1
|
Conners R, León-Quezada RI, McLaren M, Bennett NJ, Daum B, Rakonjac J, Gold VAM. Cryo-electron microscopy of the f1 filamentous phage reveals insights into viral infection and assembly. Nat Commun 2023; 14:2724. [PMID: 37169795 PMCID: PMC10175506 DOI: 10.1038/s41467-023-37915-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Phages are viruses that infect bacteria and dominate every ecosystem on our planet. As well as impacting microbial ecology, physiology and evolution, phages are exploited as tools in molecular biology and biotechnology. This is particularly true for the Ff (f1, fd or M13) phages, which represent a widely distributed group of filamentous viruses. Over nearly five decades, Ffs have seen an extraordinary range of applications, yet the complete structure of the phage capsid and consequently the mechanisms of infection and assembly remain largely mysterious. In this work, we use cryo-electron microscopy and a highly efficient system for production of short Ff-derived nanorods to determine a structure of a filamentous virus including the tips. We show that structure combined with mutagenesis can identify phage domains that are important in bacterial attack and for release of new progeny, allowing new models to be proposed for the phage lifecycle.
Collapse
Affiliation(s)
- Rebecca Conners
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Rayén Ignacia León-Quezada
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Nanophage Technologies, Palmerston North, New Zealand
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Nicholas J Bennett
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jasna Rakonjac
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Nanophage Technologies, Palmerston North, New Zealand.
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
2
|
Shamir Y, Goldbourt A. Atomic-Resolution Structure of the Protein Encoded by Gene V of fd Bacteriophage in Complex with Viral ssDNA Determined by Magic-Angle Spinning Solid-State NMR. J Am Chem Soc 2022; 145:300-310. [PMID: 36542094 PMCID: PMC9837838 DOI: 10.1021/jacs.2c09957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
F-specific filamentous phages, elongated particles with circular single-stranded DNA encased in a symmetric protein capsid, undergo an intermediate step, where thousands of homodimers of a non-structural protein, gVp, bind to newly synthesized strands of DNA, preventing further DNA replication and preparing the circular genome in an elongated conformation for assembly of a new virion structure at the membrane. While the structure of the free homodimer is known, the ssDNA-bound conformation has yet to be determined. We report an atomic-resolution structure of the gVp monomer bound to ssDNA of fd phage in the nucleoprotein complex elucidated via magic-angle spinning solid-state NMR. The model presents significant conformational changes with respect to the free form. These modifications facilitate the binding mechanism and possibly promote cooperative binding in the assembly of the gVp-ssDNA complex.
Collapse
|
3
|
M13 Bacteriophage-Based Bio-nano Systems for Bioapplication. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Stern Z, Stylianou DC, Kostrikis LG. The development of inovirus-associated vector vaccines using phage-display technologies. Expert Rev Vaccines 2019; 18:913-920. [PMID: 31373843 PMCID: PMC7103683 DOI: 10.1080/14760584.2019.1651649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023]
Abstract
Introduction: Inovirus-associated vectors (IAVs) are derived from bacterial filamentous viruses (phages). As vaccine carriers, they have elicited both cellular and humoral responses against a variety of pathogens causing infectious diseases and other non-infectious diseases. By displaying specific antigen epitopes or proteins on their coat proteins, IAVs have merited much study, as their unique abilities are exploited for widespread vaccine development. Areas covered: The architectural traits of filamentous viruses and their derivatives, IAVs, facilitate the display of specific antigenic peptides which induce antibody production to prevent or curtail infection. Inoviruses provide a foundation for cost-efficient large-scale specific phage display. In this paper, the development of different applications of inovirus-based phage display vaccines across a broad range of pathogens and hosts is reviewed. The references cited in this review were selected from established databases based on the authors' knowledge of the study subject. Expert commentary: The importance of phage-display technology has been recently highlighted by the Nobel Prize in Chemistry 2018 awarded to George P. Smith and Sir Gregory P. Winter. Furthermore, the symbiotic nature of filamentous viruses infecting intestinal F+E. coli strains offers an attractive platform for the development of novel vaccines that stimulate mucosal immunity.
Collapse
Affiliation(s)
- Zachariah Stern
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Dora C. Stylianou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
5
|
Nagayoshi Y, Kumagae K, Mori K, Tashiro K, Nakamura A, Fujino Y, Hiromasa Y, Iwamoto T, Kuhara S, Ohshima T, Doi K. Physiological Properties and Genome Structure of the Hyperthermophilic Filamentous Phage φOH3 Which Infects Thermus thermophilus HB8. Front Microbiol 2016; 7:50. [PMID: 26941711 PMCID: PMC4763002 DOI: 10.3389/fmicb.2016.00050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
A filamentous bacteriophage, φOH3, was isolated from hot spring sediment in Obama hot spring in Japan with the hyperthermophilic bacterium Thermus thermophilus HB8 as its host. Phage φOH3, which was classified into the Inoviridae family, consists of a flexible filamentous particle 830 nm long and 8 nm wide. φOH3 was stable at temperatures ranging from 70 to 90°C and at pHs ranging from 6 to 9. A one-step growth curve of the phage showed a 60-min latent period beginning immediately postinfection, followed by intracellular virus particle production during the subsequent 40 min. The released virion number of φOH3 was 109. During the latent period, both single stranded DNA (ssDNA) and the replicative form (RF) of phage DNA were multiplied from min 40 onward. During the release period, the copy numbers of both ssDNA and RF DNA increased sharply. The size of the φOH3 genome is 5688 bp, and eight putative open reading frames (ORFs) were annotated. These ORFs were encoded on the plus strand of RF DNA and showed no significant homology with any known phage genes, except ORF 5, which showed 60% identity with the gene VIII product of the Thermus filamentous phage PH75. All the ORFs were similar to predicted genes annotated in the Thermus aquaticus Y51MC23 and Meiothermus timidus DSM 17022 genomes at the amino acid sequence level. This is the first report of the whole genome structure and DNA multiplication of a filamentous T. thermophilus phage within its host cell.
Collapse
Affiliation(s)
- Yuko Nagayoshi
- Faculty of Agriculture, Institute of Genetic Resources, Kyushu University Fukuoka, Japan
| | - Kenta Kumagae
- Faculty of Agriculture, Institute of Genetic Resources, Kyushu University Fukuoka, Japan
| | - Kazuki Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University Fukuoka, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University Fukuoka, Japan
| | - Ayano Nakamura
- Faculty of Agriculture, Institute of Genetic Resources, Kyushu University Fukuoka, Japan
| | - Yasuhiro Fujino
- Faculty of Arts and Science, Kyushu University Fukuoka, Japan
| | - Yasuaki Hiromasa
- Faculty of Agriculture, Attached Promotive Center for International Education and Research of Agriculture, Kyushu University Fukuoka, Japan
| | - Takeo Iwamoto
- Core Research Facilities, Research Center for Medical Sciences, Jikei University School of Medicine Tokyo, Japan
| | - Satoru Kuhara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University Fukuoka, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology Osaka, Japan
| | - Katsumi Doi
- Faculty of Agriculture, Institute of Genetic Resources, Kyushu University Fukuoka, Japan
| |
Collapse
|
6
|
Hassapis KA, Stylianou DC, Kostrikis LG. Architectural insight into inovirus-associated vectors (IAVs) and development of IAV-based vaccines inducing humoral and cellular responses: implications in HIV-1 vaccines. Viruses 2014; 6:5047-76. [PMID: 25525909 PMCID: PMC4276942 DOI: 10.3390/v6125047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.
Collapse
Affiliation(s)
- Kyriakos A Hassapis
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| | - Dora C Stylianou
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| | - Leondios G Kostrikis
- Department of Biological Sciences, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus.
| |
Collapse
|
7
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|
8
|
Yu JS, Kokoska RJ, Khemici V, Steege DA. In‐frame overlapping genes: the challenges for regulating gene expression. Mol Microbiol 2006; 63:1158-72. [PMID: 17238928 DOI: 10.1111/j.1365-2958.2006.05572.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In-frame overlapping genes in phage, plasmid and bacterial genomes permit synthesis of more than one form of protein from the same gene. Having one gene entirely within another rather than two separate genes presumably precludes recombination events between the identical sequences. However, studies of such gene pairs indicate that the overlapping arrangement can make regulation of the genes more difficult. Here, we extend studies of in-frame overlapping genes II and X from filamentous phage f1 to determine if translational controls are required to regulate the gene properly. These genes encode proteins (pII and pX) with essential but opposing roles in phage DNA replication. They must be tightly regulated to maintain production of the proteins at relative steady state levels that permit continuous replication without killing the host. To determine why little or no pX appears to be made on the gene II/X mRNA, gene II translation was lowered by progressively deleting into the gene II initiator region. Increased pX translation resulted, suggesting that elongating ribosomes on the gene II mRNA interfere with internal initiation on the gene X ribosome binding site and limit gene X translation. As judged from systematically lowering the efficiency of suppression at a gene II amber codon upstream from the gene X start, the already modest level of gene II translation would have to be reduced by more than twofold to relieve all interference with internal initiation. Further downregulation of gene X expression proved to be required to maintain pX at levels relative to pII that are tolerated by the cell. Site-directed mutagenesis and nuclease mapping revealed that the gene X initiation site is sequestered in an extended RNA secondary structure that lowers gene X translation on the two mRNAs encoding it. The more general implications of the results for expression of in-frame overlapping genes are discussed.
Collapse
Affiliation(s)
- Jae-Sung Yu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
9
|
Cuesta ÁM, Suárez E, Larsen M, Jensen KB, Sanz L, Compte M, Kristensen P, Álvarez-Vallina L. Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I. Immunology 2006; 117:502-6. [PMID: 16556264 PMCID: PMC1782252 DOI: 10.1111/j.1365-2567.2006.02325.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although DNA-based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour-bearing patients. Genetic technology offers strategies for promoting immune pathways by adding immune-activating genes to the tumour antigen sequence. In this work, we converted a model non-immunogenic antigen into a vaccine by fusing it to domain I of the filamentous bacteriophage coat protein III gene. Vaccination with a DNA construct encoding the domain I fusion generated antigen-specific T helper 1-type cellular immune responses. These results demonstrate that the incorporation of protein III into a DNA vaccine formulation can modulate the gene-mediated immune response and may thus provide a strategy for improving its therapeutic effect.
Collapse
Affiliation(s)
- Ángel M Cuesta
- Servicio de Inmunología, Hospital Universitario Puerta de HierroMadrid, Spain
| | - Eduardo Suárez
- Servicio de Inmunología, Hospital Universitario Puerta de HierroMadrid, Spain
| | - Martin Larsen
- Department of Molecular Biology, University of AarhusAarhus, Denmark
| | - Kim Bak Jensen
- Department of Molecular Biology, University of AarhusAarhus, Denmark
| | - Laura Sanz
- Servicio de Inmunología, Hospital Universitario Puerta de HierroMadrid, Spain
| | - Marta Compte
- Servicio de Inmunología, Hospital Universitario Puerta de HierroMadrid, Spain
| | - Peter Kristensen
- Department of Molecular Biology, University of AarhusAarhus, Denmark
| | | |
Collapse
|
10
|
van Houten N, Zwick M, Menendez A, Scott J. Filamentous phage as an immunogenic carrier to elicit focused antibody responses against a synthetic peptide. Vaccine 2006; 24:4188-200. [PMID: 16488517 PMCID: PMC1974903 DOI: 10.1016/j.vaccine.2006.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 12/31/2005] [Accepted: 01/03/2006] [Indexed: 12/18/2022]
Abstract
Filamentous bacteriophage are widely used as immunogenic carriers for "phage-displayed" recombinant peptides. Here we report that they are an effective immunogenic carrier for synthetic peptides. The f1.K phage was engineered to have an additional Lys residue near the N-terminus of the major coat protein, pVIII, so as to enhance access to chemical cross-linking agents. The dimeric synthetic peptide, B2.1, was conjugated to f1.K (f1.K/B2.1) in high copy number and compared as an immunogen to B2.1 conjugated to ovalbumin (OVA/B2.1) and to phage-displayed, recombinant B2.1 peptide. All immunogens were administered without adjuvant. The serum antibody titers were measured against: the peptide, the carrier, and, if appropriate, the cross-linker. All immunogens elicited anti-peptide antibody titers, with those elicited by OVA/B2.1 exceeding those by f1.K/B2.1; both titers were greater than that elicited by recombinant B2.1 phage. Comparison of the anti-peptide and anti-carrier antibody responses showed that f1.K/B2.1 elicited a more focused anti-peptide antibody response than OVA/B2.1. The anti-peptide antibody response against f1.K/B2.1 was optimized for the injection route, dose and adjuvant. Dose and adjuvant did not have a significant effect on anti-peptide antibody titers, but a change in injection route from intraperitoneal (IP) to subcutaneous (SC) enhanced anti-peptide antibody titers after seven immunizations. The optimized anti-peptide antibody response exceeded the anti-carrier one by 21-fold, compared to 0.07-fold elicited by OVA/B2.1. This indicates that phage as a carrier can focus the antibody response against the peptide. The results are discussed with respect to the advantages of phage as an alternative to traditional carrier proteins for synthetic peptides, carbohydrates and haptens, and to further improvements in phage as immunogenic carriers.
Collapse
Affiliation(s)
| | | | | | - J.K. Scott
- *Corresponding author. Tel.: +1 778 782 5658; fax: +1 778 782 5583. E-mail address: (J.K. Scott)
| |
Collapse
|
11
|
Baek H, Suk KH, Kim YH, Cha S. An improved helper phage system for efficient isolation of specific antibody molecules in phage display. Nucleic Acids Res 2002; 30:e18. [PMID: 11861923 PMCID: PMC101254 DOI: 10.1093/nar/30.5.e18] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phage display technology has been applied in many fields of biological and medical sciences to study molecular interactions and especially in the generation of monoclonal antibodies of human origin. However, extremely low display level of antibody molecules on the surface of phage is an intrinsic problem of a phagemid-based display system resulting in low success rate of isolating specific binding molecules. We show here that display of single-chain antibody fragment (scFv) generated with pIGT3 phagemid can be increased dramatically by using a genetically modified Ex-phage. Ex-phage has a mutant pIII gene that produces a functional wild-type pIII in suppressing Escherichia coli strains but does not make any pIII in non-suppressing E.coli strains. Packaging phagemids encoding antibody-pIII fusion in F+ non-suppressing E.coli strains with Ex-phage enhanced the display level of antibody fragments on the surfaces of recombinant phage particles resulting in an increase of antigen-binding reactivity >100-fold compared to packaging with M13KO7 helper phage. Thus, the Ex-phage and pIGT3 phagemid vector provides a system for the efficient enrichment of specific binding antibodies from a phage display library and, thereby, increases the chance of obtaining more diverse antibodies specific for target antigens.
Collapse
Affiliation(s)
- Hyunjung Baek
- IG Therapy Co., Nong 3rd Building 112, Kangwon National University, Chunchon 200-701, South Korea
| | | | | | | |
Collapse
|
12
|
Yu JS, Madison-Antenucci S, Steege DA. Translation at higher than an optimal level interferes with coupling at an intercistronic junction. Mol Microbiol 2001; 42:821-34. [PMID: 11722745 DOI: 10.1046/j.1365-2958.2001.02681.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In pairs of adjacent genes co-transcribed on bacterial polycistronic mRNAs, translation of the first coding region frequently functions as a positive factor to couple translation to the distal coding region. Coupling efficiencies vary over a wide range, but synthesis of both gene products at similar levels is common. We report the results of characterizing an unusual gene pair, in which only about 1% of the translational activity from the upstream gene is transmitted to the distal gene. The inefficient coupling was unexpected because the upstream gene is highly translated, the distal initiation site has weak but intrinsic ability to bind ribosomes, and the AUG is only two nucleotides beyond the stop codon for the upstream gene. The genes are those in the filamentous phage IKe genome, which encode the abundant single-stranded DNA binding protein (gene V) and the minor coat protein that caps one tip of the phage (gene VII). Here, we have used chimeras between the related phage IKe and f1 sequences to localize the region responsible for inefficient coupling. It mapped upstream from the intercistronic region containing the gene V stop codon and the gene VII initiation site, indicating that low coupling efficiency is associated with gene V. The basis for inefficient coupling emerged when coupling efficiency was found to increase as gene V translation was decreased below the high wild-type level. This was achieved by lowering the rate of elongation and by decreasing the efficiency of suppression at an amber codon within the gene. Increasing the strength of the Shine-Dalgarno interaction with 16S rRNA at the gene VII start also increased coupling efficiency substantially. In this gene pair, upstream translation thus functions in an unprecedented way as a negative factor to limit downstream expression. We interpret the results as evidence that translation in excess of an optimal level in an upstream gene interferes with coupling in the intercistronic junction.
Collapse
Affiliation(s)
- J S Yu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
13
|
Moyer KE, Kimsey HH, Waldor MK. Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXphi. Mol Microbiol 2001; 41:311-23. [PMID: 11489120 DOI: 10.1046/j.1365-2958.2001.02517.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The genes encoding cholera toxin, the principal virulence factor of Vibrio cholerae, are part of the circular single-stranded DNA genome of CTXphi. In toxigenic V. cholerae strains, the CTXphi genome is typically found in integrated arrays of tandemly arranged CTX prophages. Infected cells that lack a chromosomal integration site harbour the CTXphi genome as a plasmid (pCTX). We studied the replication of pCTX and found several indications that this plasmid replicates via a rolling-circle (RC) mechanism. The initiation and termination sites for pCTX plus-strand DNA synthesis were mapped to a 22 bp sequence that contains inverted repeats and a nonanucleotide motif found in the plus-strand origins of several RC replicons. Furthermore, similar to other RC replicons, replication of plasmids containing duplicated pCTX origins resulted in the deletion of sequences between the two origins and the formation of a single chimeric origin. Our previous work revealed that CTX prophage arrays give rise to hybrid CTX virions that contain sequences derived from two adjacent prophages. We now report that the boundaries between the sequences contributed to virions by the upstream and the downstream prophages in an array correspond to the site at which synthesis of plus-strand pCTX DNA is initiated and terminated. These data support the model that plus-strand CTXphi DNA is generated from chromosomal prophages via a novel process analogous to RC replication.
Collapse
Affiliation(s)
- K E Moyer
- Howard Hughes Medical Institute, Division of Geographic Medicine and Infectious Diseases, New England Medical Center and Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
14
|
Goodrich AF, Steege DA. Roles of polyadenylation and nucleolytic cleavage in the filamentous phage mRNA processing and decay pathways in Escherichia coli. RNA (NEW YORK, N.Y.) 1999; 5:972-985. [PMID: 10411140 PMCID: PMC1369821 DOI: 10.1017/s1355838299990398] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To define basic features of mRNA processing and decay in Escherichia coli, we have examined a set of mRNAs encoded by the filamentous phage f1 that have structures typical of bacterial mRNAs. They bear a stable hairpin stem-loop on the 3' end left from rho-independent termination and are known to undergo processing by RNase E. A small percentage of the f1 mRNAs were found to bear poly(A) tails that were attached to heterogeneous positions near the common 3' end. In a poly(A) polymerase-deficient host, the later-appearing processed mRNAs were stabilized, and a novel small RNA accumulated. This approximately 125-nt RNA proved to arise via RNase E cleavage from the 3'-terminal region of the mRNAs bearing the terminator. Normally ribosomes translating gene VIII appear to protect this cleavage site from RNase E, so that release of the fragment from the mRNAs occurs very slowly. The data presented define additional steps in the f1 mRNA processing and decay pathways and clarify how features of the pathways are used in establishing and maintaining the persistent filamentous phage infection. Although the primary mode of decay is endonucleolytic cleavage generating a characteristic 5' --> 3' wave of products, polyadenylation is involved in part in degradation of the processed mRNAs and is required for turnover of the 125-nt mRNA fragment. The results place polyadenylation at a later rather than an initiating step of decay. They also provide a clear illustration of how stably structured RNA 3' ends act as barriers to 3' --> 5' exonucleolytic mRNA decay.
Collapse
Affiliation(s)
- A F Goodrich
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
15
|
Tseng-Law J, Szalay P, Guillermo R, Kobori J, Van Epps D, Schneidkraut MJ, Deans R. Identification of a peptide directed against the anti-CD34 antibody, 9C5, by phage display and its use in hematopoietic stem cell selection. Exp Hematol 1999; 27:936-45. [PMID: 10340410 DOI: 10.1016/s0301-472x(99)00007-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A peptide sequence was identified by phage display technology that could be used as an alternative to chymopapain for the release of hematopoietic progenitor cells captured by anti-CD34 monoclonal antibodies. This was achieved by affinity selection screening (biopanning) of a random hexapeptide sequence phage display library. Four rounds of biopanning were performed to enrich for phage clones with specific affinity for anti-CD34 monoclonal antibody, 9C5. DNA sequence analyses of these phage clones revealed an enrichment of two predominant sequences, QQGWFP and TQGSFW. These two clones also shared a consensus sequence motif, QGxF, that exhibited 50% and 67% homology with a region spanning amino acids 14-19 of the mature CD34 antigen. Based on these data, synthetic peptides were generated and assessed for their ability to release 9C5 from CD34+ cells. Using a flow cytometric assay, it was found that the synthetic peptide, 9069N, effectively released 9C5 from the CD34-expressing cell line, KG1a, in a concentration-dependent manner (77% and 99% release of 9C5 at 0.14 and 0.70 mM peptide concentrations, respectively). In the Isolex 300i immunomagnetic selection system, this peptide was shown to be effective at releasing 9C5 sensitized CD34+ hematopoietic progenitors from sheep anti-mouse IgG Dynabeads. Thus, a synthetic peptide, which specifically and efficiently released immunomagnetically selected hematopoietic progenitor cells from paramagnetic beads, was identified. This reagent is a significant advance in the selection of hematopoietic progenitors in that it does not alter cell surface antigens. As such, further phenotypic characterization or immunoselection can be performed.
Collapse
Affiliation(s)
- J Tseng-Law
- Nexell Therapeutics Inc., Irvine, CA 92618, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The IncI1 plasmid R64 produces two kinds of sex pili: a thin pilus and a thick pilus. The thin pilus, which belongs to the type IV family, is required only for liquid matings. Fourteen genes, pilI to -V, were found in the DNA region responsible for the biogenesis of the R64 thin pilus (S.-R. Kim and T. Komano, J. Bacteriol. 179:3594-3603, 1997). In this study, we introduced frameshift mutations into each of the 14 pil genes to test their requirement for R64 thin pilus biogenesis. From the analyses of extracellular secretion of thin pili and transfer frequency in liquid matings, we found that 12 genes, pilK to -V, are required for the formation of the thin pilus. Complementation experiments excluded the possible polar effects of each mutation on the expression of downstream genes. Two genes, traBC, were previously shown to be required for the expression of the pil genes. In addition, the rci gene is responsible for modulating the structure and function of the R64 thin pilus via the DNA rearrangement of the shufflon. Altogether, 15 genes, traBC, pilK through pilV, and rci, are essential for R64 thin pilus formation and function.
Collapse
Affiliation(s)
- T Yoshida
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
17
|
Felici F, Luzzago A, Monaci P, Nicosia A, Sollazzo M, Traboni C. Peptide and protein display on the surface of filamentous bacteriophage. BIOTECHNOLOGY ANNUAL REVIEW 1998; 1:149-83. [PMID: 9704088 DOI: 10.1016/s1387-2656(08)70051-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The isolation of ligands that bind biologically relevant molecules is fundamental to the understanding of biological processes and to the search for therapeutics. Filamentous phage can be used to display foreign peptides and proteins in physical association with their DNA coding sequences. Repertoires larger than 10(8) phage clones expressing different peptide sequences can be prepared using molecular genetic techniques. The strategies utilizing this technology promise to provide not only new binding and possibly catalytic activities, but also lead structures for the development of new drugs and vaccines.
Collapse
Affiliation(s)
- F Felici
- IRBM (Istituto di Biologia Molecolare P. Angeletti), Rome, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Daefler S, Russel M. The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG. Mol Microbiol 1998; 28:1367-80. [PMID: 9680224 DOI: 10.1046/j.1365-2958.1998.00908.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secretion of pathogenicity factors by Salmonella typhimurium is mediated by a type III secretion system that includes an outer membrane protein of the secretin family. Related secretins are also required for f1 phage assembly and type II secretion. When the C-terminal 43 amino acids of the S. typhimurium secretin InvG are added to f1 pIV, the chimeric f1 pIV-'InvG43 protein becomes dependent on the co-expression of another gene, invH, for function in phage assembly. [3H]-palmitic acid labelling, globomycin sensitivity and density gradient flotation were used to demonstrate that InvH is an outer membrane lipoprotein that is processed by signal peptidase II. A complex between chimeric f1 pIV-'InvG43 and InvH was demonstrated in vivo. InvH was shown to be required for the proper localization of InvG in the outer membrane and for the secretion of the virulence factor SipC. These results suggest that InvH and InvG are part of the functional outer membrane translocation complex in type III secretion systems.
Collapse
Affiliation(s)
- S Daefler
- The Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
19
|
Kokoska RJ, Steege DA. Appropriate expression of filamentous phage f1 DNA replication genes II and X requires RNase E-dependent processing and separate mRNAs. J Bacteriol 1998; 180:3245-9. [PMID: 9620980 PMCID: PMC107831 DOI: 10.1128/jb.180.12.3245-3249.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The products of in-frame overlapping genes II and X carried by the filamentous phage f1 genome are proteins with required but opposing functions in phage DNA replication. Their normal relative levels are important for continuous production of phage DNA without killing infected Escherichia coli hosts. Here we identify several factors responsible for determining the relative levels of pII and pX and that, if perturbed, alter the normal distribution of the phage DNA species in infected hosts. Translation of the two proteins is essentially relegated to separate mRNAs. The mRNAs encoding genes II and X are also differentially sensitive to cleavage dependent on rne, the gene encoding the only E. coli endo-RNase known to have a global role in mRNA stability. Whereas pII levels are limited at the level of mRNA stability, normal pX levels require transcription in sufficient amounts from the promoter for the smaller mRNA encoding only pX.
Collapse
MESH Headings
- Base Sequence
- Coliphages/genetics
- Coliphages/metabolism
- DNA Replication/genetics
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- Endoribonucleases/metabolism
- Escherichia coli/metabolism
- Escherichia coli/virology
- Gene Expression Regulation, Viral
- Genes, Viral
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- R J Kokoska
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
20
|
Hu NT, Hung MN, Chen DC, Tsai RT. Insertion mutagenesis of XpsD, an outer-membrane protein involved in extracellular protein secretion in Xanthomonas campestris pv. campestris. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 6):1479-1486. [PMID: 9639918 DOI: 10.1099/00221287-144-6-1479] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
XpsD is an outer-membrane protein required for extracellular protein secretion in Xanthomonas campestris pv. campestris. Cross-linking and gelfiltration chromatography analyses have suggested that it forms a multimer. To determine its structure-function relationship, linker-insertion mutants were constructed in an xpsD gene carried on a plasmid. To assay for secretion function, each mutant gene was introduced into an xpsD::Tn5 mutant strain (XC1708) and assayed for alpha-amylase secretion on starch plates. To test whether the mutant genes exerted a dominant-negative effect, each was introduced into the parental strain XC1701 and examined for secretion interference. Nine functional, one semi-functional and eleven non-functional mutants were obtained. All the non-functional mutants, except two for which the mutant proteins were undetectable on immunoblots, showed interference of normal secretion. The insertion sites in the different mutant proteins are randomly distributed throughout the entire sequence of the XpsD protein. All the permissive insertion sites are located where beta-turn or coiled secondary structure is predicted. Over half of the non-permissive sites are located within predicted helical or beta-sheet regions. By pretreating total membranes of XC1701 in SDS at 50 degrees C, an immunoreactive band with high molecular mass (HMM) could be detected that remained in the stacking gel during SDS-PAGE. The semi-functional and all functional mutant proteins formed HMM complexes that were as SDS-resistant as those of the wild-type, whereas all except three of the non-functional mutant proteins formed HMM structures that were less resistant to SDS than the wild-type. By analysing the appearance of SDS-resistant HMM complexes, we were able to detect conformational alterations in XpsD that are too subtle to be detected by other assays.
Collapse
Affiliation(s)
- Nien-Tai Hu
- Agricultural Biotechnology Laboratories, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, Taiwan 40227
| | - Ming-Ni Hung
- Agricultural Biotechnology Laboratories, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, Taiwan 40227
| | - David Chanhan Chen
- Institute of Veterinary Microbiology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, Taiwan 40227
| | - Rong-Tzong Tsai
- Institute of Agricultural Biotechnology, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, Taiwan 40227
- Agricultural Biotechnology Laboratories, National Chung Hsing University, 250 Kuo Kuang Road, Taichung, Taiwan 40227
| |
Collapse
|
21
|
Click EM, Webster RE. The TolQRA proteins are required for membrane insertion of the major capsid protein of the filamentous phage f1 during infection. J Bacteriol 1998; 180:1723-8. [PMID: 9537368 PMCID: PMC107083 DOI: 10.1128/jb.180.7.1723-1728.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection of Escherichia coli by the filamentous bacteriophage f1 is initiated by interaction of the end of the phage particle containing the gene III protein with the tip of the F conjugative pilus. This is followed by the translocation of the phage DNA into the cytoplasm and the insertion of the major phage capsid protein, pVIII, into the cytoplasmic membrane. DNA transfer requires the chromosomally encoded TolA, TolQ, and TolR cytoplasmic membrane proteins. By using radiolabeled phages, it can be shown that no pVIII is inserted into the cytoplasmic membrane when the bacteria contain null mutations in tolQ, -R and -A. The rate of infection can be varied by using bacteria expressing various mutant TolA proteins. Analysis of the infection process in these strains demonstrates a direct correlation between the rate of infection and the incorporation of infecting bacteriophage pVIII into the cytoplasmic membrane.
Collapse
Affiliation(s)
- E M Click
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
22
|
Madison-Antenucci S, Steege DA. Translation limits synthesis of an assembly-initiating coat protein of filamentous phage IKe. J Bacteriol 1998; 180:464-72. [PMID: 9457845 PMCID: PMC106909 DOI: 10.1128/jb.180.3.464-472.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translation is shown to be downregulated sharply between genes V and VII of IKe, a filamentous bacteriophage classed with the Ff group (phages f1, M13, and fd) but having only 55% DNA sequence identity to it. Genes V and VII encode the following proteins which are used in very different amounts: pV, used to coat the large number of viral DNA molecules prior to assembly, and pVII, used to serve as a cap with pIX in 3 to 5 copies on the end of the phage particle that emerges first from Escherichia coli. The genes are immediately adjacent to each other and are represented in the same amounts on the Ff and IKe mRNAs. Ff gene VII has an initiation site that lacks detectable intrinsic activity yet through coupling is translated at a level 10-fold lower than that of upstream gene V. The experiments reported reveal that by contrast, the IKe gene VII initiation site had detectable activity but was coupled only marginally to upstream translation. The IKe gene V and VII initiation sites both showed higher activities than the Ff sites, but the drop in translation at the IKe V-VII junction was unexpectedly severe, approximately 75-fold. As a result, gene VII is translated at similarly low levels in IKe- and Ff-infected hosts, suggesting that selection to limit its expression has occurred.
Collapse
Affiliation(s)
- S Madison-Antenucci
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
23
|
Abstract
Biogenesis of both filamentous phage and type-IV pili involves the assembly of many copies of a small, integral inner membrane protein (the phage major coat protein or pilin) into a helical, tubular array that passes through the outer membrane. The occurrence of related proteins required for assembly and export in both systems suggests that there may be similarities at the mechanistic level as well. This report summarizes the properties of filamentous phage and the proteins required for their assembly, with particular emphasis on features they may share with bacterial protein export and pilus biogenesis systems, and it presents evidence that supports the hypothesis that one of the phage proteins functions as an outer membrane export channel.
Collapse
Affiliation(s)
- M Russel
- The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
24
|
Higashitani A, Higashitani N, Horiuchi K. Minus-strand origin of filamentous phage versus transcriptional promoters in recognition of RNA polymerase. Proc Natl Acad Sci U S A 1997; 94:2909-14. [PMID: 9096320 PMCID: PMC20296 DOI: 10.1073/pnas.94.7.2909] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Replication of complementary-strand DNA in filamentous phages is initiated by a primer RNA that is synthesized at the minus-strand origin on the viral single-stranded DNA by Escherichia coli RNA polymerase holoenzyme containing the sigma70 subunit. We have demonstrated that the affinity of RNA polymerase in vitro to the origin is about 16-fold higher than that to the lacUV5 promoter. We have also shown that the temperature dependence of the primer RNA synthesis is much lower than that of lacUV5 transcription. The high affinity of RNA polymerase to the origin depends on the single strandedness of the "-10 region." A nucleotide sequence of the nontemplate strand in the -10 region was found to be important for the function, but that of the template strand was not. These observations suggest that sigma70 subunit directly interacts with the single-stranded nontemplate strand containing adenine residue(s) at the -10 region of promoter.
Collapse
Affiliation(s)
- A Higashitani
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Japan
| | | | | |
Collapse
|
25
|
Daefler S, Russel M, Model P. Module swaps between related translocator proteins pIV(f1), pIV(IKe) and PulD: identification of a specificity domain. J Mol Biol 1997; 266:978-92. [PMID: 9086275 DOI: 10.1006/jmbi.1996.0866] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In Gram-negative bacteria, type II and type III secretion and filamentous phage assembly systems use related outer membrane proteins for substrate-specific transport across the outer membrane. We show here that the specificity domain of the phage f1 outer membrane protein pIV is contained within the 149 N-terminal amino acid residues. When the pIV(f1) specificity domain is fused to the translocator domain of the related pIV of phage IKe, the chimeric construct supports f1 but not IKe assembly. Functional coupling between the two domains in this chimeric construct is poor and is improved by a single amino acid change in the translocator domain of the pIV(IKe). In native pIV(IKe), two amino acid changes within its specificity domain are both necessary and sufficient to change the specificity from IKe to f1 assembly. Analysis of 39 chimeric constructs between pIV(f1) and the outer membrane protein PulD of the pullulanase secretion system failed to identify a comparable exchangeable specificity domain. These results indicate that the two domains may not function autonomously, and suggest that tertiary and quarternary changes of the entire translocator component rather than of an autonomous functional domain are required for specific translocation across the outer membrane.
Collapse
Affiliation(s)
- S Daefler
- The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
26
|
Stump MD, Madison-Antenucci S, Kokoska RJ, Steege DA. Filamentous phage IKe mRNAs conserve form and function despite divergence in regulatory elements. J Mol Biol 1997; 266:51-65. [PMID: 9054970 DOI: 10.1006/jmbi.1996.0766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As a means of determining whether there has been selection to conserve the basic pattern of filamentous phage mRNAs, the major mRNAs representing genes II to VIII have been defined for a phage distantly related to the Ff group specific for Escherichia coli hosts bearing F pili. Phage IKe has a genome with 55% identity with the Ff genome and infects E. coli strains bearing N pili. The results reveal a remarkably similar pattern of overlapping polycistronic mRNAs with a common 3' end and unique 5' ends. The IKe mRNAs, like the Ff phage mRNAs, represent a combination of primary transcripts and processed RNAs. However, examination of the sequences containing the RNA endpoint positions revealed that effectively the only highly conserved regulatory element is the rho-independent terminator that generates the common 3' end. Promoters and processing sites have not been maintained in identical positions, but frequently are placed so as to yield RNAs with similar coding function. By conserving the pattern of transcription and processing despite divergence in the regulatory elements and possibly the requirements for host, endoribonucleases, the results argue that the pattern is not simply fortuitous.
Collapse
Affiliation(s)
- M D Stump
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
27
|
Linderoth NA, Model P, Russel M. Essential role of a sodium dodecyl sulfate-resistant protein IV multimer in assembly-export of filamentous phage. J Bacteriol 1996; 178:1962-70. [PMID: 8606171 PMCID: PMC177892 DOI: 10.1128/jb.178.7.1962-1970.1996] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Filamentous phage f1 encodes protein IV (pIV), a protein essential for phage morphogenesis that localizes to the outer membrane of Escherichia coli, where it is found as a multimer of 10 to 12 subunits. Introduction of internal His or Strep affinity tags at different sites in pIV interfered with its function to a variable extent. A spontaneous second-site suppressor mutation in gene IV allowed several different insertion mutants to function. The identical mutation was also isolated as a suppressor of a multimerization-defective missense mutation. A high-molecular-mass pIV species is the predominant form of pIV present in cells. This species is stable in 4% sodium dodecyl sulfate at temperatures up to 65 degrees C and is largely preserved at 100 degrees C in Laemmli protein sample buffer containing 4% sodium dodecyl sulfate. The suppressor mutation makes the high-molecular-mass form of wild-type pIV extremely resistant to dissociation, and it stabilizes the high-molecular-mass form of several mutant pIV proteins to extents that correlate with their level of function. Mixed multimers of pIV(f1) and pIV(Ike) also remain associated during heating in sodium dodecyl sulfate-containing buffers. Thus, sodium dodecyl sulfate- and heat-resistant high-molecular-mass pIV is derived from pIV multimer and reflects the physiologically relevant form of the protein essential for assembly-export.
Collapse
Affiliation(s)
- N A Linderoth
- Laboratory of Genetics, The Rockefeller University, New York, New York 10021-6399, USA
| | | | | |
Collapse
|
28
|
Chen LY, Chen DY, Miaw J, Hu NT. XpsD, an outer membrane protein required for protein secretion by Xanthomonas campestris pv. campestris, forms a multimer. J Biol Chem 1996; 271:2703-8. [PMID: 8576244 DOI: 10.1074/jbc.271.5.2703] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
XpsD is an outer membrane lipoprotein, required for the secretion of extracellular enzymes by Xanthomonas campestris pv. campestris. Our previous studies indicated that when the xpsD gene was interrupted by transposon Tn5, extracellular enzymes were accumulated in the periplasm (Hu, N.-T., Hung, M.-N., Chiou, S.-J., Tang, F., Chiang, D.-C. Huang, H.-Y. and Wu, C.-Y. (1992) J. Bacteriol. 174, 2679-2687). In this study, we constructed a series of substitutions and deletion mutant xpsD genes to investigate the roles of NH2- and COOH-terminal halves of XpsD in protein secretory function. Among these secretion defective xpsD mutations, one group (encoded by pCD105, pYLA, pKdA6, and pKD2) caused secretion interference when co-expressed with wild type xpsD, but the other (encoded by pMH7, pKdPs, and pKDT) did not. Cross-linking studies and gel filtration chromatography analysis indicated that the wild type XpsD protein forms a multimer in its native state. Similar gel filtration analysis of xpsD mutants revealed positive correlations between multimer formation and secretion interfering properties exerted by the mutant XpsD proteins in the parental strain XC1701. Those mutant XpsD proteins (encoded by pCD105, pYL4, pKdA6, and pKD2) that caused secretion interference formed multimers that are similar to the wild type XpsD multimers and those (encoded by pMH7, pKdPs, and pKDT) that did not formed smaller ones. Furthermore, gel filtration and anion exchange chromatography analyses indicated that the wild type XpsD protein co-fractionated with XpsD (delta 29-428) or XpsD (delta 448-650) protein but not with XpsD (delta 74-303) or XpsD (delta 553-759) protein. We propose that the mutant XpsD (delta 29-428) protein caused secretion interference primarily by forming mixed nonfunctional multimers with the wild type XpsD protein in XC1701 (pCD105), whereas the mutant XpsD (delta 74-303) did so by competing for unknown factor(s) in XC1701(pYL4).
Collapse
Affiliation(s)
- L Y Chen
- Institute of Biochemistry, Chung Shan Medical and Dental College, Taichung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
29
|
Wengelnik K, Marie C, Russel M, Bonas U. Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction ofthe hypersensitive reaction. J Bacteriol 1996; 178:1061-9. [PMID: 8576039 PMCID: PMC177766 DOI: 10.1128/jb.178.4.1061-1069.1996] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The hrp cluster of the pepper and tomato pathogen Xanthomonas campestris pv. vesicatoria is required for both pathogenicity on susceptible host plants and induction of the hypersensitive reaction on resistant plants. The hrpA locus is located at the left end of the 25-kb hrp region and encodes a single 64-kDa Hrp protein, HrpA1, which belongs to the PulD superfamily of proteins involved in type II and type III protein secretion. In this study, we developed a defined medium without any plant-derived molecules that induces expression of hrpA in vitro. The hrpA transcription start site was mapped in the coding region of the hrpB8 gene, which is the last gene of the hrpB operon. The inducible hrpA promoter shows no homology to known promoter elements or other hrp loci of X. campestris pv. vesicatoria. hrpA expression was shown to be independent of the hrp regulatory gene hrpX. The amino acid sequence of the HrpA1 protein is predicted to contain an N-terminal signal sequence and no further transmembrane domains and to be rich in beta-sheet stretches. Expression of HrpA1 in Escherichia coli cells causes induction of the psp operon like some of its counterparts, suggesting some commonality of function and that HrpA1 forms multimers. The protein product of hrpA1 was identified by using a specific polyclonal antibody. Cell fractionation studies demonstrated that the HrpA1 protein is localized in the outer membrane of X. campestris pv. vesicatoria. HrpA1 is the first component of the Hrp secretion system whose localization has been determined in the original organism.
Collapse
Affiliation(s)
- K Wengelnik
- Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
30
|
Higashitani N, Higashitani A, Horiuchi K. SOS induction in Escherichia coli by single-stranded DNA of mutant filamentous phage: monitoring by cleavage of LexA repressor. J Bacteriol 1995; 177:3610-2. [PMID: 7768876 PMCID: PMC177072 DOI: 10.1128/jb.177.12.3610-3612.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Infection of Escherichia coli in the presence of chloramphenicol with mutant filamentous phage that are defective in the initiation of minus-strand DNA synthesis induces the SOS response as monitored by cellular LexA levels. This observation demonstrates that single-stranded DNA serves as a primary signal for SOS induction in vivo.
Collapse
Affiliation(s)
- N Higashitani
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Japan
| | | | | |
Collapse
|
31
|
Kostrikis LG, Reisberg SA, Kim HY, Shin S, Day LA. C2, and unusual filamentous bacterial virus: protein sequence and conformation, DNA size and conformation, and nucleotide/subunit ratio. Biochemistry 1995; 34:4077-87. [PMID: 7696272 DOI: 10.1021/bi00012a026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inovirus C2 is 1295 nm long and 6.8 nm in diameter, and its mass is 24 million Da. Its genome is a topologically circular, single-stranded DNA molecule of 8100 nucleotides. The DNA is packed in the virion as two antiparallel strands, with a rise per nucleotide in each strand of 3.2 A; it can be assigned spectroscopic properties like those of base-stacked, right-handed, double-stranded DNA. The stoichiometric ratio (n/s) of nucleotides to subunits of the major coat protein is close to 2. The protein subunit contains 52 amino acids, and the DNA sequence of its gene does not encode a signal peptide. The protein conformation in the virion is helical, mostly alpha-helix with perhaps some 3(10)-helix. The amino acid sequence of the DNA interaction domain of the subunit is unique among Inovirus species. On the basis of its coat protein sequence and available theories of helical symmetry in such structures, C2 appears to be either an unusual member of filamentous virus symmetry class II or the defining member of a new symmetry class.
Collapse
Affiliation(s)
- L G Kostrikis
- Public Health Research Institute, New York, New York 10016
| | | | | | | | | |
Collapse
|
32
|
Kodaira K, Oki M, Taketo A, Yasukawa H, Masamune Y. Determination of the single strand origin of Shigella sonnei plasmid pKYM. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:183-90. [PMID: 7841195 DOI: 10.1016/0167-4781(94)00199-d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Shigella sonnei plasmid pKYM replicates by a rolling-circle mechanism in Escherichia coli. A 571 nucleotides HincII restriction fragment of the pKYM DNA harbors two potential hairpin loops (I and II). We cloned the fragment into a -ori defective M13 vector phage, M13 delta lac183. The chimera phage, MDKY5, showed a larger plaque size, and increased phage yield and rate of progeny replicative form DNA (RF) synthesis. Rifampicin reduced rate of conversion of the single- to double-stranded RF DNA. In addition, we introduced nucleotide deletions within the cloned pKYM DNA, by Bal31 nuclease digestion. Each of the deletion mutants thus constructed was lacking in a sequence containing the hairpin loops and formed smaller plaques. The in vivo analyses revealed that a 136 nucleotides sequence containing the two hairpins I and II is the pKYM minus origin for complementary strand synthesis (single strand origin, referred to as SSO) and harbors a recognition site(s) by host E. coli RNA polymerase, for primer RNA synthesis. Moreover, we found a 24 nt sequence, upstream of the SSO domain having 83% homology to the recombination site A (RSA) which functions in plasmid sitespecific recombination and/or transfer.
Collapse
Affiliation(s)
- K Kodaira
- Molecular Biology Group, Faculty of Engineering, Toyama University, Japan
| | | | | | | | | |
Collapse
|
33
|
Russel M. Mutants at conserved positions in gene IV, a gene required for assembly and secretion of filamentous phages. Mol Microbiol 1994; 14:357-69. [PMID: 7830579 DOI: 10.1111/j.1365-2958.1994.tb01296.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The filamentous phage protein pIV is required for assembly and secretion of the virus and possesses regions homologous to those found in a number of Gram-negative bacterial proteins that are essential components of a widely distributed extracellular protein-export system. These proteins form multimers that may constitute an outer membrane channel that allows phage/protein egress. Three sets of f1 gene IV mutants were isolated at positions that are absolutely (G355 and P375) or largely (F381) conserved amongst the 16 currently known family members. The G355 mutants were non-functional, interfered with assembly of pIV+ phage, and made Escherichia coli highly sensitive to deoxycholate. The P375 mutants were non-functional and defective in multimerization. Many of the F381 mutants retained substantial function, and even those in which charged residues had been introduced supported some phage assembly. Some inferences about the roles of these conserved amino acids are made from the mutant phenotypes.
Collapse
Affiliation(s)
- M Russel
- Rockefeller University, New York, New York 10021
| |
Collapse
|
34
|
Kaniga K, Bossio JC, Galán JE. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol Microbiol 1994; 13:555-68. [PMID: 7997169 DOI: 10.1111/j.1365-2958.1994.tb00450.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have identified two novel Salmonella typhimurium genes, invF and invG, which are required for the efficient entry of these organisms into cultured epithelial cells. invF and invG are located immediately upstream of invE, a previously identified gene also required for Salmonella entry. Non-polar mutations in these genes rendered S. typhimurium severely deficient for entry into cultured epithelial cells. The nucleotide sequences of invF and invG indicated that these genes encode polypeptides with predicted molecular weights of 24,373 and 62,275, respectively. Proteins of similar sizes were observed when invF and invG were expressed in a bacteriophage T7 RNA polymerase-based expression system. Comparison of the predicted sequence of InvF with translated sequences in the existing databases indicated that this protein is homologous to members of the AraC family of prokaryotic transcription regulators. However, mutations in invF did not significantly affect the expression of other members of the inv locus. InvG was found to be homologous to members of the PulD family of specialized translocases. This homology suggests that InvG may be necessary for the export of invasion-related determinants or involved in the assembly of a supramolecular structure that promotes entry.
Collapse
Affiliation(s)
- K Kaniga
- Department of Microbiology, School of Medicine, State University of New York at Stony Brook 11794-5222
| | | | | |
Collapse
|
35
|
Russel M, Kaźmierczak B. Analysis of the structure and subcellular location of filamentous phage pIV. J Bacteriol 1993; 175:3998-4007. [PMID: 8320216 PMCID: PMC204828 DOI: 10.1128/jb.175.13.3998-4007.1993] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The gene IV protein of filamentous bacteriophages is an integral membrane protein required for phage assembly and export. A series of gene IV::phoA fusion, gene IV deletion, and gene IV missense mutations have been isolated and characterized. The alkaline phosphatase activity of the fusion proteins suggests that pIV lacks a cytoplasmic domain. Cell fractionation studies indicate that the carboxy-terminal half of pIV mediates its assembly into the membrane, although there is no single, discrete membrane localization domain. The properties of gene IV missense and deletion mutants, combined with an analysis of the similarities between pIVs from various filamentous phage and related bacterial export-mediating proteins, suggest that the amino-terminal half of pIV consists of a periplasmic substrate-binding domain that confers specificity to the assembly-export system.
Collapse
Affiliation(s)
- M Russel
- Rockefeller University, New York, New York 10021
| | | |
Collapse
|
36
|
Benham CJ. Sites of predicted stress-induced DNA duplex destabilization occur preferentially at regulatory loci. Proc Natl Acad Sci U S A 1993; 90:2999-3003. [PMID: 8385354 PMCID: PMC46224 DOI: 10.1073/pnas.90.7.2999] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This paper describes a computational method to predict the sites on a DNA molecule where imposed superhelical stresses destabilize the duplex. Several DNA sequences are analyzed in this way, including the pBR322 and ColE1 plasmids, bacteriophage f1, and the polyoma and bovine papilloma virus genomes. Superhelical destabilization in these molecules is predicted to occur at small numbers of discrete sites, most of which are within regulatory regions. The most destabilized sites include the terminator and promoter regions of specific plasmid operons, the LexA binding sites of genes under SOS control, the intergenic control region of bacteriophage f1, and the polyadenylylation sites in eukaryotic viruses. These results demonstrate the existence of close correspondences between sites of predicted superhelical duplex destabilization and specific types of regulatory regions. The use of these correspondences to supplement string-matching techniques in the search for regulatory loci is discussed.
Collapse
MESH Headings
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Bovine papillomavirus 1/genetics
- Coliphages/genetics
- DNA, Bacterial/chemistry
- DNA, Superhelical/chemistry
- DNA, Viral/genetics
- Drug Stability
- Escherichia coli/genetics
- Genes, Bacterial
- Genes, Viral
- Genome, Viral
- Nucleic Acid Conformation
- Operon
- Plasmids
- Polyomavirus/genetics
- Rec A Recombinases/metabolism
- Regulatory Sequences, Nucleic Acid
- Repressor Proteins/metabolism
- SOS Response, Genetics
- Serine Endopeptidases
- Stress, Mechanical
- TATA Box
- Terminator Regions, Genetic
Collapse
Affiliation(s)
- C J Benham
- Department of Biomathematical Sciences, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
37
|
Higashitani N, Higashitani A, Horiuchi K. Nucleotide sequence of the primer RNA for DNA replication of filamentous bacteriophages. J Virol 1993; 67:2175-81. [PMID: 8445727 PMCID: PMC240330 DOI: 10.1128/jvi.67.4.2175-2181.1993] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We determined the nucleotide sequence of RNA synthesized in vitro by Escherichia coli RNA polymerase at the complementary-strand replication origin on the single-stranded viral DNA of bacteriophages f1 and IKe (ori-RNA) by using chain-terminating ribonucleoside triphosphate analogs. The results indicated that the start site of f1 ori-RNA synthesis is 20 nucleotides downstream from the site previously reported (K. Geider, E. Beck, and H. Schaller, Proc. Natl. Acad. Sci. USA 75:645-649, 1978) and that the RNA sequence [(5')pppAGGGCGAUGGCCCACUACGU-OH(3')] is complementary to the f1 DNA sequence from nucleotides 5736 to 5717, with minor heterogeneity at the 3' end. IKe ori-RNA had a sequence identical to that of f1 ori-RNA, except for a single base substitution, and IKe RNA was complementary to a region of IKe DNA (from nucleotides 6441 to 6422) that was homologous to the f1 sequence. Phenotypes and ori-RNA sequences in the relevant region of the genome of f1 deletion mutants were consistent with the presently determined sequence of ori-RNA. A possibility that ori-RNA synthesis is initiated by a mechanism similar to that for general transcription is suggested as a result of the new assignment of the ori-RNA start site. The double-origin plasmid assay of minus-strand origin activity, a sensitive in vivo method for detecting cis-acting elements for the initiation of DNA replication on a single-stranded DNA template, is described.
Collapse
Affiliation(s)
- N Higashitani
- Department of Genetics, Graduate University for Advanced Studies, Mishima, Japan
| | | | | |
Collapse
|
38
|
Russel M. Interchangeability of related proteins and autonomy of function. The morphogenetic proteins of filamentous phage f1 and IKe cannot replace one another. J Mol Biol 1992; 227:453-62. [PMID: 1404363 DOI: 10.1016/0022-2836(92)90900-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The filamentous phage f1 and IKe infect a common host, are structurally highly similar and exhibit 55% identity at the DNA sequence level. Based on the idea that proteins that function autonomously will be more tolerant of multiple amino acid differences than proteins that must interact with other proteins to function, the ability of four individual proteins from f1 to substitute for their IKe equivalents to promote virus assembly in vivo has been examined. The reciprocal replacements were also examined. Only the single-strand DNA binding proteins (pV) were fully interchangeable. A minor capsid protein, pIX, was unable to substitute in assembly of the heterologous phage. Two proteins required for particle assembly that are not part of the phage particle, pI and pIV, were not interchangeable, although pIVf1 stimulated formation of a very small number of IKe particles in the absence of pIVIKe. The lack of interchangeability suggests that these morphogenetic proteins do not function autonomously, but rather interact with one or more phage proteins. The ability of certain overproduced proteins to interfere with assembly of wild-type f1 or IKe forms the basis for a model that suggests that phage assembly requires an interaction between pI and pIV.
Collapse
Affiliation(s)
- M Russel
- Rockefeller University, New York, NY 10021
| |
Collapse
|
39
|
Abstract
In a reverse of many studies of translational initiation sites, we have explored the basis for the inactivity of an apparently defective initiation site. Gene VII of the filamentous phage f1 has a translational start site with highly unusual functional properties and a sequence dissimilar to a prokaryotic ribosome binding site. The VII site shows no activity in assays of independent initiation, even in a deletion series designed to remove potentially interfering RNA secondary structure. Activity from the VII site is only observed if the site is coupled to a source of translation immediately upstream, but its efficiency is low at a one-nucleotide spacing from the stop codon of the upstream cistron and extremely sensitive to the distance between the stop codon and the gene VII AUG. These and other atypical characteristics of coupling distinguish the VII site from most coupled initiation sites. To identify the pattern of nucleotide substitutions that give the VII site the capacity for independent initiation, a series of designed and random point mutations were introduced in the sequence. Improving the Shine-Dalgarno complementarity from GG to GGAG or GGAGG made activity detectable, but at only low levels. Random substitutions, each increasing activity above background by a small increment, were found at 16 positions throughout the region of ribosome contact. These substitutions lengthened the Shine-Dalgarno complementarity or changed the G and C residues present in the wild-type site to A or T. Significant activity was not observed unless a strong Shine-Dalgarno sequence and a number of the up-mutations were present together. The nature and distribution of the substitutions and their agreement with the known preferences for nucleotides in initiation sites provide evidence that the VII site's major defect is its primary sequence overall. It appears to lack the specialized sequence required to bind free 30 S ribosomes, and thus depends on the translational coupling process to give it limited activity.
Collapse
Affiliation(s)
- M Ivey-Hoyle
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
40
|
Higashitani N, Higashitani A, Roth A, Horiuchi K. SOS induction in Escherichia coli by infection with mutant filamentous phage that are defective in initiation of complementary-strand DNA synthesis. J Bacteriol 1992; 174:1612-8. [PMID: 1537803 PMCID: PMC206557 DOI: 10.1128/jb.174.5.1612-1618.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We report that the SOS response is induced in Escherichia coli by infection with mutant filamentous phage that are defective in initiation of the complementary (minus)-strand synthesis. One such mutant, R377, which lacks the entire region of the minus-strand origin, failed to synthesize any detectable amount of primer RNA for minus-strand synthesis. In addition, the rate of conversion of parental single-stranded DNA of the mutant to the double-stranded replicative form in infected cells was extremely slow. Upon infection, R377 induced the SOS response in the cell, whereas the wild-type phage did not. The SOS induction was monitored by (i) induction of beta-galactosidase in a strain carrying a dinD::lacZ fusion and (ii) increased levels of RecA protein. In addition, cells infected with R377 formed filaments. Another deletion mutant of the minus-strand origin, M13 delta E101 (M. H. Kim, J. C. Hines, and D. S. Ray, Proc. Natl. Acad. Sci. USA 78:6784-6788, 1981), also induced the SOS response in E. coli. M13Gori101 (D. S. Ray, J. C. Hines, M. H. Kim, R. Imber, and N. Nomura, Gene 18:231-238, 1982), which is a derivative of M13 delta E101 carrying the primase-dependent minus-strand origin of phage G4, did not induce the SOS response. These observations indicate that single-stranded DNA by itself induces the SOS response in vivo.
Collapse
Affiliation(s)
- N Higashitani
- Department of Genetics, Graduate University for Advanced Studies, Mishima, Japan
| | | | | | | |
Collapse
|
41
|
Stassen AP, Schoenmakers EF, Yu M, Schoenmakers JG, Konings RN. Nucleotide sequence of the genome of the filamentous bacteriophage I2-2: module evolution of the filamentous phage genome. J Mol Evol 1992; 34:141-52. [PMID: 1556749 DOI: 10.1007/bf00182391] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nucleotide sequence of the circular single-stranded genome of the filamentous Escherichia coli phage I2-2 has been determined and compared with those of the filamentous E. coli phages Ff(M13, fl, or fd) and IKe. The I2-2 DNA sequence comprises 6744 nucleotides; 139 nucleotides less than that of the N- and I2-plasmid-specific phage IKe, and 337 (336) nucleotides more than that of the F-plasmid-specific phage Ff. Nucleotide sequence comparisons have indicated that I2-2, IKe, and Ff have a similar genetic organization, and that the genomes of I2-2 and IKe are evolutionarily more closely related than those of I2-2 and Ff. The studies have further demonstrated that the I2-2 genome is a composite replicon, composed of only two-thirds of the ancestral genome of IKe. Only a contiguous I2-2 DNA sequence of 4615 nucleotides encompassing not only the coat protein and phage assembly genes, but also the signal required for efficient phage morphogenesis, was found to be significantly homologous to sequences in the genomes of IKe and Ff. No homology was observed between the consecutive DNA sequence that contains the origins for viral and complementary strand replication and the replication genes. Although other explanations cannot be ruled out, our data strongly suggest that the ancestor filamentous phage genome of phages I2-2 and IKe has exchanged its replication module during evolution with that of another replicon, e.g., a plasmid that also replicates via the so-called rolling circle mechanism.
Collapse
Affiliation(s)
- A P Stassen
- Department of Molecular Biology, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Frost LS, Bazett-Jones DP. Examination of the phosphate in conjugative F-like pili by use of electron spectroscopic imaging. J Bacteriol 1991; 173:7728-31. [PMID: 1682305 PMCID: PMC212548 DOI: 10.1128/jb.173.23.7728-7731.1991] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
F-like pili specified by conjugative plasmids have been reported to contain phosphate which may be noncovalently incorporated into the pilus. Electron spectroscopic imaging was able to detect phosphate in the filamentous, single-stranded DNA phage f1, used as positive control, but could not detect phosphate in F-like pili. Thus, the phosphate in purified pili which has been reported is probably derived from contaminating cell envelope material.
Collapse
Affiliation(s)
- L S Frost
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
43
|
Tomb JF, el-Hajj H, Smith HO. Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae Rd. Gene X 1991; 104:1-10. [PMID: 1916268 DOI: 10.1016/0378-1119(91)90457-m] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A genetic locus implicated in the development of competence in Haemophilus influenzae Rd has been previously mapped to a 12.8-kb PstI region of the chromosome [Tomb et al., J. Bacteriol. 171 (1989) 3796-3802]. To define the boundaries of this locus and to identify the gene(s) involved in transformation, additional mini-Tn10kan mutagenesis was performed and the region containing all mutagenic insertions was sequenced. Three new transformation-deficient (Tfo-) mutants were found, bringing the number of distinct mutations mapped to this region up to eight. The transformation frequency of strains carrying the new insertions was 25- to 10(5)-fold less than wild type. The ends of the mini-Tn10kan element were used as starting points to sequence a 9.1-kb region. The position of the eight mutagenic insertions was determined and ten putative open reading frames (ORFs) were found. One of the mini-Tn10kan elements had inserted in an intergenic region while the rest had inserted in six of the ORFs. Based on the phenotypes of the mutant strains and the position of the insertions, we concluded that at least three of the genes should be involved in transformation. In addition, fourteen 9-11-bp uptake signal sequences (USS) were found, four of which were part of stem-loop structures and could function as attenuators of terminators of transcription.
Collapse
Affiliation(s)
- J F Tomb
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185
| | | | | |
Collapse
|
44
|
Carne A, Hill DF, Stockwell PA, Hughes G, Petersen GB. The putative single-stranded DNA-binding protein of the filamentous bacteriophage, Ifl. Amino acid sequence of the protein and structure of the gene. Proc Biol Sci 1991; 245:23-30. [PMID: 1682927 DOI: 10.1098/rspb.1991.0083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The protein product corresponding to the gene located in the region of the coliphage Ifl genome shown to contain the code for the single-stranded DNA (ssDNA)-binding proteins of all filamentous phages so far studied has been isolated from infected bacterial cells and its amino acid sequence determined. The mature protein contains 95 amino acids (calculated molecular mass 10553 Da). Its sequence corresponds to that predicted from the DNA sequence but lacks the initiating methionine residue. Although there is little direct sequence homology between the phage Ifl protein and the ssDNA-binding proteins of the other filamentous phages that have been studied, computer-based comparisons of various physical and structural parameters showed that the phage Ifl protein contains a domain that is closely related to domains in the coliphage T4 gene 32 protein and the Pseudomonas phage Pfl ssDNA-binding protein and suggest that the Ifl protein does have a ssDNA-binding function although we were unable to show this directly.
Collapse
Affiliation(s)
- A Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
45
|
Luiten RG, Timmermans MC, Schoenmakers JG, Konings RN. In vitro deletion mapping of the viral strand replication origin of Pseudomonas bacteriophage Pf3. J Bacteriol 1991; 173:4007-12. [PMID: 1905713 PMCID: PMC208047 DOI: 10.1128/jb.173.13.4007-4012.1991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The origin of viral strand replication of the filamentous bacteriophage Pf3 has been characterized in Escherichia coli by in vitro deletion mapping techniques. The origin region was functionally identified by its ability to convey replicative properties to a recombinant plasmid in a polA host in which the replication origin of the vector plasmid is not functional. The origin of Pf3 viral strand replication is contained within a DNA sequence of 139 bp. This sequence covers almost completely one of the intergenic regions of the Pf3 genome, and it specifies both replication initiation and termination functions. Although no nucleotide sequence homology is present between the Pf3 origin of viral strand replication and that of the E. coli filamentous phages Ff (M13, f1, and fd) and IKe, their map positions and functional properties are very similar.
Collapse
Affiliation(s)
- R G Luiten
- Laboratory of Molecular Biology, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
46
|
Abstract
The genome of the class II filamentous bacteriophage Pf1 has been sequenced by a combination of the chain termination and chemical degradation methods. It consists of 7349 nucleotides in a closed, circular loop of single-stranded DNA. The size and position of its open reading frames (ORFs) in general resemble those of other filamentous bacteriophage genomes. The size and position of the spaces between the ORFs have not been conserved, however, and six short reading frames (2 of which overlap) occupy a region corresponding to that filled by genes 2 and 10 in the Ff genome. Most of the ORFs are preceded by sequences resembling ribosome binding sites from the phage's host. Pseudomonas aeruginosa, that appear to differ somewhat from their counterparts in Escherichia coli. A search for sequences related to known pseudomonad promoters suggests that the promoters in this bacteriophage may well be ntr-dependent, with the two strongest preceding the gene for the major coat protein (gene 8) and another ORF (430). Gene 8 is followed by a sequence with the properties of a rho-independent terminator of transcription, like that at the same position in the genome of Ff. The Pf1 genome contains no collection of potential stem-and-loop structures corresponding to those that initiate replication of Ff DNA and assembly of the Ff virion, although isolated structures of this kind are present. The available evidence suggests that at least 13 of the 14 major ORFs are expressed. Overall, the organization of the Pf1 genome differs from that of the other class II filamentous phage whose genome has been sequenced, Pf3, as much as it does from that of the class I phages Ff and IKe.
Collapse
Affiliation(s)
- D F Hill
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
47
|
Struyvé M, Moons M, Tommassen J. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 1991; 218:141-8. [PMID: 1848301 DOI: 10.1016/0022-2836(91)90880-f] [Citation(s) in RCA: 385] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial outer membrane proteins are supposed to span the membrane repeatedly, mostly in the form of amphipathic beta-sheets. The last ten C-terminal amino acid residues of PhoE protein are supposed to form such a membrane-spanning segment. Deletion of this segment completely prevents incorporation into the outer membrane. Comparison of the last ten amino acid residues of other outer membrane proteins from different Gram-negative bacteria revealed the presence of a potential amphipathic beta-sheet with hydrophobic residues at positions 1 (Phe), 3 (preferentially Tyr), 5, 7 and 9 from the C terminus, in the vast majority of these proteins. Since such sequences were not detected at the C termini of periplasmic proteins, it appears to be possible to discriminate between the majority of outer membrane proteins and periplasmic proteins on the basis of sequence data. The highly conserved phenylalanine at the C termini of outer membrane proteins suggests an important function for this amino acid in assembly into the outer membrane. Site-directed mutagenesis was applied to study the role of the C-terminal Phe in PhoE protein assembly. All mutant proteins were correctly incorporated into the outer membrane to some extent, but the efficiency of the process was severely affected. It appears that both the hydrophobicity and the aromatic nature of Phe are of importance.
Collapse
Affiliation(s)
- M Struyvé
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | | | |
Collapse
|
48
|
Oller AR, Vanden Broek W, Conrad M, Topal MD. Ability of DNA and spermidine to affect the activity of restriction endonucleases from several bacterial species. Biochemistry 1991; 30:2543-9. [PMID: 1848100 DOI: 10.1021/bi00223a035] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Previous work has described the novel ability to modulate in vitro the activity of restriction endonuclease NaeI from Nocardia aerocoligenes by using cleavable DNA and spermidine [Conrad & Topal (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9707-9711]. In this paper we report the results of a study of 49 type II restriction enzymes from a variety of bacterial species. On the basis of the rates of cleavage observed, we found that in addition to expected cleavable sites a number of enzymes had slow and resistant cognate recognition sites. Resistant sites were identified for BspMI, NaeI, and NarI; slow sites were identified for HpaII, NaeI, and SacII. Cleavage of these sites was found to be significantly enhanced by the addition of cleavable DNA or spermidine. We demonstrate that for BspMI, as for NaeI, activator DNAs increased Vmax without altering Km, whereas for HpaII, NarI, and SacII activator DNAs decreased Km without changing Vmax. Comparison among the Kms for NaeI cleavage of several different substrates demonstrated that distant DNA sequences can affect DNA recognition by the activated enzyme. Our observations extend DNA activation of the Nocardia NaeI endonuclease to restriction endonucleases from Nocardia argentinensis (NarI), Bacillus species M (BspMI), Haemophilus parainfluenza (HpaII), and Streptomyces achromogenes (SacII). In addition, activation has now been found to affect slow as well as resistant recognition sites.
Collapse
Affiliation(s)
- A R Oller
- Lineberger Comprehensive Cancer Center, Department of Pathology, University of North Carolina Medical School, Chapel Hill 27599-7295
| | | | | | | |
Collapse
|
49
|
Kokoska RJ, Blumer KJ, Steege DA. Phage fl mRNA processing in Escherichia coli: search for the upstream products of endonuclease cleavage, requirement for the product of the altered mRNA stability (ams) locus. Biochimie 1990; 72:803-11. [PMID: 2085543 DOI: 10.1016/0300-9084(90)90189-n] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In Escherichia coli infected with the filamentous phage f1, a number of the polycistronic phage mRNA species are generated through post-transcriptional processing by host nuclease activity. In this paper we review experimental evidence assessing whether known RNases are involved in mediating these processing events, and we use S1 nuclease mapping methods to visualize putative upstream products of endonuclease cleavage. By examining f1 processing in a phage-infected host bearing a temperature-sensitive allele of the altered message stability locus (ams), we show that production of the major processed species requires a component of the host cell which functions in the messenger RNA decay process.
Collapse
Affiliation(s)
- R J Kokoska
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
50
|
Markmeyer P, Rühlmann A, Englisch U, Cramer F. The pAX plasmids: new gene-fusion vectors for sequencing, mutagenesis and expression of proteins in Escherichia coli. Gene X 1990; 93:129-34. [PMID: 2227422 DOI: 10.1016/0378-1119(90)90146-i] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A family of plasmid cloning vectors have been constructed, allowing both the sequencing and mutagenesis of foreign genes and the easy isolation of their expression products via fusion proteins in Escherichia coli. Fusion proteins can be inducibly expressed and isolated by affinity chromatography on APTG-Sepharose. The fusion protein consists of beta-galactosidase at the N-terminus, linked by a collagen 'hinge' region containing blood coagulation factor Xa cleavage site to the foreign protein at the C terminus. The factor Xa cleavage site at the N-terminal side of the foreign protein allows the release of the desired amino acid sequence under mild conditions. A multiple cloning site in all three reading frames and stop codons followed by the strong lambda t0 terminator facilitate simple gene insertions and manipulations. The intergenic region of the phage f1 inserted in both orientations allows the isolation of single-stranded DNA from either plasmid-strand for sequencing and mutagenesis. This vector family has been successfully used for the expression and purification of the isoleucyl-tRNA synthetase from Saccharomyces cerevisiae and the histidyl-tRNA synthetase from E. coli.
Collapse
Affiliation(s)
- P Markmeyer
- Max-Planck-Institut für experimentelle Medizin, Abteilung Chemie, Göttingen, F.R.G
| | | | | | | |
Collapse
|