1
|
Sreenivasan CC, Sheng Z, Wang D, Li F. Host Range, Biology, and Species Specificity of Seven-Segmented Influenza Viruses-A Comparative Review on Influenza C and D. Pathogens 2021; 10:1583. [PMID: 34959538 PMCID: PMC8704295 DOI: 10.3390/pathogens10121583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Other than genome structure, influenza C (ICV), and D (IDV) viruses with seven-segmented genomes are biologically different from the eight-segmented influenza A (IAV), and B (IBV) viruses concerning the presence of hemagglutinin-esterase fusion protein, which combines the function of hemagglutinin and neuraminidase responsible for receptor-binding, fusion, and receptor-destroying enzymatic activities, respectively. Whereas ICV with humans as primary hosts emerged nearly 74 years ago, IDV, a distant relative of ICV, was isolated in 2011, with bovines as the primary host. Despite its initial emergence in swine, IDV has turned out to be a transboundary bovine pathogen and a broader host range, similar to influenza A viruses (IAV). The receptor specificities of ICV and IDV determine the host range and the species specificity. The recent findings of the presence of the IDV genome in the human respiratory sample, and high traffic human environments indicate its public health significance. Conversely, the presence of ICV in pigs and cattle also raises the possibility of gene segment interactions/virus reassortment between ICV and IDV where these viruses co-exist. This review is a holistic approach to discuss the ecology of seven-segmented influenza viruses by focusing on what is known so far on the host range, seroepidemiology, biology, receptor, phylodynamics, species specificity, and cross-species transmission of the ICV and IDV.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (C.C.S.); (D.W.)
| |
Collapse
|
2
|
Márquez-Domínguez L, Reyes-Leyva J, Herrera-Camacho I, Santos-López G, Scior T. Five Novel Non-Sialic Acid-Like Scaffolds Inhibit In Vitro H1N1 and H5N2 Neuraminidase Activity of Influenza a Virus. Molecules 2020; 25:molecules25184248. [PMID: 32947893 PMCID: PMC7571124 DOI: 10.3390/molecules25184248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023] Open
Abstract
Neuraminidase (NA) of influenza viruses enables the virus to access the cell membrane. It degrades the sialic acid contained in extracellular mucin. Later, it is responsible for releasing newly formed virions from the membrane of infected cells. Both processes become key functions within the viral cycle. Therefore, it is a therapeutic target for research of the new antiviral agents. Structure–activity relationships studies have revealed which are the important functional groups for the receptor–ligand interaction. Influenza virus type A NA activity was inhibited by five scaffolds without structural resemblance to sialic acid. Intending small organic compound repositioning along with drug repurposing, this study combined in silico simulations of ligand docking into the known binding site of NA, along with in vitro bioassays. The five proposed scaffolds are N-acetylphenylalanylmethionine, propanoic 3-[(2,5-dimethylphenyl) carbamoyl]-2-(piperazin-1-yl) acid, 3-(propylaminosulfonyl)-4-chlorobenzoic acid, ascorbic acid (vitamin C), and 4-(dipropylsulfamoyl) benzoic acid (probenecid). Their half maximal inhibitory concentration (IC50) was determined through fluorometry. An acidic reagent 2′-O-(4-methylumbelliferyl)-α-dN-acetylneuraminic acid (MUNANA) was used as substrate for viruses of human influenza H1N1 or avian influenza H5N2. Inhibition was observed in millimolar ranges in a concentration-dependent manner. The IC50 values of the five proposed scaffolds ranged from 6.4 to 73 mM. The values reflect a significant affinity difference with respect to the reference drug zanamivir (p < 0.001). Two compounds (N-acetyl dipeptide and 4-substituted benzoic acid) clearly showed competitive mechanisms, whereas ascorbic acid reflected non-competitive kinetics. The five small organic molecules constitute five different scaffolds with moderate NA affinities. They are proposed as lead compounds for developing new NA inhibitors which are not analogous to sialic acid.
Collapse
Affiliation(s)
- Luis Márquez-Domínguez
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Laboratorio de Simulaciones Computacionales Moleculares, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Julio Reyes-Leyva
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
| | - Irma Herrera-Camacho
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Gerardo Santos-López
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
- Correspondence: (G.S.-L.); (T.S.); Tel.: +52-244-444-0122 (G.S.-L.)
| | - Thomas Scior
- Laboratorio de Simulaciones Computacionales Moleculares, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
- Correspondence: (G.S.-L.); (T.S.); Tel.: +52-244-444-0122 (G.S.-L.)
| |
Collapse
|
3
|
Behzadi MA, Stein KR, Bermúdez-González MC, Simon V, Nachbagauer R, Tortorella D. An Influenza Virus Hemagglutinin-Based Vaccine Platform Enables the Generation of Epitope Specific Human Cytomegalovirus Antibodies. Vaccines (Basel) 2019; 7:vaccines7020051. [PMID: 31207917 PMCID: PMC6630953 DOI: 10.3390/vaccines7020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (CMV) is a highly prevalent pathogen with ~60%–90% seropositivity in adults. CMV can contribute to organ rejection in transplant recipients and is a major cause of birth defects in newborns. Currently, there are no approved vaccines against CMV. The epitope of a CMV neutralizing monoclonal antibody against a conserved region of the envelope protein gH provided the basis for a new CMV vaccine design. We exploited the influenza A virus as a vaccine platform due to the highly immunogenic head domain of its hemagglutinin envelope protein. Influenza A variants were engineered by reverse genetics to express the epitope of an anti-CMV gH neutralizing antibody that recognizes native gH into the hemagglutinin antigenic Sa site. We determined that the recombinant influenza variants expressing 7, 10, or 13 residues of the anti-gH neutralizing antibody epitope were recognized and neutralized by the anti-gH antibody 10C10. Mice vaccinated with the influenza/CMV chimeric viruses induced CMV-specific antibodies that recognized the native gH protein and inhibited virus infection. In fact, the influenza variants expressing 7–13 gH residues neutralized a CMV infection at ~60% following two immunizations with variants expressing the 13 residue gH peptide produced the highest levels of neutralization. Collectively, our study demonstrates that a variant influenza virus inserted with a gH peptide can generate a humoral response that limits a CMV infection.
Collapse
Affiliation(s)
- Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Maria Carolina Bermúdez-González
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Fritsch A, Schweiger B, Biere B. Influenza C virus in pre-school children with respiratory infections: retrospective analysis of data from the national influenza surveillance system in Germany, 2012 to 2014. Euro Surveill 2019; 24:1800174. [PMID: 30862333 PMCID: PMC6415498 DOI: 10.2807/1560-7917.es.2019.24.10.1800174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 12/31/2018] [Indexed: 11/23/2022] Open
Abstract
IntroductionRecent data on influenza C virus indicate a possible higher clinical impact in specified patient populations than previously thought.AimWe aimed to investigate influenza C virus circulation in Germany.MethodsA total of 1,588 samples from 0 to 4 year-old children presenting as outpatients with influenza-like illness (ILI) or acute respiratory infection were analysed retrospectively. The samples represented a subset of all samples from the German national surveillance system for influenza in this age group in 2012-14. The presence of influenza C virus was investigated by real-time PCR. For positive samples, information on symptoms as well as other respiratory virus co-infections was considered. Retrieved influenza C viral sequences were phylogenetically characterised.ResultsInfluenza C viral RNA was detected in 20 (1.3% of) samples, including 16 during the 2012/13 season. The majority (18/20) of influenza C-positive patients had ILI according to the European Union definition, one patient had pneumonia. Viruses belonged to the C/Sao Paulo and C/Kanagawa lineages. Most (11/20) samples were co-infected with other respiratory viruses.ConclusionOur data are the first on influenza C virus circulation in Germany and notably from a European national surveillance system. The low detection frequency and the identified virus variants confirm earlier observations outside a surveillance system. More virus detections during the 2012/13 season indicate a variable circulation intensity in the different years studied. Influenza C virus can be considered for ILI patients. Future studies addressing its clinical impact, especially in patients with severe disease are needed.
Collapse
Affiliation(s)
- Annemarie Fritsch
- Robert Koch Institute, National Reference Center for Influenza, FG 17 Influenza and Other Respiratory Viruses, Berlin, Germany
| | - Brunhilde Schweiger
- Robert Koch Institute, National Reference Center for Influenza, FG 17 Influenza and Other Respiratory Viruses, Berlin, Germany
| | - Barbara Biere
- Robert Koch Institute, National Reference Center for Influenza, FG 17 Influenza and Other Respiratory Viruses, Berlin, Germany
| |
Collapse
|
5
|
Atkinson KV, Bishop LA, Rhodes G, Salez N, McEwan NR, Hegarty MJ, Robey J, Harding N, Wetherell S, Lauder RM, Pickup RW, Wilkinson M, Gatherer D. Influenza C in Lancaster, UK, in the winter of 2014-2015. Sci Rep 2017; 7:46578. [PMID: 28406194 PMCID: PMC5390268 DOI: 10.1038/srep46578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/17/2017] [Indexed: 11/09/2022] Open
Abstract
Influenza C is not included in the annual seasonal influenza vaccine, and has historically been regarded as a minor respiratory pathogen. However, recent work has highlighted its potential role as a cause of pneumonia in infants. We performed nasopharyngeal or nasal swabbing and/or serum sampling (n = 148) in Lancaster, UK, over the winter of 2014-2015. Using enzyme-linked immunosorbent assay (ELISA), we obtain seropositivity of 77%. By contrast, only 2 individuals, both asymptomatic adults, were influenza C-positive by polymerase chain reaction (PCR). Deep sequencing of nasopharyngeal samples produced partial sequences for 4 genome segments in one of these patients. Bayesian phylogenetic analysis demonstrated that the influenza C genome from this individual is evolutionarily distant to those sampled in recent years and represents a novel genome constellation, indicating that it may be a product of a decades-old reassortment event. Although we find no evidence that influenza C was a significant respiratory pathogen during the winter of 2014-2015 in Lancaster, we confirm previous observations of seropositivity in the majority of the population. (170 words).
Collapse
Affiliation(s)
- Kate V Atkinson
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK
- Present address: University College London Hospitals NHS Foundation Trust, London, UK
| | - Lisa A Bishop
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK
- Royal Lancaster Infirmary, Ashton Road, Lancaster, LA1 4RP, UK
| | - Glenn Rhodes
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4AP, UK
| | - Nicolas Salez
- UMR_D 190, Emergence des Pathologies Virales, Aix-Marseille University, 27 Bd Jean Moulin, Marseille cedex 05, 13005, France
| | - Neil R McEwan
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Matthew J Hegarty
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Julie Robey
- Queen Square Medical Practice, 2 Queen Square, Lancaster, LA1 1RP, UK
| | - Nicola Harding
- Queen Square Medical Practice, 2 Queen Square, Lancaster, LA1 1RP, UK
| | - Simon Wetherell
- Queen Square Medical Practice, 2 Queen Square, Lancaster, LA1 1RP, UK
| | - Robert M Lauder
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK
| | - Roger W Pickup
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4AP, UK
| | - Mark Wilkinson
- Royal Lancaster Infirmary, Ashton Road, Lancaster, LA1 4RP, UK
| | - Derek Gatherer
- Division of Biomedical & Life Sciences, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YT, UK.
| |
Collapse
|
6
|
Jelley L, Levy A, Deng YM, Spirason N, Lang J, Buettner I, Druce J, Blyth C, Effler P, Smith D, Barr IG. Influenza C infections in Western Australia and Victoria from 2008 to 2014. Influenza Other Respir Viruses 2016; 10:455-461. [PMID: 27373693 PMCID: PMC5059950 DOI: 10.1111/irv.12402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Influenza C is usually considered a minor cause of respiratory illness in humans with many infections being asymptomatic or clinically mild. Large outbreaks can occur periodically resulting in significant morbidity. OBJECTIVES This study aimed at analyzing the available influenza C clinical samples from two widely separated states of Australia, collected over a 7-year period and to compare them with influenza C viruses detected in other parts of the world in recent years. PATIENTS/METHODS Between 2008 and 2014, 86 respiratory samples that were influenza C positive were collected from subjects with influenza-like illness living in the states of Victoria and Western Australia. A battery of other respiratory viruses were also tested for in these influenza C-positive samples. Virus isolation was attempted on all of these clinical samples, and gene sequencing was performed on all influenza C-positive cultures. RESULTS AND CONCLUSIONS Detections of influenza C in respiratory samples were sporadic in most years studied, but higher rates of infection occurred in 2012 and 2014. Many of the patients with influenza C had coinfections with other respiratory pathogens. Phylogenetic analysis of the full-length hemagglutinin-esterase-fusion (HE) gene found that most of the viruses grouped in the C/Sao Paulo/378/82 clade with the remainder grouping in the C/Kanagawa/1/76 clade.
Collapse
Affiliation(s)
- Lauren Jelley
- WHO Collaborating Centre for Reference and Research, Melbourne, Vic., Australia
| | - Avram Levy
- PathWest Laboratory Medicine WA, Nedlands, WA, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research, Melbourne, Vic., Australia
| | - Natalie Spirason
- WHO Collaborating Centre for Reference and Research, Melbourne, Vic., Australia
| | - Jurissa Lang
- PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Iwona Buettner
- WHO Collaborating Centre for Reference and Research, Melbourne, Vic., Australia
| | - Julian Druce
- Victorian Infectious Disease Reference Laboratory, Melbourne, Vic., Australia
| | - Chris Blyth
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
- Princess Margaret Hospital for Children, Subiaco, Perth, WA, Australia
- Wesfarmers Centre for Vaccines and infectious Diseases, Telethon Kids Institute, Perth, WA, Australia
| | - Paul Effler
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
- Communicable Disease Control Directorate, Department of Health, Shenton Park, WA, Australia
| | - David Smith
- PathWest Laboratory Medicine WA, Nedlands, WA, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research, Melbourne, Vic., Australia.
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Vic., Australia.
| |
Collapse
|
7
|
Koutsonanos DG, Compans RW, Skountzou I. Targeting the skin for microneedle delivery of influenza vaccine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 785:121-32. [PMID: 23456844 PMCID: PMC6525635 DOI: 10.1007/978-1-4614-6217-0_13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza infection represents a major socioeconomic burden worldwide. Skin represents a new target that has gained much attention in recent years for delivery of influenza vaccine as an alternative to the conventional intramuscular route of immunization. In this review we describe different microneedle vaccination approaches used in vivo, including metal and dissolving microneedle patches that have demonstrated promising results. Additionally we analyze the immunological basis for microneedle skin immunization and targeting of the skin's dense population of antigen presenting cells, their role, characterization, and function. Additionally we analyze the importance of inflammatory signaling in the skin after microneedle delivery.
Collapse
Affiliation(s)
- Dimitrios G. Koutsonanos
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| | - Richard W. Compans
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| | - Ioanna Skountzou
- Department of Microbiology & Immunology and Emory Vaccine Center, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| |
Collapse
|
8
|
A seven-segmented influenza A virus expressing the influenza C virus glycoprotein HEF. J Virol 2008; 82:6419-26. [PMID: 18448539 DOI: 10.1128/jvi.00514-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses are classified into three types: A, B, and C. The genomes of A- and B-type influenza viruses consist of eight RNA segments, whereas influenza C viruses only have seven RNAs. Both A and B influenza viruses contain two major surface glycoproteins: the hemagglutinin (HA) and the neuraminidase (NA). Influenza C viruses have only one major surface glycoprotein, HEF (hemagglutinin-esterase fusion). By using reverse genetics, we generated two seven-segmented chimeric influenza viruses. Each possesses six RNA segments from influenza virus A/Puerto Rico/8/34 (PB2, PB1, PA, NP, M, and NS); the seventh RNA segment encodes either the influenza virus C/Johannesburg/1/66 HEF full-length protein or a chimeric protein HEF-Ecto, which consists of the HEF ectodomain and the HA transmembrane and cytoplasmic regions. To facilitate packaging of the heterologous segment, both the HEF and HEF-Ecto coding regions are flanked by HA packaging sequences. When introduced as an eighth segment with the NA packaging sequences, both viruses are able to stably express a green fluorescent protein (GFP) gene, indicating a potential use for these viruses as vaccine vectors to carry foreign antigens. Finally, we show that incorporation of a GFP RNA segment enhances the growth of seven-segmented viruses, indicating that efficient influenza A viral RNA packaging requires the presence of eight RNA segments. These results support a selective mechanism of viral RNA recruitment to the budding site.
Collapse
|
9
|
Figlerowicz M, Alejska M, Kurzyńska‐Kokorniak A, Figlerowicz M. Genetic variability: the key problem in the prevention and therapy of RNA-based virus infections. Med Res Rev 2003; 23:488-518. [PMID: 12710021 PMCID: PMC7168509 DOI: 10.1002/med.10045] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite extraordinary progress that has recently been made in biomedical sciences, viral infectious diseases still remain one of the most serious world health problems. Among the different types of viruses, those using RNA as their genetic material (RNA viruses and retroviruses) are especially dangerous. At present there is no medicine allowing an effective treatment of RNA-based virus infections. Many RNA viruses and retroviruses need only a few weeks to escape immune response or to produce drug-resistant mutants. This seems to be the obvious consequence of the unusual genetic variability of RNA-based viruses. An individual virus does not form a homogenous population but rather a set of similar but not identical variants. In consequence, RNA-based viruses can easily adapt to environmental changes, also those resulting from immune system response or therapy. The modifications identified within viral genes can be divided into two groups: point mutations and complex genome rearrangements. The former arises mainly during error-prone replication, whereas RNA recombination and generic reassortment are responsible for the latter. This article shortly describes major strategies used to control virus infections. Then, it presents the various mechanisms generating the genetic diversity of RNA-based viruses, which are most probably the main cause of clinical problems.
Collapse
Affiliation(s)
| | - Magdalena Alejska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| | - Anna Kurzyńska‐Kokorniak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| |
Collapse
|
10
|
Pekosz A, Lamb RA. Cell surface expression of biologically active influenza C virus HEF glycoprotein expressed from cDNA. J Virol 1999; 73:8808-12. [PMID: 10482635 PMCID: PMC112902 DOI: 10.1128/jvi.73.10.8808-8812.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/1999] [Accepted: 07/08/1999] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin, esterase, and fusion (HEF) glycoprotein of influenza C virus possesses receptor binding, receptor destroying, and membrane fusion activities. The HEF cDNAs from influenza C/Ann Arbor/1/50 (HEF-AA) and influenza C/Taylor/1223/47 (HEF-Tay) viruses were cloned and expressed, and transport of HEF to the cell surface was monitored by susceptibility to cleavage by exogenous trypsin, indirect immunofluorescence microscopy, and flow cytometry. Previously it has been found in studies with the C/Johannesburg/1/66 strain of influenza C virus (HEF-JHB) that transport of HEF to the cell surface is severely inhibited, and it is thought that the short cytoplasmic tail, Arg-Thr-Lys, is involved in blocking HEF cell surface expression (F. Oeffner, H.-D. Klenk, and G. Herrler, J. Gen. Virol. 80:363-369, 1999). As the cytoplasmic tail amino acid sequences of HEF-AA and HEF-Tay are identical to that of HEF-JHB, the data indicate that cell surface expression of HEF-AA and HEF-Tay is not inhibited by this amino acid sequence. Furthermore, the abundant cell surface transport of HEF-AA and HEF-Tay indicates that their cell surface expression does not require coexpression of another viral protein. The HEF-AA and HEF-Tay HEF glycoproteins bound human erythrocytes, promoted membrane fusion in a low-pH and trypsin-dependent manner, and displayed esterase activity, indicating that the HEF glycoprotein alone mediates all three known functions at the cell surface.
Collapse
Affiliation(s)
- A Pekosz
- Howard Hughes Medical Institute, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | |
Collapse
|
11
|
Ohyama S, Adachi K, Sugawara K, Hongo S, Nishimura H, Kitame F, Nakamura K. Antigenic and genetic analyses of eight influenza C strains isolated in various areas of Japan during 1985-9. Epidemiol Infect 1992; 108:353-65. [PMID: 1374720 PMCID: PMC2271984 DOI: 10.1017/s0950268800049827] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Eight strains of influenza C virus isolated in various areas of Japan between January 1985 and January 1989 were compared using monoclonal antibodies to the haemagglutinin-esterase (HE) glycoproteins and by oligonucleotide mapping of total vRNA. Five of six strains isolated during 1986-9 were closely related to one another and also resembled the virus, C/Aichi/1/81, isolated in 1981 in Aichi prefecture. This suggests that the C/Aichi/1/81-related viruses had an epidemiological advantage over any co-circulating viruses at least during that period. One of two 1985 isolates (C/Nara/1/85) was antigenically indistinguishable from the C/Mississippi/1/80 strain though their oligonucleotide patterns were markedly different from each other. This raises the possibility that C/Nara/1/85 may be a recombinant virus which receives its HE gene from the C/Mississippi/1/80-related parent.
Collapse
Affiliation(s)
- S Ohyama
- Yamagata Prefectural Institute of Public Health, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Vlasak R, Krystal M, Nacht M, Palese P. The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology 1987; 160:419-25. [PMID: 3660588 DOI: 10.1016/0042-6822(87)90013-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A cDNA copy of RNA segment 4 of influenza C/Cal/78 virus was cloned into an SV40 vector and expressed in CV-1 cells. The gene product expressed from the SV40 recombinant virus was immunoprecipitated by monoclonal antibodies directed against the influenza C virus glycoprotein. Cells infected with the recombinant virus also exhibited C virus-specific hemagglutinin and O-acetylesterase activity. This suggests that the same C virus protein is associated with receptor-binding as well as receptor-destroying activity. The latter viral activity was measured using as substrates bovine submaxillary mucin or a low molecular weight compound p-nitrophenylacetate. In analogy to the parainfluenza virus HN protein, the influenza C virus glycoprotein was termed HE, because it possesses hemagglutinin and esterase (receptor-destroying) activity.
Collapse
Affiliation(s)
- R Vlasak
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029
| | | | | | | |
Collapse
|
13
|
Elliott RM, Yuanji G, Desselberger U. Protein and nucleic acid analyses of influenza C viruses isolated from pigs and man. Vaccine 1985; 3:182-8. [PMID: 4060845 DOI: 10.1016/0264-410x(85)90100-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The virus-coded proteins and the genomes of influenza C virus isolates obtained from Chinese pigs in 1981-1982 and of human influenza C virus strains isolated between 1947 and 1981 were compared. Using SDS polyacrylamide gel electrophoresis and one-dimensional peptide mapping we found the virus-coded proteins of the pig influenza C viruses to be similar to those of human influenza C virus strains. The sizes of the genomes of human and pig influenza C viruses were indistinguishable. Genome analysis by oligonucleotide (ON) mapping revealed that the genomes of the pig influenza C viruses were very similar to but not identical with those of human influenza C virus strains. ON changes were found scattered over the whole genome. ON mapping of isolated segments of several influenza C virus strains suggested that two pig strains (C/P/B/10/81 and C/P/B/32/81) are related by a reassortment event which is likely to have occurred in nature. The rate of genome variation in influenza C viruses seemed to be similar to that seen in influenza B, and slower than that recorded for influenza A viruses.
Collapse
|
14
|
Nakada S, Creager RS, Krystal M, Palese P. Complete nucleotide sequence of the influenza C/California/78 virus nucleoprotein gene. Virus Res 1984; 1:433-41. [PMID: 6532006 DOI: 10.1016/0168-1702(84)90001-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complete nucleotide sequence of RNA segment 5 of the influenza C/California/78 (C/Cal/78) virus was determined by using cloned cDNA derived from viral RNA. The gene contains 1809 nucleotides and can code for a protein of 565 amino acids with a molecular weight of 63 525. The RNA 5 protein of the influenza C/Cal/78 virus possesses two short regions which share a high degree (60-83%) of sequence homology with the nucleoproteins of influenza A and B viruses. These and other structural features of the RNA 5 protein suggest that RNA 5 of influenza C viruses codes for the nucleoprotein. The data also suggest that influenza C viruses are orthomyxoviruses, but that they are more distantly related to either type A or type B viruses than are influenza A and B viruses to each other.
Collapse
|
15
|
Clern-van Haaster CM, Meier-Ewert H. 3'-Terminal sequences of influenza C virion RNA. Brief report. Arch Virol 1984; 80:239-46. [PMID: 6721680 DOI: 10.1007/bf01310664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The 3'-terminal nucleotides of the genome segments of influenza C/Taylor/47. C/Bavaria/79 and C/Johannesburg/1/66 were identified by two RNA sequencing techniques. These comprised 11 nucleotides (3' UCGUCUUCGUC) which were found to be conserved among the genome segments of each virus.
Collapse
|
16
|
Nakada S, Creager RS, Krystal M, Aaronson RP, Palese P. Influenza C virus hemagglutinin: comparison with influenza A and B virus hemagglutinins. J Virol 1984; 50:118-24. [PMID: 6699942 PMCID: PMC255590 DOI: 10.1128/jvi.50.1.118-124.1984] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The complete nucleotide sequence of the influenza C/California/78 virus RNA 4 was obtained by using cloned cDNA derived from the RNA segment. This gene is 2,071 nucleotides long and can code for a polypeptide of 654 amino acids. Although there are no convincing sequence homologies between RNA 4 and the hemagglutinin genes of influenza A and B viruses, we suggest, on the basis of structural features, that RNA 4 of the influenza C virus codes for the hemagglutinin. The structural features which are common to the hemagglutinins of influenza A, B, and C viruses include (i) a hydrophobic signal peptide, (ii) an arginine cleavage site between the hemagglutinin 1 and 2 subunits, (iii) hydrophobic regions at the amino and carboxyl termini of the hemagglutinin 2 subunit, and (iv) several conserved cysteine residues. Additional evidence that RNA 4 of influenza C virus codes for the hemagglutinin is that the tripeptide Ile-Phe-Gly, known to be present at the amino terminus of the hemagglutinin 2 subunit of influenza C virus, is encoded by RNA 4 at a point immediately adjacent to the presumptive arginine cleavage site. The lack of primary sequence homology between the influenza C virus hemagglutinin and the influenza A or B virus hemagglutinins, which all have similar functions, might be attributed to convergent rather than divergent evolution. However, the structural similarities among the influenza A, B, and C virus hemagglutinins strongly suggest that the three hemagglutinin genes have diverged from a common precursor.
Collapse
|
17
|
Yokota M, Nakamura K, Sugawara K, Homma M. The synthesis of polypeptides in influenza C virus-infected cells. Virology 1983; 130:105-17. [PMID: 6314642 DOI: 10.1016/0042-6822(83)90121-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The synthesis of virus-specific polypeptides was analyzed in MDCK cells infected with the JJ/50 strain of influenza C virus. In addition to three major structural proteins gp88, NP, and M, the synthesis of five polypeptides with molecular weights of 29,500 (C1), 27,500 (C2), 24,000 (C3), 19,000 (C4), and 14,000 (C5) was found in infected cells. None of these polypeptides were detected either in virions or in immunoprecipitates obtained after treatment of infected cell lysates with antiviral serum, suggesting that they are not viral structural proteins. Polypeptides C1-C5 were found to be synthesized in MDCK cells infected with different influenza C virus strains as well as in different host cell types infected with C/JJ/50. Further, it was observed that cellular protein synthesis was greatly reduced under hypertonic conditions, whereas the synthesis of C1-C5 was relatively unaffected. These results suggest that polypeptides C1-C5 are virus coded rather than host cell coded. Peptide mapping studies showed that each of polypeptides C3, C4, and C5 had a peptide composition similar to the M protein. The amount of C2 synthesized in infected cells was insufficient for mapping. This polypeptide was, however, found to rapidly disappear in pulse-chase experiments, suggesting that C2 is probably not unique but biosynthetically related to one of the other proteins. In contrast to these polypeptides, polypeptide C1 showed a map which is largely different from any major structural polypeptide. It therefore appears likely that C1 is a nonstructural protein of influenza C virus similar to the NS1 protein of influenza A and B viruses.
Collapse
|
18
|
O'Callaghan RJ, Labat DD. Evidence of a soluble substrate for the receptor-destroying enzyme of influenza C virus. Infect Immun 1983; 39:305-10. [PMID: 6822417 PMCID: PMC347941 DOI: 10.1128/iai.39.1.305-310.1983] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Influenza C virus contains a hemagglutinin and a receptor-destroying enzyme (RDE) whose specificities remain undetermined. In rat serum, there is a molecule that binds specifically to C virus, inhibiting its hemagglutinin. The complex between C virus and the rat serum inhibitor (RSI) was determined to be stable at 4 degrees C, but was disrupted within 20 to 90 min at 23 or 37 degrees C. Virus emerged from the complex with numerous functions intact, whereas the RSI at this point was inactivated, i.e., incapable of further inhibitory reactions with C virus. RSI could not be inactivated at these temperatures by nonviral components of allantoic fluid of infected chicken embryos; however, RSI inactivation was achieved by preparations of sucrose gradient-purified virus. Neutralization of viral hemagglutination activity with antiviral antibody protected the RSI from inactivation. RSI inactivation occurred at temperatures at which the viral RDE was active, and inhibition of viral RDE by periodate treatment sharply reduced the ability of virus to inactivate the RSI. One interpretation of the data suggests that RSI is a receptor analog reactive with both the hemagglutinin and RDE of C virus and that RSI inactivation is an assay of influenza C viral RDE.
Collapse
|
19
|
Abstract
Influenza is caused by highly variable RNA viruses belonging to the orthomyxovirus group. These viruses are capable of constantly changing the genes coding for their surface proteins as well as for their nonsurface proteins. The mechanisms responsible for these changes in type A influenza viruses include recombination (reassortment) of genes among strains, deletions and insertions in genes, and, frequently, point mutations. In addition, old strains may reappear in the population. Influenza viruses of types B and C appear to vary to a lesser degree. The mechanisms responsible for changes in these viruses are not well characterized.
Collapse
|
20
|
Meier-Ewert H, Petri T, Bishop DH. Oligonucleotide fingerprint analyses of influenza C virion RNA recovered from five different isolates. Arch Virol 1981; 67:141-7. [PMID: 7213013 DOI: 10.1007/bf01318597] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Five different isolates of influenza C virus which were isolated over a period of 32 years and from four different continents were compared by RNA genome oligonucleotide fingerprinting analyses. The earliest isolate of influenza C virus was reported in 1949 by Taylor (19) and served as a reference strain for this study. The results obtained using this technique of comparing relatedness between viruses clearly showed that all strains are distinct. However, the similarities in the pattern of the oligonucleotide fingerprints are marked for the more recent virus isolates (1966-1979), whereas the reference strain C/Taylor shows more pronounced differences. The results are consistent with the high degree of serological crossreaction amongst influenza C viruses isolated over a long period of time, a property which sets this group of viruses apart from type A and B members of the orthomyxoviridae.
Collapse
|