1
|
Sokolova OS, Pichkur EB, Maslova ES, Kurochkina LP, Semenyuk PI, Konarev PV, Samygina VR, Stanishneva-Konovalova TB. Local Flexibility of a New Single-Ring Chaperonin Encoded by Bacteriophage AR9 Bacillus subtilis. Biomedicines 2022; 10:biomedicines10102347. [PMID: 36289609 PMCID: PMC9598537 DOI: 10.3390/biomedicines10102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chaperonins, a family of molecular chaperones, assist protein folding in all domains of life. They are classified into two groups: bacterial variants and those present in endosymbiotic organelles of eukaryotes belong to group I, while group II includes chaperonins from the cytosol of archaea and eukaryotes. Recently, chaperonins of a prospective new group were discovered in giant bacteriophages; however, structures have been determined for only two of them. Here, using cryo-EM, we resolved a structure of a new chaperonin encoded by gene 228 of phage AR9 B. subtilis. This structure has similarities and differences with members of both groups, as well as with other known phage chaperonins, which further proves their diversity.
Collapse
Affiliation(s)
- Olga S. Sokolova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
| | - Evgeny B. Pichkur
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123098 Moscow, Russia
| | | | - Lidia P. Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pavel I. Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Petr V. Konarev
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123098 Moscow, Russia
- Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia
| | - Valeriya R. Samygina
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123098 Moscow, Russia
- Shubnikov Institute of Crystallography of FSRC “Crystallography and Photonics”, RAS, 119333 Moscow, Russia
| | | |
Collapse
|
2
|
Kurochkina LP, Semenyuk PI, Sokolova OS. Structural and Functional Features of Viral Chaperonins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1-9. [PMID: 35491019 DOI: 10.1134/s0006297922010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chaperonins provide proper folding of proteins in vivo and in vitro and, as was thought until recently, are characteristic of prokaryotes, eukaryotes, and archaea. However, it turned out that some bacteria viruses (bacteriophages) encode their own chaperonins. This review presents results of the investigations of the first representatives of this new chaperonin group: the double-ring EL chaperonin and the single-ring OBP and AR9 chaperonins. Biochemical properties and structure of the phage chaperonins were compared within the group and with other known group I and group II chaperonins.
Collapse
Affiliation(s)
- Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Nazir A, Ali A, Qing H, Tong Y. Emerging Aspects of Jumbo Bacteriophages. Infect Drug Resist 2021; 14:5041-5055. [PMID: 34876823 PMCID: PMC8643167 DOI: 10.2147/idr.s330560] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/30/2021] [Indexed: 01/21/2023] Open
Abstract
The bacteriophages have been explored at a huge scale as a model system for their applications in many biological-related fields. Jumbo phages with a large genome size from 200 to 500 kbp were not previously assigned a great value, and characterized by complex structures coupled with large virions with a wide variety of hosts. The origin of most of the jumbo phages was not well understood; however, many other prominent features have been discovered recently. In the current review, we strive to unearth the most advanced characteristics of jumbo phages, particularly their significance and structural organization that holds immense value to the viral life cycle. The unique characteristics of jumbo phages are the basis of variations in different types of phages concerning their organization at the genomic level, virion structure, evolution, and progeny propagation. The presence of tRNA and additional translation-related genes along with chaperonin genes mark the ability of these phages for being independent of host molecular machinery enabling them to have wide host options. A large number of jumbo phages have been isolated from various sources through advanced standard screening methods. The current review has summarized the available data on jumbo phages and discussed the genome orientation of jumbo phages, translational machinery, diversity and evolution of jumbo phages. In the studies conducted, jumbo phages possessed special additional genes that helps to reduce the dependence of jumbo phages on their hosts. Furthermore, their genomes might have evolved from smaller genome phages.
Collapse
Affiliation(s)
- Amina Nazir
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Azam Ali
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Draft Genome Sequence of the Ectomycorrhizal Fungus Astraeus odoratus from Northern Thailand. Microbiol Resour Announc 2021; 10:e0004421. [PMID: 34197189 PMCID: PMC8248864 DOI: 10.1128/mra.00044-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We report the draft genome sequence of Astraeus odoratus, an edible ectomycorrhizal fungus from northern Thailand. The assembled genome has a size of 45.1 Mb and 13,403 annotated protein-coding genes. This reference genome will provide a better understanding of the biology of mushroom-forming ectomycorrhizal fungi in the family Diplocystidiaceae.
Collapse
|
5
|
Nguyen KT, Sugie J, Khanna K, Egan ME, Birkholz EA, Lee J, Beierschmitt C, Villa E, Pogliano J. Selective transport of fluorescent proteins into the phage nucleus. PLoS One 2021; 16:e0251429. [PMID: 34111132 PMCID: PMC8191949 DOI: 10.1371/journal.pone.0251429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/26/2021] [Indexed: 11/18/2022] Open
Abstract
Upon infection of Pseudomonas cells, jumbo phages 201Φ2-1, ΦPA3, and ΦKZ assemble a phage nucleus. Viral DNA is enclosed within the phage-encoded proteinaceous shell along with proteins associated with DNA replication, recombination and transcription. Ribosomes and proteins involved in metabolic processes are excluded from the nucleus. RNA synthesis occurs inside the phage nucleus and messenger RNA is presumably transported into the cytoplasm to be translated. Newly synthesized proteins either remain in the cytoplasm or specifically translocate into the nucleus. The molecular mechanisms governing selective protein sorting and nuclear import in these phage infection systems are currently unclear. To gain insight into this process, we studied the localization of five reporter fluorescent proteins (GFP+, sfGFP, GFPmut1, mCherry, CFP). During infection with ΦPA3 or 201Φ2-1, all five fluorescent proteins were excluded from the nucleus as expected; however, we have discovered an anomaly with the ΦKZ nuclear transport system. The fluorescent protein GFPmut1, expressed by itself, was transported into the ΦKZ phage nucleus. We identified the amino acid residues on the surface of GFPmut1 required for nuclear targeting. Fusing GFPmut1 to any protein, including proteins that normally reside in the cytoplasm, resulted in transport of the fusion into the nucleus. Although the mechanism of transport is still unknown, we demonstrate that GFPmut1 is a useful tool that can be used for fluorescent labelling and targeting of proteins into the ΦKZ phage nucleus.
Collapse
Affiliation(s)
- Katrina T. Nguyen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Kanika Khanna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - MacKennon E. Egan
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Erica A. Birkholz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Jina Lee
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Christopher Beierschmitt
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Elizabeth Villa
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
6
|
Marbouty M, Thierry A, Millot GA, Koszul R. MetaHiC phage-bacteria infection network reveals active cycling phages of the healthy human gut. eLife 2021; 10:60608. [PMID: 33634788 PMCID: PMC7963479 DOI: 10.7554/elife.60608] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/20/2021] [Indexed: 12/15/2022] Open
Abstract
Bacteriophages play important roles in regulating the intestinal human microbiota composition, dynamics, and homeostasis, and characterizing their bacterial hosts is needed to understand their impact. We applied a metagenomic Hi-C approach on 10 healthy human gut samples to unveil a large infection network encompassing more than 6000 interactions bridging a metagenomic assembled genomes (MAGs) and a phage sequence, allowing to study in situ phage-host ratio. Whereas three-quarters of these sequences likely correspond to dormant prophages, 5% exhibit a much higher coverage than their associated MAG, representing potentially actively replicating phages. We detected 17 sequences of members of the crAss-like phage family, whose hosts diversity remained until recently relatively elusive. For each of them, a unique bacterial host was identified, all belonging to different genus of Bacteroidetes. Therefore, metaHiC deciphers infection network of microbial population with a high specificity paving the way to dynamic analysis of mobile genetic elements in complex ecosystems.
Collapse
Affiliation(s)
- Martial Marbouty
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Paris, France
| | - Agnès Thierry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Paris, France
| | - Gaël A Millot
- Institut Pasteur, Bioinformatics and Biostatistics Hub, CNRS, USR 3756, Paris, France
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, CNRS, UMR 3525, Paris, France
| |
Collapse
|
7
|
Krylov V, Bourkaltseva M, Pleteneva E, Shaburova O, Krylov S, Karaulov A, Zhavoronok S, Svitich O, Zverev V. Phage phiKZ-The First of Giants. Viruses 2021; 13:149. [PMID: 33498475 PMCID: PMC7909554 DOI: 10.3390/v13020149] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023] Open
Abstract
The paper covers the history of the discovery and description of phiKZ, the first known giant bacteriophage active on Pseudomonas aeruginosa. It also describes its unique features, especially the characteristic manner of DNA packing in the head around a cylinder-shaped structure ("inner body"), which probably governs an ordered and tight packaging of the phage genome. Important properties of phiKZ-like phages include a wide range of lytic activity and the blue opalescence of their negative colonies, and provide a background for the search and discovery of new P. aeruginosa giant phages. The importance of the phiKZ species and of other giant phage species in practical phage therapy is noted given their broad use in commercial phage preparations.
Collapse
Affiliation(s)
- Victor Krylov
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Maria Bourkaltseva
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Elena Pleteneva
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Olga Shaburova
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Sergey Krylov
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia;
| | - Sergey Zhavoronok
- Department of Infectious Diseases, Belarusian State Medical University, 220116 Minsk, Belarus;
| | - Oxana Svitich
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
- Faculty of Preventive Medicine, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia
| | - Vitaly Zverev
- I.I. Mechnikov Research Institute of Vaccines & Sera, 105064 Moscow, Russia; (M.B.); (E.P.); (O.S.); (S.K.); (O.S.); (V.Z.)
- Faculty of Preventive Medicine, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia
| |
Collapse
|
8
|
Multisubunit RNA Polymerases of Jumbo Bacteriophages. Viruses 2020; 12:v12101064. [PMID: 32977622 PMCID: PMC7598289 DOI: 10.3390/v12101064] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023] Open
Abstract
Prokaryotic viruses with DNA genome longer than 200 kb are collectively referred to as “jumbo phages”. Some representatives of this phylogenetically diverse group encode two DNA-dependent RNA polymerases (RNAPs)—a virion RNAP and a non-virion RNAP. In contrast to most other phage-encoded RNAPs, the jumbo phage RNAPs are multisubunit enzymes related to RNAPs of cellular organisms. Unlike all previously characterized multisubunit enzymes, jumbo phage RNAPs lack the universally conserved alpha subunits required for enzyme assembly. The mechanism of promoter recognition is also different from those used by cellular enzymes. For example, the AR9 phage non-virion RNAP requires uracils in its promoter and is able to initiate promoter-specific transcription from single-stranded DNA. Jumbo phages encoding multisubunit RNAPs likely have a common ancestor allowing making them a separate subgroup within the very diverse group of jumbo phages. In this review, we describe transcriptional strategies used by RNAP-encoding jumbo phages and describe the properties of characterized jumbo phage RNAPs.
Collapse
|
9
|
Rodriguez A, Von Salzen D, Holguin BA, Bernal RA. Complex Destabilization in the Mitochondrial Chaperonin Hsp60 Leads to Disease. Front Mol Biosci 2020; 7:159. [PMID: 32766281 PMCID: PMC7381220 DOI: 10.3389/fmolb.2020.00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/24/2020] [Indexed: 01/21/2023] Open
Abstract
Several neurological disorders have been linked to mutations in chaperonin genes and more specifically to the HSPD1 gene. In humans, HSPD1 encodes the mitochondrial Heat Shock Protein 60 (mtHsp60) chaperonin, which carries out essential protein folding reactions that help maintain mitochondrial and cellular homeostasis. It functions as a macromolecular complex that provides client proteins an environment that favors proper folding in an ATP-dependent manner. It has been established that mtHsp60 plays a crucial role in the proper folding of mitochondrial proteins involved in ATP producing pathways. Recently, various single-point mutations in the mtHsp60 encoding gene have been directly linked to neuropathies and paraplegias. Individuals who harbor mtHsp60 mutations that negatively impact its folding ability display phenotypes with highly compromised muscle and neuron cells. Carriers of these mutations usually develop neuropathies and paraplegias at different stages of their lives mainly characterized by leg stiffness and weakness as well as degeneration of spinal cord nerves. These phenotypes are likely due to hindered energy producing pathways involved in cellular respiration resulting in ATP deprived cells. Although the complete protein folding mechanism of mtHsp60 is not well understood, recent work suggests that several of these mutations act by destabilizing the oligomeric stability of mtHsp60. Here, we discuss recent studies that highlight key aspects of the mtHsp60 mechanism with a focus on some of the known disease-causing point mutations, D29G and V98I, and their effect on the protein folding reaction cycle.
Collapse
Affiliation(s)
| | | | | | - Ricardo A. Bernal
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
10
|
Rai S, Tyagi A, Kalia A, Kumar BTN, Garg P, Singh NK. Characterization and genome sequencing of three Aeromonas hydrophila-specific phages, CF8, PS1, and PS2. Arch Virol 2020; 165:1675-1678. [PMID: 32356184 DOI: 10.1007/s00705-020-04644-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/02/2020] [Indexed: 11/24/2022]
Abstract
Aeromonas hydrophila is an important finfish pathogen, besides being an opportunistic human pathogen. In the present study, the genomes of three A. hydrophila-specific phages, CF8, PS1, and PS2, were isolated, characterized and sequenced. Transmission electron microscopy showed that all three phages had typical Myoviridae morphology. The linear dsDNA genomes of CF8, PS1, and PS2 were 238,150 bp, 237,367 bp, and 240,447 bp in length, with a GC content of 42.2%, 38.8%, and 38.8%, respectively. The low sequence similarity (67.6% - 69.8% identity with 27.0% - 29.0% query coverage) to other phage genomes in the NCBI database indicated the novel nature of the CF8, PS1, and PS2 genomes. A total of 244, 247, and 250 open reading frames (ORFs) were predicted in the CF8, PS1, and PS2 genome, respectively. During the annotation process, functional predictions were made for 28-31 ORFs, while the rest were classified as "hypothetical proteins" with yet unknown functions. Genes for tRNAs were also detected in all phage genomes. As all three phages in the present study had a very narrow host range with lytic activity against only one strain of A. hydrophila, these phages could be good candidates for phage typing applications. Moreover, the endolysin- and lytic-transglycosylase-encoding genes could be used for recombinant cloning and expression of anti-microbial proteins.
Collapse
Affiliation(s)
- Sumeet Rai
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - B T Naveen Kumar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Prince Garg
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Niraj K Singh
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
11
|
Campbell IJ, Olmos JL, Xu W, Kahanda D, Atkinson JT, Sparks ON, Miller MD, Phillips GN, Bennett GN, Silberg JJ. Prochlorococcus phage ferredoxin: structural characterization and electron transfer to cyanobacterial sulfite reductases. J Biol Chem 2020; 295:10610-10623. [PMID: 32434930 DOI: 10.1074/jbc.ra120.013501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/15/2020] [Indexed: 01/13/2023] Open
Abstract
Marine cyanobacteria are infected by phages whose genomes encode ferredoxin (Fd) electron carriers. These Fds are thought to redirect the energy harvested from light to phage-encoded oxidoreductases that enhance viral fitness, but it is unclear how the biophysical properties and partner specificities of phage Fds relate to those of photosynthetic organisms. Here, results of a bioinformatics analysis using a sequence similarity network revealed that phage Fds are most closely related to cyanobacterial Fds that transfer electrons from photosystems to oxidoreductases involved in nutrient assimilation. Structural analysis of myovirus P-SSM2 Fd (pssm2-Fd), which infects the cyanobacterium Prochlorococcus marinus, revealed high levels of similarity to cyanobacterial Fds (root mean square deviations of ≤0.5 Å). Additionally, pssm2-Fd exhibited a low midpoint reduction potential (-336 mV versus a standard hydrogen electrode), similar to other photosynthetic Fds, although it had lower thermostability (Tm = 28 °C) than did many other Fds. When expressed in an Escherichia coli strain deficient in sulfite assimilation, pssm2-Fd complemented bacterial growth when coexpressed with a P. marinus sulfite reductase, revealing that pssm2-Fd can transfer electrons to a host protein involved in nutrient assimilation. The high levels of structural similarity with cyanobacterial Fds and reactivity with a host sulfite reductase suggest that phage Fds evolved to transfer electrons to cyanobacterially encoded oxidoreductases.
Collapse
Affiliation(s)
- Ian J Campbell
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, Texas, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Jose Luis Olmos
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, Texas, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Weijun Xu
- Department of Biosciences, Rice University, Houston, Texas, USA
| | | | | | | | | | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas, USA.,Department of Chemistry, Rice University, Houston, Texas, USA
| | - George N Bennett
- Department of Biosciences, Rice University, Houston, Texas, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Jonathan J Silberg
- Department of Biosciences, Rice University, Houston, Texas, USA .,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA.,Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
12
|
Bacteriophage-Derived Endolysins Applied as Potent Biocontrol Agents to Enhance Food Safety. Microorganisms 2020; 8:microorganisms8050724. [PMID: 32413991 PMCID: PMC7285104 DOI: 10.3390/microorganisms8050724] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/04/2023] Open
Abstract
Endolysins, bacteriophage-encoded enzymes, have emerged as antibacterial agents that can be actively applied in food processing systems as food preservatives to control pathogens and ultimately enhance food safety. Endolysins break down bacterial peptidoglycan structures at the terminal step of the phage reproduction cycle to enable phage progeny release. In particular, endolysin treatment is a novel strategy for controlling antibiotic-resistant bacteria, which are a severe and increasingly frequent problem in the food industry. In addition, endolysins can eliminate biofilms on the surfaces of utensils. Furthermore, the cell wall-binding domain of endolysins can be used as a tool for rapidly detecting pathogens. Research to extend the use of endolysins toward Gram-negative bacteria is now being extensively conducted. This review summarizes the trends in endolysin research to date and discusses the future applications of these enzymes as novel food preservation tools in the field of food safety.
Collapse
|
13
|
Ji X, Cui Z, Xiang Y, Zhang Q, Qin K, Tang B, Wei Y. Complete Genome Sequence Analysis of the Cold-active Siphoviridae Bacteriophage from Pseudomonas fluorescens. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Semenyuk PI, Moiseenko AV, Sokolova OS, Muronetz VI, Kurochkina LP. Structural and functional diversity of novel and known bacteriophage-encoded chaperonins. Int J Biol Macromol 2020; 157:544-552. [PMID: 32344079 DOI: 10.1016/j.ijbiomac.2020.04.189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/26/2022]
Abstract
A bioinformatics analysis of the currently predicted GroEL-like proteins encoded by bacteriophage genomes was carried out in comparison with the phage double-ring EL and single-ring OBP chaperonins, previously described by us, as well as with the known chaperonins of group I and group II. A novel GroEL-like protein predicted in the genome of phage AR9 Bacillus subtilis was expressed in E. coli cells, purified and characterised by various physicochemical methods. As shown by native electrophoresis, analytical ultracentrifugation and single-particle electron microscopy analysis, the putative AR9 chaperonin is a single-ring heptamer. Like the EL and OBP chaperonins, the new AR9 chaperonin possesses chaperone activity and does not require co-chaperonin to function. It was shown to prevent aggregation and provide refolding of the denatured substrate protein, endolysin, in an ATP-dependent manner. A comparison of its structural and biochemical properties with those of the EL and OBP chaperonins suggests outstanding diversity in this group of phage chaperonins.
Collapse
Affiliation(s)
- Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, Moscow 119234, Russia
| | - Andrey V Moiseenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, Moscow 119234, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, Moscow 119234, Russia
| | - Vladimir I Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, Moscow 119234, Russia
| | - Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, Moscow 119234, Russia.
| |
Collapse
|
15
|
Lewis R, Clooney AG, Stockdale SR, Buttimer C, Draper LA, Ross RP, Hill C. Isolation of a Novel Jumbo Bacteriophage Effective Against Klebsiella aerogenes. Front Med (Lausanne) 2020; 7:67. [PMID: 32185177 PMCID: PMC7058600 DOI: 10.3389/fmed.2020.00067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing levels of bacterial resistance to many common and last resort antibiotics has increased interest in finding new treatments. The low rate of approval of new antibiotics has led to the search for new and alternative antimicrobial compounds. Bacteriophages (phages) are bacterial viruses found in almost every environment. Phage therapy was historically investigated to control bacterial infections and is still in use in Georgia and as a treatment of last resort. Phage therapy is increasingly recognized as an alternative antimicrobial treatment for antibiotic resistant pathogens. A novel lytic Klebsiella aerogenes phage N1M2 was isolated from maize silage. Klebsiella aerogenes, a member of the ESKAPE bacterial pathogens, is an important target for new antimicrobial therapies. Klebsiella aerogenes can form biofilms on medical devices which aids its environmental persistence and for this reason we tested the effect of phage N1M2 against biofilms. Phage N1M2 successfully removed a pre-formed Klebsiella aerogenes biofilm. Biofilm assays were also carried out with Staphylococcus aureus and Phage K. Phage K successfully removed a preformed Staphylococcus aureus biofilm. Phage N1M2 and Phage K in combination were significantly better at removing a mixed community biofilm of Klebsiella aerogenes and Staphylococcus aureus than either phage alone.
Collapse
Affiliation(s)
- Rhea Lewis
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Buttimer
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Stanishneva-Konovalova TB, Semenyuk PI, Kurochkina LP, Pichkur EB, Vasilyev AL, Kovalchuk MV, Kirpichnikov MP, Sokolova OS. Cryo-EM reveals an asymmetry in a novel single-ring viral chaperonin. J Struct Biol 2019; 209:107439. [PMID: 31870903 DOI: 10.1016/j.jsb.2019.107439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Abstract
Chaperonins are ubiquitously present protein complexes, which assist the proper folding of newly synthesized proteins and prevent aggregation of denatured proteins in an ATP-dependent manner. They are classified into group I (bacterial, mitochondrial, chloroplast chaperonins) and group II (archaeal and eukaryotic cytosolic variants). However, both of these groups do not include recently discovered viral chaperonins. Here, we solved the symmetry-free cryo-EM structures of a single-ring chaperonin encoded by the gene 246 of bacteriophage OBP Pseudomonas fluorescens, in the nucleotide-free, ATPγS-, and ADP-bound states, with resolutions of 4.3 Å, 5.0 Å, and 6 Å, respectively. The structure of OBP chaperonin reveals a unique subunit arrangement, with three pairs of subunits and one unpaired subunit. Each pair combines subunits in two possible conformations, differing in nucleotide-binding affinity. The binding of nucleotides results in the increase of subunits' conformational variability. Due to its unique structural and functional features, OBP chaperonin can represent a new group.
Collapse
Affiliation(s)
- Tatiana B Stanishneva-Konovalova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, Moscow 119991, Russia
| | - Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| | - Evgeny B Pichkur
- National Research Center "Kurchatov Institute", Moscow 123098, Russia
| | | | | | - Mikhail P Kirpichnikov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, Moscow 119991, Russia.
| |
Collapse
|
17
|
Kim SG, Giri SS, Yun S, Kim HJ, Kim SW, Kang JW, Han SJ, Kwon J, Jun JW, Oh WT, Park SC. Genomic characterization of bacteriophage pEt-SU, a novel phiKZ-related virus infecting Edwardsiella tarda. Arch Virol 2019; 165:219-222. [PMID: 31630274 DOI: 10.1007/s00705-019-04432-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022]
Abstract
A bacteriophage infecting Edwardsiella tarda (named pEt-SU) was isolated from freshwater collected in Chung-ju, South Korea. The whole genome of pEt-SU was 276,734 bp in length, representing the first giant phage infecting Edwardsiella reported to date. A total of 284 putative open reading frames were predicted and annotated. Morphology and genome analyses verified that pEt-SU may be distantly related to the phiKZ-like phages, a well-known giant myovirus. The findings in this study provide new insights into the phages infecting E. tarda ads well as fundamental data for the study of giant phages.
Collapse
Affiliation(s)
- Sang Guen Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Saekil Yun
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyoun Joong Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Woo Kang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Se Jin Han
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Kongjwipatjwi-ro, Wansan-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Woo Taek Oh
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Weintraub ST, Mohd Redzuan NH, Barton MK, Md Amin NA, Desmond MI, Adams LE, Ali B, Pardo S, Molleur D, Wu W, Newcomb WW, Osier MV, Black LW, Steven AC, Thomas JA. Global Proteomic Profiling of Salmonella Infection by a Giant Phage. J Virol 2019; 93:e01833-18. [PMID: 30541839 PMCID: PMC6384053 DOI: 10.1128/jvi.01833-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 11/20/2022] Open
Abstract
The 240-kb Salmonella phage SPN3US genome encodes 264 gene products, many of which are functionally uncharacterized. We have previously used mass spectrometry to define the proteomes of wild-type and mutant forms of the SPN3US virion. In this study, we sought to determine whether this technique was suitable for the characterization of the SPN3US proteome during liquid infection. Mass spectrometry of SPN3US-infected cells identified 232 SPN3US and 1,994 Salmonella proteins. SPN3US proteins with related functions, such as proteins with roles in DNA replication, transcription, and virion formation, were coordinately expressed in a temporal manner. Mass spectral counts showed the four most abundant SPN3US proteins to be the major capsid protein, two head ejection proteins, and the functionally unassigned protein gp22. This high abundance of gp22 in infected bacteria contrasted with its absence from mature virions, suggesting that it might be the scaffold protein, an essential head morphogenesis protein yet to be identified in giant phages. We identified homologs to SPN3US gp22 in 45 related giant phages, including ϕKZ, whose counterpart is also abundant in infected bacteria but absent in the virion. We determined the ϕKZ counterpart to be cleaved in vitro by its prohead protease, an event that has been observed to promote head maturation of some other phages. Our findings are consistent with a scaffold protein assignment for SPN3US gp22, although direct evidence is required for its confirmation. These studies demonstrate the power of mass spectral analyses for facilitating the acquisition of new knowledge into the molecular events of viral infection.IMPORTANCE "Giant" phages with genomes >200 kb are being isolated in increasing numbers from a range of environments. With hosts such as Salmonella enterica, Pseudomonas aeruginosa, and Erwinia amylovora, these phages are of interest for phage therapy of multidrug-resistant pathogens. However, our understanding of how these complex phages interact with their hosts is impeded by the proportion (∼80%) of their gene products that are functionally uncharacterized. To develop the repertoire of techniques for analysis of phages, we analyzed a liquid infection of Salmonella phage SPN3US (240-kb genome) using third-generation mass spectrometry. We observed the temporal production of phage proteins whose genes collectively represent 96% of the SPN3US genome. These findings demonstrate the sensitivity of mass spectrometry for global proteomic profiling of virus-infected cells, and the identification of a candidate for a major head morphogenesis protein will facilitate further studies into giant phage head assembly.
Collapse
Affiliation(s)
- Susan T Weintraub
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Melissa K Barton
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Nur Amira Md Amin
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Maxim I Desmond
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Lily E Adams
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Bazla Ali
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Sammy Pardo
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Dana Molleur
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Weimin Wu
- Laboratory of Structural Biology Research, National Institute for Arthritis, Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - William W Newcomb
- Laboratory of Structural Biology Research, National Institute for Arthritis, Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael V Osier
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Lindsay W Black
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute for Arthritis, Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Julie A Thomas
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
19
|
Arens DK, Brady TS, Carter JL, Pape JA, Robinson DM, Russell KA, Staley LA, Stettler JM, Tateoka OB, Townsend MH, Whitley KV, Wienclaw TM, Williamson TL, Johnson SM, Grose JH. Characterization of two related Erwinia myoviruses that are distant relatives of the PhiKZ-like Jumbo phages. PLoS One 2018; 13:e0200202. [PMID: 29979759 PMCID: PMC6034870 DOI: 10.1371/journal.pone.0200202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/21/2018] [Indexed: 12/25/2022] Open
Abstract
Bacteriophages are a major force in the evolution of bacteria due to their sheer abundance as well as their ability to infect and kill their hosts and to transfer genetic material. Bacteriophages that infect the Enterobacteriaceae family are of particular interest because this bacterial family contains dangerous animal and plant pathogens. Herein we report the isolation and characterization of two jumbo myovirus Erwinia phages, RisingSun and Joad, collected from apple trees. These two genomes are nearly identical with Joad harboring two additional putative gene products. Despite mass spectrometry data that support the putative annotation, 43% of their gene products have no significant BLASTP hit. These phages are also more closely related to Pseudomonas and Vibrio phages than to published Enterobacteriaceae phages. Of the 140 gene products with a BLASTP hit, 81% and 63% of the closest hits correspond to gene products from Pseudomonas and Vibrio phages, respectively. This relatedness may reflect their ecological niche, rather than the evolutionary history of their host. Despite the presence of over 800 Enterobacteriaceae phages on NCBI, the uniqueness of these two phages highlights the diversity of Enterobacteriaceae phages still to be discovered.
Collapse
Affiliation(s)
- Daniel K. Arens
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - T. Scott Brady
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - John L. Carter
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Jenny A. Pape
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - David M. Robinson
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Kerri A. Russell
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Lyndsay A. Staley
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Jason M. Stettler
- Plant and Wildlife Sciences Department, Brigham Young University, Provo, Utah, United States of America
| | - Olivia B. Tateoka
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Michelle H. Townsend
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Kiara V. Whitley
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Trevor M. Wienclaw
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Taryn L. Williamson
- Plant and Wildlife Sciences Department, Brigham Young University, Provo, Utah, United States of America
| | - Steven M. Johnson
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| | - Julianne H. Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
20
|
Ha AD, Denver DR. Comparative Genomic Analysis of 130 Bacteriophages Infecting Bacteria in the Genus Pseudomonas. Front Microbiol 2018; 9:1456. [PMID: 30022972 PMCID: PMC6039544 DOI: 10.3389/fmicb.2018.01456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022] Open
Abstract
Bacteria of the genus Pseudomonas are genetically diverse and ubiquitous in the environment. Like other bacteria, those of the genus Pseudomonas are susceptible to bacteriophages which can significantly affect their host in many ways, ranging from cell lysis to major changes in morphology and virulence. Insights into phage genomes, evolution, and functional relationships with their hosts have the potential to contribute to a broader understanding of Pseudomonas biology, and the development of novel phage therapy strategies. Here we provide a broad-based comparative and evolutionary analysis of 130 complete Pseudomonas phage genome sequences available in online databases. We discovered extensive variation in genome size (ranging from 3 to 316 kb), G + C percentage (ranging from 37 to 66%), and overall gene content (ranging from 81–96% of genome space). Based on overall nucleotide similarity and the numbers of shared gene products, 100 out of 130 genome sequences were grouped into 12 different clusters; 30 were characterized as singletons, which do not have close relationships with other phage genomes. For 5/12 clusters, constituent phage members originated from two or more different Pseudomonas host species, suggesting that phage in these clusters can traverse bacterial species boundaries. An analysis of CRISPR spacers in Pseudomonas bacterial genome sequences supported this finding. Substantial diversity was revealed in analyses of phage gene families; out of 4,462 total families, the largest had only 39 members and there were 2,992 families with only one member. An evolutionary analysis of 72 phage gene families, based on patterns of nucleotide diversity at non-synonymous and synonymous sites, revealed strong and consistent signals for purifying selection. Our study revealed highly diverse and dynamic Pseudomonas phage genomes, and evidence for a dominant role of purifying selection in shaping the evolution of genes encoded in them.
Collapse
Affiliation(s)
- Anh D Ha
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
21
|
Bhatt JM, Enriquez AS, Wang J, Rojo HM, Molugu SK, Hildenbrand ZL, Bernal RA. Single-Ring Intermediates Are Essential for Some Chaperonins. Front Mol Biosci 2018; 5:42. [PMID: 29755985 PMCID: PMC5934643 DOI: 10.3389/fmolb.2018.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/13/2018] [Indexed: 11/20/2022] Open
Abstract
Chaperonins are macromolecular complexes found throughout all kingdoms of life that assist unfolded proteins reach a biologically active state. Historically, chaperonins have been classified into two groups based on sequence, subunit structure, and the requirement for a co-chaperonin. Here, we present a brief review of chaperonins that can form double- and single-ring conformational intermediates in their protein-folding catalytic pathway. To date, the bacteriophage encoded chaperonins ϕ-EL and OBP, human mitochondrial chaperonin and most recently, the bacterial groEL/ES systems, have been reported to form single-ring intermediates as part of their normal protein-folding activity. These double-ring chaperonins separate into single-ring intermediates that have the ability to independently fold a protein. We discuss the structural and functional features along with the biological relevance of single-ring intermediates in cellular protein folding. Of special interest are the ϕ-EL and OBP chaperonins which demonstrate features of both group I and II chaperonins in addition to their ability to function via single-ring intermediates.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Adrian S Enriquez
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Jinliang Wang
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Humberto M Rojo
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Sudheer K Molugu
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Ricardo A Bernal
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
22
|
Tikhe CV, Husseneder C. Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community. Front Microbiol 2018; 8:2548. [PMID: 29354098 PMCID: PMC5759034 DOI: 10.3389/fmicb.2017.02548] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022] Open
Abstract
The Formosan subterranean termite; Coptotermes formosanus is nutritionally dependent on the complex and diverse community of bacteria and protozoa in their gut. Although, there have been many studies to decipher the taxonomic and functional diversity of bacterial communities in the guts of termites, their bacteriophages remain unstudied. We sequenced the metavirome of the guts of Formosan subterranean termite workers to study the diversity of bacteriophages and other associated viruses. Results showed that the termites harbor a virome in their gut comprised of varied and previously unknown bacteriophages. Between 87-90% of the predicted dsDNA virus genes by Metavir showed similarity to the tailed bacteriophages (Caudovirales). Many predicted genes from the virome matched to bacterial prophage regions. These data are suggestive of a virome dominated by temperate bacteriophages. We predicted the genomes of seven novel Caudovirales bacteriophages from the termite gut. Three of these predicted bacteriophage genomes were found in high proportions in all the three termite colonies tested. Two bacteriophages are predicted to infect endosymbiotic bacteria of the gut protozoa. The presence of these putative bacteriophages infecting endosymbionts of the gut protozoa, suggests a quadripartite relationship between the termites their symbiotic protozoa, endosymbiotic bacteria of the protozoa and their bacteriophages. Other than Caudovirales, ss-DNA virus related genes were also present in the termite gut. We predicted the genomes of 12 novel Microviridae phages from the termite gut and seven of those possibly represent a new proposed subfamily. Circovirus like genomes were also assembled from the termite gut at lower relative abundance. We predicted 10 novel circovirus genomes in this study. Whether these circoviruses infect the termites remains elusive at the moment. The functional and taxonomical annotations suggest that the termites may harbor a core virome comprised of the bacteriophages infecting endosymbionts of the gut protozoa.
Collapse
Affiliation(s)
- Chinmay V Tikhe
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
23
|
Xiang Y, Wang S, Li J, Wei Y, Zhang Q, Lin L, Ji X. Isolation and characterization of two lytic cold-active bacteriophages infecting Pseudomonas fluorescens from the Napahai plateau wetland. Can J Microbiol 2017; 64:183-190. [PMID: 29253355 DOI: 10.1139/cjm-2017-0572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the "kidneys of the Earth", wetlands play important roles as biodiversity reservoirs, in water purification, and in flood control. In this study, 2 lytic cold-active bacteriophages, named VW-6S and VW-6B, infecting Pseudomonas fluorescens W-6 cells from the Napahai plateau wetland in China were isolated and characterized. Electron microscopy showed that both VW-6S and VW-6B had an icosahedral head (66.7 and 61.1 nm, respectively) and a long tail (8.3 nm width × 233.3 nm length and 11.1 nm width × 166.7 nm length, respectively). The bacteriophages VW-6S and VW-6B were classified as Siphoviridae and had an approximate genome size of 30-40 kb. The latent and burst periods of VW-6S were 60 and 30 min, whereas those of VW-6B were 30 and 30 min, respectively. The optimal pH values for the bacteriophages VW-6S and VW-6B were 8.0 and 10.0, respectively, and their activity decreased rapidly at temperatures higher than 60 °C. These cold-active bacteriophages provide good materials for further study of cold-adaptation mechanisms and interaction with the host P. fluorescens.
Collapse
Affiliation(s)
- Yingying Xiang
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.,b Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650031, China
| | - Shuang Wang
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiankai Li
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunlin Wei
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qi Zhang
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lianbing Lin
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuling Ji
- a Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
24
|
Ali B, Desmond MI, Mallory SA, Benítez AD, Buckley LJ, Weintraub ST, Osier MV, Black LW, Thomas JA. To Be or Not To Be T4: Evidence of a Complex Evolutionary Pathway of Head Structure and Assembly in Giant Salmonella Virus SPN3US. Front Microbiol 2017; 8:2251. [PMID: 29187846 PMCID: PMC5694885 DOI: 10.3389/fmicb.2017.02251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
Giant Salmonella phage SPN3US has a 240-kb dsDNA genome and a large complex virion composed of many proteins for which the functions of most are undefined. We recently determined that SPN3US shares a core set of genes with related giant phages and sequenced and characterized 18 amber mutants to facilitate its use as a genetic model system. Notably, SPN3US and related giant phages contain a bolus of ejection proteins within their heads, including a multi-subunit virion RNA polymerase (vRNAP), that enter the host cell with the DNA during infection. In this study, we characterized the SPN3US virion using mass spectrometry to gain insight into its head composition and the features that its head shares with those of related giant phages and with T4 phage. SPN3US has only homologs to the T4 proteins critical for prohead shell formation, the portal and major capsid proteins, as well as to the major enzymes essential for head maturation, the prohead protease and large terminase subunit. Eight of ~50 SPN3US head proteins were found to undergo proteolytic processing at a cleavage motif by the prohead protease gp245. Gp245 undergoes auto-cleavage of its C-terminus, suggesting this is a conserved activation and/or maturation feature of related phage proteases. Analyses of essential head gene mutants showed that the five subunits of the vRNAP must be assembled for any subunit to be incorporated into the prohead, although the assembled vRNAP must then undergo subsequent major conformational rearrangements in the DNA packed capsid to allow ejection through the ~30 Å diameter tail tube for transcription from the injected DNA. In addition, ejection protein candidate gp243 was found to play a critical role in head assembly. Our analyses of the vRNAP and gp243 mutants highlighted an unexpected dichotomy in giant phage head maturation: while all analyzed giant phages have a homologous protease that processes major capsid and portal proteins, processing of ejection proteins is not always a stable/defining feature. Our identification in SPN3US, and related phages, of a diverged paralog to the prohead protease further hints toward a complicated evolutionary pathway for giant phage head structure and assembly.
Collapse
Affiliation(s)
- Bazla Ali
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Maxim I Desmond
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Sara A Mallory
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Andrea D Benítez
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Larry J Buckley
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Susan T Weintraub
- Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Michael V Osier
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Lindsay W Black
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Julie A Thomas
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
25
|
Matsui T, Yoshikawa G, Mihara T, Chatchawankanphanich O, Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T. Replications of Two Closely Related Groups of Jumbo Phages Show Different Level of Dependence on Host-encoded RNA Polymerase. Front Microbiol 2017; 8:1010. [PMID: 28659872 PMCID: PMC5468394 DOI: 10.3389/fmicb.2017.01010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Ralstonia solanacearum phages ΦRP12 and ΦRP31 are jumbo phages isolated in Thailand. Here we show that they exhibit similar virion morphology, genome organization and host range. Genome comparisons as well as phylogenetic and proteomic tree analyses support that they belong to the group of ΦKZ-related phages, with their closest relatives being R. solanacearum phages ΦRSL2 and ΦRSF1. Compared with ΦRSL2 and ΦRSF1, ΦRP12 and ΦRP31 possess larger genomes (ca. 280 kbp, 25% larger). The replication of ΦRP12 and ΦRP31 was not affected by rifampicin treatment (20 μg/ml), suggesting that phage-encoded RNAPs function to start and complete the infection cycle of these phages without the need of host-encoded RNAPs. In contrast, ΦRSL2 and ΦRSF1, encoding the same set of RNAPs, did not produce progeny phages in the presence of rifampicin (5 μg/ml). This observation opens the possibility that some ΦRP12/ΦRP31 factors that are absent in ΦRSL2 and ΦRSF1 are involved in their host-independent transcription.
Collapse
Affiliation(s)
- Takeru Matsui
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Genki Yoshikawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Tomoko Mihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Orawan Chatchawankanphanich
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDAPathum Thani, Thailand.,Center for Agricultural Biotechnology, Kasetsart UniversityNakhon Pathom, Thailand
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Miyako Nakano
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto UniversityKyoto, Japan
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima UniversityHigashi-Hiroshima, Japan
| |
Collapse
|
26
|
Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel Abundant Oceanic Viruses of Uncultured Marine Group II Euryarchaeota. Curr Biol 2017; 27:1362-1368. [PMID: 28457865 PMCID: PMC5434244 DOI: 10.1016/j.cub.2017.03.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 12/16/2022]
Abstract
Marine group II Euryarchaeota (MG-II) are among the most abundant microbes in oceanic surface waters [1, 2, 3, 4]. So far, however, representatives of MG-II have not been cultivated, and no viruses infecting these organisms have been described. Here, we present complete genomes for three distinct groups of viruses assembled from metagenomic sequence datasets highly enriched for MG-II. These novel viruses, which we denote magroviruses, possess double-stranded DNA genomes of 65 to 100 kilobases in size that encode a structural module characteristic of head-tailed viruses and, unusually for archaeal and bacterial viruses, a nearly complete replication apparatus of apparent archaeal origin. The newly identified magroviruses are widespread and abundant and therefore are likely to be major ecological agents. A novel viral group, magroviruses, likely infects marine group II archaea Magroviruses are highly abundant in oceanic surface waters worldwide Magroviruses have linear, double-stranded DNA genomes of about 100 kilobases Magroviruses encode a near complete replication apparatus of apparent archaeal origin
Collapse
Affiliation(s)
- Alon Philosof
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - José Flores-Uribe
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Itai Sharon
- Migal Galilee Research Institute, Kiryat Shmona 11016, Israel; Tel Hai College, Upper Galilee 12210, Israel
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
27
|
Abstract
Tailed bacteriophages with genomes larger than 200 kbp are classified as Jumbo phages, and are rarely isolated by conventional methods. These phages are designated “jumbo” owing to their most notable features of a large phage virion and large genome size. However, in addition to these, jumbo phages also exhibit several novel characteristics that have not been observed for phages with smaller genomes, which differentiate jumbo phages in terms of genome organization, virion structure, progeny propagation, and evolution. In this review, we summarize available reports on jumbo phages and discuss the differences between jumbo phages and small-genome phages. We also discuss data suggesting that jumbo phages might have evolved from phages with smaller genomes by acquiring additional functional genes, and that these additional genes reduce the dependence of the jumbo phages on the host bacteria.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, PR, China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, PR, China
| |
Collapse
|
28
|
Marbouty M, Baudry L, Cournac A, Koszul R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. SCIENCE ADVANCES 2017; 3:e1602105. [PMID: 28232956 PMCID: PMC5315449 DOI: 10.1126/sciadv.1602105] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/09/2017] [Indexed: 05/05/2023]
Abstract
The biochemical activities of microbial communities, or microbiomes, are essential parts of environmental and animal ecosystems. The dynamics, balance, and effects of these communities are strongly influenced by phages present in the population. Being able to characterize bacterium-phage relationships is therefore essential to investigate these ecosystems to the full extent of their complexity. However, this task is currently limited by (i) the ability to characterize complete bacterial and viral genomes from a complex mix of species and (ii) the difficulty to assign phage sequences to their bacterial hosts. We show that both limitations can be circumvented using meta3C, an experimental and computational approach that exploits the physical contacts between DNA molecules to infer their proximity. In a single experiment, dozens of bacterial and phage genomes present in a complex mouse gut microbiota were assembled and scaffolded de novo. The phage genomes were then assigned to their putative bacterial hosts according to the physical contacts between the different DNA molecules, opening new perspectives for a comprehensive picture of the genomic structure of the gut flora. Therefore, this work holds far-reaching implications for human health studies aiming to bridge the virome to the microbiome.
Collapse
Affiliation(s)
- Martial Marbouty
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France
- CNRS, UMR 3525, 75015 Paris, France
| | - Lyam Baudry
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France
- CNRS, UMR 3525, 75015 Paris, France
| | - Axel Cournac
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France
- CNRS, UMR 3525, 75015 Paris, France
| | - Romain Koszul
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015 Paris, France
- CNRS, UMR 3525, 75015 Paris, France
- Corresponding author.
| |
Collapse
|
29
|
Qin K, Ji X, Zhang C, Ding Y, Kuang A, Zhang S, Zhang Q, Lin L, Wei Y. Isolation and characterization of wetland VSW-3, a novel lytic cold-active bacteriophage of Pseudomonas fluorescens. Can J Microbiol 2017; 63:110-118. [DOI: 10.1139/cjm-2016-0368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Wetlands are often called the “kidneys of the Earth” and contribute substantially to environmental improvement. Pseudomonas fluorescens is a major contaminant of milk products and causes the spoilage of refrigerated foods and fresh poultry. In this study, we isolated and characterized a lytic cold-active bacteriophage named VSW-3 together with P. fluorescens SW-3 cells from the Napahai wetland in China. Electron microscopy showed that VSW-3 had an icosahedral head (56 nm) and a tapering tail (20 nm × 12 nm) and a genome size of approximate 40 kb. On the basis of the top-scoring hits in the BLASTP analysis, VSW-3 showed a high degree of module similarity to the Pseudomonas phages Andromeda and Bf7. The latent and burst periods were 45 and 20 min, respectively, with an average burst size of 90 phage particles per infected cell. The pH and thermal stability of VSW-3 were also explored. The optimal pH was found to be 7.0 and the activity decreased rapidly when the temperature exceeded 60 °C. VSW-3 is a cold-active bacteriophage, hence, it is important to research its ability to prevent product contamination caused by P. fluorescens and to characterize its relationship with its host P. fluorescens in the future.
Collapse
Affiliation(s)
- Kunhao Qin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| | - Chunjing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| | - Yafang Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| | - Anxiu Kuang
- Department of Biology, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Shengting Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People’s Republic of China
| |
Collapse
|
30
|
Chertkov O, Armeev G, Uporov I, Legotsky S, Sykilinda N, Shaytan A, Klyachko N, Miroshnikov K. Dual Active Site in the Endolytic Transglycosylase gp144 of Bacteriophage phiKZ. Acta Naturae 2017; 9:81-87. [PMID: 28461978 PMCID: PMC5406664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/09/2022] Open
Abstract
Lytic transglycosylases are abundant peptidoglycan lysing enzymes that degrade the heteropolymers of bacterial cell walls in metabolic processes or in the course of a bacteriophage infection. The conventional catalytic mechanism of transglycosylases involves only the Glu or Asp residue. Endolysin gp144 of Pseudomonas aeruginosa bacteriophage phiKZ belongs to the family of Gram-negative transglycosylases with a modular composition and C-terminal location of the catalytic domain. Glu115 of gp144 performs the predicted role of a catalytic residue. However, replacement of this residue does not completely eliminate the activity of the mutant protein. Site-directed mutagenesis has revealed the participation of Tyr197 in the catalytic mechanism, as well as the presence of a second active site involving Glu178 and Tyr147. The existence of the dual active site was supported by computer modeling and monitoring of the molecular dynamics of the changes in the conformation and surface charge distribution as a consequence of point mutations.
Collapse
Affiliation(s)
- O.V. Chertkov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Mikluho-Maklaya str. 16/10, Moscow, 117997, Russia
| | - G.A. Armeev
- Lomonosov Moscow State University, Biology department, Leninskie Gory 1, bld. 12, Moscow, 119991 , Russia
| | - I.V. Uporov
- Lomonosov Moscow State University, Chemistry department, Leninskie Gory 1, bld. 11, Moscow, 119991, Russia
| | - S.A. Legotsky
- Lomonosov Moscow State University, Chemistry department, Leninskie Gory 1, bld. 11, Moscow, 119991, Russia
| | - N.N. Sykilinda
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Mikluho-Maklaya str. 16/10, Moscow, 117997, Russia
| | - A.K. Shaytan
- Lomonosov Moscow State University, Biology department, Leninskie Gory 1, bld. 12, Moscow, 119991 , Russia
| | - N.L. Klyachko
- Lomonosov Moscow State University, Chemistry department, Leninskie Gory 1, bld. 11, Moscow, 119991, Russia
| | - K.A. Miroshnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Mikluho-Maklaya str. 16/10, Moscow, 117997, Russia
| |
Collapse
|
31
|
Thomas JA, Benítez Quintana AD, Bosch MA, Coll De Peña A, Aguilera E, Coulibaly A, Wu W, Osier MV, Hudson AO, Weintraub ST, Black LW. Identification of Essential Genes in the Salmonella Phage SPN3US Reveals Novel Insights into Giant Phage Head Structure and Assembly. J Virol 2016; 90:10284-10298. [PMID: 27605673 PMCID: PMC5105663 DOI: 10.1128/jvi.01492-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/26/2016] [Indexed: 01/20/2023] Open
Abstract
Giant tailed bacterial viruses, or phages, such as Pseudomonas aeruginosa phage ϕKZ, have long genomes packaged into large, atypical virions. Many aspects of ϕKZ and related phage biology are poorly understood, mostly due to the fact that the functions of the majority of their proteins are unknown. We hypothesized that the Salmonella enterica phage SPN3US could be a useful model phage to address this gap in knowledge. The 240-kb SPN3US genome shares a core set of 91 genes with ϕKZ and related phages, ∼61 of which are virion genes, consistent with the expectation that virion complexity is an ancient, conserved feature. Nucleotide sequencing of 18 mutants enabled assignment of 13 genes as essential, information which could not have been determined by sequence-based searches for 11 genes. Proteome analyses of two SPN3US virion protein mutants with knockouts in 64 and 241 provided new insight into the composition and assembly of giant phage heads. The 64 mutant analyses revealed all the genetic determinants required for assembly of the SPN3US head and a likely head-tail joining role for gp64, and its homologs in related phages, due to the tailless-particle phenotype produced. Analyses of the mutation in 241, which encodes an RNA polymerase β subunit, revealed that without this subunit, no other subunits are assembled into the head, and enabled identification of a "missing" β' subunit domain. These findings support SPN3US as an excellent model for giant phage research, laying the groundwork for future analyses of their highly unusual virions, host interactions, and evolution. IMPORTANCE In recent years, there has been a paradigm shift in virology with the realization that extremely large viruses infecting prokaryotes (giant phages) can be found in many environments. A group of phages related to the prototype giant phage ϕKZ are of great interest due to their virions being among the most complex of prokaryotic viruses and their potential for biocontrol and phage therapy applications. Our understanding of the biology of these phages is limited, as a large proportion of their proteins have not been characterized and/or have been deemed putative without any experimental verification. In this study, we analyzed Salmonella phage SPN3US using a combination of genomics, genetics, and proteomics and in doing so revealed new information regarding giant phage head structure and assembly and virion RNA polymerase composition. Our findings demonstrate the suitability of SPN3US as a model phage for the growing group of phages related to ϕKZ.
Collapse
Affiliation(s)
- Julie A Thomas
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | | | - Martine A Bosch
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Adriana Coll De Peña
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Elizabeth Aguilera
- Natural and Physical Sciences, Baltimore City Community College, Baltimore, Maryland, USA
| | - Assitan Coulibaly
- Natural and Physical Sciences, Baltimore City Community College, Baltimore, Maryland, USA
| | - Weimin Wu
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael V Osier
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Susan T Weintraub
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lindsay W Black
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Zhang C, Zhang Z, Li J, Qin K, Wei Y, Zhang Q, Lin L, Ji X. Complete genome sequence of the lytic cold-active Pseudomonas fluorescens bacteriophage VSW-3 from Napahai plateau wetland. Virus Genes 2016; 53:146-150. [PMID: 27796639 DOI: 10.1007/s11262-016-1403-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022]
Abstract
The lytic cold-active bacteriophage VSW-3, belonging to the Podoviridae family and infecting the host Pseudomonas fluorescens SW-3, was isolated from the Napahai plateau wetland in China. With the development of sequencing technology, the study of Pseudomonas genomic diversity has increased; however, knowledge of cold-active phages infecting Pseudomonas is limited. The newly sequenced phage VSW-3 was classified based on virion morphology by transmission electron microscope. Sequence analysis revealed that the genome size was 40,556 bp with an overall GC content of 57.54 % and 46 open reading frames. The genome was organized into several modules containing genes for packaging, structural proteins, replication/transcription, and phage lysis. The sequence contained 45 potential promoters, 3 transcription terminators, and yet no tRNAs. This is the first report of cold-active Pseudomonas fluorescens bacteriophage genome sequencing.
Collapse
Affiliation(s)
- Chunjing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhongyao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jiankai Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kunhao Qin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
33
|
Delesalle VA, Tanke NT, Vill AC, Krukonis GP. Testing hypotheses for the presence of tRNA genes in mycobacteriophage genomes. BACTERIOPHAGE 2016; 6:e1219441. [PMID: 27738556 DOI: 10.1080/21597081.2016.1219441] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
The presence of tRNA genes in bacteriophages has been explained on the basis of codon usage (tRNA genes are retained in the phage genome if they correspond to codons more common in the phage than in its host) or amino acid usage (independent of codon, the amino acid corresponding to the retained tRNA gene is more common in the phage genome than in the bacterial host). The existence of a large database of sequenced mycobacteriophages, isolated on the common host Mycobacterium smegmatis, allows us to test the above hypotheses as well as explore other hypotheses for the presence of tRNA genes. Our analyses suggest that amino acid rather than codon usage better explains the presence of tRNA genes in mycobacteriophages. However, closely related phages that differ in the presence of tRNA genes in their genomes are capable of lysing the common bacterial host and do not differ in codon or amino acid usage. This suggests that the benefits of having tRNA genes may be associated with either growth in the host or the ability to infect more hosts (i.e., host range) rather than simply infecting a particular host.
Collapse
Affiliation(s)
| | - Natalie T Tanke
- Department of Biology, Gettysburg College , Gettysburg, PA, USA
| | - Albert C Vill
- Department of Biology, Gettysburg College , Gettysburg, PA, USA
| | - Greg P Krukonis
- Department of Biology, Bucknell University , Lewisburg, PA, USA
| |
Collapse
|
34
|
New GroEL-like chaperonin of bacteriophage OBP Pseudomonas fluorescens suppresses thermal protein aggregation in an ATP-dependent manner. Biochem J 2016; 473:2383-93. [DOI: 10.1042/bcj20160367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/31/2016] [Indexed: 11/17/2022]
Abstract
Recently, we discovered and studied the first virus-encoded chaperonin of bacteriophage EL Pseudomonas aeruginosa, gene product (gp) 146. In the present study, we performed bioinformatics analysis of currently predicted GroEL-like proteins encoded by phage genomes in comparison with cellular and mitochondrial chaperonins. Putative phage chaperonins share a low similarity and do not form a monophyletic group; nevertheless, they are closer to bacterial chaperonins in the phylogenetic tree. Experimental investigation of putative GroEL-like chaperonin proteins has been continued by physicochemical and functional characterization of gp246 encoded by the genome of Pseudomonas fluorescens bacteriophage OBP. Unlike the more usual double-ring architecture of chaperonins, including the EL gp146, the recombinant gp246 produced by Escherichia coli cells has been purified as a single heptameric ring. It possesses ATPase activity and does not require a co-chaperonin for its function. In vitro experiments demonstrated that gp246 is able to suppress the thermal protein inactivation and aggregation in an ATP-dependent manner, thus indicating chaperonin function. Single-particle electron microscopy analysis revealed the different conformational states of OBP chaperonin, depending on the bound nucleotide.
Collapse
|
35
|
Farkašovská J, Godány A. Characterization of the N-Terminal Catalytic Domain of Lytµ1/6, an Endolysin from Streptomyces aureofaciens Phage µ1/6. Curr Microbiol 2016; 73:602-10. [DOI: 10.1007/s00284-016-1100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/10/2016] [Indexed: 11/29/2022]
|
36
|
Lavysh D, Sokolova M, Minakhin L, Yakunina M, Artamonova T, Kozyavkin S, Makarova KS, Koonin EV, Severinov K. The genome of AR9, a giant transducing Bacillus phage encoding two multisubunit RNA polymerases. Virology 2016; 495:185-96. [PMID: 27236306 DOI: 10.1016/j.virol.2016.04.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 11/17/2022]
Abstract
Bacteriophage AR9 and its close relative PBS1 have been extensively used to construct early Bacillus subtilis genetic maps. Here, we present the 251,042bp AR9 genome, a linear, terminally redundant double-stranded DNA containing deoxyuridine instead of thymine. Multiple AR9 genes are interrupted by non-coding sequences or sequences encoding putative endonucleases. We show that these sequences are group I and group II self-splicing introns. Eight AR9 proteins are homologous to fragments of bacterial RNA polymerase (RNAP) subunits β/β'. These proteins comprise two sets of paralogs of RNAP largest subunits, with each paralog encoded by two disjoint phage genes. Thus, AR9 is a phiKZ-related giant phage that relies on two multisubunit viral RNAPs to transcribe its genome independently of host transcription apparatus. Purification of one of PBS1/AR9 RNAPs has been reported previously, which makes AR9 a promising object for further studies of RNAP evolution, assembly and mechanism.
Collapse
Affiliation(s)
- Daria Lavysh
- Institute of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Maria Sokolova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia.
| | - Leonid Minakhin
- Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| | - Maria Yakunina
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| | - Tatjana Artamonova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| | | | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Konstantin Severinov
- Institute of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia; Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia; Waksman Institute, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
37
|
Bhunchoth A, Blanc-Mathieu R, Mihara T, Nishimura Y, Askora A, Phironrit N, Leksomboon C, Chatchawankanphanich O, Kawasaki T, Nakano M, Fujie M, Ogata H, Yamada T. Two asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages. Virology 2016; 494:56-66. [PMID: 27081857 DOI: 10.1016/j.virol.2016.03.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/26/2022]
Abstract
Jumbo phages infecting Ralstonia solanacearum were isolated in Thailand (ϕRSL2) and Japan (ϕRSF1). They were similar regarding virion morphology, genomic arrangement, and host range. Phylogenetic and proteomic tree analyses demonstrate that the ϕRSL2 and ϕRSF1 belong to a group of evolutionary related phages, including Pseudomonas phages ϕKZ, 201ϕ2-1 and all previously described ϕKZ-related phages. Despite conserved genomic co-linearity between the ϕRSL2 and ϕRSF1, they differ in protein separation patterns. A major difference was seen in the detection of virion-associated-RNA polymerase subunits. All β- and β'-subunits were detected in ϕRSF1, but one β'-subunit was undetected in ϕRSL2. Furthermore, ϕRSF1 infected host cells faster (latent period: 60 and 150min for ϕRSF1 and ϕRSL2, respectively) and more efficiently than ϕRSL2. Therefore, the difference in virion-associated-RNA polymerase may affect infection efficiency. Finally, we show that ϕRSF1 is able to inhibit bacterial wilt progression in tomato plants.
Collapse
Affiliation(s)
- Anjana Bhunchoth
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand; Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
| | - Romain Blanc-Mathieu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomoko Mihara
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yosuke Nishimura
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ahmed Askora
- Department of Microbiology and Botany, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Namthip Phironrit
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand
| | - Chalida Leksomboon
- Department of Plant Pathology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Orawan Chatchawankanphanich
- Plant Research Laboratory, National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani 12120, Thailand
| | - Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Miyako Nakano
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.
| |
Collapse
|
38
|
Molugu SK, Hildenbrand ZL, Morgan DG, Sherman MB, He L, Georgopoulos C, Sernova NV, Kurochkina LP, Mesyanzhinov VV, Miroshnikov KA, Bernal RA. Ring Separation Highlights the Protein-Folding Mechanism Used by the Phage EL-Encoded Chaperonin. Structure 2016; 24:537-546. [PMID: 26996960 DOI: 10.1016/j.str.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Chaperonins are ubiquitous, ATP-dependent protein-folding molecular machines that are essential for all forms of life. Bacteriophage φEL encodes its own chaperonin to presumably fold exceedingly large viral proteins via profoundly different nucleotide-binding conformations. Our structural investigations indicate that ATP likely binds to both rings simultaneously and that a misfolded substrate acts as the trigger for ATP hydrolysis. More importantly, the φEL complex dissociates into two single rings resulting from an evolutionarily altered residue in the highly conserved ATP-binding pocket. Conformational changes also more than double the volume of the single-ring internal chamber such that larger viral proteins are accommodated. This is illustrated by the fact that φEL is capable of folding β-galactosidase, a 116-kDa protein. Collectively, the architecture and protein-folding mechanism of the φEL chaperonin are significantly different from those observed in group I and II chaperonins.
Collapse
Affiliation(s)
- Sudheer K Molugu
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | - David Gene Morgan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lilin He
- Neutron Scattering Science Division, Oak Ridge National Laboratory, C23, Building 7964K, Oak Ridge, TN 37831-6430, USA
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah, 4100 EEJMRB, Salt Lake City, UT 84112-5650, USA
| | - Natalia V Sernova
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny Pereulok, 19, Moscow 127994, Russia
| | - Lidia P Kurochkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Vadim V Mesyanzhinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ricardo A Bernal
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
39
|
Comparative genomic and morphological analyses of Listeria phages isolated from farm environments. Appl Environ Microbiol 2015; 80:4616-25. [PMID: 24837381 DOI: 10.1128/aem.00720-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The genus Listeria is ubiquitous in the environment and includes the globally important food-borne pathogen Listeria monocytogenes. While the genomic diversity of Listeria has been well studied, considerably less is known about the genomic and morphological diversity of Listeria bacteriophages. In this study, we sequenced and analyzed the genomes of 14 Listeria phages isolated mostly from New York dairy farm environments as well as one related Enterococcus faecalis phage to obtain information on genome characteristics and diversity. We also examined 12 of the phages by electron microscopy to characterize their morphology. These Listeria phages, based on gene orthology and morphology, together with previously sequenced Listeria phages could be classified into five orthoclusters, including one novel orthocluster. One orthocluster (orthocluster I) consists of large genome (~135-kb) myoviruses belonging to the genus “Twort-like viruses,” three orthoclusters (orthoclusters II to IV) contain small-genome (36- to 43-kb) siphoviruses with icosahedral heads, and the novel orthocluster V contains medium-sized-genome (~66-kb) siphoviruses with elongated heads. A novel orthocluster (orthocluster VI) of E. faecalis phages, with medium-sized genomes (~56 kb), was identified, which grouped together and shares morphological features with the novel Listeria phage orthocluster V. This new group of phages (i.e., orthoclusters V and VI) is composed of putative lytic phages that may prove to be useful in phage-based applications for biocontrol, detection, and therapeutic purposes.
Collapse
|
40
|
Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1. Virology 2015; 482:225-33. [PMID: 25880114 DOI: 10.1016/j.virol.2015.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/30/2014] [Accepted: 03/22/2015] [Indexed: 11/24/2022]
Abstract
Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of the P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES.
Collapse
|
41
|
Carda-Diéguez M, Mizuno CM, Ghai R, Rodriguez-Valera F, Amaro C. Replicating phages in the epidermal mucosa of the eel (Anguilla anguilla). Front Microbiol 2015; 6:3. [PMID: 25688234 PMCID: PMC4310352 DOI: 10.3389/fmicb.2015.00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/03/2015] [Indexed: 11/13/2022] Open
Abstract
In this work, we used the eel (Anguilla anguilla) as an animal model to test the hypothesis of Barr et al. (2013a,b) about the putative role of the epidermal mucosa as a phage enrichment layer. To this end, we analyzed the microbial content of the skin mucus of wild and farmed eels by using a metagenomic approach. We found a great abundance of replicating phage genomes (concatemers) in all the samples. They were assembled in four complete genomes of three Myovirus and one Podovirus. We also found evidences that ΦKZ and Podovirus phages could be part of the resident microbiota associated to the eel mucosal surface and persist on them over the time. Moreover, the viral abundance estimated by epiflorescent counts and by metagenomic recruitment from eel mucosa was higher than that of the surrounding water. Taken together, our results support the hypothesis that claims a possible role of phages in the animal mucus as agents controlling bacterial populations, including pathogenic species, providing a kind of innate immunity.
Collapse
Affiliation(s)
| | - Carolina Megumi Mizuno
- Evolutionary Genomics Group, Department de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante Spain
| | - Rohit Ghai
- Evolutionary Genomics Group, Department de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Department de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante Spain
| | - Carmen Amaro
- ERI Biotecmed, University of Valencia, Valencia Spain
| |
Collapse
|
42
|
Semenyuk PI, Orlov VN, Kurochkina LP. Effect of chaperonin encoded by gene 146 on thermal aggregation of lytic proteins of bacteriophage EL Pseudomonas aeruginosa. BIOCHEMISTRY (MOSCOW) 2015; 80:172-9. [DOI: 10.1134/s0006297915020042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Krylov V, Shaburova O, Pleteneva E, Krylov S, Kaplan A, Burkaltseva M, Polygach O, Chesnokova E. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol Sin 2015; 30:33-44. [PMID: 25680443 PMCID: PMC8200895 DOI: 10.1007/s12250-014-3546-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/30/2015] [Indexed: 11/27/2022] Open
Abstract
The emergence of multidrug-resistant bacterial pathogens forced us to consider the phage therapy as one of the possible alternative approaches to treatment. The purpose of this paper is to consider the conditions for the safe, long-term use of phage therapy against various infections caused by Pseudomonas aeruginosa. We describe the selection of the most suitable phages, their most effective combinations and some approaches for the rapid recognition of phages unsuitable for use in therapy. The benefits and disadvantages of the various different approaches to the preparation of phage mixtures are considered, together with the specific conditions that are required for the safe application of phage therapy in general hospitals and the possibilities for the development of personalized phage therapy.
Collapse
Affiliation(s)
- Victor Krylov
- I.I. Mechnikov Research Institute for Vaccines & Sera, RAMS, Moscow, 105064, Russian,
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Bacteria Pseudomonas aeruginosa, being opportunistic pathogens, are the major cause of nosocomial infections and, in some cases, the primary cause of death. They are virtually untreatable with currently known antibiotics. Phage therapy is considered as one of the possible approaches to the treatment of P. aeruginosa infections. Difficulties in the implementation of phage therapy in medical practice are related, for example, to the insufficient number and diversity of virulent phages that are active against P. aeruginosa. Results of interaction of therapeutic phages with bacteria in different conditions and environments are studied insufficiently. A little is known about possible interactions of therapeutic phages with resident prophages and plasmids in clinical strains in the foci of infections. This chapter highlights the different approaches to solving these problems and possible ways to expand the diversity of therapeutic P. aeruginosa phages and organizational arrangements (as banks of phages) to ensure long-term use of phages in the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Victor N Krylov
- Mechnikov Research Institute for Vaccines & Sera, Russian Academy of Medical Sciences, Moscow, Russia.
| |
Collapse
|
45
|
Development of giant bacteriophage ϕKZ is independent of the host transcription apparatus. J Virol 2014; 88:10501-10. [PMID: 24965474 DOI: 10.1128/jvi.01347-14] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa bacteriophage ϕKZ is the type representative of the giant phage genus, which is characterized by unusually large virions and genomes. By unraveling the transcriptional map of the ∼ 280-kb ϕKZ genome to single-nucleotide resolution, we combine 369 ϕKZ genes into 134 operons. Early transcription is initiated from highly conserved AT-rich promoters distributed across the ϕKZ genome and located on the same strand of the genome. Early transcription does not require phage or host protein synthesis. Transcription of middle and late genes is dependent on protein synthesis and mediated by poorly conserved middle and late promoters. Unique to ϕKZ is its ability to complete its infection in the absence of bacterial RNA polymerase (RNAP) enzyme activity. We propose that transcription of the ϕKZ genome is performed by the consecutive action of two ϕKZ-encoded, noncanonical multisubunit RNAPs, one of which is packed within the virion, another being the product of early genes. This unique, rifampin-resistant transcriptional machinery is conserved within the diverse giant phage genus. IMPORTANCE The data presented in this paper offer, for the first time, insight into the complex transcriptional scheme of giant bacteriophages. We show that Pseudomonas aeruginosa giant phage ϕKZ is able to infect and lyse its host cell and produce phage progeny in the absence of functional bacterial transcriptional machinery. This unique property can be attributed to two phage-encoded putative RNAP enzymes, which contain very distant homologues of bacterial β and β'-like RNAP subunits.
Collapse
|
46
|
Phylogenomic network and comparative genomics reveal a diverged member of the ΦKZ-related group, marine vibrio phage ΦJM-2012. J Virol 2013; 87:12866-78. [PMID: 24067958 DOI: 10.1128/jvi.02656-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are the largest reservoir of genetic diversity. Here we describe the novel phage ΦJM-2012. This natural isolate from marine Vibrio cyclitrophicus possesses very few gene contents relevant to other well-studied marine Vibrio phages. To better understand its evolutionary history, we built a mathematical model of pairwise relationships among 1,221 phage genomes, in which the genomes (nodes) are linked by edges representing the normalized number of shared orthologous protein families. This weighted network revealed that ΦJM-2012 was connected to only five members of the Pseudomonas ΦKZ-like phage family in an isolated network, strongly indicating that it belongs to this phage group. However, comparative genomic analyses highlighted an almost complete loss of colinearity with the ΦKZ-related genomes and little conservation of gene order, probably reflecting the action of distinct evolutionary forces on the genome of ΦJM-2012. In this phage, typical conserved core genes, including six RNA polymerase genes, were frequently displaced and the hyperplastic regions were rich in both unique genes and predicted unidirectional promoters with highly correlated orientations. Further, analysis of the ΦJM-2012 genome showed that segments of the conserved N-terminal parts of ΦKZ tail fiber paralogs exhibited evidence of combinatorial assortment, having switched transcriptional orientation, and there was recruitment and/or structural changes among phage endolysins and tail spike protein. Thus, this naturally occurring phage appears to have branched from a common ancestor of the ΦKZ-related groups, showing a distinct genomic architecture and unique genes that most likely reflect adaptation to its chosen host and environment.
Collapse
|
47
|
Erb ML, Pogliano J. Cytoskeletal proteins participate in conserved viral strategies across kingdoms of life. Curr Opin Microbiol 2013; 16:786-9. [PMID: 24055040 DOI: 10.1016/j.mib.2013.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/18/2013] [Indexed: 12/18/2022]
Abstract
The discovery of tubulin-like cytoskeletal proteins carried on the genomes of bacteriophages that are actively used for phage propagation during both the lytic and lysogenic cycle have revealed that there at least two ways that viruses can utilize a cytoskeleton; co-opt the host cytoskeleton or bring their own homologues. Either strategy underscores the deep evolutionary relationship between viruses and cytoskeletal proteins and points to a conservation of viral strategies that crosses the kingdoms of life. Here we review some of the most recent discoveries about tubulin cytoskeletal elements encoded by phages and compare them to some of the strategies utilized by the gammaherpesvirues of mammalian cells.
Collapse
Affiliation(s)
- Marcella L Erb
- University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | | |
Collapse
|
48
|
Mutational analysis of the Pseudomonas aeruginosa myovirus KZ morphogenetic protease gp175. J Virol 2013; 87:8713-25. [PMID: 23740980 DOI: 10.1128/jvi.01008-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa myovirus KZ has a 270-kb genome within a T=27 icosahedral capsid that contains a large, unusual, and structurally well-defined protein cylindrical inner body (IB) spanning its interior. Proteolysis forms a pivotal stage in KZ head and IB morphogenesis, with the protease gp175 cleaving at least 19 of 49 different head proteins, including the major capsid protein and five major structural IB proteins. Here we show that the purified mature form of gp175 is active and cleaves purified IB structural proteins gp93 and gp89. Expression vector synthesis and purification of the zymogen/precursor yielded an active, mature-length protease, showing independent C-terminal gp175 self-cleavage autoactivation. Mutation of either the predicted catalytic serine or histidine inactivated mature gp175, supporting its classification as a serine protease and representing the first such direct biochemical demonstration with purified protease and substrate proteins for any phage protease. These mutations also blocked self-cleavage of the precursor while allowing intermolecular gp175 processing. To confirm the cleavage specificity of gp175, we mutated three cleavage sites in gp93, which blocked proteolysis at these sites. The N-terminal propeptide of gp93 was shown to undergo more extensive proteolysis than previously identified. We found that proteolysis in gp93 progressed from the N to C terminus, while blocking cleavage sites slowed but did not eliminate downstream proteolysis. These findings were shown by informatics to be relevant to the head morphogenesis of numbers of other related IB-containing giant phages as well as to T4 and herpesviruses, which have homologous proteases.
Collapse
|
49
|
Krylov V, Shaburova O, Krylov S, Pleteneva E. A genetic approach to the development of new therapeutic phages to fight pseudomonas aeruginosa in wound infections. Viruses 2012; 5:15-53. [PMID: 23344559 PMCID: PMC3564109 DOI: 10.3390/v5010015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/03/2012] [Accepted: 12/12/2012] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is a frequent participant in wound infections. Emergence of multiple antibiotic resistant strains has created significant problems in the treatment of infected wounds. Phage therapy (PT) has been proposed as a possible alternative approach. Infected wounds are the perfect place for PT applications, since the basic condition for PT is ensured; namely, the direct contact of bacteria and their viruses. Plenty of virulent ("lytic") and temperate ("lysogenic") bacteriophages are known in P. aeruginosa. However, the number of virulent phage species acceptable for PT and their mutability are limited. Besides, there are different deviations in the behavior of virulent (and temperate) phages from their expected canonical models of development. We consider some examples of non-canonical phage-bacterium interactions and the possibility of their use in PT. In addition, some optimal approaches to the development of phage therapy will be discussed from the point of view of a biologist, considering the danger of phage-assisted horizontal gene transfer (HGT), and from the point of view of a surgeon who has accepted the Hippocrates Oath to cure patients by all possible means. It is also time now to discuss the possible approaches in international cooperation for the development of PT. We think it would be advantageous to make phage therapy a kind of personalized medicine.
Collapse
Affiliation(s)
- Victor Krylov
- Laboratory for Bacteriophages Genetics. Mechnikov Research Institute of Vaccines and Sera, 5a Maliy Kazenniy per., Moscow, Russia.
| | | | | | | |
Collapse
|
50
|
Glukhov AS, Krutilina AI, Shlyapnikov MG, Severinov K, Lavysh D, Kochetkov VV, McGrath JW, de Leeuwe C, Shaburova OV, Krylov VN, Akulenko NV, Kulakov LA. Genomic analysis of Pseudomonas putida phage tf with localized single-strand DNA interruptions. PLoS One 2012; 7:e51163. [PMID: 23236447 PMCID: PMC3517423 DOI: 10.1371/journal.pone.0051163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
The complete sequence of the 46,267 bp genome of the lytic bacteriophage tf specific to Pseudomonas putida PpG1 has been determined. The phage genome has two sets of convergently transcribed genes and 186 bp long direct terminal repeats. The overall genomic architecture of the tf phage is similar to that of the previously described Pseudomonas aeruginosa phages PaP3, LUZ24 and phiMR299-2, and 39 out of the 72 products of predicted tf open reading frames have orthologs in these phages. Accordingly, tf was classified as belonging to the LUZ24-like bacteriophage group. However, taking into account very low homology levels between tf DNA and that of the other phages, tf should be considered as an evolutionary divergent member of the group. Two distinguishing features not reported for other members of the group were found in the tf genome. Firstly, a unique end structure – a blunt right end and a 4-nucleotide 3′-protruding left end – was observed. Secondly, 14 single-chain interruptions (nicks) were found in the top strand of the tf DNA. All nicks were mapped within a consensus sequence 5′-TACT/RTGMC-3′. Two nicks were analyzed in detail and were shown to be present in more than 90% of the phage population. Although localized nicks were previously found only in the DNA of T5-like and phiKMV-like phages, it seems increasingly likely that this enigmatic structural feature is common to various other bacteriophages.
Collapse
Affiliation(s)
- Anatoly S. Glukhov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | | | - Michael G. Shlyapnikov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Konstantin Severinov
- Institutes of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Daria Lavysh
- Institutes of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir V. Kochetkov
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - John W. McGrath
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Colin de Leeuwe
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Olga V. Shaburova
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, RAMS, Moscow, Russia
| | - Victor N. Krylov
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, RAMS, Moscow, Russia
| | - Natalia V. Akulenko
- Institutes of Molecular Genetics and Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Leonid A. Kulakov
- School of Biological Sciences, The Queen’s University of Belfast, Belfast, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|