1
|
Ford-Siltz LA, Tohma K, Kihn K, Kendra JA, Deredge D, Wintrode P, Gao Y, Parra GI. Characterization of cross-reactive, non-neutralizing monoclonal antibodies against a pandemic GII.4 norovirus variant. Microbiol Spectr 2024:e0114324. [PMID: 39470287 DOI: 10.1128/spectrum.01143-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
Antibodies are thought to play a major role in protection against human norovirus infection. Mouse humoral responses closely mimic those of humans; thus, mouse models are used to characterize norovirus epitopes on the major viral capsid protein, VP1. We have developed a panel of mouse monoclonal antibodies (mAbs) produced against the last pandemic variant to emerge, Sydney 2012. While most mAbs (25/44) were mapped to variable antigenic sites on VP1, 19 of the mAbs were cross-reactive against multiple genotypes or GII.4 variants. Most (12/19) of the cross-reactive mAbs bound to the Shell domain and were cross-reactive with different GII noroviruses. Interestingly, mAb 30A11 exhibited cross-reactivity against all tested norovirus genotypes (GI, GII, GIV, and GIX). This mAb was mapped to a highly conserved region of the Shell domain (51PIDPWII57) using peptide ELISA and immunofluorescence. Of those mapping to the Protruding (P) domain, two (19C10 and 14B11) showed cross-reactivity with GII noroviruses. Using hydrogen-deuterium exchange mass spectrometry, we mapped 19C10 to a conserved region of the P domain near the P/Shell interface, which explains its cross-reactivity with different GII noroviruses and lack of histo-blood group antigen-blocking activity. Binding and mutational analyses showed that residues 518, 519, and 525 are important for 19C10 and 14B11 epitope recognition. While the antibodies described here are mostly non-neutralizing, they can be useful tools for research and diagnostics of noroviruses. The role of non-neutralizing, cross-reactive antibodies targeting different areas of the viral capsid merits further research to facilitate our understanding of immunity to norovirus infection and disease. IMPORTANCE To gain insights into the overall immune responses to human norovirus, we characterized non-neutralizing, cross-reactive monoclonal antibodies (mAbs) developed against a pandemic GII.4 norovirus. We determined the binding epitope of an antibody that exhibited cross-reactivity against all tested noroviruses, which makes it a useful tool for research and diagnostics. The epitope of two additional non-neutralizing mAbs was mapped to a less conserved region on the viral capsid protein, explaining their cross-reactivity patterns. Often overlooked, the role of non-neutralizing, cross-reactive mAbs merits further research to facilitate our understanding of immunity to norovirus infection and disease.
Collapse
Affiliation(s)
| | - Kentaro Tohma
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, USA
| | - Kyle Kihn
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Joseph A Kendra
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, USA
| | - Daniel Deredge
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Patrick Wintrode
- University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Yamei Gao
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, USA
| | - Gabriel I Parra
- Division of Viral Products, CBER, FDA, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Huo Y, Ma J, Liu J. Identification of a GII.6 norovirus blockade antibody epitope. Virus Res 2023; 334:199168. [PMID: 37392840 PMCID: PMC10410597 DOI: 10.1016/j.virusres.2023.199168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Noroviruses (NoVs) are the leading agent that causes acute viral gastroenteritis worldwide. Sporadic cases of GII.6 NoV have been reported primarily in addition to occasional outbreaks. Using the major capsid protein VP1 of GII.6 NoV derived from three distinct clusters, we demonstrated three blockade monoclonal antibodies (mAbs, 1F7, 1F11, and 2B6) generated previously exhibited cluster-specific binding effects. Combining sequence alignment and blocking immune epitopes, we sequentially designed a total of 18 mutant proteins containing one, two, or three mutations, or swapped regions. Indirect enzyme-linked immunosorbent assay (ELISA) demonstrated that the three blocking mAbs lost or showed significantly reduced binding for H383Y, D387N, V390D, and T391D mutant proteins. Combining data from mutant proteins with swapping regions and point mutations, the binding region of the three mAbs was mapped to residues 380-395. Sequence alignment of this region showed within-cluster conservation and between-cluster variations, further strengthening the idea of blockade epitope-mediated evolution of NoV.
Collapse
Affiliation(s)
- Yuqi Huo
- The Sixth People's Hospital of Zhengzhou, Zhengzhou 450000, China.
| | - Jie Ma
- The Sixth People's Hospital of Zhengzhou, Zhengzhou 450000, China
| | - Jinjin Liu
- The Sixth People's Hospital of Zhengzhou, Zhengzhou 450000, China
| |
Collapse
|
3
|
Su L, Huang W, Neill FH, Estes MK, Atmar RL, Palzkill T. Mapping human norovirus antigens during infection reveals the breadth of the humoral immune response. NPJ Vaccines 2023; 8:87. [PMID: 37280322 PMCID: PMC10242225 DOI: 10.1038/s41541-023-00683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Human noroviruses (HuNoV) are the leading cause of acute gastroenteritis worldwide. The humoral immune response plays an important role in clearing HuNoV infections and elucidating the antigenic landscape of HuNoV during an infection can shed light on antibody targets to inform vaccine design. Here, we utilized Jun-Fos-assisted phage display of a HuNoV genogroup GI.1 genomic library and deep sequencing to simultaneously map the epitopes of serum antibodies of six individuals infected with GI.1 HuNoV. We found both unique and common epitopes that were widely distributed among both nonstructural proteins and the major capsid protein. Recurring epitope profiles suggest immunodominant antibody footprints among these individuals. Analysis of sera collected longitudinally from three individuals showed the presence of existing epitopes in the pre-infection sera, suggesting these individuals had prior HuNoV infections. Nevertheless, newly recognized epitopes surfaced seven days post-infection. These new epitope signals persisted by 180 days post-infection along with the pre-infection epitopes, suggesting a persistent production of antibodies recognizing epitopes from previous and new infections. Lastly, analysis of a GII.4 genotype genomic phage display library with sera of three persons infected with GII.4 virus revealed epitopes that overlapped with those identified in GI.1 affinity selections, suggesting the presence of GI.1/GII.4 cross-reactive antibodies. The results demonstrate that genomic phage display coupled with deep sequencing can characterize HuNoV antigenic landscapes from complex polyclonal human sera to reveal the timing and breadth of the human humoral immune response to infection.
Collapse
Affiliation(s)
- Lynn Su
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wanzhi Huang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Minimal Antigenic Evolution after a Decade of Norovirus GII.4 Sydney_2012 Circulation in Humans. J Virol 2023; 97:e0171622. [PMID: 36688654 PMCID: PMC9973034 DOI: 10.1128/jvi.01716-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Norovirus is a major human pathogen that can cause severe gastroenteritis in vulnerable populations. The extensive viral diversity presented by human noroviruses constitutes a major roadblock for the development of effective vaccines. In addition to the large number of genotypes, antigenically distinct variants of GII.4 noroviruses have chronologically emerged over the last 3 decades. The last variant to emerge, Sydney_2012, has been circulating at high incidence worldwide for over a decade. We analyzed 1449 capsid sequences from GII.4 Sydney_2012 viruses to determine genetic changes indicative of antigenic diversification. Phylogenetic analyses show that Sydney_2012 viruses scattered within the tree topology with no single cluster dominating during a given year or geographical location. Fourteen residues presented high variability, 7 of which mapped to 4 antigenic sites. Notably, ~52% of viruses presented mutations at 2 or more antigenic sites. Mutational patterns showed that residues 297 and 372, which map to antigenic site A, changed over time. Virus-like particles (VLPs) developed from wild-type Sydney_2012 viruses and engineered to display all mutations detected at antigenic sites were tested against polyclonal sera and monoclonal antibodies raised against Sydney_2012 and Farmington_Hills_2002 VLPs. Minimal changes in reactivity were detected with polyclonal sera and only 4 MAbs lost binding, with all mapping to antigenic site A. Notably, reversion of residues from Sydney_2012 reconstituted epitopes from ancestral GII.4 variants. Overall, this study demonstrates that, despite circulating for over a decade, Sydney_2012 viruses present minimal antigenic diversification and provides novel insights on the diversification of GII.4 noroviruses that could inform vaccine design. IMPORTANCE GII.4 noroviruses are the major cause of acute gastroenteritis in all age groups. This predominance has been attributed to the continued emergence of phylogenetically discrete variants that escape immune responses to previous infections. The last GII.4 variant to emerge, Sydney_2012, has been circulating at high incidence for over a decade, raising the question of whether this variant is undergoing antigenic diversification without presenting a major distinction at the phylogenetic level. Sequence analyses that include >1400 capsid sequences from GII.4 Sydney_2012 showed changes in 4 out of the 6 major antigenic sites. Notably, while changes were detected in one of the most immunodominant sites over time, these resulted in minimal changes in the antigenic profile of these viruses. This study provides new insights on the mechanism governing the antigenic diversification of GII.4 norovirus that could help in the development of cross-protective vaccines to human noroviruses.
Collapse
|
5
|
Tohma K, Ushijima H. [Molecular epidemiology and evolution of human noroviruses]. Uirusu 2023; 73:17-32. [PMID: 39343517 DOI: 10.2222/jsv.73.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Noroviruses are the most common viral cause of acute gastroenteritis after the introduction of rotavirus vaccines. Norovirus infection can cause severe symptoms in vulnerable populations including young children and the elderly. Thus, it is still a leading cause of death from diarrhea in children in developing countries. Recent advancement of genomics platforms facilitated understanding of the epidemiology of norovirus, while the whole picture of norovirus diversity is still undetermined. Currently, there are no approved vaccines for norovirus, but state-of-the-art norovirus cultivation systems could elucidate the antigenic diversity of this fast-evolving virus. In this review, we will summarize the historical and latest findings of norovirus epidemiology, diversity, and evolution.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, US Food and Drug Administration, Maryland, Unites States
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Chen Y, Wu Q, Li G, Li H, Li W, Li H, Qin L, Zheng H, Liu C, Hou M, Liu L. Identification and genetic characterization of a minor norovirus genotype, GIX.1[GII.P15], from China. BMC Genom Data 2022; 23:50. [PMID: 35794533 PMCID: PMC9261040 DOI: 10.1186/s12863-022-01066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background Human noroviruses, single-stranded RNA viruses in the family Caliciviridae, are a leading cause of nonbacterial acute gastroenteritis in people of all ages worldwide. Despite three decades of genomic sequencing and epidemiological norovirus studies, full-length genome analyses of the non-epidemic or minor norovirus genotypes are rare and genomic regions other than ORF2 and 3′-end of ORF1 have been largely understudied, which hampers a better understanding of the evolutionary mechanisms of emergence of new strains. In this study, we detected a rare norovirus genotype, GIX.1[GII.P15], in a vomit sample of a 60 year old woman with acute gastroenteritis using Raji cells and sequenced the complete genome. Results Using electron microscopy, a morphology of spherical and lace-like appearance of norovirus virus particles with a diameter of approximately 30 nm were observed. Phylogenetic analysis of VP1 and the RdRp region indicated that the KMN1 strain could be genotyped as GIX.1[GII.P15]. In addition, the VP1 region of KMN1 strain had 94.15% ± 3.54% percent nucleotide identity (PNI) compared to 26 genomic sequences available in GenBank, indicating a higher degree similarity between KMN1 and other GIX.1[GII.P15] strains. Further analysis of the full genome sequence of KMN1 strain showed that a total of 96 nucleotide substitutions (63 in ORF1, 25 in ORF2, and 8 in ORF3) were found across the genome compared with the consensus sequence of GIX.1[GII.P15] genome, and 6 substitutions caused amino acid changes (4 in ORF1, 1 in ORF2, and 1 in ORF3). However, only one nucleotide substitution results in the amino acid change (P302S) in the VP1 protein and the site was located near one of the predicted conformational B epitopes on the dimer structure. Conclusions The genomic information of the new GIX.1[GII.P15] strain KMN1, which was identified in Kunming, China could provide helpful insights for the study of the genetic evolution of the virus. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01066-6.
Collapse
|
7
|
Ford-Siltz LA, Tohma K, Alvarado GS, Kendra JA, Pilewski KA, Crowe JE, Parra GI. Cross-reactive neutralizing human monoclonal antibodies mapping to variable antigenic sites on the norovirus major capsid protein. Front Immunol 2022; 13:1040836. [DOI: 10.3389/fimmu.2022.1040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human noroviruses are the major viral cause of acute gastroenteritis around the world. Although norovirus symptoms are in most cases mild and self-limited, severe and prolonged symptoms can occur in the elderly and in immunocompromised individuals. Thus, there is a great need for the development of specific therapeutics that can help mitigate infection. In this study, we sought to characterize a panel of human monoclonal antibodies (mAbs; NORO-123, -115, -273A, -263, -315B, and -250B) that showed carbohydrate blocking activity against the current pandemic variant, GII.4 Sydney 2012. All antibodies tested showed potent neutralization against GII.4 Sydney virus in human intestinal enteroid culture. While all mAbs recognized only GII.4 viruses, they exhibited differential binding patterns against a panel of virus-like particles (VLPs) representing major and minor GII.4 variants spanning twenty-five years. Using mutant VLPs, we mapped five of the mAbs to variable antigenic sites A (NORO-123, -263, -315B, and -250B) or C (NORO-115) on the major capsid protein. Those mapping to the antigenic site A showed blocking activity against multiple variants dating back to 1987, with one mAb (NORO-123) showing reactivity to all variants tested. NORO-115, which maps to antigenic site C, showed reactivity against multiple variants due to the low susceptibility for mutations presented by naturally-occurring variants at the proposed binding site. Notably, we show that cross-blocking and neutralizing antibodies can be elicited against variable antigenic sites. These data provide new insights into norovirus immunity and suggest potential for the development of cross-protective vaccines and therapeutics.
Collapse
|
8
|
Ottosson L, Hagbom M, Svernlöv R, Nyström S, Carlsson B, Öman M, Ström M, Svensson L, Nilsdotter-Augustinsson Å, Nordgren J. Long Term Norovirus Infection in a Patient with Severe Common Variable Immunodeficiency. Viruses 2022; 14:v14081708. [PMID: 36016330 PMCID: PMC9413339 DOI: 10.3390/v14081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Norovirus is the most common cause of acute non-bacterial gastroenteritis. Immunocompromised patients can become chronically infected, with or without symptoms. In Europe, common variable immunodeficiency (CVID) is one of the most common inborn errors of immunity. A potentially severe complication is CVID-associated enteropathy, a disorder with similar histopathology to celiac disease. Studies suggest that chronic norovirus infection may be a contributor to CVID enteropathy, and that the antiviral drug ribavirin can be effective against norovirus. Here, a patient with CVID-like disease with combined B- and T-cell deficiency, had chronic norovirus infection and enteropathy. The patient was routinely administered subcutaneous and intravenous immunoglobulin replacement therapy (SCIg and IVIg). The patient was also administered ribavirin for ~7.5 months to clear the infection. Stool samples (collected 2013–2016) and archived paraffin embedded duodenal biopsies were screened for norovirus by qPCR, confirming a chronic infection. Norovirus genotyping was done in 25 stool samples. For evolutionary analysis, the capsid (VP1) and polymerase (RdRp) genes were sequenced in 10 and 12 stool samples, respectively, collected before, during, and after ribavirin treatment. Secretor phenotyping was done in saliva, and serum was analyzed for histo-blood group antigen (HBGA) blocking titers. The chronic norovirus strain formed a unique variant subcluster, with GII.4 Den Haag [P4] variant, circulating around 2009, as the most recent common ancestor. This corresponded to the documented debut of symptoms. The patient was a secretor and had HBGA blocking titers associated with protection in immunocompetent individuals. Several unique amino acid substitutions were detected in immunodominant epitopes of VP1. However, HBGA binding sites were conserved. Ribavirin failed in treating the infection and no clear association between ribavirin-levels and quantity of norovirus shedding was observed. In conclusion, long term infection with norovirus in a patient with severe CVID led to the evolution of a unique norovirus strain with amino acid substitutions in immunodominant epitopes, but conservation within HBGA binding pockets. Regularly administered SCIg, IVIg, and ~7.5-month ribavirin treatment failed to clear the infection.
Collapse
Affiliation(s)
- Loa Ottosson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Rikard Svernlöv
- Department of Gastroenterology and Hepatology, Linköping University, 58185 Linköping, Sweden; (R.S.); (M.S.)
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Beatrice Carlsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Mattias Öman
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Magnus Ström
- Department of Gastroenterology and Hepatology, Linköping University, 58185 Linköping, Sweden; (R.S.); (M.S.)
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, 17111 Stockholm, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Infectious Diseases/Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden;
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
- Correspondence:
| |
Collapse
|
9
|
Tohma K, Ford-Siltz LA, Kendra JA, Parra GI. Dynamic immunodominance hierarchy of neutralizing antibody responses to evolving GII.4 noroviruses. Cell Rep 2022; 39:110689. [PMID: 35417705 DOI: 10.1016/j.celrep.2022.110689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/20/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
A paradigm of RNA viruses is their ability to mutate and escape from herd immunity. Because antibody responses are a major effector for viral immunity, antigenic sites are usually under strong diversifying pressure. Here, we use norovirus as a model to study mechanisms of antigenic diversification of non-enveloped, fast-evolving RNA viruses. We comprehensively characterize all variable antigenic sites involved in virus neutralization and find that single neutralizing monoclonal antibodies (mAbs) map to multiple antigenic sites of GII.4 norovirus. Interactions of multiple epitopes on the viral capsid surface provide a broad mAb-binding repertoire with a remarkable difference in the mAb-binding profiles and immunodominance hierarchy for two distantly related GII.4 variants. Time-ordered mutant viruses confirm a progressive change of antibody immunodominance along with point mutations during the process of norovirus evolution. Thus, in addition to point mutations, switches in immunodominance that redirect immune responses could facilitate immune escape in RNA viruses.
Collapse
Affiliation(s)
- Kentaro Tohma
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Lauren A Ford-Siltz
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Joseph A Kendra
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA
| | - Gabriel I Parra
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1309, Silver Spring, MD 20993, USA.
| |
Collapse
|
10
|
Abstract
Human noroviruses are the most common viral cause of acute gastroenteritis worldwide. Currently, there are no approved vaccines or specific therapeutics to treat the disease. Some obstacles delaying the development of a norovirus vaccine are: (i) the extreme diversity presented by noroviruses; (ii) our incomplete understanding of immunity to noroviruses; and (iii) the lack of a robust cell culture system or animal model for human noroviruses. Recent advances in in vitro cultivation of norovirus, novel approaches applied to viral genomics and immunity, and completion of vaccine trials and birth cohort studies have provided new information toward a better understanding of norovirus immunity. Here, we will discuss the complex relationship between norovirus diversity and correlates of protection for human noroviruses, and how this information could be used to guide the development of cross-protective vaccines.
Collapse
Affiliation(s)
- Lauren A. Ford-Siltz
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Kentaro Tohma
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Gabriel I. Parra
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States,CONTACT Gabriel I. Parra Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1308, Silver Spring, MD20993, United States
| |
Collapse
|
11
|
van Loben Sels JM, Meredith LW, Sosnovtsev SV, de Graaf M, Koopmans MP, Lindesmith LC, Baric RS, Green KY, Goodfellow IG. A luciferase-based approach for measuring HBGA blockade antibody titers against human norovirus. J Virol Methods 2021; 297:114196. [PMID: 34019938 PMCID: PMC9924141 DOI: 10.1016/j.jviromet.2021.114196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Noroviruses are the most common cause of viral gastroenteritis worldwide, yet there is a deficit in the understanding of protective immunity. Surrogate neutralization assays have been widely used that measure the ability of antibodies to block virus-like particle (VLP) binding to histo-blood group antigens (HBGAs). However, screening large sample sets against multiple antigens using the traditional HBGA blocking assay requires significant investment in terms of time, equipment, and technical expertise, largely associated with the generation of purified VLPs. METHODS To address these issues, a luciferase immunoprecipitation system (LIPS) assay was modified to measure the norovirus-specific HBGA blockade activity of antibodies. The assay (designated LIPS-Blockade) was validated using a panel of well-characterized homotypic and heterotypic hyperimmune sera as well as strain-specific HBGA blocking monoclonal antibodies. RESULTS The LIPS-Blockade assay was comparable in specificity to a standard HBGA blocking protocol performed with VLPs. Using time-ordered patient sera, the luciferase-based approach was also able to detect changes in HBGA blocking titers following viral challenge and natural infection with norovirus. CONCLUSION In this study we developed a rapid, robust, and scalable surrogate neutralization assay for noroviruses that circumvented the need for purified VLPs. This LIPS-Blockade assay should streamline the process of large-scale immunological studies, ultimately aiding in the characterization of protective immunity to human noroviruses.
Collapse
Affiliation(s)
- Jessica M. van Loben Sels
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 2QQ UK,Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892 USA
| | - Luke W. Meredith
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 2QQ UK
| | - Stanislav V. Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892 USA
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, 3015 CN, Rotterdam, the Netherlands.
| | - Marion P.G. Koopmans
- Department of Viroscience, Erasmus University Medical Center, 3015 CN Rotterdam, NL
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Kim Y. Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, 20892 USA,Corresponding author at: Dr. Kim Y. Green, Caliciviruses Section, LID/DIR/NIAID, National Institutes of Health (NIH), Building 50, Room 6318, 50 South Drive, Bethesda, MD 20892 USA –
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 2QQ UK
| |
Collapse
|
12
|
Antigenic cartography reveals complexities of genetic determinants that lead to antigenic differences among pandemic GII.4 noroviruses. Proc Natl Acad Sci U S A 2021; 118:2015874118. [PMID: 33836574 PMCID: PMC7980451 DOI: 10.1073/pnas.2015874118] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Noroviruses are the predominant cause of acute gastroenteritis, with a single genotype (GII.4) responsible for the majority of infections. This prevalence is characterized by the periodic emergence of new variants that present substitutions at antigenic sites of the major structural protein (VP1), facilitating escape from herd immunity. Notably, the contribution of intravariant mutations to changes in antigenic properties is unknown. We performed a comprehensive antigenic analysis on a virus-like particle panel representing major chronological GII.4 variants to investigate diversification at the inter- and intravariant level. Immunoassays, neutralization data, and cartography analyses showed antigenic similarities between phylogenetically related variants, with major switches to antigenic properties observed over the evolution of GII.4 variants. Genetic analysis indicated that multiple coevolving amino acid changes-primarily at antigenic sites-are associated with the antigenic diversification of GII.4 variants. These data highlight complexities of the genetic determinants and provide a framework for the antigenic characterization of emerging GII.4 noroviruses.
Collapse
|
13
|
Lu J, Peng J, Fang L, Zeng L, Lin H, Xiong Q, Liu Z, Jiang H, Zhang C, Yi L, Song T, Ke C, Li C, Ke B, He G, Zhu G, He J, Sun L, Li H, Zheng H. Capturing noroviruses circulating in the population: sewage surveillance in Guangdong, China (2013-2018). WATER RESEARCH 2021; 196:116990. [PMID: 33725645 DOI: 10.1016/j.watres.2021.116990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Noroviruses (NoVs) are the leading cause of acute gastroenteritis (AGE) outbreaks. Since 2014, novel genetic variants of NoV have been continuously identified and have caused a sharp increase in the number of AGE outbreaks. The specific geographical distribution and expanding genetic diversity of NoV has posed a challenge to conventional surveillance. Here, we describe the long-term dynamic correlation between NoV distribution in sewage and in the local population through the molecular surveillance of NoV in Guangdong, 2013-2018. The relative viral loads of the GI and GII genotypes in sewage were calculated through RT-PCR. A high-throughput sequencing method and operational taxonomic unit (OTU) clustering pipeline were developed to illustrate the abundances of different genotypes and genetic variants in sewage. Our results showed that the NoV viral loads and the emergence of new variants in sewage were closely associated with NoV outbreak risks in the population. Compared with the outbreaks surveillance, the dominance of the newly emerged variants, GII.P17-GII.17 and GII.P16-GII.2, could be detected one or two months ahead in sewage of a hub city. In addition, the dynamics of pre-epidemic variants, which were rarely detected in clinics, could be captured through sewage surveillance, thus improving our understanding of the origin and evolution of these novel epidemic variants. Our data highlight that sewage surveillance could provide nearly real-time and high-throughput data on NoV circulation in the community. With the advances in sequencing techniques, the sewage surveillance system could also be extended to other related infectious diseases.
Collapse
Affiliation(s)
- Jing Lu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; School of Public Health, Southern Medical University, Guangzhou, China.
| | - Jinju Peng
- School of Public Health, Southern Medical University, Guangzhou, China; Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Ling Fang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lilian Zeng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huifang Lin
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Qianling Xiong
- School of Public Health, Southern Medical University, Guangzhou, China; Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Zhe Liu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huimin Jiang
- School of Public Health, Southern Medical University, Guangzhou, China; Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Chaozheng Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Lina Yi
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Tie Song
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Caixia Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guanhao He
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Guanghu Zhu
- School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jianfeng He
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Limei Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Hui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
14
|
Xie D, Chen J, Yu J, Pei F, Koroma MM, Wang L, Qiu M, Hou Y, Yu D, Zhang XF, Dai YC. Characterization of Antigenic Relatedness Among GI Norovirus Genotypes Using Serum Samples From Norovirus-Infected Patients and Mouse Sera. Front Microbiol 2020; 11:607723. [PMID: 33363528 PMCID: PMC7752868 DOI: 10.3389/fmicb.2020.607723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
Characterizing diversity and the antigenic relatedness of norovirus remains a primary focus in understanding its biological properties and vaccine designs. The precise antigenic and serological features of GI genotypes have not been studied. The study represented an investigation on a gastroenteritis outbreak related to GI.3 norovirus and the three most detected GI genotypes, GI.2 (belonging to immunotype B), GI.3 and GI.9 (belonging to immunotype C), were selected to characterize their phylogenetic relationship, HBGA binding profiles and antigenic relatedness within (intra-immunotype), and between (inter-immunotypes) genotypes using mouse sera and patient’s serum samples from the GI.3 related outbreak. Wide HBGA binding profiles and evolution of binding affinity were observed in the three GI genotypes studied. A low specific blockade antibody to GI.3 in the population generated the pool of susceptible individuals and supported virus spread in the outbreak. We found strong blockade immune response in homologous strains, moderate intra-immunotype blockade but weak inter-immunotypes blockade in humans following GI.3 norovirus infections. These findings further support the immunotypes grouping and will be valuable for optimizing the design of norovirus vaccine.
Collapse
Affiliation(s)
- Dongjie Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junrui Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingrong Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fuyu Pei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mark Momoh Koroma
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengsi Qiu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuzhen Hou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dexian Yu
- Guangzhou Military Command Center for Disease Control and Prevention, Guangzhou, China
| | - Xu-Fu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying-Chun Dai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Chen YL, Huang CT. Establishment of a two-step purification scheme for tag-free recombinant Taiwan native norovirus P and VP1 proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122357. [PMID: 32920339 DOI: 10.1016/j.jchromb.2020.122357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022]
Abstract
The protruding (P) domain of the major capsid protein VP1 of norovirus (NoV) is the crucial element for immune recognition and host receptor binding. The heterologous P protein expressed by Pichia pastoris self-assembles into P particles. However, tag-free NoV protein purification schemes have rarely been reported due to the low isoelectric point of NoV proteins, which leads to highly competitive binding between the target protein and yeast host cell proteins at alkaline pH. In this study, a two-step purification scheme based on surface histidines and the charge on the NoV GII.4 strain P protein was developed. Using HisTrap and ion exchange chromatography, the P protein was directly purified, with a recovery of 28.1% and purity of 82.1%. Similarly, the NoV capsid protein VP1 was also purified using HisTrap and gel filtration chromatography based on native surface histidines and self-assembly ability, with 20% recovery and over 90% purity. Dynamic light scattering and transmission electron microscopy analyses of the purified NoV P revealed that most of these small P particles were triangle-, square- and ring-shaped, with a diameter of approximately 14 nm, and that the purified NoV VP1 self-assembles into particles with a diameter of approximately 47 nm. Both the purified NoV P and VP1 particles retained human histo-blood group antigen-binding ability, as evidenced by a saliva-binding assay.
Collapse
Affiliation(s)
- Yu-Ling Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taiwan
| | - Ching-Tsan Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taiwan.
| |
Collapse
|
16
|
Diversity of Noroviruses throughout Outbreaks in Germany 2018. Viruses 2020; 12:v12101157. [PMID: 33066195 PMCID: PMC7602084 DOI: 10.3390/v12101157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Human norovirus accounts for the majority of viral gastroenteritis cases worldwide. It is a fast evolving virus generating diversity via mutation and recombination. Therefore, new variants and new recombinant strains emerge in the norovirus population. We characterized norovirus positive stool samples from one intensively studied district Märkisch-Oderland state Brandenburg with the samples from other states of Germany in order to understand the molecular epidemiological dynamics of norovirus outbreaks in Germany 2018. PCR systems, Sanger sequencing, and phylogenetic analyses were used for genotyping. Noroviruses of 250 outbreaks in Germany were genotyped, including 39 outbreaks for the district Märkisch-Oderland. Viral diversity in Märkisch-Oderland as compared to Germany was similar, but not identical. The predominant genogroup in Germany was GII with predominate genotype GII.P16-GII.4 Sydney, whereas GII.P31-GII.4 Sydney was the most frequent in Märkisch-Oderland. Genogroup I viruses were less frequently detected, regional and national. Within the sequences of GII.4 recombinants, two distinct clusters were identified with outbreaks from Märkisch-Oderland. Further analysis of sequence data and detailed epidemiological data are needed in order to understand the link between outbreaks in such clusters. Molecular surveillance should be based on samples collected nationally in order to trace comprehensive virus distribution and recombination events in virus population.
Collapse
|
17
|
Ford-Siltz LA, Wales S, Tohma K, Gao Y, Parra GI. Genotype-Specific Neutralization of Norovirus Is Mediated by Antibodies Against the Protruding Domain of the Major Capsid Protein. J Infect Dis 2020; 225:1205-1214. [DOI: 10.1093/infdis/jiaa116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/24/2020] [Indexed: 01/26/2023] Open
Abstract
Abstract
Human noroviruses are the most common viral agents of acute gastroenteritis. Recently, human intestinal enteroids were shown to be permissive for norovirus infection. We tested their suitability as a system to study norovirus neutralization. Hyperimmune sera raised against virus-like particles (VLPs) representing different genotypes showed highly specific neutralization activity against GII.4 and GII.6 noroviruses. Carbohydrate blocking assays and neutralization exhibited similar patterns in antibody responses. Notably, sera produced against chimeric VLPs that presented swapped structural shell and protruding (P) domains, from different genotypes showed that neutralization is primarily mediated by antibodies mapping to the P domain of the norovirus capsid protein. This study provides empirical information on the antigenic differences among genotypes as measured by neutralization, which could guide vaccine design.
Collapse
Affiliation(s)
- Lauren A Ford-Siltz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Samantha Wales
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, Maryland, USA
| | - Kentaro Tohma
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yamei Gao
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gabriel I Parra
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
18
|
Abstract
Noroviruses are a very diverse group of viruses that infect different mammalian species. In humans, norovirus is a major cause of acute gastroenteritis. Multiple norovirus infections can occur in a lifetime as the result of limited duration of acquired immunity and cross-protection among different strains. A combination of advances in sequencing methods and improvements on surveillance has provided new insights into norovirus diversification and emergence. The generation of diverse norovirus strains has been associated with (1) point mutations on two different genes: ORF1, encoding the non-structural proteins, and ORF2, encoding the major capsid protein (VP1); and (2) recombination events that create chimeric viruses. While both mechanisms are exploited by all norovirus strains, individual genotypes utilize each mechanism differently to emerge and persist in the human population. GII.4 noroviruses (the most prevalent genotype in humans) present an accumulation of amino acid mutations on VP1 resulting in the chronological emergence of new variants. In contrast, non-GII.4 noroviruses present co-circulation of different variants over long periods with limited changes on their VP1. Notably, genetic diversity of non-GII.4 noroviruses is mostly related to the high number of recombinant strains detected in humans. While it is difficult to determine the precise mechanism of emergence of epidemic noroviruses, observations point to multiple factors that include host-virus interactions and changes on two regions of the genome (ORF1 and ORF2). Larger datasets of viral genomes are needed to facilitate comparison of epidemic strains and those circulating at low levels in the population. This will provide a better understanding of the mechanism of norovirus emergence and persistence.
Collapse
Affiliation(s)
- Gabriel I Parra
- Division of Viral Products, Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72, Room 1308, Silver Spring, MD 20993, USA
| |
Collapse
|
19
|
Population Genomics of GII.4 Noroviruses Reveal Complex Diversification and New Antigenic Sites Involved in the Emergence of Pandemic Strains. mBio 2019; 10:mBio.02202-19. [PMID: 31551337 PMCID: PMC6759766 DOI: 10.1128/mbio.02202-19] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Noroviruses are an important cause of viral gastroenteritis around the world. An obstacle delaying the development of norovirus vaccines is inadequate understanding of the role of norovirus diversity in immunity. Using a population genomics approach, we identified new residues on the viral capsid protein (VP1) from GII.4 noroviruses, the predominant genotype, that appear to be involved in the emergence and antigenic topology of GII.4 variants. Careful monitoring of the substitutions in those residues involved in the diversification and emergence of new viruses could help in the early detection of future novel variants with pandemic potential. Therefore, this novel information on the antigenic diversification could facilitate GII.4 norovirus vaccine design. GII.4 noroviruses are a major cause of acute gastroenteritis. Their dominance has been partially explained by the continuous emergence of antigenically distinct variants. To gain insights into the mechanisms of viral emergence and population dynamics of GII.4 noroviruses, we performed large-scale genomics, structural, and mutational analyses of the viral capsid protein (VP1). GII.4 noroviruses exhibited a periodic replacement of predominant variants with accumulation of amino acid substitutions. Genomic analyses revealed (i) a large proportion (87%) of conserved residues; (ii) variable residues that map on the previously determined antigenic sites; and (iii) variable residues that map outside the antigenic sites. Residues in the third pattern category formed motifs on the surface of VP1, which suggested extensions of previously predicted and new uncharacterized antigenic sites. The role of two motifs (C and G) in the antigenic makeup of the GII.4 capsid protein was confirmed with monoclonal antibodies and carbohydrate blocking assays. Amino acid profiles from antigenic sites (A, C, D, E, and G) correlated with the circulation patterns of GII.4 variants, with three of them (A, C, and G) containing residues (352, 357, 368, and 378) linked with the diversifying selective pressure on the emergence of new GII.4 variants. Notably, the emergence of each variant was followed by stochastic diversification with minimal changes that did not progress toward the next variant. This report provides a methodological framework for antigenic characterization of viruses and expands our understanding of the dynamics of GII.4 noroviruses and could facilitate the design of cross-reactive vaccines.
Collapse
|
20
|
The Antigenic Topology of Norovirus as Defined by B and T Cell Epitope Mapping: Implications for Universal Vaccines and Therapeutics. Viruses 2019; 11:v11050432. [PMID: 31083353 PMCID: PMC6563215 DOI: 10.3390/v11050432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.
Collapse
|
21
|
Haynes J, Perry V, Benson E, Meeks A, Watts G, Watkins H, Braun R. In Depth Breadth Analyses of Human Blockade Responses to Norovirus and Response to Vaccination. Viruses 2019; 11:v11050392. [PMID: 31035476 PMCID: PMC6563306 DOI: 10.3390/v11050392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
To evaluate and understand the efficacy of vaccine candidates, supportive immunological measures are needed. Critical attributes for a norovirus vaccine are the strength and breadth of antibody responses against the many different genotypes. In the absence of suitable neutralization assays to test samples from vaccine clinical trials, blockade assays offer a method that can measure functional antibodies specific for many of the different norovirus strains. This paper describes development and optimization of blockade assays for an extended panel of 20 different norovirus strains that can provide robust and reliable data needed for vaccine assessment. The blockade assays were used to test a panel of human clinical samples taken before and after vaccination with the Takeda TAK-214 norovirus vaccine. Great variability was evident in the repertoire of blocking antibody responses prevaccination and postvaccination among individuals. Following vaccination with TAK-214, blocking antibody levels were enhanced across a wide spectrum of different genotypes. The results indicate that adults may have multiple exposures to norovirus and that the magnitude and breadth of the complex preexisting antibody response can be boosted and expanded by vaccination.
Collapse
Affiliation(s)
- Joel Haynes
- Vaccines Discovery Research, Takeda Pharmaceuticals, Cambridge, MA 02139, USA.
| | - Virginia Perry
- Vaccines Discovery Research, Takeda Pharmaceuticals, Cambridge, MA 02139, USA.
| | - Evelyn Benson
- Vaccines Discovery Research, Takeda Pharmaceuticals, Cambridge, MA 02139, USA.
| | - Alisa Meeks
- Vaccines Discovery Research, Takeda Pharmaceuticals, Cambridge, MA 02139, USA.
| | - Gayle Watts
- Vaccines Discovery Research, Takeda Pharmaceuticals, Cambridge, MA 02139, USA.
| | - Heather Watkins
- Vaccines Discovery Research, Takeda Pharmaceuticals, Cambridge, MA 02139, USA.
| | - Ralph Braun
- Vaccines Discovery Research, Takeda Pharmaceuticals, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
Pietsch C, Liebert UG. Intrahost viral evolution during chronic sapovirus infections. J Clin Virol 2019; 113:1-7. [DOI: 10.1016/j.jcv.2019.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/22/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
|
23
|
GII.4 Human Norovirus: Surveying the Antigenic Landscape. Viruses 2019; 11:v11020177. [PMID: 30791623 PMCID: PMC6410000 DOI: 10.3390/v11020177] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
Human norovirus is the leading cause of viral acute onset gastroenteritis disease burden, with 685 million infections reported annually. Vulnerable populations, such as children under the age of 5 years, the immunocompromised, and the elderly show a need for inducible immunity, as symptomatic dehydration and malnutrition can be lethal. Extensive antigenic diversity between genotypes and within the GII.4 genotype present major challenges for the development of a broadly protective vaccine. Efforts have been devoted to characterizing antibody-binding interactions with dynamic human norovirus viral-like particles, which recognize distinct antigenic sites on the capsid. Neutralizing antibody functions recognizing these sites have been validated in both surrogate (ligand blockade of binding) and in vitro virus propagation systems. In this review, we focus on GII.4 capsid protein epitopes as defined by monoclonal antibody binding. As additional antibody epitopes are defined, antigenic sites emerge on the human norovirus capsid, revealing the antigenic landscape of GII.4 viruses. These data may provide a road map for the design of candidate vaccine immunogens that induce cross-protective immunity and the development of therapeutic antibodies and drugs.
Collapse
|
24
|
Motoya T, Nagasawa K, Matsushima Y, Nagata N, Ryo A, Sekizuka T, Yamashita A, Kuroda M, Morita Y, Suzuki Y, Sasaki N, Katayama K, Kimura H. Molecular Evolution of the VP1 Gene in Human Norovirus GII.4 Variants in 1974-2015. Front Microbiol 2017; 8:2399. [PMID: 29259596 PMCID: PMC5723339 DOI: 10.3389/fmicb.2017.02399] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Human norovirus (HuNoV) is a leading cause of viral gastroenteritis worldwide, of which GII.4 is the most predominant genotype. Unlike other genotypes, GII.4 has created various variants that escaped from previously acquired immunity of the host and caused repeated epidemics. However, the molecular evolutionary differences among all GII.4 variants, including recently discovered strains, have not been elucidated. Thus, we conducted a series of bioinformatic analyses using numerous, globally collected, full-length GII.4 major capsid (VP1) gene sequences (466 strains) to compare the evolutionary patterns among GII.4 variants. The time-scaled phylogenetic tree constructed using the Bayesian Markov chain Monte Carlo (MCMC) method showed that the common ancestor of the GII.4 VP1 gene diverged from GII.20 in 1840. The GII.4 genotype emerged in 1932, and then formed seven clusters including 14 known variants after 1980. The evolutionary rate of GII.4 strains was estimated to be 7.68 × 10−3 substitutions/site/year. The evolutionary rates probably differed among variants as well as domains [protruding 1 (P1), shell, and P2 domains]. The Osaka 2007 variant strains probably contained more nucleotide substitutions than any other variant. Few conformational epitopes were located in the shell and P1 domains, although most were contained in the P2 domain, which, as previously established, is associated with attachment to host factors and antigenicity. We found that positive selection sites for the whole GII.4 genotype existed in the shell and P1 domains, while Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants were under positive selection in the P2 domain. Amino acid substitutions overlapped with putative epitopes or were located around the epitopes in the P2 domain. The effective population sizes of the present strains increased stepwise for Den Haag 2006b, New Orleans 2009, and Sydney 2012 variants. These results suggest that HuNoV GII.4 rapidly evolved in a few decades, created various variants, and altered its evolutionary rate and antigenicity.
Collapse
Affiliation(s)
- Takumi Motoya
- Ibaraki Prefectural Institute of Public Health, Mito, Japan.,Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Koo Nagasawa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yuki Matsushima
- Division of Virology, Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Noriko Nagata
- Ibaraki Prefectural Institute of Public Health, Mito, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Akifumi Yamashita
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Japan
| | - Yukio Morita
- Department of Food and Nutrition, Tokyo Kasei University, Itabashi-ku, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, Nagoya, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Japan
| | - Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama, Japan.,Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Takasaki, Japan
| |
Collapse
|
25
|
Karangwa CK, Parra GI, Bok K, Johnson JA, Levenson EA, Green KY. Sequential Gastroenteritis Outbreaks in a Single Year Caused by Norovirus Genotypes GII.2 and GII.6 in an Institutional Setting. Open Forum Infect Dis 2017; 4:ofx236. [PMID: 30349844 DOI: 10.1093/ofid/ofx236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Norovirus is a leading cause of acute gastroenteritis worldwide. Improved diagnostic capability has been instrumental in the characterization of archival norovirus strains associated with gastroenteritis outbreaks that were investigated decades ago. One such investigation was that of 2 sequential gastroenteritis outbreaks that occurred in 1971 at the former Henryton State Hospital in Maryland. Approximately 40% of the resident population experienced clinical symptoms in both outbreaks, which occurred 11 months apart. Methods Stored stools and paired sera were re-analyzed to investigate the etiology of the 2 outbreaks. Results Different norovirus genotypes were identified as the etiological agents responsible for the illnesses, with GII.2 associated with the first outbreak and GII.6 with the second. The viruses were antigenically distinct as determined by analyses of hyperimmune sera raised against the corresponding virus-like particles in animals, as well as paired sera from infected individuals. Conclusions The observed antigenic differences were consistent with the failure of the GII.2 strain to provide cross-protective immunity to the GII.6 strain a few months later. An understanding of antigenic diversity among norovirus genotypes will be important in the design of norovirus vaccines.
Collapse
Affiliation(s)
- Consolee K Karangwa
- Caliciviruses Section, Laboratoryof Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, Maryland
| | - Gabriel I Parra
- Division of Viral Products, Food and Drug Administration, DHHS, Silver Spring, Maryland
| | - Karin Bok
- National Vaccine Program Office, DHHS, Washington, DC
| | - Jordan A Johnson
- Caliciviruses Section, Laboratoryof Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, Maryland
| | - Eric A Levenson
- Caliciviruses Section, Laboratoryof Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, Maryland
| | - Kim Y Green
- Caliciviruses Section, Laboratoryof Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, Maryland
| |
Collapse
|
26
|
Tin CM, Yuan L, Dexter RJ, Parra GI, Bui T, Green KY, Sosnovtsev SV. A Luciferase Immunoprecipitation System (LIPS) assay for profiling human norovirus antibodies. J Virol Methods 2017; 248:116-129. [PMID: 28673856 DOI: 10.1016/j.jviromet.2017.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/27/2017] [Accepted: 06/30/2017] [Indexed: 11/28/2022]
Abstract
A luciferase immunoprecipitation systems (LIPS) assay was developed to define the antigenic specificity and titer of antibodies directed against human norovirus (HuNoV). Recombinant proteins, expressed by plasmid constructs encoding Renilla luciferase (Ruc) fused to the full-length HuNoV major capsid protein (VP1) (Ruc-antigen), were generated for ten HuNoV strains. In addition, subdomain constructs Ruc-Shell (S) and Ruc-Protruding (P) were engineered for a representative GII.4 norovirus (strain GII.4/2006b). The LIPS assay measured antibody levels in a well-defined panel of HuNoV-specific sera, and the results were compared to an ELISA standard. In hyperimmune sera, the LIPS produced titers similar to or higher than those measured by the ELISA of HuNoV-specific antibodies. The specificity of antibodies in various sera was profiled by LIPS with a panel of diverse Ruc-antigens containing full-length HuNoV VP1 proteins or VP1 subdomains, and the assay detected both specific and cross-reactive antibodies. Competition assays, in which antibodies were pre-incubated with one or more intact VLPs representing different genotypes, proved useful in further assessment of the antibody specificity detected by LIPS in complex polyclonal sera. The profiling of HuNoV-specific antibodies in the high-throughput LIPS format may prove useful in defining the strength or specificity of the adaptive immune response following natural infection or vaccination.
Collapse
Affiliation(s)
- Christine M Tin
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rachel J Dexter
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Gabriel I Parra
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Tammy Bui
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Stanislav V Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA.
| |
Collapse
|
27
|
Structural basis for norovirus neutralization by an HBGA blocking human IgA antibody. Proc Natl Acad Sci U S A 2016; 113:E5830-E5837. [PMID: 27647885 DOI: 10.1073/pnas.1609990113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human noroviruses (HuNoVs) cause sporadic and epidemic gastroenteritis worldwide. They are classified into two major genogroups (GI and GII), with each genogroup further divided into multiple genotypes. Susceptibility to these viruses is influenced by genetically determined histo-blood group antigen (HBGA) expression. HBGAs function as cell attachment factors by binding to a surface-exposed region in the protruding (P) domain of the capsid protein. Sequence variations in this region that result in differential HBGA binding patterns and antigenicity are suggested to form a basis for strain diversification. Recent studies show that serum antibodies that block HBGA binding correlate with protection against illness. Although genogroup-dependent variation in HBGA binding specificity is structurally well characterized, an understanding of how antibodies block HBGA binding and how genotypic variations affect such blockade is lacking. Our crystallographic studies of the GI.1 P domain in complex with the Fab fragment of a human IgA monoclonal antibody (IgA 5I2) with HBGA blocking activity show that the antibody recognizes a conformational epitope formed by two surface-exposed loop clusters in the P domain. The antibody engulfs the HBGA binding site but does not affect its structural integrity. An unusual feature of the antigen recognition by IgA 5I2 is the predominant involvement of the CDR light chain 1 in contrast to the commonly observed CDR heavy chain 3, providing a unique perspective into antibody diversity in antigen recognition. Identification of the antigenic site in the P domain shows how genotypic variations might allow escape from antibody neutralization and exemplifies the interplay between antigenicity and HBGA specificity in HuNoV evolution.
Collapse
|
28
|
Structural diversity and biological importance of ABO, H, Lewis and secretor histo-blood group carbohydrates. Rev Bras Hematol Hemoter 2016; 38:331-340. [PMID: 27863762 PMCID: PMC5119663 DOI: 10.1016/j.bjhh.2016.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022] Open
Abstract
ABO, H, secretor and Lewis histo-blood system genes control the expression of part of the carbohydrate repertoire present in areas of the body occupied by microorganisms. These carbohydrates, besides having great structural diversity, act as potential receptors for pathogenic and non-pathogenic microorganisms influencing susceptibility and resistance to infection and illness. Despite the knowledge of some structural variability of these carbohydrate antigens and their polymorphic levels of expression in tissue and exocrine secretions, little is known about their biological importance and potential applications in medicine. This review highlights the structural diversity, the biological importance and potential applications of ABO, H, Lewis and secretor histo-blood carbohydrates.
Collapse
|
29
|
Parra GI, Sosnovtsev SV, Abente EJ, Sandoval-Jaime C, Bok K, Dolan MA, Green KY. Mapping and modeling of a strain-specific epitope in the Norwalk virus capsid inner shell. Virology 2016; 492:232-41. [PMID: 26971245 PMCID: PMC11036327 DOI: 10.1016/j.virol.2016.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 11/17/2022]
Abstract
Noroviruses are diverse positive-strand RNA viruses associated with acute gastroenteritis. Cross-reactive epitopes have been mapped primarily to conserved sequences in the capsid VP1 Shell (S) domain, and strain-specific epitopes to the highly variable Protruding (P) domain. In this work, we investigated a strain-specific linear epitope defined by MAb NV10 that was raised against prototype (Genogroup I.1) strain Norwalk virus (NV). Using peptide scanning and mutagenesis, the epitope was mapped to amino acids 21-32 (LVPEVNASDPLA) of the NV S domain, and its specificity was verified by epitope transfer and reactivity with a recombinant MAb NV10 single-chain variable fragment (scFv). Comparative structural modeling of the NV10 strain-specific and the broadly cross-reactive TV20 epitopes identified two internal non-overlapping sites in the NV shell, corresponding to variable and conserved amino acid sequences among strains, respectively. The S domain, like the P domain, contains strain-specific epitopes that contribute to the antigenic diversity among the noroviruses.
Collapse
Affiliation(s)
- Gabriel I Parra
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stanislav V Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eugenio J Abente
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carlos Sandoval-Jaime
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karin Bok
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kim Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Galasiti Kankanamalage AC, Weerawarna PM, Kim Y, Chang KO, Groutas WC. Anti-norovirus therapeutics: a patent review (2010-2015). Expert Opin Ther Pat 2016; 26:297-308. [PMID: 26881878 PMCID: PMC4948123 DOI: 10.1517/13543776.2016.1153065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Human noroviruses are the primary causative agents of acute gastroenteritis and are a pressing public health burden worldwide. There are currently no vaccines or small molecule therapeutics available for the treatment or prophylaxis of norovirus infections. An improved understanding of norovirus biology, as well as the pathogenic mechanisms underlying the disease, has provided the impetus for a range of intense exploratory drug discovery efforts targeting viral and host factors. AREAS COVERED An overview of norovirus inhibitors disclosed in the patent literature (2010-present) and Clinicaltrials.gov is presented. The review is further enriched and supplemented by recent literature reports. EXPERT OPINION Seminal discoveries made in recent years, including a better understanding of the pathobiology and life cycle of norovirus, the identification and targeting of multiple viral and host factors, the advent of a replicon system and a small animal model for the preclinical evaluation of lead compounds, and the availability of high resolution X-ray crystal structures that can be utilized in structure-based drug design and lead optimization campaigns, collectively suggest that a small molecule therapeutic and prophylactic for norovirus infection is likely to emerge in the not too distant future.
Collapse
Affiliation(s)
| | | | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, Manhattan, Kansas 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, Manhattan, Kansas 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| |
Collapse
|
31
|
Garaicoechea L, Aguilar A, Parra GI, Bok M, Sosnovtsev SV, Canziani G, Green KY, Bok K, Parreño V. Llama nanoantibodies with therapeutic potential against human norovirus diarrhea. PLoS One 2015; 10:e0133665. [PMID: 26267898 PMCID: PMC4534396 DOI: 10.1371/journal.pone.0133665] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022] Open
Abstract
Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis.
Collapse
Affiliation(s)
| | - Andrea Aguilar
- Instituto de Virología, INTA, Castelar, Buenos Aires, Argentina
| | - Gabriel I. Parra
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marina Bok
- Instituto de Virología, INTA, Castelar, Buenos Aires, Argentina
| | - Stanislav V. Sosnovtsev
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Kim Y. Green
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Karin Bok
- Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Viviana Parreño
- Instituto de Virología, INTA, Castelar, Buenos Aires, Argentina
| |
Collapse
|
32
|
Dai YC, Zhang XF, Xia M, Tan M, Quigley C, Lei W, Fang H, Zhong W, Lee B, Pang X, Nie J, Jiang X. Antigenic Relatedness of Norovirus GII.4 Variants Determined by Human Challenge Sera. PLoS One 2015; 10:e0124945. [PMID: 25915764 PMCID: PMC4411064 DOI: 10.1371/journal.pone.0124945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022] Open
Abstract
The GII.4 noroviruses (NoVs) are a single genotype that is responsible for over 50% of NoV gastroenteritis epidemics worldwide. However, GII.4 NoVs have been found to undergo antigenic drifts, likely selected by host herd immunity, which raises an issue for vaccine strategies against NoVs. We previously characterized GII.4 NoV antigenic variations and found significant levels of antigenic relatedness among different GII.4 variants. Further characterization of the genetic and antigenic relatedness of recent GII.4 variants (2008b and 2010 cluster) was performed in this study. The amino acid sequences of the receptor binding interfaces were highly conserved among all GII.4 variants from the past two decades. Using serum samples from patients enrolled in a GII.4 virus challenge study, significant cross-reactivity between major GII.4 variants from 1998 to 2012 was observed using enzyme-linked immunosorbent assays and HBGA receptor blocking assays. The overall abilities of GII.4 NoVs to bind to the A/B/H HBGAs were maintained while their binding affinities to individual ABH antigens varied. These results highlight the importance of human HBGAs in NoV evolution and how conserved antigenic types impact vaccine development against GII.4 variants.
Collapse
Affiliation(s)
- Ying-Chun Dai
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xu-Fu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ming Xia
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ming Tan
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Christina Quigley
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Wen Lei
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Hao Fang
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Weiming Zhong
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Bonita Lee
- Provincial Laboratory for Public Health (ProvLab), Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton,Alberta, Canada
| | - Xiaoli Pang
- Provincial Laboratory for Public Health (ProvLab), Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton,Alberta, Canada
| | - Jun Nie
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (XJ); (JN)
| | - Xi Jiang
- Divisions of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail: (XJ); (JN)
| |
Collapse
|
33
|
Abstract
We investigated sequential episodes of acute norovirus gastroenteritis in a young child within an 11-month period. The infections were caused by 2 distinct genotypes (GII.4 and GII.6). Failure to achieve cross-protective immunity was linked to absence of an enduring and cross-reactive mucosal immune response, a critical consideration for vaccine design.
Collapse
|
34
|
Mapping broadly reactive norovirus genogroup I and II monoclonal antibodies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:168-77. [PMID: 25428246 DOI: 10.1128/cvi.00520-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Noroviruses are responsible for most acute nonbacterial epidemic outbreaks of gastroenteritis worldwide. To develop cross-reactive monoclonal antibodies (MAbs) for rapid identification of genogroup I and II (GI and GII) noroviruses (NoVs) in field specimens, mice were immunized with baculovirus-expressed recombinant virus-like particles (VLPs) corresponding to NoVs. Nine MAbs against the capsid protein were identified that detected both GI and GII NoV VLPs. These MAbs were tested in competition enzyme-linked immunosorbent assays (ELISAs) to identify common epitope reactivities to GI and GII VLPs. Patterns of competitive reactivity placed these MAbs into two epitope groups (groups 1 and 2). Epitopes for MAbs NV23 and NS22 (group 1) and MAb F120 (group 2) were mapped to a continuous region in the C-terminal P1 subdomain of the capsid protein. This domain is within regions previously defined to contain cross-reactive epitopes in GI and GII viruses, suggesting that common epitopes are clustered within the P1 domain of the capsid protein. Further characterization in an accompanying paper (B. Kou et al., Clin Vaccine Immunol 22:160-167, 2015, http://dx.doi.org/10.1128/CVI.00519-14) revealed that MAb NV23 (epitope group 1) is able to detect GI and GII viruses in stool. Inclusion of the GI and GII cross-reactive MAb NV23 in antigen detection assays may facilitate the identification of GI and GII human noroviruses in stool samples as causative agents of outbreaks and sporadic cases of gastroenteritis worldwide.
Collapse
|
35
|
Kolawole AO, Xia C, Li M, Gamez M, Yu C, Rippinger CM, Yucha RE, Smith TJ, Wobus CE. Newly isolated mAbs broaden the neutralizing epitope in murine norovirus. J Gen Virol 2014; 95:1958-1968. [PMID: 24899153 DOI: 10.1099/vir.0.066753-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report the isolation and functional characterization of mAbs against two murine norovirus (MNV) strains, MNV-1 and WU20, which were isolated following oral infection of mice. The mAbs were screened for reactivity against the respective homologous and heterologous MNV strain by ELISA. Selected mAbs were of IgA, IgG1, IgG2a or IgG2b isotype and showed a range of Western blot reactivities from non-binding to strong binding, suggesting recognition of conformational and linear epitopes. Some of the anti-MNV-1 antibodies neutralized both MNV-1 and WU20 infections in culture and in mice, but none of the anti-WU20 mAbs neutralized either virus. The non-neutralizing anti-MNV-1 IgG2b antibody 5C4.10 was mapped to the S domain of the MNV-1 capsid, whilst the epitopes of the neutralizing anti-MNV-1 IgA antibodies 2D3.7 and 4F9.4 were mapped to the P domain. Generation of neutralization escape viruses showed that two mutations (V339I and D348E) in the C'D' loop of the MNV-1 P domain mediated escape from mAb 2D3.7 and 4F9.4 neutralization. These findings broaden the known neutralizing epitopes of MNV to the main surface-exposed loops of the P domain. In addition, the current panel of antibodies provides valuable reagents for studying norovirus biology and development of diagnostic tools.
Collapse
Affiliation(s)
- Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chunsheng Xia
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Ming Li
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Monica Gamez
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chenchen Yu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christine M Rippinger
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ryan E Yucha
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Histo-blood group antigens: a common niche for norovirus and rotavirus. Expert Rev Mol Med 2014; 16:e5. [PMID: 24606759 DOI: 10.1017/erm.2014.2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Noroviruses (NoVs) and rotaviruses (RVs), the two most important causes of viral acute gastroenteritis, are found to recognise histo-blood group antigens (HBGAs) as receptors or ligands for attachment. Human HBGAs are highly polymorphic containing ABO, secretor and Lewis antigens. In addition, both NoVs and RVs are highly diverse in how they recognise these HBGAs. Structural analysis of the HBGA-binding interfaces of NoVs revealed a conserved central binding pocket (CBP) interacting with a common major binding saccharide (MaBS) of HBGAs and a variable surrounding region interacting with additional minor binding saccharides. The conserved CBP indicates a strong selection of NoVs by the host HBGAs, whereas the variable surrounding region explains the diverse recognition patterns of different HBGAs by NoVs and RVs as functional adaptations of the viruses to human HBGAs. Diverse recognition of HBGAs has also been found in bacterial pathogen Helicobacter pylori. Thus, exploratory research into whether such diverse recognitions also occur for other viral and bacterial pathogens that recognise HBGAs is warranted.
Collapse
|
37
|
Identification and characterization of antibody-binding epitopes on the norovirus GII.3 capsid. J Virol 2013; 88:1942-52. [PMID: 24284328 DOI: 10.1128/jvi.02992-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genotype II.3 (GII.3) noroviruses are a major cause of sporadic gastroenteritis, particularly in children. The greater incidence of GII.3 noroviruses in the pediatric population compared to the adult demographic suggests development of herd immunity to this genotype, possibly as a consequence of limited evolution of immune epitopes. This study aimed to identify and characterize immune epitopes on the GII.3 capsid protein and to determine the level of immune cross-reactivity within the genotype. A panel of seven GII.3 virus-like particles (VLPs), representing norovirus strains isolated during 1975 to 2008, was tested by enzyme-linked immunosorbent assay (ELISA) for reactivity with human sera and a rabbit anti-GII.3 strain-specific polyclonal serum generated against the 2008 GII.3 VLP. Immunoprecipitation of protease-digested GII.3 VLPs and sequencing of bound peptides via mass spectrometry were used to locate epitopes on the capsid. Two epitopes were investigated further using Mimotopes technology. Serum binding studies demonstrated complete intragenotype GII.3 cross-reactivity using both human and rabbit serum. Six immunoreactive regions containing epitopes were located on the GII.3 capsid protein, two within each capsid domain. Epitopes in the S and P1 domains were highly conserved within GII.3 noroviruses. P2 domain epitopes were variable and contained evolutionarily important residues and histo-blood group antigen (HBGA) binding residues. In conclusion, anti-GII.3 antibody-binding epitopes are highly cross-reactive and mostly conserved within GII.3 strains. This may account for the limited GII.3 prevalence in adults and suggests that a GII.3 strain may be a valuable inclusion in a multivalent pediatric targeted VLP vaccine. Exploration of norovirus immune epitopes is vital for effective vaccine design. IMPORTANCE This study represents an important contribution to the understanding of norovirus immunology in a pediatric genotype. The high cross-reactivity and conservation of GII.3 epitopes suggest development of herd immunity against GII.3 and indicate that a GII.3 strain would be a valuable inclusion in a pediatric targeted multivalent vaccine. Immunological understanding of pediatric norovirus strains is important since norovirus vaccines will likely target high-risk groups such as the pediatric population.
Collapse
|
38
|
Galeano ME, Martinez M, Amarilla AA, Russomando G, Miagostovich MP, Parra GI, Leite JP. Molecular epidemiology of norovirus strains in Paraguayan children during 2004–2005: Description of a possible new GII.4 cluster. J Clin Virol 2013; 58:378-84. [DOI: 10.1016/j.jcv.2013.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 12/17/2022]
|
39
|
Higo-Moriguchi K, Shirato H, Someya Y, Kurosawa Y, Takeda N, Taniguchi K. Isolation of cross-reactive human monoclonal antibodies that prevent binding of human noroviruses to histo-blood group antigens. J Med Virol 2013; 86:558-67. [DOI: 10.1002/jmv.23734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Kyoko Higo-Moriguchi
- Department of Virology and Parasitology; Fujita Health University School of Medicine; Toyoake Aichi Japan
| | - Haruko Shirato
- Department of Virology II; National Institute of Infectious Diseases; Musashi-Murayama Tokyo Japan
| | - Yuichi Someya
- Department of Virology II; National Institute of Infectious Diseases; Musashi-Murayama Tokyo Japan
| | - Yoshikazu Kurosawa
- Institute for Comprehensive Medical Science; Fujita Health University School of Medicine; Toyoake Aichi Japan
| | - Naokazu Takeda
- Department of Virology II; National Institute of Infectious Diseases; Musashi-Murayama Tokyo Japan
| | - Koki Taniguchi
- Department of Virology and Parasitology; Fujita Health University School of Medicine; Toyoake Aichi Japan
| |
Collapse
|
40
|
Ruvoën-Clouet N, Belliot G, Le Pendu J. Noroviruses and histo-blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution. Rev Med Virol 2013; 23:355-66. [PMID: 23959967 DOI: 10.1002/rmv.1757] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 12/13/2022]
Abstract
Noroviruses (NoVs) are recognized as a leading cause of human gastroenteritis worldwide. Infection occurs following the ingestion of contaminated food or, most often, through direct contact from person to person. However, not all individuals are equally sensitive to these viruses. Indeed, NoVs use glycans of the ABH and Lewis histo-blood group antigen family (HBGAs) as attachment factors. At the epithelial level, the synthesis of these HBGAs requires the action of several glycosyltransferases that are encoded by the ABO, FUT2, and FUT3 genes. The combined polymorphism at these three loci dictates sensitivity to NoV infection because the attachment profile to these glycans varies among strains. Structural analysis of the capsid protein interaction with HBGAs reveals distinct modes of binding for strains of genogroups I and II but high conservation within each genogroup, whereas minor amino acid changes are sufficient to generate modifications of HBGA-binding specificities or affinities. Such modifications therefore induce changes in the spectrum of susceptible individuals. Studies of NoV-HBGA interactions together with phylogenetic analyses and the epidemiologic survey of strains indicate that NoV transmission and evolution depend on both the establishment of herd immunity and the genetic resistance of many individuals, which confers herd innate protection by restricting NoV circulation.
Collapse
Affiliation(s)
- Nathalie Ruvoën-Clouet
- Unité de Maladies réglementées-Zoonoses, Oniris-Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes Atlantique, Nantes, France; INSERM, UMR 892; CNRS, UMR 6299, Université de Nantes, Nantes, France
| | | | | |
Collapse
|
41
|
Parra GI, Azure J, Fischer R, Bok K, Sandoval-Jaime C, Sosnovtsev SV, Sander P, Green KY. Identification of a Broadly Cross-Reactive Epitope in the Inner Shell of the Norovirus Capsid. PLoS One 2013; 8:e67592. [PMID: 23805319 PMCID: PMC3689733 DOI: 10.1371/journal.pone.0067592] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/20/2013] [Indexed: 12/12/2022] Open
Abstract
Noroviruses are major pathogens associated with acute gastroenteritis. They are diverse viruses, with at least six genogroups (GI-GVI) and multiple genotypes defined by differences in the major capsid protein, VP1. This diversity has challenged the development of broadly cross-reactive vaccines as well as efficient detection methods. Here, we report the characterization of a broadly cross-reactive monoclonal antibody (MAb) raised against the capsid protein of a GII.3 norovirus strain. The MAb reacted with VLPs and denatured VP1 protein from GI, GII, GIV and GV noroviruses, and mapped to a linear epitope located in the inner shell domain. An alignment of all available VP1 sequences showed that the putative epitope (residues 52–56) is highly conserved across the genus Norovirus. This broadly cross-reactive MAb thus constitutes a valuable reagent for the diagnosis and study of these diverse viruses.
Collapse
Affiliation(s)
- Gabriel I. Parra
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, United States of America
- * E-mail: (KYG); (GIP)
| | - JoLynn Azure
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, United States of America
| | | | - Karin Bok
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, United States of America
| | - Carlos Sandoval-Jaime
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, United States of America
| | - Stanislav V. Sosnovtsev
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, United States of America
| | - Peter Sander
- Clinical Diagnostics, R-Biopharm AG, Darmstadt, Germany
| | - Kim Y. Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, United States of America
- * E-mail: (KYG); (GIP)
| |
Collapse
|
42
|
Development of Norwalk virus-specific monoclonal antibodies with therapeutic potential for the treatment of Norwalk virus gastroenteritis. J Virol 2013; 87:9547-57. [PMID: 23785216 DOI: 10.1128/jvi.01376-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Passive immunoprophylaxis or immunotherapy with norovirus-neutralizing monoclonal antibodies (MAbs) could be a useful treatment for high-risk populations, including infants and young children, the elderly, and certain patients who are debilitated or immunocompromised. In order to obtain antinorovirus MAbs with therapeutic potential, we stimulated a strong adaptive immune response in chimpanzees to the prototype norovirus strain Norwalk virus (NV) (genogroup I.1). A combinatorial phage Fab display library derived from mRNA of the chimpanzees' bone marrow was prepared, and four distinct Fabs reactive with Norwalk recombinant virus-like particles (rVLPs) were recovered, with estimated binding affinities in the subnanomolar range. Mapping studies showed that the four Fabs recognized three different conformational epitopes in the protruding (P) domain of NV VP1, the major capsid protein. The epitope of one of the Fabs, G4, was further mapped to a specific site involving a key amino acid residue, Gly365. One additional specific Fab (F11) was recovered months later from immortalized memory B cells and partially characterized. The anti-NV Fabs were converted into full-length IgG (MAbs) with human γ1 heavy chain constant regions. The anti-NV MAbs were tested in the two available surrogate assays for Norwalk virus neutralization, which showed that the MAbs could block carbohydrate binding and inhibit hemagglutination by NV rVLP. By mixing a single MAb with live Norwalk virus prior to challenge, MAbs D8 and B7 neutralized the virus and prevented infection in a chimpanzee. Because chimpanzee immunoglobulins are virtually identical to human immunoglobulins, these chimpanzee anticapsid MAbs may have a clinical application.
Collapse
|
43
|
Abstract
Approximately 30% of patients with severe hemophilia A develop inhibitory anti-factor VIII (fVIII) antibodies (Abs). We characterized 29 anti-human A2 monoclonal Abs (mAbs) produced in a murine hemophilia A model. A basis set of nonoverlapping mAbs was defined by competition enzyme-linked immunosorbent assay, producing 5 major groups. The overlapping epitopes covered nearly the entire A2 surface when mapped by homolog-scanning mutagenesis. Most group A mAbs recognized a previously described epitope bounded by Arg484-Ile508 in the N-terminal A2 subdomain, resulting in binding to activated fVIII and noncompetitive inhibition of the intrinsic fXase complex. Group B and C mAbs displayed little or no inhibitory activity. Group D and E mAbs recognized epitopes in the C-terminal A2 subdomain. A subset of group D mAbs inhibited the activation of fVIII by interfering with thrombin-catalyzed cleavage at Arg372 at the A1-A2 domain junction. Other group D mAbs displayed indeterminate or no inhibitory activity despite inhibiting cleavage at Arg740 at the A2-B domain junction. Group E mAbs inhibited fVIII light-chain cleavage at Arg1689. Inhibition of cleavages at Arg372 and Arg1689 represent novel mechanisms of inhibitor function and, along with the extensive epitope spectrum identified in this study, reveal hitherto unrecognized complexity in the immune response to fVIII.
Collapse
|
44
|
The feline calicivirus leader of the capsid protein is associated with cytopathic effect. J Virol 2012; 87:3003-17. [PMID: 23269802 DOI: 10.1128/jvi.02480-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Open reading frame 2 (ORF2) of the feline calicivirus (FCV) genome encodes a capsid precursor that is posttranslationally processed to release the mature capsid protein (VP1) and a small protein of 124 amino acids, designated the leader of the capsid (LC). To investigate the role of the LC protein in the virus life cycle, mutations and deletions were introduced into the LC coding region of an infectious FCV cDNA clone. Three cysteine residues that are conserved among all vesivirus LC sequences were found to be critical for the recovery of FCV with a characteristic cytopathic effect in feline kidney cells. A cell-rounding phenotype associated with the transient expression of wild-type and mutagenized forms of the LC correlated with the cytopathic and growth properties of the corresponding engineered viruses. The host cellular protein annexin A2 was identified as a binding partner of the LC protein, consistent with a role for the LC in mediating host cell interactions that alter the integrity of the cell and enable virus spread.
Collapse
|
45
|
Affiliation(s)
- Kari Debbink
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lisa C. Lindesmith
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric F. Donaldson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
46
|
Parra GI, Bok K, Taylor R, Haynes JR, Sosnovtsev SV, Richardson C, Green KY. Immunogenicity and specificity of norovirus Consensus GII.4 virus-like particles in monovalent and bivalent vaccine formulations. Vaccine 2012; 30:3580-6. [PMID: 22469864 DOI: 10.1016/j.vaccine.2012.03.050] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 12/16/2022]
Abstract
Noroviruses, a major cause of acute gastroenteritis worldwide, present antigenic diversity that must be considered for the development of an effective vaccine. In this study, we explored approaches to increase the broad reactivity of virus-like particle (VLP) norovirus vaccine candidates. The immunogenicity of a GII.4 "Consensus" VLP that was engineered from sequences of three genetically distinct naturally occurring GII.4 strains was examined for its ability to induce cross-reactive immune responses against different clusters of GII.4 noroviruses. Rabbits immunized with GII.4 Consensus VLPs developed high serum antibody titers against VLPs derived from a number of distinct wild-type GII.4 viruses, including some that had been circulating over 30 years ago. Because the sera exhibited low cross-reactivity with antigenically distinct GI norovirus strains, we investigated the serum antibody response to a bivalent vaccine formulation containing GI.1 (Norwalk virus) and GII.4 Consensus VLPs that was administered to animals under varying conditions. In these studies, the highest homologous and heterologous antibody titers to the bivalent vaccine were elicited following immunization of animals by the intramuscular route using Alhydrogel (Al(OH)(3)) as adjuvant. Our data indicate that the use of both genetically engineered norovirus VLPs that incorporate relevant epitopes from multiple strains and multivalent vaccine formulations increase the breadth of the immune response to diverse variants within a genotype and, thus, prove helpful in the rational design of VLP-based vaccines against human noroviruses.
Collapse
Affiliation(s)
- Gabriel I Parra
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|