in the arginine triplet accumulated in intracellular clusters and its incorporation in VLPs was strongly diminished. M2 over-expression was essential for M1 membrane localization and VLP production, whereas the viral trans-membrane proteins HA and NA seemed dispensable. These results suggest that the M1 arginine triplet participates in M1 interaction with membranes. This R76/77/78 motif is essential for M1 incorporation in virus particles and the importance of this motif was confirmed by reverse genetic demonstrating that its mutation is lethal for the virus. These results highlight the molecular mechanism of M1-membrane interaction during the formation of influenza A(H1N1)pdm09 virus particles which is essential for infectivity.
Collapse
Affiliation(s)
- Adeline Kerviel
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS & Université of Montpellier, Montpellier, France
| | - Shantoshini Dash
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS & Université of Montpellier, Montpellier, France
| | - Olivier Moncorgé
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS & Université of Montpellier, Montpellier, France
| | | | - Jan Prchal
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS & Université of Montpellier, Montpellier, France
| | - Didier Décimo
- CIRI, INSERM U 1111, France & ENS de Lyon, Lyon, France
| | | | - Bruno Lina
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
| | - Cyril Favard
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS & Université of Montpellier, Montpellier, France
| | - Etienne Decroly
- Aix-Marseille Université & CNRS, AFMB UMR 7257, 163 Avenue de Luminy, 13288 Marseille cedex 09, France
| | - Michèle Ottmann
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
| | - Philippe Roingeard
- INSERM U966, Université François Rabelais & CHRU de Tours, Tours, France
| | - Delphine Muriaux
- Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS & Université of Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
21
|
Nucleocytoplasmic shuttling of influenza A virus proteins. Viruses 2015; 7:2668-82. [PMID: 26008706 PMCID: PMC4452925 DOI: 10.3390/v7052668] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
Influenza viruses transcribe and replicate their genomes in the nuclei of infected host cells. The viral ribonucleoprotein (vRNP) complex of influenza virus is the essential genetic unit of the virus. The viral proteins play important roles in multiple processes, including virus structural maintenance, mediating nucleocytoplasmic shuttling of the vRNP complex, virus particle assembly, and budding. Nucleocytoplasmic shuttling of viral proteins occurs throughout the entire virus life cycle. This review mainly focuses on matrix protein (M1), nucleoprotein (NP), nonstructural protein (NS1), and nuclear export protein (NEP), summarizing the mechanisms of their nucleocytoplasmic shuttling and the regulation of virus replication through their phosphorylation to further understand the regulation of nucleocytoplasmic shuttling in host adaptation of the viruses.
Collapse
|
22
|
Crystal structures of influenza A virus matrix protein M1: variations on a theme. PLoS One 2014; 9:e109510. [PMID: 25295515 PMCID: PMC4190115 DOI: 10.1371/journal.pone.0109510] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
Matrix protein 1 (M1) of the influenza A virus plays multiple roles in virion assembly and infection. Interest in the pH dependence of M1's multiple functions led us to study the effect of subtle pH changes on M1 structure, resulting in the elucidation of a unique low-pH crystal structure of the N(1-165)-domain of A/WSN/33 (H1N1) M1 that has never been reported. Although the 2.2 Å crystal structure of M1 N-terminus shows a dimer with the two monomers interacting in a face-to-face fashion at low pH as observed earlier, a 44° rotation of the second monomer has led to a significantly different dimer interface that possibly affects dimer stability. More importantly, while one of the monomers is fully defined, the N-terminal half of the second monomer shows considerable disorder that appears inherent in the protein and is potentially physiologically relevant. Such disorder has not been observed in any other previously reported structure at either low or high pH conditions, despite similar crystallization pH conditions. By comparing our novel N(1-165)-domain structure with other low-pH or neutral-pH M1 structures, it appears that M1 can energetically access different monomer and dimer conformations, as well as oligomeric states, with varying degree of similarities. The study reported here provides further insights into M1 oligomerization that may be essential for viral propagation and infectivity.
Collapse
|
23
|
Ran Z, Chen Y, Shen H, Xiang X, Liu Q, Bawa B, Qi W, Zhu L, Young A, Richt J, Ma W, Li F. In vitro and in vivo replication of influenza A H1N1 WSN33 viruses with different M1 proteins. J Gen Virol 2012; 94:884-895. [PMID: 23255622 DOI: 10.1099/vir.0.046219-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The M1 protein is a major structural protein that has multiple functions in various steps within the life cycle of the influenza A virus (IAV). However, little is currently known about the role of M1 in IAV replication in vivo and the associated pathogenesis. In this study, six isogenic H1N1 WSN33 viruses, constructed to express unique M1 proteins derived from various strains, subtypes or WSN33 itself, were tested to determine in vitro and in vivo functional exchangeability of M1 proteins in the replication and pathogenesis of the WSN33 virus. Despite five chimeric M1 viruses replicating to levels similar to those of the parental WSN33 virus in cell cultures, all M1 chimeras exhibited improved replication and enhanced virulence in mice when compared with the WSN33 virus. Interestingly, M1 proteins derived from swine viruses caused more severe clinical diseases than those from human or quail. These data indicate that the M1 protein is an important determinant of viral replication and pathogenic properties in mice, although the functions of M1 observed in vivo are not adequately reflected in simple infections of cultured cells. Chimeric M1 viruses that are variable in their clinical manifestations described here will aid future understanding of the role of M1 in IAV pathogenesis.
Collapse
Affiliation(s)
- Zhiguang Ran
- Veterinary Diagnostic Division, Chongqing Municipal Center for Animal Disease Control and Prevention, Chongqing 401120, PR China.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Ying Chen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Huigang Shen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Xiaoxiao Xiang
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Qinfang Liu
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Bhupinder Bawa
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wenbao Qi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Laihua Zhu
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Alan Young
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA
| | - Juergen Richt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Feng Li
- Shandong Academy of Agricultural Sciences, Jinan, PR China.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
24
|
The compensatory G88R change is essential in restoring the normal functions of influenza A/WSN/33 virus matrix protein 1 with a disrupted nuclear localization signal. J Virol 2012; 87:345-53. [PMID: 23077315 DOI: 10.1128/jvi.02024-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G88R emerged as a compensatory mutation in matrix protein 1 (M1) of influenza virus A/WSN/33 when its nuclear localization signal (NLS) was disrupted by R101S and R105S substitutions. The resultant M1 triple mutant M(NLS-88R) regained replication efficiency in vitro while remaining attenuated in vivo with the potential of being a live vaccine candidate. To understand why G88R was favored by the virus as a compensatory change for the NLS loss and resultant replication deficiency, three more M1 triple mutants with an alternative G88K, G88V, or G88E change in addition to R101S and R105S substitutions in the NLS were generated. Unlike the other M1 triple mutants, M(NLS-88R) replicated more efficiently in vitro and in vivo. The G88R compensatory mutation not only restored normal functions of M1 in the presence of a disrupted NLS but also resulted in a strong association of M1 with viral ribonucleoprotein. Under a transmission electron microscope, only the M1 layer of the M(NLS-88R) virion exhibited discontinuous fingerprint-like patterns with average thicknesses close to that of wild-type A/WSN/33. Computational modeling suggested that the compensatory G88R change could reestablish the integrity of the M1 layer through new salt bridges between adjacent M1 subunits when the original interactions were interrupted by simultaneous R101S and R105S replacements in the NLS. Our results suggested that restoring the normal functions of M1 was crucial for efficient virus replication.
Collapse
|
25
|
Virus assembly and plasma membrane domains: which came first? Virus Res 2012; 171:332-40. [PMID: 22989508 DOI: 10.1016/j.virusres.2012.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 11/23/2022]
Abstract
Viral assembly is a key step in the virus life cycle. In this review, we focus mainly on the ability of retroviruses, especially HIV-1, to assemble at the plasma membrane of their host cells. The assembly process of RNA enveloped viruses necessitates a fine orchestration between the different viral components and specific interactions between viral proteins and lipids of the host cell membrane. Searching for a comparison with another RNA enveloped virus, we refer to influenza virus to show how it could share (or not) some common features with HIV-1 assembly since both viruses are believed to assemble mainly in raft microdomains. We also discuss the role of RNA and the cellular actin cytoskeleton in enhancing these viral assembly processes. Finally, based on the literature and on new results we have obtained by molecular docking, we propose another mechanism for HIV-1 assembly in membrane domains. This mechanism involves the trapping of acidic lipids by the viral Gag protein by means of ionic protein-lipid interactions, inducing thereby formation of acidic lipid-enriched microdomains (ALEM).
Collapse
|