1
|
Schwartz U, Komatsu T, Huber C, Lagadec F, Baumgartl C, Silberhorn E, Nuetzel M, Rayne F, Basyuk E, Bertrand E, Rehli M, Wodrich H, Laengst G. Changes in adenoviral chromatin organization precede early gene activation upon infection. EMBO J 2023; 42:e114162. [PMID: 37641864 PMCID: PMC10548178 DOI: 10.15252/embj.2023114162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Within the virion, adenovirus DNA associates with the virus-encoded, protamine-like structural protein pVII. Whether this association is organized, and how genome packaging changes during infection and subsequent transcriptional activation is currently unclear. Here, we combined RNA-seq, MNase-seq, ChIP-seq, and single genome imaging during early adenovirus infection to unveil the structure- and time-resolved dynamics of viral chromatin changes as well as their correlation with gene transcription. Our MNase mapping data indicates that the adenoviral genome is arranged in precisely positioned nucleoprotein particles with nucleosome-like characteristics, that we term adenosomes. We identified 238 adenosomes that are positioned by a DNA sequence code and protect about 60-70 bp of DNA. The incoming adenoviral genome is more accessible at early gene loci that undergo additional chromatin de-condensation upon infection. Histone H3.3 containing nucleosomes specifically replaces pVII at distinct genomic sites and at the transcription start sites of early genes. Acetylation of H3.3 is predominant at the transcription start sites and precedes transcriptional activation. Based on our results, we propose a central role for the viral pVII nucleoprotein architecture, which is required for the dynamic structural changes during early infection, including the regulation of nucleosome assembly prior to transcription initiation. Our study thus may aid the rational development of recombinant adenoviral vectors exhibiting sustained expression in gene therapy.
Collapse
Affiliation(s)
- Uwe Schwartz
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular RegulationGunma UniversityGunmaJapan
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Claudia Huber
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| | - Floriane Lagadec
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB)Georg‐August‐University GöttingenGöttingenGermany
| | | | | | - Margit Nuetzel
- Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
| | - Fabienne Rayne
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Eugenia Basyuk
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Edouard Bertrand
- CNRS UMR 5355Institut de Généthique Moléculaire de MontpellierMontpellierFrance
| | - Michael Rehli
- Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
- Leibniz Institute for ImmunotherapyRegensburgGermany
- University Hospital RegensburgRegensburgGermany
| | - Harald Wodrich
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Gernot Laengst
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| |
Collapse
|
2
|
Frey A, Lunding LP, Wegmann M. The Dual Role of the Airway Epithelium in Asthma: Active Barrier and Regulator of Inflammation. Cells 2023; 12:2208. [PMID: 37759430 PMCID: PMC10526792 DOI: 10.3390/cells12182208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic airway inflammation is the cornerstone on which bronchial asthma arises, and in turn, chronic inflammation arises from a complex interplay between environmental factors such as allergens and pathogens and immune cells as well as structural cells constituting the airway mucosa. Airway epithelial cells (AECs) are at the center of these processes. On the one hand, they represent the borderline separating the body from its environment in order to keep inner homeostasis. The airway epithelium forms a multi-tiered, self-cleaning barrier that involves an unstirred, discontinuous mucous layer, the dense and rigid mesh of the glycocalyx, and the cellular layer itself, consisting of multiple, densely interconnected cell types. On the other hand, the airway epithelium represents an immunologically highly active tissue once its barrier has been penetrated: AECs play a pivotal role in releasing protective immunoglobulin A. They express a broad spectrum of pattern recognition receptors, enabling them to react to environmental stressors that overcome the mucosal barrier. By releasing alarmins-proinflammatory and regulatory cytokines-AECs play an active role in the formation, strategic orientation, and control of the subsequent defense reaction. Consequently, the airway epithelium is of vital importance to chronic inflammatory diseases, such as asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
| | - Lars P. Lunding
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| | - Michael Wegmann
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| |
Collapse
|
3
|
Jennings MR, Parks RJ. Human Adenovirus Gene Expression and Replication Is Regulated through Dynamic Changes in Nucleoprotein Structure throughout Infection. Viruses 2023; 15:161. [PMID: 36680201 PMCID: PMC9863843 DOI: 10.3390/v15010161] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Human adenovirus (HAdV) is extremely common and can rapidly spread in confined populations such as daycare centers, hospitals, and retirement homes. Although HAdV usually causes only minor illness in otherwise healthy patients, HAdV can cause significant morbidity and mortality in certain populations, such as the very young, very old, or immunocompromised individuals. During infection, the viral DNA undergoes dramatic changes in nucleoprotein structure that promote the rapid expression of viral genes, replication of the DNA, and generation of thousands of new infectious virions-each process requiring a distinct complement of virus and host-encoded proteins. In this review, we summarize our current understanding of the nucleoprotein structure of HAdV DNA during the various phases of infection, the cellular proteins implicated in mediating these changes, and the role of epigenetics in HAdV gene expression and replication.
Collapse
Affiliation(s)
- Morgan R. Jennings
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
4
|
Ismail AM, Saha A, Lee JS, Painter DF, Chen Y, Singh G, Condezo GN, Chodosh J, San Martín C, Rajaiya J. RANBP2 and USP9x regulate nuclear import of adenovirus minor coat protein IIIa. PLoS Pathog 2022; 18:e1010588. [PMID: 35709296 PMCID: PMC9242475 DOI: 10.1371/journal.ppat.1010588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/29/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
As intracellular parasites, viruses exploit cellular proteins at every stage of infection. Adenovirus outbreaks are associated with severe acute respiratory illnesses and conjunctivitis, with no specific antiviral therapy available. An adenoviral vaccine based on human adenovirus species D (HAdV-D) is currently in use for COVID-19. Herein, we investigate host interactions of HAdV-D type 37 (HAdV-D37) protein IIIa (pIIIa), identified by affinity purification and mass spectrometry (AP-MS) screens. We demonstrate that viral pIIIa interacts with ubiquitin-specific protease 9x (USP9x) and Ran-binding protein 2 (RANBP2). USP9x binding did not invoke its signature deubiquitination function but rather deregulated pIIIa-RANBP2 interactions. In USP9x-knockout cells, viral genome replication and viral protein expression increased compared to wild type cells, supporting a host-favored mechanism for USP9x. Conversely, RANBP2-knock down reduced pIIIa transport to the nucleus, viral genome replication, and viral protein expression. Also, RANBP2-siRNA pretreated cells appeared to contain fewer mature viral particles. Transmission electron microscopy of USP9x-siRNA pretreated, virus-infected cells revealed larger than typical paracrystalline viral arrays. RANBP2-siRNA pretreatment led to the accumulation of defective assembly products at an early maturation stage. CRM1 nuclear export blockade by leptomycin B led to the retention of pIIIa within cell nuclei and hindered pIIIa-RANBP2 interactions. In-vitro binding analyses indicated that USP9x and RANBP2 bind to C-terminus of pIIIa amino acids 386–563 and 386–510, respectively. Surface plasmon resonance testing showed direct pIIIa interaction with recombinant USP9x and RANBP2 proteins, without competition. Using an alternative and genetically disparate adenovirus type (HAdV-C5), we show that the demonstrated pIIIa interaction is also important for a severe respiratory pathogen. Together, our results suggest that pIIIa hijacks RANBP2 for nuclear import and subsequent virion assembly. USP9x counteracts this interaction and negatively regulates virion synthesis. This analysis extends the scope of known adenovirus-host interactions and has potential implications in designing new antiviral therapeutics. The compact genomes of viruses must code for proteins with multiple functions, including those that assist with cell entry, replication, and escape from the host immune defenses. Viruses succeed in every stage of this process by hijacking critical cellular proteins for their propagation. Hence, identifying virus-host protein interactions may permit identifying therapeutic applications that restrict viral processes. Human adenovirus structural proteins link together to produce infectious virions. Protein IIIa is required to assemble fully packaged virions, but its interactions with host factors are unknown. Here, we identify novel host protein interactions of pIIIa with cellular RANBP2 and USP9x. We demonstrate that by interacting with cellular RANBP2, viral pIIIa gains entry to the nucleus for subsequent virion assembly and replication. Reduced RANBP2 expression inhibited pIIIa entry into the nucleus, minimized viral replication and viral protein expression, and led to accumulation of defective assembly products in the infected cells. As a defense against viral infection, USP9x reduces the interaction between pIIIa and RANBP2, resulting in decreased viral propagation. We also show that the identified pIIIa-host interactions are crucial in two disparate HAdV types with diverse disease implications.
Collapse
Affiliation(s)
- Ashrafali M. Ismail
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amrita Saha
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ji S. Lee
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David F. Painter
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gurdeep Singh
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gabriela N. Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Madrid, Spain
| | - James Chodosh
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Madrid, Spain
| | - Jaya Rajaiya
- Department of Ophthalmology, Viral Pathogenesis Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Giberson AN, Saha B, Campbell K, Christou C, Poulin KL, Parks RJ. Human adenoviral DNA association with nucleosomes containing histone variant H3.3 during the early phase of infection is not dependent on viral transcription or replication. Biochem Cell Biol 2018; 96:797-807. [PMID: 29874470 DOI: 10.1139/bcb-2018-0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenovirus (Ad) DNA undergoes dynamic changes in protein association as the virus progresses through its replicative cycle. Within the virion, the Ad DNA associates primarily with the virus-encoded, protamine-like protein VII. During the early phase of infection (∼6 h), the viral DNA showed declining association with VII, suggesting that VII was removed from at least some regions of the viral DNA. Within 6 h, the viral DNA was wrapped into a repeating nucleosome-like array containing the histone variant H3.3. Transcription elongation was not required to strip VII from the viral DNA or for deposition of H3.3. H3.1 did not associate with the viral DNA at any point during infection. During the late phase of infection (i.e., active DNA replication ∼12-24 h), association with H3 was dramatically reduced and the repeating nucleosome-like pattern was no longer evident. Thus, we have uncovered some of the changes in nucleoprotein structure that occur during lytic Ad infection.
Collapse
Affiliation(s)
- Andrea N Giberson
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bratati Saha
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kalisa Campbell
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Carin Christou
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kathy L Poulin
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Robin J Parks
- a Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,b Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,c Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,d Department of Medicine, The Ottawa Hospital and University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
6
|
Sharma G, Moria N, Williams M, Krishnarjuna B, Pouton CW. Purification and characterization of adenovirus core protein VII: a histone-like protein that is critical for adenovirus core formation. J Gen Virol 2017; 98:1785-1794. [DOI: 10.1099/jgv.0.000817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Gaurav Sharma
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Melbourne, Vic, 3052, Australia
| | - Nithesh Moria
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Melbourne, Vic, 3052, Australia
| | - Martin Williams
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Vic, 3052, Australia
| | - Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Vic, 3052, Australia
| | - Colin W. Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Melbourne, Vic, 3052, Australia
| |
Collapse
|
7
|
Abstract
The Adenovirus (Ad) genome within the capsid is tightly associated with a virus-encoded, histone-like core protein—protein VII. Two other Ad core proteins, V and X/μ, also are located within the virion and are loosely associated with viral DNA. Core protein VII remains associated with the Ad genome during the early phase of infection. It is not known if naked Ad DNA is packaged into the capsid, as with dsDNA bacteriophage and herpesviruses, followed by the encapsidation of viral core proteins, or if a unique packaging mechanism exists with Ad where a DNA-protein complex is simultaneously packaged into the virion. The latter model would require an entirely new molecular mechanism for packaging compared to known viral packaging motors. We characterized a virus with a conditional knockout of core protein VII. Remarkably, virus particles were assembled efficiently in the absence of protein VII. No changes in protein composition were evident with VII−virus particles, including the abundance of core protein V, but changes in the proteolytic processing of some capsid proteins were evident. Virus particles that lack protein VII enter the cell, but incoming virions did not escape efficiently from endosomes. This greatly diminished all subsequent aspects of the infectious cycle. These results reveal that the Ad major core protein VII is not required to condense viral DNA within the capsid, but rather plays an unexpected role during virus maturation and the early stages of infection. These results establish a new paradigm pertaining to the Ad assembly mechanism and reveal a new and important role of protein VII in early stages of infection. The Ad major core protein VII protects the viral genome from recognition by a cellular DNA damage response during the early stages of infection and alters cellular chromatin to block innate signaling mechanisms. The packaging of the Ad genome into the capsid is thought to follow the paradigm of dsDNA bacteriophage where viral DNA is inserted into a preassembled capsid using a packaging motor. How this process occurs if Ad packages a DNA-core protein complex is unknown. We analyzed an Ad mutant that lacks core protein VII and demonstrated that virus assembly and DNA packaging takes place normally, but that the mutant is deficient in the maturation of several capsid proteins and displays a defect in the escape of virions from the endosome. These results have profound implications for the Ad assembly mechanism and for the role of protein VII during infection.
Collapse
|
8
|
Single-Site Glycoprotein Mutants Inhibit a Late Event in Sindbis Virus Assembly. J Virol 2016; 90:8372-80. [PMID: 27412592 DOI: 10.1128/jvi.00948-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/23/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED A panel of Sindbis virus mutants that were suspected to have deficiencies in one or more aspects of their replication cycles was examined in baby hamster kidney (BHK) cells. These included an amino acid deletion (ΔH230) and substitution (H230A) in the Sindbis glycoprotein E1_H230 and similar mutants in E2_G209 (G209A, G209D, and ΔG209). Neither H230 mutation produced a measurable titer, but repeated passaging of the H230A mutant in BHK cells produced a second-site compensatory mutant (V231I) that partially rescued both H230 mutants. Electron micrograph (EM) images of these mutants showed assembled viral nucleocapsids but no completed, mature virions. EM of the compensatory mutant strains showed complete virus particles, but these now formed paracrystalline arrays. None of the E2_G209 substitution mutants had any effect on virus production; however, the deletion mutant (ΔG209) showed a very low titer when grown at 37°C and no titer when grown at 28°C. When the deletion mutant grown at 28°C was examined by EM, partially budded virions were observed at the cell surface. (35)S labeling of this mutant confirmed the presence of mutant virus protein in the transfected BHK cell lysate. We conclude that H230 is essential for the assembly of complete infectious Sindbis virus virions and that the presence of an amino acid at E2 position 209 is required for complete budding of Sindbis virus particles although several different amino acids can be at this location without affecting the titer. IMPORTANCE Our data show the importance of single-site mutations at E1_H230 and E2_G209 in Sindbis virus glycoproteins. These sites have been shown to affect assembly and antibody binding in previous studies. Our data indicate that mutation of one histidine residue in E1 is detrimental to the assembly of Sindbis virus particles in baby hamster kidney cells. Repeated passaging leads to a second-site substitution that partially restores the titer although EM still shows an altered phenotype. Substitutions at position G209 in E2 have no effect on titer, but deletion of this residue greatly reduces titer and again prevents assembly. When this mutant is grown at a lower temperature, virus particles bud from the host cell, but budding arrests before the progeny virus escapes. These results allow us to conclude that these sites have essential roles in assembly, and E2_G209 shows us a new viral egress phenotype.
Collapse
|
9
|
Mei YF, Wu H, Hultenby K, Silver J. Complete replication-competent adenovirus 11p vectors with E1 or E3 insertions show improved heat stability. Virology 2016; 497:198-210. [PMID: 27494367 DOI: 10.1016/j.virol.2016.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/16/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
Abstract
Conventional adenovirus vectors harboring E1 or E3 deletions followed by the insertion of an exogenous gene show considerably reduced virion stability. Here, we report strategies to generate complete replication-competent Ad11p(RCAd11p) vectors that overcome the above disadvantage. A GFP cassette was successfully introduced either upstream of E1A or in the E3A region. The resulting vectors showed high expression levels of the hexon and E1genes and also strongly induced the cytopathic effect in targeted cells. When harboring oversized genomes, the RCAd11pE1 and RCAd11pE3 vectors showed significantly improved heat stability in comparison to Ad11pwt;of the three, RCAd11pE3 was the most tolerant to heat treatment. Electron microscopy showed that RCAd11pE3, RCAd11pE1, Ad11pwt, and Ad11pE1 Delmanifested dominant, moderate, minimum, or no full virus particles after heat treatment at 47°C for 5h. Our results demonstrated that both genome size and the insertion site in the viral genome affect virion stability.
Collapse
Affiliation(s)
- Ya-Fang Mei
- Department of Clinical Microbiology and Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | - Haidong Wu
- Department of Clinical Microbiology and Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | - Kjell Hultenby
- Division of Clinical Research Centre, Department of Laboratory Medicine, Karolinska Institute, SE-14186 Stockholm, Sweden.
| | - Jim Silver
- Department of Clinical Microbiology and Virology, Umeå University, SE-901 85 Umeå, Sweden.
| |
Collapse
|
10
|
Ortega-Esteban A, Bodensiek K, San Martín C, Suomalainen M, Greber UF, de Pablo PJ, Schaap IAT. Fluorescence Tracking of Genome Release during Mechanical Unpacking of Single Viruses. ACS NANO 2015; 9:10571-10579. [PMID: 26381363 DOI: 10.1021/acsnano.5b03020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Viruses package their genome in a robust protein coat to protect it during transmission between cells and organisms. In a reaction termed uncoating, the virus is progressively weakened during entry into cells. At the end of the uncoating process the genome separates, becomes transcriptionally active, and initiates the production of progeny. Here, we triggered the disruption of single human adenovirus capsids with atomic force microscopy and followed genome exposure by single-molecule fluorescence microscopy. This method allowed the comparison of immature (noninfectious) and mature (infectious) adenovirus particles. We observed two condensation states of the fluorescently labeled genome, a feature of the virus that may be related to infectivity. Beyond tracking the unpacking of virus genomes, this approach may find application in testing the cargo release of bioinspired delivery vehicles.
Collapse
Affiliation(s)
| | - Kai Bodensiek
- III. Physikalisches Institut, Georg August Universität , Göttingen, Germany
| | - Carmen San Martín
- Department of Macromolecular Structures and NanoBioMedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC) , Madrid, Spain
| | - Maarit Suomalainen
- Institute of Molecular Life Sciences, University of Zürich , Zürich, Switzerland
| | - Urs F Greber
- Institute of Molecular Life Sciences, University of Zürich , Zürich, Switzerland
| | | | - Iwan A T Schaap
- III. Physikalisches Institut, Georg August Universität , Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) , Göttingen, Germany
| |
Collapse
|
11
|
Abstract
DNA tumor viruses including members of the polyomavirus, adenovirus, papillomavirus, and herpes virus families are presently the subject of intense interest with respect to the role that epigenetics plays in control of the virus life cycle and the transformation of a normal cell to a cancer cell. To date, these studies have primarily focused on the role of histone modification, nucleosome location, and DNA methylation in regulating the biological consequences of infection. Using a wide variety of strategies and techniques ranging from simple ChIP to ChIP-chip and ChIP-seq to identify histone modifications, nuclease digestion to genome wide next generation sequencing to identify nucleosome location, and bisulfite treatment to MeDIP to identify DNA methylation sites, the epigenetic regulation of these viruses is slowly becoming better understood. While the viruses may differ in significant ways from each other and cellular chromatin, the role of epigenetics appears to be relatively similar. Within the viral genome nucleosomes are organized for the expression of appropriate genes with relevant histone modifications particularly histone acetylation. DNA methylation occurs as part of the typical gene silencing during latent infection by herpesviruses. In the simple tumor viruses like the polyomaviruses, adenoviruses, and papillomaviruses, transformation of the cell occurs via integration of the virus genome such that the virus's normal regulation is disrupted. This results in the unregulated expression of critical viral genes capable of redirecting cellular gene expression. The redirected cellular expression is a consequence of either indirect epigenetic regulation where cellular signaling or transcriptional dysregulation occurs or direct epigenetic regulation where epigenetic cofactors such as histone deacetylases are targeted. In the more complex herpersviruses transformation is a consequence of the expression of the viral latency proteins and RNAs which again can have either a direct or indirect effect on epigenetic regulation of cellular expression. Nevertheless, many questions still remain with respect to the specific mechanisms underlying epigenetic regulation of the viruses and transformation.
Collapse
|
12
|
Pérez-Berná AJ, Marion S, Chichón FJ, Fernández JJ, Winkler DC, Carrascosa JL, Steven AC, Šiber A, San Martín C. Distribution of DNA-condensing protein complexes in the adenovirus core. Nucleic Acids Res 2015; 43:4274-83. [PMID: 25820430 PMCID: PMC4417152 DOI: 10.1093/nar/gkv187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 12/12/2014] [Accepted: 02/22/2015] [Indexed: 01/22/2023] Open
Abstract
Genome packing in adenovirus has long evaded precise description, since the viral dsDNA molecule condensed by proteins (core) lacks icosahedral order characteristic of the virus protein coating (capsid). We show that useful insights regarding the organization of the core can be inferred from the analysis of spatial distributions of the DNA and condensing protein units (adenosomes). These were obtained from the inspection of cryo-electron tomography reconstructions of individual human adenovirus particles. Our analysis shows that the core lacks symmetry and strict order, yet the adenosome distribution is not entirely random. The features of the distribution can be explained by modeling the condensing proteins and the part of the genome in each adenosome as very soft spheres, interacting repulsively with each other and with the capsid, producing a minimum outward pressure of ∼0.06 atm. Although the condensing proteins are connected by DNA in disrupted virion cores, in our models a backbone of DNA linking the adenosomes is not required to explain the experimental results in the confined state. In conclusion, the interior of an adenovirus infectious particle is a strongly confined and dense phase of soft particles (adenosomes) without a strictly defined DNA backbone.
Collapse
Affiliation(s)
- Ana J Pérez-Berná
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Sanjin Marion
- Institute of Physics, Bijenička cesta 46, HR-10000 Zagreb, Croatia
| | - F Javier Chichón
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - José J Fernández
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Dennis C Winkler
- Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - José L Carrascosa
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Alasdair C Steven
- Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Antonio Šiber
- Institute of Physics, Bijenička cesta 46, HR-10000 Zagreb, Croatia Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| |
Collapse
|
13
|
The adenovirus genome contributes to the structural stability of the virion. Viruses 2014; 6:3563-83. [PMID: 25254384 PMCID: PMC4189039 DOI: 10.3390/v6093563] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/17/2022] Open
Abstract
Adenovirus (Ad) vectors are currently the most commonly used platform for therapeutic gene delivery in human gene therapy clinical trials. Although these vectors are effective, many researchers seek to further improve the safety and efficacy of Ad-based vectors through detailed characterization of basic Ad biology relevant to its function as a vector system. Most Ad vectors are deleted of key, or all, viral protein coding sequences, which functions to not only prevent virus replication but also increase the cloning capacity of the vector for foreign DNA. However, radical modifications to the genome size significantly decreases virion stability, suggesting that the virus genome plays a role in maintaining the physical stability of the Ad virion. Indeed, a similar relationship between genome size and virion stability has been noted for many viruses. This review discusses the impact of the genome size on Ad virion stability and emphasizes the need to consider this aspect of virus biology in Ad-based vector design.
Collapse
|
14
|
Isolation and characterization of the DNA and protein binding activities of adenovirus core protein V. J Virol 2014; 88:9287-96. [PMID: 24899200 DOI: 10.1128/jvi.00935-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED The structure of adenovirus outer capsid was revealed recently at 3- to 4-Å resolution (V. Reddy, S. Natchiar, P. Stewart, and G. Nemerow, Science 329:1071-1075, 2010, http://dx.doi.org/10.1126/science.1187292); however, precise details on the function and biochemical and structural features for the inner core still are lacking. Protein V is one the most important components of the adenovirus core, as it links the outer capsid via association with protein VI with the inner DNA core. Protein V is a highly basic protein that strongly binds to DNA in a nonspecific manner. We report the expression of a soluble protein V that exists in monomer-dimer equilibrium. Using reversible cross-linking affinity purification in combination with mass spectrometry, we found that protein V contains multiple DNA binding sites. The binding sites from protein V mediate heat-stable nucleic acid associations, with some of the binding sites possibly masked in the virus by other core proteins. We also demonstrate direct interaction between soluble proteins V and VI, thereby revealing the bridging of the inner DNA core with the outer capsid proteins. These findings are consistent with a model of nucleosome-like structures proposed for the adenovirus core and encapsidated DNA. They also suggest an additional role for protein V in linking the inner nucleic acid core with protein VI on the inner capsid shell. IMPORTANCE Scant knowledge exists of how the inner core of adenovirus containing its double-stranded DNA (dsDNA) genome and associated proteins is organized. Here, we report a purification scheme for a recombinant form of protein V that allowed analysis of its interactions with the nucleic acid core region. We demonstrate that protein V exhibits stable associations with dsDNA due to the presence of multiple nucleic acid binding sites identified both in the isolated recombinant protein and in virus particles. As protein V also binds to the membrane lytic protein VI molecules, this core protein may serve as a bridge from the inner dsDNA core to the inner capsid shell.
Collapse
|
15
|
Schreiner S, Kinkley S, Bürck C, Mund A, Wimmer P, Schubert T, Groitl P, Will H, Dobner T. SPOC1-mediated antiviral host cell response is antagonized early in human adenovirus type 5 infection. PLoS Pathog 2013; 9:e1003775. [PMID: 24278021 PMCID: PMC3836738 DOI: 10.1371/journal.ppat.1003775] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/04/2013] [Indexed: 01/22/2023] Open
Abstract
Little is known about immediate phases after viral infection and how an incoming viral genome complex counteracts host cell defenses, before the start of viral gene expression. Adenovirus (Ad) serves as an ideal model, since entry and onset of gene expression are rapid and highly efficient, and mechanisms used 24–48 hours post infection to counteract host antiviral and DNA repair factors (e.g. p53, Mre11, Daxx) are well studied. Here, we identify an even earlier host cell target for Ad, the chromatin-associated factor and epigenetic reader, SPOC1, recently found recruited to double strand breaks, and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its functional association with the Ad major core protein pVII that enters with the viral genome, followed by E1B-55K/E4orf6-dependent proteasomal degradation of SPOC1. Mimicking removal of SPOC1 in the cell, knock down of this cellular restriction factor using RNAi techniques resulted in significantly increased Ad replication, including enhanced viral gene expression. However, depletion of SPOC1 also reduced the efficiency of E1B-55K transcriptional repression of cellular promoters, with possible implications for viral transformation. Intriguingly, not exclusive to Ad infection, other human pathogenic viruses (HSV-1, HSV-2, HIV-1, and HCV) also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host cells should provide new perspectives for developing antiviral agents and therapies. Conversely, for Ad vectors used in gene therapy, counteracting mechanisms eradicating incoming viral DNA would increase Ad vector efficacy and safety for the patient. Viruses have acquired functions that target and modulate host cell signaling and diverse regulatory cascades, leading to efficient viral propagation. During the course of productive infection, Ad gene products manipulate destruction pathways to prevent viral clearance or cell death prior to viral genome amplification and release of progeny. Recently, we reported that chromatin formation and cellular SWI/SNF chromatin remodeling processes play a key role in Ad transcriptional regulation. Here, we observe for the first time that SPOC1, identified as a regulator of DNA damage response and chromatin structure, plays an essential role in restricting Ad gene expression and progeny production. This host cell antiviral mechanism is efficiently counteracted by tight association with the major core protein pVII bound to the incoming viral genome. Subsequently, SPOC1 undergoes proteasomal degradation via the Ad E1B-55K/E4orf6-dependent, Cullin-based E3 ubiquitin ligase complex. We also show that other viruses from RNA and DNA families also induce efficient degradation of SPOC1. These analyses of evasion strategies acquired by viruses and other human pathogens should provide important insights into factors manipulating the epigenetic environment to potentially inactivate, or amplify host cell immune responses, since detailed molecular mechanisms and the full repertoire of cellular targets still remain elusive.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sarah Kinkley
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carolin Bürck
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Andreas Mund
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Wimmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tobias Schubert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Hans Will
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
16
|
Wong CM, McFall ER, Burns JK, Parks RJ. The role of chromatin in adenoviral vector function. Viruses 2013; 5:1500-15. [PMID: 23771241 PMCID: PMC3717718 DOI: 10.3390/v5061500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/01/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
Vectors based on adenovirus (Ad) are one of the most commonly utilized platforms for gene delivery to cells in molecular biology studies and in gene therapy applications. Ad is also the most popular vector system in human clinical gene therapy trials, largely due to its advantageous characteristics such as high cloning capacity (up to 36 kb), ability to infect a wide variety of cell types and tissues, and relative safety due to it remaining episomal in transduced cells. The latest generation of Ad vectors, helper‑dependent Ad (hdAd), which are devoid of all viral protein coding sequences, can mediate high-level expression of a transgene for years in a variety of species ranging from rodents to non-human primates. Given the importance of histones and chromatin in modulating gene expression within the host cell, it is not surprising that Ad, a nuclear virus, also utilizes these proteins to protect the genome and modulate virus- or vector‑encoded genes. In this review, we will discuss our current understanding of the contribution of chromatin to Ad vector function.
Collapse
Affiliation(s)
- Carmen M. Wong
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada; E-Mails: (C.M.W.); (E.R.M.); (J.K.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Emily R. McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada; E-Mails: (C.M.W.); (E.R.M.); (J.K.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Joseph K. Burns
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada; E-Mails: (C.M.W.); (E.R.M.); (J.K.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada; E-Mails: (C.M.W.); (E.R.M.); (J.K.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-613-737-8123; Fax: +1-613-737-8803
| |
Collapse
|
17
|
Gopal V. Bioinspired peptides as versatile nucleic acid delivery platforms. J Control Release 2013; 167:323-32. [DOI: 10.1016/j.jconrel.2013.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/11/2013] [Accepted: 02/21/2013] [Indexed: 01/28/2023]
|
18
|
Samad MA, Komatsu T, Okuwaki M, Nagata K. B23/nucleophosmin is involved in regulation of adenovirus chromatin structure at late infection stages, but not in virus replication and transcription. J Gen Virol 2012; 93:1328-1338. [PMID: 22337638 DOI: 10.1099/vir.0.036665-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
B23/nucleophosmin has been identified in vitro as a stimulatory factor for replication of adenovirus DNA complexed with viral basic core proteins. In the present study, the in vivo function of B23 in the adenovirus life cycle was studied. It was found that both the expression of a decoy mutant derived from adenovirus core protein V that tightly associates with B23 and small interfering RNA-mediated depletion of B23 impeded the production of progeny virions. However, B23 depletion did not significantly affect the replication and transcription of the virus genome. Chromatin immunoprecipitation analyses revealed that B23 depletion significantly increased the association of viral DNA with viral core proteins and cellular histones. These results suggest that B23 is involved in the regulation of association and/or dissociation of core proteins and cellular histones with the virus genome. In addition, these results suggest that proper viral chromatin assembly, regulated in part by B23, is crucial for the maturation of infectious virus particles.
Collapse
Affiliation(s)
- Mohammad Abdus Samad
- Department of Applied Nutrition and Food Technology, Faculty of Applied Science and Technology, Islamic University, Kushtia, Bangladesh.,Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | - Tetsuro Komatsu
- Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | - Mitsuru Okuwaki
- Initiatives for the Promotion of Young Scientists' Independent Research, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8577, Japan.,Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | - Kyosuke Nagata
- Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| |
Collapse
|
19
|
Giberson AN, Davidson AR, Parks RJ. Chromatin structure of adenovirus DNA throughout infection. Nucleic Acids Res 2011; 40:2369-76. [PMID: 22116065 PMCID: PMC3315334 DOI: 10.1093/nar/gkr1076] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For more than half a century, researchers have studied the basic biology of Adenovirus (Ad), unraveling the subtle, yet profound, interactions between the virus and the host. These studies have uncovered previously unknown proteins and pathways crucial for normal cell function that the virus manipulates to achieve optimal virus replication and gene expression. In the infecting virion, the viral DNA is tightly condensed in a virally encoded protamine-like protein which must be remodeled within the first few hours of infection to allow for efficient expression of virus-encoded genes and subsequent viral DNA replication. This review discusses our current knowledge of Ad DNA–protein complex within the infected cell nucleus, the cellular proteins the virus utilizes to achieve chromatinization, and how this event contributes to efficient gene expression and progression of the virus life cycle.
Collapse
Affiliation(s)
- Andrea N Giberson
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Department of Biochemistry, Microbiology and Immunology and Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | | | | |
Collapse
|
20
|
Kononchik JP, Vancini R, Brown DT. Alphavirus adsorption to mosquito cells as viewed by freeze fracture immunolabeling. Virology 2011; 415:132-40. [DOI: 10.1016/j.virol.2011.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/11/2011] [Accepted: 04/22/2011] [Indexed: 12/12/2022]
|
21
|
Momose F, Sekimoto T, Ohkura T, Jo S, Kawaguchi A, Nagata K, Morikawa Y. Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome. PLoS One 2011; 6:e21123. [PMID: 21731653 PMCID: PMC3120830 DOI: 10.1371/journal.pone.0021123] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 05/19/2011] [Indexed: 12/31/2022] Open
Abstract
Influenza A virus RNA genome exists as eight-segmented ribonucleoprotein complexes containing viral RNA polymerase and nucleoprotein (vRNPs). Packaging of vRNPs and virus budding take place at the apical plasma membrane (APM). However, little is known about the molecular mechanisms of apical transport of newly synthesized vRNP. Transfection of fluorescent-labeled antibody and subsequent live cell imaging revealed that punctate vRNP signals moved along microtubules rapidly but intermittently in both directions, suggestive of vesicle trafficking. Using a series of Rab family protein, we demonstrated that progeny vRNP localized to recycling endosome (RE) in an active/GTP-bound Rab11-dependent manner. The vRNP interacted with Rab11 through viral RNA polymerase. The localization of vRNP to RE and subsequent accumulation to the APM were impaired by overexpression of Rab binding domains (RBD) of Rab11 family interacting proteins (Rab11-FIPs). Similarly, no APM accumulation was observed by overexpression of class II Rab11-FIP mutants lacking RBD. These results suggest that the progeny vRNP makes use of Rab11-dependent RE machinery for APM trafficking.
Collapse
Affiliation(s)
- Fumitaka Momose
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Stepwise loss of fluorescent core protein V from human adenovirus during entry into cells. J Virol 2010; 85:481-96. [PMID: 21047958 DOI: 10.1128/jvi.01571-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human adenoviruses (Ads) replicate and assemble particles in the nucleus. They organize a linear double-strand DNA genome into a condensed core with about 180 nucleosomes, by the viral proteins VII (pVII), pX, and pV attaching the DNA to the capsid. Using reverse genetics, we generated a novel, nonconditionally replicating Ad reporter by inserting green fluorescent protein (GFP) at the amino terminus of pV. Purified Ad2-GFP-pV virions had an oversized complete genome and incorporated about 38 GFP-pV molecules per virion, which is about 25% of the pV levels in Ad2. GFP-pV cofractionated with the DNA core, like pV, and newly synthesized GFP-pV had a subcellular localization indistinguishable from that of pV, indicating that GFP-pV is a valid reporter for pV. Ad2-GFP-pV completed the replication cycle, although at lower yields than Ad2. Incoming GFP-pV (or pV) was not imported into the nucleus. Virions lost GFP-pV at two points during the infection process: at entry into the cytosol and at the nuclear pore complex, where capsids disassemble. Disassembled capsids, positive for the conformation-specific antihexon antibody R70, were devoid of GFP-pV. The loss of GFP-pV was reduced by the macrolide antibiotic leptomycin B (LMB), which blocks nuclear export and adenovirus attachment to the nuclear pore complex. LMB inhibited the appearance of R70 epitopes on Ad2 and Ad2-GFP-pV, indicating that the loss of GFP-pV from Ad2-GFP-pV is an authentic step in the adenovirus uncoating program. Ad2-GFP-pV is genetically complete and hence enables detailed analyses of infection and spreading dynamics in cells and model organisms or assessment of oncolytic adenoviral potential.
Collapse
|
23
|
Abstract
The double-stranded DNA genomes of herpesviruses exist in at least three alternative global chromatin states characterised by distinct nucleosome content. When encapsidated in virus particles, the viral DNA is devoid of any nucleosomes. In contrast, within latently infected nuclei herpesvirus genomes are believed to form regular nucleosomal structures resembling cellular chromatin. Finally, during productive infection nuclear viral DNA appears to adopt a state of intermediate chromatin formation with irregularly spaced nucleosomes. Nucleosome occupancy coupled with posttranslational histone modifications and other epigenetic marks may contribute significantly to the extent and timing of transcription from the viral genome and, consequently, to the outcome of infection. Recent research has provided first insights into the viral and cellular mechanisms that either maintain individual herpesvirus chromatin states or mediate transition between them. Here, we summarise and discuss both early work and new developments pointing towards common principles pertinent to the dynamic structure and epigenetic regulation of herpesvirus chromatin. Special emphasis is given to the emerging similarities in nucleosome assembly and disassembly processes on herpes simplex virus type 1 and human cytomegalovirus genomes over the course of the viral productive replication cycle and during the switch between latent and lytic infectious stages.
Collapse
Affiliation(s)
- Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | | | | |
Collapse
|
24
|
Kennedy MA, Parks RJ. Adenovirus virion stability and the viral genome: size matters. Mol Ther 2010; 17:1664-6. [PMID: 19789561 DOI: 10.1038/mt.2009.202] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michael A Kennedy
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | |
Collapse
|
25
|
Walkiewicz MP, Morral N, Engel DA. Accurate single-day titration of adenovirus vectors based on equivalence of protein VII nuclear dots and infectious particles. J Virol Methods 2009; 159:251-8. [PMID: 19406166 DOI: 10.1016/j.jviromet.2009.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/07/2009] [Accepted: 04/20/2009] [Indexed: 12/30/2022]
Abstract
Protein VII is an abundant component of adenovirus particles and is tightly associated with the viral DNA. It enters the nucleus along with the infecting viral genome and remains bound throughout early phase. Protein VII can be visualized by immunofluorescent staining as discrete dots in the infected cell nucleus. Comparison between protein VII staining and expression of the 72kDa DNA-binding protein revealed a one-to-one correspondence between protein VII dots and infectious viral genomes. A similar relationship was observed for a helper-dependent adenovirus vector expressing green fluorescent protein. This relationship allowed accurate titration of adenovirus preparations, including wild-type and helper-dependent vectors, using a 1-day immunofluorescence method. The method can be applied to any adenovirus vector and gives results equivalent to the standard plaque assay.
Collapse
Affiliation(s)
- Marcin P Walkiewicz
- Department of Microbiology, University of Virginia Health System, P.O. Box 800734, Charlottesville, VA 22908-0734, USA.
| | | | | |
Collapse
|
26
|
Abstract
Replication-defective adenovirus (Ad) vectors can vary considerably in genome length, but whether this affects virion stability has not been investigated. Helper-dependent Ad vectors with a genome size of approximately 30 kb were 100-fold more sensitive to heat inactivation than their parental helper virus (>36 kb), and increasing the genome size of the vector significantly improved heat stability. A similar relationship between genome size and stability existed for Ad with early region 1 deleted. Loss of infectivity was due to release of vertex proteins, followed by disintegration of the capsid. Thus, not only does the viral DNA encode all of the heritable information essential for virus replication, it also plays a critical role in maintaining capsid strength and integrity.
Collapse
|
27
|
Chen J, Morral N, Engel DA. Transcription releases protein VII from adenovirus chromatin. Virology 2007; 369:411-22. [PMID: 17888479 DOI: 10.1016/j.virol.2007.08.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/06/2007] [Accepted: 08/13/2007] [Indexed: 11/16/2022]
Abstract
Adenovirus protein VII is the major protein component of the viral nucleoprotein core. It is a nonspecific DNA-binding protein that condenses viral DNA inside the capsid. Protein VII remains associated with viral chromatin throughout early phase, indicating its continuing role during infection. Here we characterize the release of protein VII from infectious genomes during a time period that corresponds to the late phase of infection. Interestingly, the early viral transactivator E1A, but not other early gene products, is responsible for releasing protein VII by a mechanism that requires ongoing transcription but not viral DNA replication. Moreover transcription per se, in the absence of E1A, is also sufficient to trigger release. Accordingly, a recombinant genome containing only non-coding "stuffer" DNA is unable to support release of protein VII. Our data support a model in which early gene transcription results in a change in the structure of the viral chromatin.
Collapse
Affiliation(s)
- Jiangning Chen
- Department of Microbiology, University of Virginia Health System, PO Box 800734, Charlottesville, VA 22908-0734, USA
| | | | | |
Collapse
|
28
|
Campos SK, Barry MA. Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther 2007; 7:189-204. [PMID: 17584037 PMCID: PMC2244792 DOI: 10.2174/156652307780859062] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting.
Collapse
Affiliation(s)
- Samuel K. Campos
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Michael A. Barry
- Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA
- *Address correspondence to this author at the Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA; E-mail:
| |
Collapse
|
29
|
Samad MA, Okuwaki M, Haruki H, Nagata K. Physical and functional interaction between a nucleolar protein nucleophosmin/B23 and adenovirus basic core proteins. FEBS Lett 2007; 581:3283-8. [PMID: 17602943 DOI: 10.1016/j.febslet.2007.06.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 11/21/2022]
Abstract
We identified nucleophosmin/B23 as a component of template-activating factor-III that stimulates the DNA replication from the adenovirus DNA complexed with viral basic core proteins. Here, we have studied the functional interaction of B23 with viral core proteins. We found that B23 interacts with viral basic core proteins, core protein V and precursor of core protein VII (pre-VII), in infected cells. Biochemical analyses demonstrated that B23 suppresses formation of aggregates between DNA and core proteins and transfers pre-VII to DNA. These results indicate that B23 functions as a chaperone in the viral chromatin assembly process in infected cells.
Collapse
Affiliation(s)
- Mohammad Abdus Samad
- Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Japan
| | | | | | | |
Collapse
|
30
|
Spector DJ. Default assembly of early adenovirus chromatin. Virology 2007; 359:116-25. [PMID: 17034827 DOI: 10.1016/j.virol.2006.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/23/2006] [Accepted: 09/06/2006] [Indexed: 11/17/2022]
Abstract
In adenovirus particles, the viral nucleoprotein is organized into a highly compacted core structure. Upon delivery to the nucleus, the viral nucleoprotein is very likely to be remodeled to a form accessible to the transcription and replication machinery. Viral protein VII binds to intra-nuclear viral DNA, as do at least two cellular proteins, SET/TAF-Ibeta and pp32, components of a chromatin assembly complex that is implicated in template remodeling. We showed previously that viral DNA-protein complexes released from infecting particles were sensitive to shearing after cross-linking with formaldehyde, presumably after transport of the genome into the nucleus. We report here the application of equilibrium-density gradient centrifugation to the analysis of the fate of these complexes. Most of the incoming protein VII was recovered in a form that was not cross-linked to viral DNA. This release of protein VII, as well as the binding of SET/TAF-Ibeta and cellular transcription factors to the viral chromatin, did not require de novo viral gene expression. The distinct density profiles of viral DNA complexes containing protein VII, compared to those containing SET/TAF-Ibeta or transcription factors, were consistent with the notion that the assembly of early viral chromatin requires both the association of SET/TAF-1beta and the release of protein VII.
Collapse
Affiliation(s)
- David J Spector
- Department of Microbiology and Immunology, Pennsylvania State University College of Hershey, PA 17033, USA.
| |
Collapse
|
31
|
Wodrich H, Cassany A, D'Angelo MA, Guan T, Nemerow G, Gerace L. Adenovirus core protein pVII is translocated into the nucleus by multiple import receptor pathways. J Virol 2006; 80:9608-18. [PMID: 16973564 PMCID: PMC1617226 DOI: 10.1128/jvi.00850-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Adenoviruses are nonenveloped viruses with an approximately 36-kb double-stranded DNA genome that replicate in the nucleus. Protein VII, an abundant structural component of the adenovirus core that is strongly associated with adenovirus DNA, is imported into the nucleus contemporaneously with the adenovirus genome shortly after virus infection and may promote DNA import. In this study, we evaluated whether protein VII uses specific receptor-mediated mechanisms for import into the nucleus. We found that it contains potent nuclear localization signal (NLS) activity by transfection of cultured cells with protein VII fusion constructs and by microinjection of cells with recombinant protein VII fusions. We identified three NLS-containing regions in protein VII by deletion mapping and determined important NLS residues by site-specific mutagenesis. We found that recombinant protein VII and its NLS-containing domains strongly and specifically bind to importin alpha, importin beta, importin 7, and transportin, which are among the most abundant cellular nuclear import receptors. Moreover, these receptors can mediate the nuclear import of protein VII fusions in vitro in permeabilized cells. Considered together, these data support the hypothesis that protein VII is a major NLS-containing adaptor for receptor-mediated import of adenovirus DNA and that multiple import pathways are utilized to promote efficient nuclear entry of the viral genome.
Collapse
Affiliation(s)
- Harald Wodrich
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
32
|
Xue Y, Johnson JS, Ornelles DA, Lieberman J, Engel DA. Adenovirus protein VII functions throughout early phase and interacts with cellular proteins SET and pp32. J Virol 2005; 79:2474-83. [PMID: 15681448 PMCID: PMC546597 DOI: 10.1128/jvi.79.4.2474-2483.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus protein VII is the major component of the viral nucleoprotein core. It is a highly basic nonspecific DNA-binding protein that condenses viral DNA inside the capsid. We have investigated the fate and function of protein VII during infection. "Input" protein VII persisted in the nucleus throughout early phase and the beginning of DNA replication. Chromatin immunoprecipitation revealed that input protein VII remained associated with viral DNA during this period. Two cellular proteins, SET and pp32, also associated with viral DNA during early phase. They are components of two multiprotein complexes, the SET and INHAT complexes, implicated in chromatin-related activities. Protein VII associated with SET and pp32 in vitro and distinct domains of protein VII were responsible for binding to the two proteins. Interestingly, protein VII was found in novel nuclear dot structures as visualized by immunofluorescence. The dots likely represent individual infectious genomes in association with protein VII. They appeared within 30 min after infection and localized in the nucleus with a peak of intensity between 4 and 10 h postinfection. After this, their intensity decreased and they disappeared between 16 and 24 h postinfection. Interestingly, disappearance of the dots required ongoing RNA synthesis but not DNA synthesis. Taken together these data indicate that protein VII has an ongoing role during early phase and the beginning of DNA replication.
Collapse
Affiliation(s)
- Yuming Xue
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
33
|
Johnson JS, Osheim YN, Xue Y, Emanuel MR, Lewis PW, Bankovich A, Beyer AL, Engel DA. Adenovirus protein VII condenses DNA, represses transcription, and associates with transcriptional activator E1A. J Virol 2004; 78:6459-68. [PMID: 15163739 PMCID: PMC416553 DOI: 10.1128/jvi.78.12.6459-6468.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenovirus protein VII is the major protein component of the viral nucleoprotein core. It is highly basic, and an estimated 1070 copies associate with each viral genome, forming a tightly condensed DNA-protein complex. We have investigated DNA condensation, transcriptional repression, and specific protein binding by protein VII. Xenopus oocytes were microinjected with mRNA encoding HA-tagged protein VII and prepared for visualization of lampbrush chromosomes. Immunostaining revealed that protein VII associated in a uniform manner across entire chromosomes. Furthermore, the chromosomes were significantly condensed and transcriptionally silenced, as judged by the dramatic disappearance of transcription loops characteristic of lampbrush chromosomes. During infection, the protein VII-DNA complex may be the initial substrate for transcriptional activation by cellular factors and the viral E1A protein. To investigate this possibility, mRNAs encoding E1A and protein VII were comicroinjected into Xenopus oocytes. Interestingly, whereas E1A did not associate with chromosomes in the absence of protein VII, expression of both proteins together resulted in significant association of E1A with lampbrush chromosomes. Binding studies with proteins produced in bacteria or human cells or by in vitro translation showed that E1A and protein VII can interact in vitro. Structure-function analysis revealed that an N-terminal region of E1A is responsible for binding to protein VII. These studies define the in vivo functions of protein VII in DNA binding, condensation, and transcriptional repression and indicate a role in E1A-mediated transcriptional activation of viral genes.
Collapse
Affiliation(s)
- Jeffrey S Johnson
- Department of Microbiology, University of Virginia Health System, P.O. Box 800734, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The adenovirus genome encodes more than 40 proteins, of which 11 combine with the viral DNA to form an icosahedral capsid of approximately 150 MDa molecular weight and approximately 900 A in diameter. This chapter reviews the information that structural biology techniques have provided about the adenovirus proteins and capsid. The structures of two capsid proteins (hexon and fiber) and two non-structural polypeptides (DNA-binding protein and protease) have been solved by X-ray crystallography. Fiber and its knob have been the focus of the latest structural studies, due to their role in host recognition and consequently in virus targeting for human gene therapy. The current model for the large capsid comes from a combination of electron microscopy and crystallography. The resultant images have revealed a surprising similarity between adenovirus and a bacterial virus, which suggests their common evolutionary origin.
Collapse
Affiliation(s)
- C San Martín
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
35
|
Rexroad J, Wiethoff CM, Green AP, Kierstead TD, Scott MO, Middaugh CR. Structural stability of adenovirus type 5. J Pharm Sci 2003; 92:665-78. [PMID: 12587128 DOI: 10.1002/jps.10340] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Thermally induced structural changes in adenovirus type 5 (Ad) in the presence of either 2 or 10% sucrose were investigated using a variety of biophysical techniques. In solutions containing 2% sucrose, a highly cooperative transition in the structure of the virus was observed at 45 degrees C as detected by tryptophan fluorescence, derivative UV absorption spectroscopy, circular dichroism (CD), and dynamic and static light scattering. This transition resulted in (at least partial) disassembly of the virus and a concomitant increase in the accessibility of the viral DNA to the fluorescent dye, TOTO-1. Capsid disassembly was verified by transmission electron microscopy, which showed ruptured icosahedral vertices near 45 degrees C followed by complete capsid disassembly at higher temperatures. SDS-PAGE of thermally treated Ad suggests that the penton base (protein III) and protein IIIa (located in the peripentonal region) are significantly more labile than other capsid proteins and may be the initial instigators in capsid disassembly. Additional discrete structural transitions were observed in viral proteins using the aforementioned spectroscopic techniques. Thermally induced rearrangements of the condensed DNA at higher temperatures were also detected by the appearance of "psi"-like features in the CD spectra as well as a dramatic decrease in accessibility of DNA to TOTO-1. These transitions corresponded to discrete endothermic events that are also detected by differential scanning calorimetry. By increasing the concentration of sucrose to 10%, secondary and tertiary structural features of adenoviral proteins were significantly stabilized, although loss of quaternary structure at 45 degrees C was still observed.
Collapse
Affiliation(s)
- Jason Rexroad
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- E Sadowy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
37
|
Gallimore PH, Turnell AS. Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 2001; 20:7824-35. [PMID: 11753665 DOI: 10.1038/sj.onc.1204913] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- P H Gallimore
- CRC Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
38
|
Miyaji-Yamaguchi M, Okuwaki M, Nagata K. Coiled-coil structure-mediated dimerization of template activating factor-I is critical for its chromatin remodeling activity. J Mol Biol 1999; 290:547-57. [PMID: 10390352 DOI: 10.1006/jmbi.1999.2898] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Template activating factor-I (TAF-I)alpha and TAF-Ibeta have been identified as the host factors that activate DNA replication of the adenovirus genome complexed with viral basic core proteins (Ad core). TAF-I causes a structural change of the Ad core, thereby stimulating not only replication but also transcription from the Ad core DNA in vitro. TAF-I also activates transcription from the reconstituted chromatin consisting of DNA fragments and purified histones through chromatin remodeling. Although the carboxyl-terminal region, which is highly rich in acidic amino acids, is essential for the TAF-I activity, it remains unclear how other parts are involved in its activity. The native TAF-I isolated from HeLa cells exists as either hetero- or homo-oligomer. Here, we have demonstrated by cross-linking assays that most of TAF-I exists as a dimer. Analyses using deletion mutant TAF-I proteins revealed that the amino-terminal region of TAF-I common to both alpha and beta is essential for dimerization. This region is predicted to form a coiled-coil structure. Indeed, mutations disrupting this putative structure abolished the dimerization capability and reduced the TAF-I activity in the Ad core DNA replication assay. Furthermore, we found that TAF-I mutants lacking the acidic tail act in a dominant-negative manner in this assay. These observations strongly suggest that the dimerization of TAF-I is important for its activity.
Collapse
Affiliation(s)
- M Miyaji-Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | | |
Collapse
|
39
|
Hjalmarsson A, Carlemalm E, Everitt E. Infectious pancreatic necrosis virus: identification of a VP3-containing ribonucleoprotein core structure and evidence for O-linked glycosylation of the capsid protein VP2. J Virol 1999; 73:3484-90. [PMID: 10074207 PMCID: PMC104117 DOI: 10.1128/jvi.73.4.3484-3490.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virions of infectious pancreatic necrosis virus (IPNV) were completely disintegrated upon dialysis against salt-free buffers. Direct visualization of such preparations by electron microscopy revealed 5.0- to 6.5-nm-thick entangled filaments. By using a specific colloidal gold immunolabeling technique, these structures were shown to contain the viral protein VP3. Isolation by sucrose gradient centrifugation of the filaments, followed by serological analysis, demonstrated that the entire VP3 content of the virion was recovered together with the radiolabeled genomic material forming the unique threadlike ribonucleoprotein complexes. In a sensitive blotting assay, the outer capsid component of IPNV, i.e., the major structural protein VP2, was shown to specifically bind lectins recognizing sugar moieties of N-acetylgalactosamine, mannose, and fucose. Three established metabolic inhibitors of N-linked glycosylation did not prevent addition of sugar residues to virions, and enzymatic deglycosylation of isolated virions using N-glycosidase failed to remove sugar residues of VP2 recognized by lectins. However, gentle alkaline beta elimination clearly reduced the ability of lectins to recognize VP2. These results suggest that the glycosylation of VP2 is of the O-linked type when IPNV is propagated in RTG-2 cells.
Collapse
Affiliation(s)
- A Hjalmarsson
- Department of Microbiology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
40
|
Abstract
Genome and pre-genome replication in all animal DNA viruses except poxviruses occurs in the cell nucleus (Table 1). In order to reproduce, an infecting virion enters the cell and traverses through the cytoplasm toward the nucleus. Using the cell's own nuclear import machinery, the viral genome then enters the nucleus through the nuclear pore complex. Targeting of the infecting virion or viral genome to the multiplication site is therefore an essential process in productive viral infection as well as in latent infection and transformation. Yet little is known about how infecting genomes of animal DNA viruses reach the nucleus in order to reproduce. Moreover, this nuclear locus for viral multiplication is remarkable in that the sizes and composition of the infectious particles vary enormously. In this article, we discuss virion structure, life cycle to reproduce infectious particles, viral protein's nuclear import signal, and viral genome nuclear targeting.
Collapse
Affiliation(s)
- H Kasamatsu
- Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California at Los Angeles 90095, USA
| | | |
Collapse
|
41
|
Abstract
When packaged in a bacteriophage capsid, double-stranded DNA occupies a cavity whose volume is roughly twice the volume of the DNA double helix. The data thus far have not revealed whether the compactness of packaged bacteriophage DNA is achieved by folding of the DNA, undirectional winding of the DNA, or a combination of both folding and winding. To assist in discriminating among these possibilities, the present study uses electron microscopy, together with ultraviolet light-induced DNA-DNA cross-linking, to obtain the following information about the conformation of DNA packaged in the comparatively large bacteriophage, G: 1) At the periphery of some negatively stained particles of bacteriophage G, electron microscopy reveals standards of DNA that are both parallel to each other and parallel to the polyhedral bacteriophage G capsid. However, these strands are not visible toward the center of the zone of packaged DNA. 2) Within some positively stained particles, electron microscopy reveals DNA-associated stain in relatively high concentration at corners of the polyhedral bacteriophage G capsid. 3) When cross-linked DNA is expelled from its capsid during preparation for electron microscopy, some DNA molecules consist primarily of a compacted central region, surrounded by DNA strands that appear to be unravelling at multiple positions uniformly distributed around the compacted DNA region. The above results are explained by a previously presented model in which DNA is compacted by folding to form 12 icosahedrally arranged pear-shaped rings.
Collapse
Affiliation(s)
- M Sun
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760, USA
| | | |
Collapse
|
42
|
Doerfler W. A new concept in (adenoviral) oncogenesis: integration of foreign DNA and its consequences. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1288:F79-99. [PMID: 8876634 DOI: 10.1016/0304-419x(96)00024-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new concept for viral oncogenesis is presented which is based on experimental work on the chromosomal integration of adenovirus DNA into mammalian genomes. The mechanism of adenovirus DNA integration is akin to non-sequence-specific insertional recombination in which patch homologies between the recombination partners are frequently observed. This reaction has been imitated in a cell-free system by using nuclear extracts from hamster cells and partly purified fractions derived from them. As a consequence of foreign DNA insertion into the mammalian genome, the foreign DNA is extensively de novo methylated in specific patterns, presumably as part of a mammalian host cell defense mechanism against inserted foreign DNA which can be permanently silenced in this way. A further corollary of foreign (adenovirus or bacteriophage lambda) DNA integration is seen in extensive changes in cellular DNA methylation patterns at sites far remote from the locus of insertional recombination. Repetitive cellular, retrotransposon-like sequences are particularly, but not exclusively, prone to these increases in DNA methylation. It is conceivable that these changes in DNA methylation are a reflection of a profound overall reorganization process in the affected genomes. Could these alterations significantly contribute to the transformation events during viral or other types of oncogenesis? These sequelae of foreign DNA integration into established mammalian genomes will have to be critically considered when interpreting results obtained with transgenic, knock-out, and knock-in animals and when devising schemes for human somatic gene therapy. The interpretation of de novo methylation as a cellular defense mechanism has prompted investigations on the fate of food-ingested foreign DNA. The gastrointestinal (GI) tract provides a large surface for the entry of foreign DNA into any organism. As a tracer molecule, bacteriophage M13 DNA has been fed to mice. Fragments of this DNA can be found in small amounts (about 1% of the administered DNA) in all parts of the intestinal tract and in the feces. Furthermore, M13 DNA can be traced in the columnar epithelia of the intestine, in Peyer's plaque leukocytes, in peripheral white blood cells, in spleen, and liver. Authentic M13 DNA has been recloned from total spleen DNA. If integrated, this DNA might elicit some of the described consequences of foreign DNA insertion into the mammalian genome. Food-ingested DNA will likely infiltrate the organism more frequently than viral DNA.
Collapse
Affiliation(s)
- W Doerfler
- Institut für Genetik, Universität zu Köln, Germany.
| |
Collapse
|
43
|
Nagata K, Kawase H, Handa H, Yano K, Yamasaki M, Ishimi Y, Okuda A, Kikuchi A, Matsumoto K. Replication factor encoded by a putative oncogene, set, associated with myeloid leukemogenesis. Proc Natl Acad Sci U S A 1995; 92:4279-83. [PMID: 7753797 PMCID: PMC41927 DOI: 10.1073/pnas.92.10.4279] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA replication of the adenovirus genome complexed with viral core proteins is dependent on the host factor designated template activating factor I (TAF-I) in addition to factors required for replication of the naked genome. Recently, we have purified TAF-I as 39- and 41-kDa polypeptides from HeLa cells. Here we describe the cloning of two human cDNAs encoding TAF-I. Nucleotide sequence analysis revealed that the 39-kDa polypeptide corresponds to the protein encoded by the set gene, which is the part of the putative oncogene associated with acute undifferentiated leukemia when translocated to the can gene. The 41-kDa protein contains the same amino acid sequence as the 39-kDa protein except that short N-terminal regions differ in both proteins. Recombinant proteins, which were purified from extracts of Escherichia coli, expressing the proteins from cloned cDNAs, possessed TAF-I activities in the in vitro replication assay. A particular feature of TAF-I proteins is the presence of a long acidic tail in the C-terminal region, which is thought to be an essential part of the SET-CAN fusion protein. Studies with mutant TAF-I proteins devoid of this acidic region indicated that the acidic region is essential for TAF-I activity.
Collapse
Affiliation(s)
- K Nagata
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Matsumoto K, Okuwaki M, Kawase H, Handa H, Hanaoka F, Nagata K. Stimulation of DNA transcription by the replication factor from the adenovirus genome in a chromatin-like structure. J Biol Chem 1995; 270:9645-50. [PMID: 7721897 DOI: 10.1074/jbc.270.16.9645] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Adenovirus (Ad) genome DNA is complexed with viral core proteins in the virus particle and in host cells during the early stages of infection. This DNA protein complex, called Ad core, is thought to be the template for transcription and DNA replication in infected cells. The Ad core functioned as template for DNA replication in the cell-free system consisting of viral replication proteins, uninfected HeLa nuclear extracts, and a novel factor, template activating factor-I (TAF-I) that we have isolated from uninfected HeLa cytoplasmic fractions. The Ad core did not function as an efficient template in the cell-free transcription system with nuclear extracts of uninfected HeLa cells. The addition of TAF-I resulted in the stimulation of transcription from E1A and ML promoters on the Ad core. TAF-I was required, at least, for the formation of preinitiation complexes. These observations suggest that, in addition to factors essential for transcription on naked DNA template, the factor such as TAF-I needed for replication of the Ad core is also required for transcription from the Ad genome in a chromatin-like structure.
Collapse
Affiliation(s)
- K Matsumoto
- Cellular Physiology Laboratory, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- S I Schmid
- Department of Molecular Genetics and Microbiology, Stat University of New York, Stony Brook 11794, USA
| | | |
Collapse
|
46
|
|
47
|
Stewart PL, Burnett RM. Adenovirus structure by X-ray crystallography and electron microscopy. Curr Top Microbiol Immunol 1995; 199 ( Pt 1):25-38. [PMID: 7555058 DOI: 10.1007/978-3-642-79496-4_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P L Stewart
- Wistar Institute, Philadelphia, PA 19104, USA
| | | |
Collapse
|
48
|
|
49
|
Stewart PL, Burnett RM, Cyrklaff M, Fuller SD. Image reconstruction reveals the complex molecular organization of adenovirus. Cell 1991; 67:145-54. [PMID: 1913814 DOI: 10.1016/0092-8674(91)90578-m] [Citation(s) in RCA: 193] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The three-dimensional structure of adenovirus has been determined by image reconstruction from cryo-electron micrographs. Comparison with the high resolution X-ray crystal structure of hexon, the major capsid protein, enabled an unusually detailed interpretation of the density map and confirmed the validity of the reconstruction. The hexon packing in the capsid shows more extensive intermolecular interfaces between facets than previously proposed. The reconstruction provides the first three-dimensional visualization of the vertex proteins, including the penton base and its associated protruding fiber. Three minor capsid proteins that stabilize and modulate capsomer interactions are revealed. One of these components stabilizes the group-of-nine hexons in the center of each facet and the other two bridge hexons in adjacent facets. The strategic positions of these proteins highlight the importance of cementing proteins in stabilizing a complex assembly.
Collapse
Affiliation(s)
- P L Stewart
- Wistar Institute, Philadelphia, Pennsylvania 19104
| | | | | | | |
Collapse
|
50
|
Wong ML, Hsu MT. Linear adenovirus DNA is organized into supercoiled domains in virus particles. Nucleic Acids Res 1989; 17:3535-50. [PMID: 2726486 PMCID: PMC317794 DOI: 10.1093/nar/17.9.3535] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Electron microscopic analysis of bis-psoralen crosslinked adenovirus type 5 virion DNA revealed supercoiled domains in an otherwise linear DNA. The existence of supercoiled arrangement in all the virion DNA was demonstrated by the sensitivity of Ad5 DNA in pentonless virus particles to the supercoiling-dependent endonucleolytic activity of Bal31 and S1 nucleases. These nucleases were found to cleave Ad5 virion DNA at specific sites. The observation of stable cleavage sites in the limit digestion of virion DNA by Bal31 suggests that cleavage sites represent boundaries of core proteins which impede the exonuclease activity of Bal31. These data suggest that specific arrangement of core proteins on Ad5 virion DNA. Based on this analysis we determined positions of core proteins in viral genome using indirect end labeling technique. The size of supercoiled domains of virion DNA was estimated by electron microscopy and also by boundaries of mutually exclusive Bal31 cleavage sites at limit digestion condition. Our data suggest each supercoiled domain is equal to about 12% of Ad5 genome length and about 8 loops can be accommodated in Ad5 virion. However sequences at two extreme ends of the viral genome were found to be outside of supercoiled domains. An interesting correlation between supercoiled domains and gene domains of Ad5 genome was noticed.
Collapse
Affiliation(s)
- M L Wong
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|