1
|
Calvo-López T, Grueso E, Sánchez-Martínez C, Almendral JM. Intracellular virion traffic to the endosome driven by cell type specific sialic acid receptors determines parvovirus tropism. Front Microbiol 2023; 13:1063706. [PMID: 36756201 PMCID: PMC9899843 DOI: 10.3389/fmicb.2022.1063706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Parvoviruses are promising anticancer and gene therapy agents, but a deep knowledge of the entry process is crucial to exploit their therapeutic potential. We addressed this issue while attempting to retarget the oncolytic parvovirus minute virus of mice (MVMp) to the tumor vasculature. Residues at three functional domains of the icosahedral capsid were substituted by rational design with peptides competing with the vascular endothelial growth factor. Most substitutions impaired virus maturation, though some yielded infectious chimeric virions, and substitutions in a dimple at the twofold axis that allocates sialic acid (SIA) receptors altered viral tropism. One dimple-modified chimeric virion was efficiently attached as MVMp to α2-linked SIA moieties, but the infection was impaired by the binding to some inhibitory α2-3,-6,-8 SIA pseudoreceptors, which hampers intracellular virus traffic to the endosome in a cell type-dependent manner. Infectious from nonproductive traffic could be mechanistically discriminated by an endosomal drastic capsid structural transition comprising the cleavage of some VP2-Nt sequences and its associated VP1-Nt exposure. Correspondingly, neuraminidase removal of inhibitory SIA moieties enhanced the infection quantitatively, correlating to the restored virus traffic to the endosome and the extent of VP2-Nt cleavage/VP1-Nt exposure. This study illustrates (i) structural constraints to retarget parvoviruses with evolutionary adopted narrow grooves allocating small SIA receptors, (ii) the possibility to enhance parvovirus oncolysis by relaxing the glycan network on the cancer cell surface, and (iii) the major role played by the attachment to cell type-specific SIAs in the intracellular virus traffic to the endosome, which may determine parvovirus tropism and host range.
Collapse
Affiliation(s)
- Tania Calvo-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Grueso
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Sánchez-Martínez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M. Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain,*Correspondence: José M. Almendral ✉
| |
Collapse
|
2
|
Atomic Resolution Structure of the Oncolytic Parvovirus LuIII by Electron Microscopy and 3D Image Reconstruction. Viruses 2017; 9:v9110321. [PMID: 29084163 PMCID: PMC5707528 DOI: 10.3390/v9110321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/23/2023] Open
Abstract
LuIII, a protoparvovirus pathogenic to rodents, replicates in human mitotic cells, making it applicable for use to kill cancer cells. This virus group includes H-1 parvovirus (H-1PV) and minute virus of mice (MVM). However, LuIII displays enhanced oncolysis compared to H-1PV and MVM, a phenotype mapped to the major capsid viral protein 2 (VP2). This suggests that within LuIII VP2 are determinants for improved tumor lysis. To investigate this, the structure of the LuIII virus-like-particle was determined using single particle cryo-electron microscopy and image reconstruction to 3.17 Å resolution, and compared to the H-1PV and MVM structures. The LuIII VP2 structure, ordered from residue 37 to 587 (C-terminal), had the conserved VP topology and capsid morphology previously reported for other protoparvoviruses. This includes a core β-barrel and α-helix A, a depression at the icosahedral 2-fold and surrounding the 5-fold axes, and a single protrusion at the 3-fold axes. Comparative analysis identified surface loop differences among LuIII, H-1PV, and MVM at or close to the capsid 2- and 5-fold symmetry axes, and the shoulder of the 3-fold protrusions. The 2-fold differences cluster near the previously identified MVM sialic acid receptor binding pocket, and revealed potential determinants of protoparvovirus tumor tropism.
Collapse
|
3
|
Ros C, Bayat N, Wolfisberg R, Almendral JM. Protoparvovirus Cell Entry. Viruses 2017; 9:v9110313. [PMID: 29072600 PMCID: PMC5707520 DOI: 10.3390/v9110313] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/25/2023] Open
Abstract
The Protoparvovirus (PtPV) genus of the Parvoviridae family of viruses includes important animal pathogens and reference molecular models for the entire family. Some virus members of the PtPV genus have arisen as promising tools to treat tumoral processes, as they exhibit marked oncotropism and oncolytic activities while being nonpathogenic for humans. The PtPVs invade and replicate within the nucleus making extensive use of the transport, transcription and replication machineries of the host cells. In order to reach the nucleus, PtPVs need to cross over several intracellular barriers and traffic through different cell compartments, which limit their infection efficiency. In this review we summarize molecular interactions, capsid structural transitions and hijacking of cellular processes, by which the PtPVs enter and deliver their single-stranded DNA genome into the host cell nucleus. Understanding mechanisms that govern the complex PtPV entry will be instrumental in developing approaches to boost their anticancer therapeutic potential and improving their safety profile.
Collapse
Affiliation(s)
- Carlos Ros
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Nooshin Bayat
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Raphael Wolfisberg
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark.
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
4
|
The MVMp P4 promoter is a host cell-type range determinant in vivo. Virology 2017; 506:141-151. [PMID: 28391161 DOI: 10.1016/j.virol.2017.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022]
Abstract
The protoparvovirus early promoters, e.g. P4 of Minute Virus of Mice (MVM), play a critical role during infection. Initial P4 activity depends on the host transcription machinery only. Since this is cell-type dependent, it is hypothesized that P4 is a host cell-type range determinant. Yet host range determinants have mapped mostly to capsid, never P4. Here we test the hypothesis using the mouse embryo as a model system. Disruption of the CRE element of P4 drastically decreased infection levels without altering range. However, when we swapped promoter elements of MVM P4 with those from equivalent regions of the closely related H1 virus, we observed elimination of infection in fibroblasts and chondrocytes and the acquisition of infection in skeletal muscle. We conclude that P4 is a host range determinant and a target for modifying the productive infection potential of the virus - an important consideration in adapting these viruses for oncotherapy.
Collapse
|
5
|
Abstract
Report of the Working Group on Hygiene of the Gesellschaft für Versuchstierkunde–Society for Laboratory Animal Science (GV-SOLAS) GV-SOLAS Working Group on Hygiene: Werner Nicklas (Chairman), Felix R. Homberger, Brunhilde Illgen-Wilcke, Karin Jacobi, Volker Kraft, Ivo Kunstyr, Michael Mähler, Herbert Meyer & Gabi Pohlmeyer-Esch
Collapse
|
6
|
Affiliation(s)
- Shweta Kailasan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610
| | - Colin R. Parrish
- Baker Institute for Animal Health and Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
7
|
Cho IR, Kaowinn S, Song J, Kim S, Koh SS, Kang HY, Ha NC, Lee KH, Jun HS, Chung YH. RETRACTED ARTICLE: VP2 capsid domain of the H-1 parvovirus determines susceptibility of human cancer cells to H-1 viral infection. Cancer Gene Ther 2015; 22:271-7. [DOI: 10.1038/cgt.2015.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/09/2015] [Indexed: 12/21/2022]
|
8
|
Henderson KS, Pritchett-Corning KR, Perkins CL, Banu LA, Jennings SM, Francis BC, Shek WR. A comparison of mouse parvovirus 1 infection in BALB/c and C57BL/6 mice: susceptibility, replication, shedding, and seroconversion. Comp Med 2015; 65:5-14. [PMID: 25730752 PMCID: PMC4396924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/04/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
This study characterized the effects of challenge with a field isolate of mouse parvovirus 1 (MPV1e) in C57BL/6NCrl (B6) and BALB/cAnNCrl (C) mice. We found that C mice were more susceptible to MPV1e infection than were B6 mice; ID50 were 50 to 100 times higher after gavage and 10-fold higher after intraperitoneal injection in B6 as compared with C mice. To evaluate the host strain effect on the pathogenesis of MPV1e, B6 and C mice were inoculated by gavage. Feces and tissues, including mesenteric lymph nodes (MLN), ileum, spleen and blood, were collected for analysis by quantitative PCR (qPCR) to assess infection and fecal shedding and by RT-qPCR to evaluate replication. Peak levels of MPV1e shedding, infection, and replication were on average 3.4, 4.3, and 6.2 times higher, respectively, in C than in B6 mice. Peaks occurred between 3 and 10 d after inoculation in C mice but between 5 and 14 d in B6 mice. Multiplexed fluorometric immunoassays detected seroconversion in 2 of 3 C mice at 7 d after inoculation and in all 3 B6 mice at 10 d. By 56 d after inoculation, viral replication was no longer detectable, and fecal shedding was very low; infection persisted in ileum, spleen, and MLN, with levels higher in C than B6 mice and highest in MLN. Therefore, the lower susceptibility of B6 mice, as compared with C mice, to MPV1e infection was associated with lower levels of infection, replication, and shedding and delayed seroconversion.
Collapse
Key Words
- b6, c57bl/6
- c, balb/c
- mfi, median fluorescence intensity
- mfia, multiplexed fluorometric immunoassay
- mln, mesenteric lymph node
- mmv, mouse minute virus
- mpv, mouse parvovirus
- ns1, nonstructural protein 1
- qpcr, quantitative pcr
- r, recombinant
- rn, normalized reporter value
- vp2, virus capsid protein 2
Collapse
Affiliation(s)
- Kenneth S Henderson
- Research Animal Diagnostic Services, Charles River, Wilmington, Massachusetts, USA
| | | | - Cheryl L Perkins
- Research Animal Diagnostic Services, Charles River, Wilmington, Massachusetts, USA
| | - Laila A Banu
- Research Animal Diagnostic Services, Charles River, Wilmington, Massachusetts, USA
| | - Steven M Jennings
- Research Animal Diagnostic Services, Charles River, Wilmington, Massachusetts, USA
| | - Brian C Francis
- Research Animal Diagnostic Services, Charles River, Wilmington, Massachusetts, USA
| | - William R Shek
- Research Animal Diagnostic Services, Charles River, Wilmington, Massachusetts, USA
| |
Collapse
|
9
|
Autonomous parvoviruses neither stimulate nor are inhibited by the type I interferon response in human normal or cancer cells. J Virol 2014; 88:4932-42. [PMID: 24554651 DOI: 10.1128/jvi.03508-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Members of the genus Parvovirus are small, nonenveloped single-stranded DNA viruses that are nonpathogenic in humans but have potential utility as cancer therapeutics. Because the innate immune response to parvoviruses has received relatively little attention, we compared the response to parvoviruses to that of several other types of viruses in human cells. In normal human glia, fibroblasts, or melanocytes, vesicular stomatitis virus evoked robust beta interferon (IFN-β) responses. Cytomegalovirus, pseudorabies virus, and Sindbis virus all evoked a 2-log-unit or greater upregulation of IFN-β in glia; in contrast, LuIII and MVMp parvoviruses did not evoke a detectable IFN-β or interferon-stimulated gene (ISG; MX1, oligoadenylate synthetase [OAS], IFIT-1) response in the same cell types. The lack of response raised the question of whether parvoviral infection can be attenuated by IFN; interestingly, we found that IFN did not decrease parvovirus (MVMp, LuIII, and H-1) infectivity in normal human glia, fibroblasts, or melanocytes. The same was true in human cancers, including glioma, sarcoma, and melanoma. Similarly, IFN failed to attenuate transduction by the dependovirus vector adeno-associated virus type 2. Progeny production of parvoviruses was also unimpaired by IFN in both glioma and melanoma, whereas vesicular stomatitis virus replication was blocked. Sarcoma cells with upregulated IFN signaling that show high levels of resistance to other viruses showed strong infection by LuIII. Unlike many other oncolytic viruses, we found no evidence that impairment of innate immunity in cancer cells plays a role in the oncoselectivity of parvoviruses in human cells. Parvoviral resistance to the effects of IFN in cancer cells may constitute an advantage in the virotherapy of some tumors. IMPORTANCE Understanding the interactions between oncolytic viruses and the innate immune system will facilitate employing these viruses as therapeutic agents in cancer patients. The cancer-selective nature of some oncolytic viruses is based on the impaired innate immunity of many cancer cells. The parvoviruses H-1, LuIII, and MVM target cancer cells; however, their relationship with the innate immune system is relatively uncharacterized. Surprisingly, we found that these parvoviruses do not evoke an interferon response in normal human fibroblasts, glia, or melanocytes. Furthermore, unlike most other types of virus, we found that parvovirus infectivity is unaffected by interferon treatment of human normal or tumor cells. Finally, parvoviral replication was unimpaired by interferon in four human tumor types, including those with residual interferon functionality. We conclude that deficits in the interferon antiviral response of cancer cells do not contribute to parvoviral oncoselectivity in human cells. The interferon-resistant phenotype of parvoviruses may give them an advantage over interferon-sensitive oncolytic viruses in tumors showing residual interferon functionality.
Collapse
|
10
|
Halder S, Cotmore S, Heimburg-Molinaro J, Smith DF, Cummings RD, Chen X, Trollope AJ, North SJ, Haslam SM, Dell A, Tattersall P, McKenna R, Agbandje-McKenna M. Profiling of glycan receptors for minute virus of mice in permissive cell lines towards understanding the mechanism of cell recognition. PLoS One 2014; 9:e86909. [PMID: 24475195 PMCID: PMC3903596 DOI: 10.1371/journal.pone.0086909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 12/16/2013] [Indexed: 02/02/2023] Open
Abstract
The recognition of sialic acids by two strains of minute virus of mice (MVM), MVMp (prototype) and MVMi (immunosuppressive), is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA) capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM). Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3′SIA-LN) and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3′SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3′SIA-LeX identified in a previous glycan microarray screen.
Collapse
Affiliation(s)
- Sujata Halder
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Susan Cotmore
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - David F. Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, California, United States of America
| | - Alana J. Trollope
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Simon J. North
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Stuart M. Haslam
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Anne Dell
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Peter Tattersall
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Parvoviral left-end hairpin ears are essential during infection for establishing a functional intranuclear transcription template and for efficient progeny genome encapsidation. J Virol 2013; 87:10501-14. [PMID: 23903839 DOI: 10.1128/jvi.01393-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within genus Parvovirus. To explore their potential role(s) during infection, we constructed infectious plasmid clones that lacked one or other ear. Although these were nonviable when transfected into A9 cells, excision of the viral genome and DNA amplification appeared normal, and viral transcripts and proteins were expressed, but progeny virion production was minimal, supporting the idea of a potential role for the ears in genome packaging. To circumvent the absence of progeny that confounded further analysis of these mutants, plasmids were transfected into 293T cells both with and without an adenovirus helper construct, generating single bursts of progeny. These virions bound to A9 cells and were internalized but failed to initiate viral transcription, protein expression, or DNA replication. No defects in mutant virion stability or function could be detected in vitro. Significantly, mutant capsid gene expression and DNA replication could be rescued by coinfection with wild-type virions carrying a replication-competent, capsid-gene-replacement vector. To pinpoint where such complementation occurred, prior transfection of plasmids expressing only MVM nonstructural proteins was explored. NS1 alone, but not NS2, rescued transcription and protein expression from both P4 and P38 promoters, whereas NS1 molecules deleted for their C-terminal transactivation domain did not. These results suggest that the mutant virions reach the nucleus, uncoat, and are converted to duplex DNA but require an intact left-end hairpin structure to form the initiating transcription complex.
Collapse
|
12
|
Structural characterization of H-1 parvovirus: comparison of infectious virions to empty capsids. J Virol 2013; 87:5128-40. [PMID: 23449783 DOI: 10.1128/jvi.03416-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors.
Collapse
|
13
|
Janus LM, Bleich A. Coping with parvovirus infections in mice: health surveillance and control. Lab Anim 2012; 46:14-23. [DOI: 10.1258/la.2011.011025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Parvoviruses of mice, minute virus of mice (MVM) and mouse parvovirus (MPV), are challenging pathogens to eradicate from laboratory animal facilities. Due to the impediment on rodent-based research, recent studies have focused on the assessment of re-derivation techniques and parvoviral potential to induce persistent infections. Summarizing recent data, this review gives an overview on studies associated with parvoviral impact on research, diagnostic methods, parvoviral persistence and re-derivation techniques, demonstrating the complex nature of parvovirus infection in mice and unfolding the challenge of controlling parvovirus infections in laboratory animal facilities.
Collapse
Affiliation(s)
- Lydia M Janus
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Andre Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Paglino J, Tattersall P. The parvoviral capsid controls an intracellular phase of infection essential for efficient killing of stepwise-transformed human fibroblasts. Virology 2011; 416:32-41. [PMID: 21600623 DOI: 10.1016/j.virol.2011.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/01/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Members of the rodent subgroup of the genus Parvovirus exhibit lytic replication and spread in many human tumor cells and are therefore attractive candidates for oncolytic virotherapy. However, the significant variation in tumor tropism observed for these viruses remains largely unexplained. We report here that LuIII kills BJ-ELR 'stepwise-transformed' human fibroblasts efficiently, while MVM does not. Using viral chimeras, we mapped this property to the LuIII capsid gene, VP2, which is necessary and sufficient to confer the killer phenotype on MVM. LuIII VP2 facilitates a post-entry, pre-DNA-amplification step early in the life cycle, suggesting the existence of an intracellular moiety whose efficient interaction with the incoming capsid shell is critical to infection. Thus targeting of human cancers of different tissue-type origins will require use of parvoviruses with capsids that effectively make this critical interaction.
Collapse
Affiliation(s)
- Justin Paglino
- Department of Laboratory Medicine, Yale University Medical School, New Haven, CT 06520, USA
| | | |
Collapse
|
15
|
Dempe S, Stroh-Dege AY, Schwarz E, Rommelaere J, Dinsart C. SMAD4: a predictive marker of PDAC cell permissiveness for oncolytic infection with parvovirus H-1PV. Int J Cancer 2010; 126:2914-27. [PMID: 19856310 DOI: 10.1002/ijc.24992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the eighth frequent solid tumor and fourth leading cause of cancer death. Because current treatments against PDAC are still unsatisfactory, new anticancer strategies are required, including oncolytic viruses. Among these, autonomous parvoviruses (PV), like MVMp (minute virus of mice) and H-1PV are being explored as candidates for cancer gene therapy. Human PDAC cell lines were identified to display various susceptibilities to an infection with H-1PV. The correlation between the integrity of the transcription factor SMAD4, mutated in 50% of all PDAC, and H-1PV permissiveness was particularly striking. Indeed, mutation or deletion of SMAD4 dramatically reduced the activity of the P4 promoter and, consequently, the accumulation of the pivotal NS1 protein. By means of DNA affinity immunoblotting, novel binding sites for SMAD4 and c-JUN transcription factors could be identified in the P4 promoter of H-1PV. The overexpression of wild-type SMAD4 in deficient cell lines (AsPC-1, Capan-1) stimulated the activity of the P4 promoter, whereas interference of endogenous SMAD4 function with a dominant-negative mutant decreased the viral promoter activity in wild-type SMAD4-expressing cells (Panc-1, MiaPaCa-2) reducing progeny virus production. In conclusion, the importance of members of the SMAD family for H-1PV early promoter P4 activity should guide us to select SMAD4-positive PDACs, which may be possible targets for an H-1PV-based cancer therapy.
Collapse
Affiliation(s)
- Sebastian Dempe
- Abt F010, Infection and Cancer Program, Tumor Virology Division, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
16
|
Translation control by protein kinase R restricts minute virus of mice infection: role in parvovirus oncolysis. J Virol 2010; 84:5043-51. [PMID: 20219905 DOI: 10.1128/jvi.02188-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The relevance of translational control in the gene expression and oncotropism of the autonomous parvoviruses was investigated with MVMp, the prototype strain of minute virus of mice (MVM), infecting normal and transformed rodent and human cells of different tissue origins. Mouse embryo fibroblasts (MEFs) and NIH 3T3 fibroblasts were resistant to MVMp infection, but 3T3 fibroblasts derived from double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) knockout mice (PKR(o/o)) behaved in a manner that was highly permissive to productive MVMp replication. NIH 3T3 resistance correlated with significant phosphorylation of eukaryotic translation initiation factor 2 (eIF2) occurring at early time points after infection. Permissive PKR(o/o) cells were converted to MVMp-restrictive cells after reintroduction of the PKR gene by transfection. Conversely, regulated expression of the vaccinia virus E3 protein, a PKR inhibitor, in MEFs prevented eIF2alpha phosphorylation and increased MVMp protein synthesis. In vitro-synthesized genome-length R1 mRNA of MVMp was a potent activator of PKR. Virus-resistant primary MEFs and NIH 3T3 cells responded to MVMp infection with significant increases in eIF2alpha phosphorylation. In contrast, virus-permissive mouse (PKR(o/o), BHK21, and A9) and human transformed (NB324K fibroblast, U373 glioma, and HepG2 hepatoma) cells consistently showed no significant increase in the level of eIF2alpha phosphorylation following MVMp infection. The synthesis of the viral NS1 protein was inversely correlated with the steady-state PKR levels. Our results show that the PKR-mediated antiviral response is an important mechanism for control of productive MVMp infection, and its impairment in human transformed cells allowed efficient MVMp gene expression. PKR translational control may therefore contribute to the oncolysis of MVMp and other autonomous parvoviruses.
Collapse
|
17
|
Mahabir E, Reindl K, Mysliwietz J, Needham J, Bulian D, Markoullis K, Scherb H, Schmidt J. Impairment of germline transmission after blastocyst injection with murine embryonic stem cells cultured with mouse hepatitis virus and mouse minute virus. Transgenic Res 2008; 18:45-57. [PMID: 18800235 PMCID: PMC2758372 DOI: 10.1007/s11248-008-9216-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 08/25/2008] [Indexed: 11/28/2022]
Abstract
The aim of this study was to determine the susceptibility of murine embryonic stem (mESCs) to mouse hepatitis virus (MHV-A59) and mouse minute virus (MMVp) and the effect of these viruses on germline transmission (GLT) and the serological status of recipients and pups. When recipients received 10 blastocysts, each injected with 10(0) TCID(50) MHV-A59, three out of five recipients and four out of 14 pups from three litters became seropositive. When blastocysts were injected with 10(-5) TCID(50) MMVp, all four recipients and 14 pups from four litters remained seronegative. The mESCs replicated MHV-A59 but not MMVp, MHV-A59 being cytolytic for mESCs. Exposure of mESCs to the viruses over four to five passages but not for 6 h affected GLT. Recipients were seropositive for MHV-A59 but not for MMVp when mESCs were cultured with the virus over four or five passages. The data show that GLT is affected by virus-contaminated mESCs.
Collapse
Affiliation(s)
- E Mahabir
- Department of Comparative Medicine, Helmholtz Center Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Etingov I, Itah R, Mincberg M, Keren-Naus A, Nam HJ, Agbandje-McKenna M, Davis C. An extension of the Minute Virus of Mice tissue tropism. Virology 2008; 379:245-55. [PMID: 18684479 DOI: 10.1016/j.virol.2008.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/06/2008] [Accepted: 06/25/2008] [Indexed: 11/18/2022]
Abstract
Well-defined tissue tropism makes Autonomous Parvoviruses a valuable model for studies of virus-cell interactions and gene therapy research. We developed a new Minute Virus of Mice variant, different from the known prototype (MVMp) and immunosuppressive (MVMi) strains. The new virus variant, designated F1, was isolated from the culture of semi-permissive Fisher Rat Fibroblasts, F111, infected with MVMp. The F1 genome carried point mutations in regions known to determine the mutually restricted host ranges of MVMp and MVMi. In F111 cells, F1 cytotoxicity, gene expression and multiplication were significantly higher compared to MVMp. Conversely the wild-type virus propagated in MVMp-permissive cells more efficiently than the F1. Reversion of the F1-specific mutations to wild-type MVMp sequence, following reverse-passaging of the mutant virus in MVMp-permissive cells, confirmed a specific adaptation of the F1 virus to F111 cells. Considerable divergence in tissue specificities between the wild-type and mutant viruses was demonstrated in vivo.
Collapse
Affiliation(s)
- Igor Etingov
- Department of Virology and Developmental Molecular Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | | | | | | | | | |
Collapse
|
19
|
Evolution to pathogenicity of the parvovirus minute virus of mice in immunodeficient mice involves genetic heterogeneity at the capsid domain that determines tropism. J Virol 2007; 82:1195-203. [PMID: 18045943 DOI: 10.1128/jvi.01692-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very little is known about the role that evolutionary dynamics plays in diseases caused by mammalian DNA viruses. To address this issue in a natural host model, we compared the pathogenesis and genetics of the attenuated fibrotropic and the virulent lymphohematotropic strains of the parvovirus minute virus of mice (MVM), and of two invasive fibrotropic MVM (MVMp) variants carrying the I362S or K368R change in the VP2 major capsid protein, in the infection of severe combined immunodeficient (SCID) mice. By 14 to 18 weeks after oronasal inoculation, the I362S and K368R viruses caused lethal leukopenia characterized by tissue damage and inclusion bodies in hemopoietic organs, a pattern of disease found by 7 weeks postinfection with the lymphohematotropic MVM (MVMi) strain. The MVMp populations emerging in leukopenic mice showed consensus sequence changes in the MVMi genotype at residues G321E and A551V of VP2 in the I362S virus infections or A551V and V575A changes in the K368R virus infections, as well as a high level of genetic heterogeneity within a capsid domain at the twofold depression where these residues lay. Amino acids forming this capsid domain are important MVM tropism determinants, as exemplified by the switch in MVMi host range toward mouse fibroblasts conferred by coordinated changes of some of these residues and by the essential character of glutamate at residue 321 for maintaining MVMi tropism toward primary hemopoietic precursors. The few viruses within the spectrum of mutants from mice that maintained the respective parental 321G and 575V residues were infectious in a plaque assay, whereas the viruses with the main consensus sequences exhibited low levels of fitness in culture. Consistent with this finding, a recombinant MVMp virus carrying the consensus sequence mutations arising in the K368R virus background in mice failed to initiate infection in cell lines of different tissue origins, even though it caused rapid-course lethal leukopenia in SCID mice. The parental consensus genotype prevailed during leukopenia development, but plaque-forming viruses with the reversion of the 575A residue to valine emerged in affected organs. The disease caused by the DNA virus in mice, therefore, involves the generation of heterogeneous viral populations that may cooperatively interact for the hemopoietic syndrome. The evolutionary changes delineate a sector of the surface of the capsid that determines tropism and that surrounds the sialic acid receptor binding domain.
Collapse
|
20
|
Abstract
Parvoviruses elaborate rugged nonenveloped icosahedral capsids of approximately 260 A in diameter that comprise just 60 copies of a common core structural polypeptide. While serving as exceptionally durable shells, capable of protecting the single-stranded DNA genome from environmental extremes, the capsid also undergoes sequential conformational changes that allow it to translocate the genome from its initial host cell nucleus all the way into the nucleus of its subsequent host. Lacking a duplex transcription template, the virus must then wait for its host to enter S-phase before it can initiate transcription and usurp the cell's synthetic pathways. Here we review cell entry mechanisms used by parvoviruses. We explore two apparently distinct modes of host cell specificity, first that used by Minute virus of mice, where subtle glycan-specific interactions between host receptors and residues surrounding twofold symmetry axes on the virion surface mediate differentiated cell type target specificity, while the second involves novel protein interactions with the canine transferrin receptor that allow a mutant of the feline leukopenia serotype, Canine parvovirus, to bind to and infect dog cells. We then discuss conformational shifts in the virion that accompany cell entry, causing exposure of a capsid-tethered phospholipase A2 enzymatic core that acts as an endosomolytic agent to mediate virion translocation across the lipid bilayer into the cell cytoplasm. Finally, we discuss virion delivery into the nucleus, and consider the nature of transcriptionally silent DNA species that, escaping detection by the cell, might allow unhampered progress into S-phase and hence unleash the parvoviral Trojan horse.
Collapse
Affiliation(s)
- Susan F Cotmore
- Department of Laboratory Medicine, Yale University Medical School, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
21
|
Geletneky K, Herrero Y Calle M, Rommelaere J, Schlehofer JR. Oncolytic potential of rodent parvoviruses for cancer therapy in humans: a brief review. ACTA ACUST UNITED AC 2006; 52:327-30. [PMID: 16316394 DOI: 10.1111/j.1439-0450.2005.00877.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Summary Rodent parvoviruses are promising candidates for oncolytic virotherapy of cancer in humans because of their oncotropism (preferential killing of transformed cells) in the absence of pathogenicity. Here, we give an overview concerning the possible application of parvovirus H-1 for cancer therapy, with specific emphasis on malignant brain tumours in humans.
Collapse
Affiliation(s)
- K Geletneky
- Department of Neurosurgery, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
22
|
D'Abramo AM, Ali AA, Wang F, Cotmore SF, Tattersall P. Host range mutants of Minute Virus of Mice with a single VP2 amino acid change require additional silent mutations that regulate NS2 accumulation. Virology 2005; 340:143-54. [PMID: 16039688 DOI: 10.1016/j.virol.2005.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/06/2005] [Accepted: 06/14/2005] [Indexed: 11/16/2022]
Abstract
Two host range switch mutants of the immunosuppressive strain of parvovirus Minute Virus of Mice (MVMi) were isolated from plaques on A9 fibroblasts. Both carried a single coding mutation at residue D399 in VP2, to alanine and glycine in hr105 and hr107, respectively, and a second, non-coding, guanine-to-adenine change at nucleotide 1970 in hr105 and 1967 in hr107. These mutations were recreated in a wild type MVMi infectious plasmid clone, both alone and as pairs, in either the original or switched combinations. All single mutants failed to replicate productively in fibroblasts, but the two pairs of changes were functionally equivalent. Single D399 mutations allowed the viruses to initiate infection in fibroblasts, but NS2 expression was severely restricted and correlated with poor accumulation and release of progeny virus. Mutations at 1967 or 1970 enhanced NS2 accumulation, and allowed efficient progeny production and release. Conversely, the D399 mutations destroyed the viruses' ability to infect EL4 lymphocytes. In all productive EL4 infections, NS2 was expressed at high ratios even in the absence of upstream mutations, and progeny accumulation was efficient. However, EL4 cells lack a mechanism for early progeny release, potentially explaining why virus amplification in these cells is slow.
Collapse
Affiliation(s)
- Anthony M D'Abramo
- Department of Laboratory Medicine, Yale University Medical School, New Haven, CT 067510, USA
| | | | | | | | | |
Collapse
|
23
|
Choi EY, Newman AE, Burger L, Pintel D. Replication of minute virus of mice DNA is critically dependent on accumulated levels of NS2. J Virol 2005; 79:12375-81. [PMID: 16160164 PMCID: PMC1211553 DOI: 10.1128/jvi.79.19.12375-12381.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following transfection of murine fibroblasts, the lymphotropic strain of minute virus of mice (MVMi) does not efficiently produce progeny single-strand DNA (ssDNA). However, changing a single nucleotide in the MVMi 3' splice site to that found in the fibrotropic strain MVMp enabled full DNA replication and production of ssDNA. This change enhanced excision of the large intron and the production of NS2, likely by improving interaction, in fibroblasts with the branch point-binding U2 snRNA. One function of NS2 involves interaction with the nuclear export protein Crm1. The defect in production of MVMi ssDNA in fibroblasts can also be overcome by introducing a mutation in MVMi NS2 that enhances its interaction with Crm1. Although MVMi contains a 3' splice site that performs poorly in fibroblasts, MVMi generated at least as much R2 and NS2 in murine lymphocytes as did MVMp in fibroblasts. Therefore, it appears that MVMp has acquired a mutation that improves the excision of the large intron, as it adapted to fibroblasts to accommodate the need for NS2 for replication in these cells, and that the ratio of NS1 to NS2 may play a larger role in the host range of MVM than previously appreciated.
Collapse
Affiliation(s)
- Eun-Young Choi
- Department of Molecular Microbiology and Immunology, Life Sciences Center, School of Medicine, University of Missouri-Columbia, 65211-7310, USA
| | | | | | | |
Collapse
|
24
|
Kontou M, Govindasamy L, Nam HJ, Bryant N, Llamas-Saiz AL, Foces-Foces C, Hernando E, Rubio MP, McKenna R, Almendral JM, Agbandje-McKenna M. Structural determinants of tissue tropism and in vivo pathogenicity for the parvovirus minute virus of mice. J Virol 2005; 79:10931-43. [PMID: 16103145 PMCID: PMC1193591 DOI: 10.1128/jvi.79.17.10931-10943.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two strains of the parvovirus minute virus of mice (MVM), the immunosuppressive (MVMi) and the prototype (MVMp) strains, display disparate in vitro tropism and in vivo pathogenicity. We report the crystal structures of MVMp virus-like particles (MVMp(b)) and native wild-type (wt) empty capsids (MVMp(e)), determined and refined to 3.25 and 3.75 A resolution, respectively, and their comparison to the structure of MVMi, also refined to 3.5 A resolution in this study. A comparison of the MVMp(b) and MVMp(e) capsids showed their structures to be the same, providing structural verification that some heterologously expressed parvovirus capsids are indistinguishable from wt capsids produced in host cells. The structures of MVMi and MVMp capsids were almost identical, but local surface conformational differences clustered from symmetry-related capsid proteins at three specific domains: (i) the icosahedral fivefold axis, (ii) the "shoulder" of the protrusion at the icosahedral threefold axis, and (iii) the area surrounding the depression at the icosahedral twofold axis. The latter two domains contain important determinants of MVM in vitro tropism (residues 317 and 321) and forward mutation residues (residues 399, 460, 553, and 558) conferring fibrotropism on MVMi. Furthermore, these structural differences between the MVM strains colocalize with tropism and pathogenicity determinants mapped for other autonomous parvovirus capsids, highlighting the importance of common parvovirus capsid regions in the control of virus-host interactions.
Collapse
Affiliation(s)
- Maria Kontou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, 32610-0245, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rubio MP, López-Bueno A, Almendral JM. Virulent variants emerging in mice infected with the apathogenic prototype strain of the parvovirus minute virus of mice exhibit a capsid with low avidity for a primary receptor. J Virol 2005; 79:11280-90. [PMID: 16103180 PMCID: PMC1193584 DOI: 10.1128/jvi.79.17.11280-11290.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mechanisms involved in the emergence of virulent mammalian viruses were investigated in the adult immunodeficient SCID mouse infected by the attenuated prototype strain of the parvovirus Minute Virus of Mice (MVMp). Cloned MVMp intravenously inoculated in mice consistently evolved during weeks of subclinical infection to variants showing altered plaque phenotypes. All the isolated large-plaque variants spread systemically from the oronasal cavity and replicated in major organs (brain, kidney, liver), in sharp contrast to the absolute inability of the MVMp and small-plaque variants to productively invade SCID organs by this natural route of infection. The virulent variants retained the MVMp capacity to infect mouse fibroblasts, consistent with the lack of genetic changes across the 220-to-335 amino acid sequence of VP2, a capsid domain containing main determinants of MVM tropism. However, the capsid of the virulent variants shared a lower affinity than the wild type for a primary receptor used in the cytotoxic infection. The capsid gene of a virulent variant engineered in the MVMp background endowed the recombinant virus with a large-plaque phenotype, lower affinity for the receptor, and productive invasiveness by the oronasal route in SCID mice, eventually leading to 100% mortality. In the analysis of virulence in mice, both MVMp and the recombinant virus similarly gained the bloodstream 1 to 2 days postoronasal inoculation and remained infectious when adsorbed to blood cells in vitro. However, the wild-type MVMp was cleared from circulation a few days afterwards, in contrast to the viremia of the recombinant virus, which was sustained for life. Significantly, attachment to an abundant receptor of primary mouse kidney epithelial cells by both viruses could be quantitatively competed by wild-type MVMp capsids, indicating that virulence is not due to an extended receptor usage in target tissues. We conclude that the selection of capsid-receptor interactions of low affinity, which favors systemic infection, is a major evolutionary process in the adaptation of parvoviruses to new hosts and in the cause of disease.
Collapse
Affiliation(s)
- Mari-Paz Rubio
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
26
|
Raykov Z, Savelyeva L, Balboni G, Giese T, Rommelaere J, Giese NA. B1 lymphocytes and myeloid dendritic cells in lymphoid organs are preferential extratumoral sites of parvovirus minute virus of mice prototype strain expression. J Virol 2005; 79:3517-24. [PMID: 15731246 PMCID: PMC1075710 DOI: 10.1128/jvi.79.6.3517-3524.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Due to their oncolytic properties and apathogenicity, autonomous parvoviruses have attracted significant interest as possible anticancer agents. Recent preclinical studies provided evidence of the therapeutic potential of minute virus of mice prototype strain (MVMp) and its recombinant derivatives. In a murine model of hemangiosarcoma, positive therapeutic outcome correlated with high intratumoral expression of MVMp-encoded genes in tumors and lymphoid organs, especially in tumor-draining lymph nodes. The source and relevance of this extratumoral expression, which came as a surprise because of the known fibrotropism of MVMp, remained unclear. In the present study, we investigated (i) whether the observed expression pattern occurs in different tumor models, (ii) which cell population is targeted by the virus, and (iii) the immunological consequences of this infection. Significant MVMp gene expression was detected in lymphoid tissues from infected tumor-free as well as melanoma-, lymphoma-, and hemangiosarcoma-bearing mice. This expression was especially marked in lymph nodes draining virus-injected tumors. Fluorescent in situ hybridization analysis, multicolor fluorescence-activated cell sorting, and quantitative reverse transcription-PCR revealed that MVMp was expressed in rare subpopulations of CD11b (Mac1)-positive cells displaying CD11c+ (myeloid dendritic cells [MDC]) or CD45B (B220+ [B1 lymphocytes]) markers. Apart from the late deletion of cytotoxic memory cells (CD8+ CD44+ CD62L-), this infection did not lead to significant alteration of the immunological profile of cells populating lymphoid organs. However, subtle changes were detected in the production of specific proinflammatory cytokines in lymph nodes from virus-treated animals. Considering the role of B1 lymphocytes and MDC in cancer and immunological surveillance, the specific ability of these cell types to sustain parvovirus-driven gene expression may be exploited in gene therapy protocols.
Collapse
Affiliation(s)
- Zahari Raykov
- Department of Surgery, Medical School, University of Heidelberg, INF 116, 60120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Productive infection by the murine autonomous parvovirus minute virus of mice (MVM) depends on a dividing cell population and its differentiation state. We have extended the in vivo analysis of the MVM host cell type range into the developing embryo by in utero inoculation followed by further gestation. The fibrotropic p strain (MVMp) and the lymphotropic i strain (MVMi) did not productively infect the early mouse embryo but were able to infect overlapping sets of cell types in the mid- or late-gestation embryo. Both MVMp and MVMi infected developing bone primordia, notochord, central nervous system, and dorsal root ganglia. MVMp exhibited extensive infection in fibroblasts, in the epithelia of lung and developing nose, and, to a lesser extent, in the gut. MVMi also infected endothelium. The data indicated that the host ranges of the two MVM strains consist of overlapping sets of cell types that are broader than previously known from neonate and in vitro infection experiments. The correlation between MVM host cell types and the cell types that activate the transgenic P4 promoter is consistent with the hypothesis that activation of the incoming viral P4 promoter by the host cell is one of the host range determinants of MVM.
Collapse
Affiliation(s)
- Refael Itah
- Department of Developmental Molecular Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
28
|
Maxwell IH, Maxwell F. Parvovirus LuIII transducing vectors packaged by LuIII versus FPV capsid proteins: the VP1 N-terminal region is not a major determinant of human cell permissiveness. J Gen Virol 2004; 85:1251-1257. [PMID: 15105542 DOI: 10.1099/vir.0.19490-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cell lines are permissive for LuIII, a member of the rodent group of autonomous parvoviruses. However, LuIII vectors pseudotyped with feline panleukopaenia virus (FPV) capsid proteins can transduce feline cells but not human cells. Feline transferrin receptor (FelTfR) functions as a receptor for FPV. Transfection of Rh18A, a human rhabdomyosarcoma cell line, with FelTfR enabled transduction by vector with FPV capsid. This was not true of other human lines, suggesting restriction at some additional, post-entry, level(s) in human cells other than Rh18A. It seemed a reasonable hypothesis that a second blockage might be in nuclear delivery mediated by the N-terminal region of the minor capsid protein, VP1. We therefore generated virions containing an LuIII–luciferase genome, packaged using chimaeric VP1 molecules (N-terminal region of LuIII VP1, fused with body of FPV, and vice versa) together with the major capsid protein, VP2, of FPV or LuIII. The virions were tested for ability to transduce feline and human cells. Our hypothesis predicted that the N-terminal region of LuIII VP1 should allow transduction of human cells expressing FelTfR, while the FPV N-terminal region should not allow transduction of human cells (except for Rh18A). The experimental results did not bear out either of these predictions. Therefore, the VP1 N-terminal region appears not to be a major determinant of permissiveness for LuIII, versus FPV, capsid in human cells.
Collapse
Affiliation(s)
- Ian H Maxwell
- Department of Dermatology and University of Colorado Cancer Center, Health Sciences Center, Denver, CO 80262, USA
| | - Françoise Maxwell
- Department of Dermatology and University of Colorado Cancer Center, Health Sciences Center, Denver, CO 80262, USA
| |
Collapse
|
29
|
Hueffer K, Govindasamy L, Agbandje-McKenna M, Parrish CR. Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses. J Virol 2003; 77:10099-105. [PMID: 12941920 PMCID: PMC224579 DOI: 10.1128/jvi.77.18.10099-10105.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline panleukopenia virus (FPV) and its host range variant, canine parvovirus (CPV), can bind the feline transferrin receptor (TfR), while only CPV binds to the canine TfR. Introducing two CPV-specific changes into FPV (at VP2 residues 93 and 323) endowed that virus with the canine TfR binding property and allowed canine cell infection, although neither change alone altered either property. In CPV the reciprocal changes of VP2 residue 93 or 323 to the FPV sequences individually resulted in modest reductions in infectivity for canine cells. Changing both residues in CPV to the FPV amino acids blocked the canine cell infection, but that virus was still able to bind the canine TfR at low levels. This shows that both CPV-specific changes control canine TfR binding but that binding is not always sufficient to mediate infection.
Collapse
Affiliation(s)
- Karsten Hueffer
- James A. Baker Institute, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
30
|
Davis C, Segev-Amzaleg N, Rotem I, Mincberg M, Amir N, Sivan S, Gitelman I, Tal J. The P4 promoter of the parvovirus minute virus of mice is developmentally regulated in transgenic P4-LacZ mice. Virology 2003; 306:268-79. [PMID: 12642100 DOI: 10.1016/s0042-6822(02)00020-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activation of the minute virus of mice (MVM) P4 promoter is a key step in the life cycle of the virus and is completely dependent on host transcription factors. Since transcription-factor composition varies widely in different cell types, there is the possibility that only some cell types in the host organism have the capacity to initiate expression from the P4 promoter and therefore that the promoter may be a factor in determining the tropism of MVM. In this study, the ability of various cell types to activate P4, independent of the other virus-host interactions, was examined in transgenic mouse lines bearing a beta-galactosidase reporter sequence driven by the P4 promoter. It was found that lacZ was expressed during embryogenesis and in the adult in a cell-type-specific and differentiation-dependent pattern. The data are consistent with cell-type and stage-specific activation of the P4 promoter having a role in determining the host cell-type range of MVM. The ability of some parvoviruses to replicate in, and kill oncogenically transformed cells, and to destroy induced tumors in laboratory animals is the basis of recent approaches to use MVM-based vectors in cancer gene therapy. Since these vectors rely on the activation of the P4 promoter by the target tissues, understanding the promoter dependence on cell-type and differentiation status is important for their design and potential use.
Collapse
Affiliation(s)
- Claytus Davis
- Department of Molecular Genetics of Development, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Maeda Y, Tohya Y, Matsuura Y, Mochizuki M, Sugimura T. Early interaction of canine calicivirus with cells is the major determinant for its cell tropism in vitro. Vet Microbiol 2002; 87:291-300. [PMID: 12069767 DOI: 10.1016/s0378-1135(02)00083-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Canine calicivirus (CaCV) No. 48 strain isolated from a dog with fatal diarrhea is known to be able to replicate in MDCK and primary dog kidney cells. In this study, two new canine cell lines, MCM-B2 and MCA-B1, were determined to be permissive for CaCV No. 48, whereas other cell lines, including one canine cell line, A-72, were non-permissive. Flow cytometric analysis indicated that CaCV No. 48 binds efficiently to the permissive cells and to some degree also to Vero cells that are non-permissive for the virus, but does not bind to the other non-permissive cells tested. Both the permissive and non-permissive cells could be transfected with genomic RNA from CaCV No. 48, resulting in the appearance of CPE, production of capsid antigen and release of infectious progeny. These results suggested that the early interaction of the virus with cells, probably by binding to a virus receptor on the cell membrane, is the major determinant of CaCV No. 48 cell tropism in vitro.
Collapse
Affiliation(s)
- Yasuko Maeda
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, Faculty of Agriculture, Kagoshima University, Japan
| | | | | | | | | |
Collapse
|
32
|
Rubio MP, Guerra S, Almendral JM. Genome replication and postencapsidation functions mapping to the nonstructural gene restrict the host range of a murine parvovirus in human cells. J Virol 2001; 75:11573-82. [PMID: 11689639 PMCID: PMC114744 DOI: 10.1128/jvi.75.23.11573-11582.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infection outcome of the Parvoviridae largely relies on poorly characterized intracellular factors modulated by proliferation, differentiation, and transformation of host cells. We have studied the interactions displayed by the highly homologous p and i strains of the murine parvovirus minute virus of mice (MVM), with a series of transformed cells of rat (C6) and human (U373, U87, SW1088, SK-N-SH) nervous system origin, seeking for molecular mechanisms governing parvovirus host range. The MVMp infection of C6 and U373 cells was cytotoxic and productive, whereas the other nervous cells behaved essentially as resistant to this virus. In contrast, MVMi did not complete its life cycle in any of the human nervous cells, though it efficiently killed the astrocytic tumor cells by two types of nonproductive infections: (i) normal synthesis of all viral macromolecules with a late defect in infectious virion maturation and release to the medium in U373; and (ii) high levels of accumulation of the full set of viral messenger RNAs and of both nonstructural (NS-1) and structural (VP-1 and VP-2) proteins, under a very low viral DNA amplification, in U87 and SW1088 cells. Further analyses showed that U87 was permissive for nuclear transport of MVMi proteins, leading to efficient assembly of empty viral capsids with a normal phosphorylation and VP1-to-VP2 ratio. The DNA amplification blockade in U87 occurred after conversion of the incoming MVMi genome to the monomeric replicative form, and it operated independently of the delivery pathway used by the viral particle, since it could not be overcome by transfection with cloned infectious viral DNA. Significantly, a chimeric MVMi virus harboring the coding region of the nonstructural (NS) gene replaced with that of MVMp showed a similar pattern of restriction in U87 cells as the parental MVMi virus, and it attained in U373 cultures an infectious titer above 100-fold higher under equal levels of DNA amplification and genome encapsidation. The results suggest that the activity of complexes formed by the NS polypeptides and recruited cellular factors restrict parvovirus DNA amplification in a cell type-dependent manner and that NS functions may in addition determine MVM host range acting at postencapsidation steps of viral maturation. These data are relevant for understanding the increased multiplication of autonomous parvovirus in some transformed cells and the transduction efficacy of nonreplicative parvoviral vectors, as well as a general remark on the mechanisms by which NS genes may regulate viral tropism and pathogenesis.
Collapse
Affiliation(s)
- M P Rubio
- Centro de Biología Molecular "Severo Ochoa" (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), 28049 Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
33
|
Söderlund-Venermo M, Riley LK, Pintel DJ. Construction and initial characterization of an infectious plasmid clone of a newly identified hamster parvovirus. J Gen Virol 2001; 82:919-927. [PMID: 11257198 DOI: 10.1099/0022-1317-82-4-919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The construction and characterization of a full-length infectious plasmid clone of the newly identified hamster parvovirus (HaPV) are described. Following transfection of hamster BHK cells with the infectious clone, pHaPV, the specific intracellular DNA replicative forms, RNA transcripts and viral proteins that were expected for this rodent parvovirus were generated. Infected cells were lysed and progeny virus was produced, demonstrating that pHaPV could generate a productive virus infection. The complete sequences of both hairpin termini, which had not been previously determined, were obtained. Preliminary host-range studies, which compared virus production and macromolecular synthesis in various cell lines following either HaPV infection or pHaPV transfection, demonstrated an early block of infection of HaPV in both monkey COS-1 and murine A9 cells. The availability of an HaPV infectious clone will facilitate its genetic analysis and allow the elucidation of the determinants important in host range, tissue tropism and pathogenicity of this newly identified rodent parvovirus.
Collapse
Affiliation(s)
- Maria Söderlund-Venermo
- Departments of Molecular Microbiology1 and Immunology and Veterinary Pathobiology2, University of Missouri, Columbia, USA
| | - Lela K Riley
- Departments of Molecular Microbiology1 and Immunology and Veterinary Pathobiology2, University of Missouri, Columbia, USA
| | - David J Pintel
- Departments of Molecular Microbiology1 and Immunology and Veterinary Pathobiology2, University of Missouri, Columbia, USA
| |
Collapse
|
34
|
Maroto B, Ramírez JC, Almendral JM. Phosphorylation status of the parvovirus minute virus of mice particle: mapping and biological relevance of the major phosphorylation sites. J Virol 2000; 74:10892-902. [PMID: 11069983 PMCID: PMC113168 DOI: 10.1128/jvi.74.23.10892-10902.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The core of the VP-1 and VP-2 proteins forming the T=1 icosahedral capsid of the prototype strain of the parvovirus minute virus of mice (MVMp) share amino acids sequence and a common three-dimensional structure; however, the roles of these polypeptides in the virus infection cycle differ. To gain insights into this paradox, the nature, distribution, and biological significance of MVMp particle phosphorylation was investigated. The VP-1 and VP-2 proteins isolated from purified empty capsids and from virions containing DNA harbored phosphoserine and phosphothreonine amino acids, which in two-dimensional tryptic analysis resulted in complex patterns reproducibly composed by more than 15 unevenly phosphorylated peptides. Whereas secondary protease digestions and comigration of most weak peptides in the fingerprints revealed common phosphorylation sites in the VP-1 and VP-2 subunits assembled in capsids, the major tryptic phosphopeptides were remarkably characteristic of either polypeptide. The VP-2-specific peptide named B, containing the bulk of the (32)P label of the MVMp particle in the form of phosphoserine, was mapped to the structurally unordered N-terminal domain of this polypeptide. Mutations in any or all four serine residues present in peptide B showed that the VP-2 N-terminal domain is phosphorylated at multiple sites, even though none of them was essential for capsid assembly or virus formation. Chromatographic analysis of purified wild-type (wt) and mutant peptide B digested with a panel of specific proteases allowed us to identify the VP-2 residues Ser-2, Ser-6, and Ser-10 as the main phosphate acceptors for MVMp capsid during the natural viral infection. Phosphorylation at VP-2 N-terminal serines was not necessary for the externalization of this domain outside of the capsid shell in particles containing DNA. However, the plaque-forming capacity and plaque size of VP-2 N-terminal phosphorylation mutants were severely reduced, with the evolutionarily conserved Ser-2 determining most of the phenotypic effect. In addition, the phosphorylated amino acids were not required for infection initiation or for nuclear translocation of the expressed structural proteins, and thus a role at a late stage of MVMp life cycle is proposed. This study illustrates the complexity of posttranslational modification of icosahedral viral capsids and underscores phosphorylation as a versatile mechanism to modulate the biological functions of their protein subunits.
Collapse
Affiliation(s)
- B Maroto
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Cantoblanco, Spain
| | | | | |
Collapse
|
35
|
Hernando E, Llamas-Saiz AL, Foces-Foces C, McKenna R, Portman I, Agbandje-McKenna M, Almendral JM. Biochemical and physical characterization of parvovirus minute virus of mice virus-like particles. Virology 2000; 267:299-309. [PMID: 10662625 DOI: 10.1006/viro.1999.0123] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The VP-2 major capsid protein of the prototype strain of the parvovirus minute virus of mice (MVMp) was expressed, using a baculovirus vector, in Sf9 insect cells. Immunogold electron microscopy of infected Sf9 cells showed VP-2 localized in the nucleus and cytoplasm as is observed in mammalian cells during natural infections. The VP-2 subunits self-assembled into empty parvovirus-like particles (VLPs), which appeared morphologically similar to and immunogenically indistinguishable from native empty MVMp particles, which also contain the minor capsid protein, VP1. Incubations under different pH and temperature conditions showed that the MVMp VLPs and native empty MVMp capsids share comparable stability. Once heated the particles can be similarly and specifically cleaved by trypsin at the VP-2 N-terminal domain. This process mimics the further maturation of the "rat-like" parvovirus virions, following viral DNA encapsidation, indicating that biologically relevant features of the MVMp capsid are maintained in the VLPs. Crystals have been obtained for the MVMp VLPs which were isomorphous to those used for the high-resolution structure determination of virions and native empty particles of the immunosuppressive strain of MVM (MVMi). The VLP crystals diffracted X rays to beyond 3-A resolution and are in space group C2 (a = 448.7, b = 416.6, c = 306.1 A, and beta = 95.9 degrees ). This is the first report of crystals from parvoviral particles produced in a heterologous system diffracting X rays to high resolution, indicating that VP-2 of some parvovirus capsids can self-assemble into ordered T = 1 icosahedral capsids in the absence of other viral and host cell functions.
Collapse
Affiliation(s)
- E Hernando
- Centro de Biologia Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Parvoviruses have small genomes and, consequently, are highly dependent on their host for various functions in their reproduction. Since these viruses generally use ubiquitous receptors, restrictions are usually intracellularly regulated. A lack of mitosis, and hence absence of enzymes required for DNA replication, is a powerful block of virus infection. Allotropic determinants have been identified for several parvoviruses: porcine parvovirus, canine parvovirus (CPV), feline parvovirus (feline panleukopenia virus), minute virus of mice, Aleutian disease virus, and GmDNV (an insect parvovirus). Invariably, these identifications involved the use of infectious clones of these viruses and the exchange of restriction fragments to create chimeric viruses, of which the resulting phenotype was then established by transfection in appropriate cell lines. The tropism of these viruses was found to be governed by minimal changes in the sequence of the capsid proteins and, often, only 2 or 3 critical amino acids are responsible for a given tropism. These amino acids are usually located on the outside of the capsid near or on the spike of the threefold axis for the vertebrate parvoviruses and on loops 2 or 3 for the insect parvoviruses. This tropism is not mediated via specific cellular receptors but by interactions with intracellular factors. The nature of these factors is unknown but most data point to a stage beyond the conversion of the single-stranded DNA genome by host cell DNA polymerase into monomeric duplex intermediates of the replicative form. The sudden and devastating emergence of mink enteritis virus (MEV) and CPV in the last 50 years, and the possibility of more future outbreaks, demonstrates the importance of understanding parvovirus tropism.
Collapse
Affiliation(s)
- P Tijssen
- Laboratory of Structural and Molecular Virology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada.
| |
Collapse
|
37
|
Segovia JC, Gallego JM, Bueren JA, Almendral JM. Severe leukopenia and dysregulated erythropoiesis in SCID mice persistently infected with the parvovirus minute virus of mice. J Virol 1999; 73:1774-84. [PMID: 9971754 PMCID: PMC104416 DOI: 10.1128/jvi.73.3.1774-1784.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parvovirus minute virus of mice strain i (MVMi) infects committed granulocyte-macrophage CFU and erythroid burst-forming unit (CFU-GM and BFU-E, respectively) and pluripotent (CFU-S) mouse hematopoietic progenitors in vitro. To study the effects of MVMi infection on mouse hemopoiesis in the absence of a specific immune response, adult SCID mice were inoculated by the natural intranasal route of infection and monitored for hematopoietic and viral multiplication parameters. Infected animals developed a very severe viral-dose-dependent leukopenia by 30 days postinfection (d.p.i.) that led to death within 100 days, even though the number of circulating platelets and erythrocytes remained unaltered throughout the disease. In the bone marrow of every lethally inoculated mouse, a deep suppression of CFU-GM and BFU-E clonogenic progenitors occurring during the 20- to 35-d.p.i. interval corresponded with the maximal MVMi production, as determined by the accumulation of virus DNA replicative intermediates and the yield of infectious virus. Viral productive infection was limited to a small subset of primitive cells expressing the major replicative viral antigen (NS-1 protein), the numbers of which declined with the disease. However, the infection induced a sharp and lasting unbalance of the marrow hemopoiesis, denoted by a marked depletion of granulomacrophagic cells (GR-1(+) and MAC-1(+)) concomitant with a twofold absolute increase in erythroid cells (TER-119(+)). A stimulated definitive erythropoiesis in the infected mice was further evidenced by a 12-fold increase per femur of recognizable proerythroblasts, a quantitative apoptosis confined to uninfected TER-119(+) cells, as well as by a 4-fold elevation in the number of circulating reticulocytes. Therefore, MVMi targets and suppresses primitive hemopoietic progenitors leading to a very severe leukopenia, but compensatory mechanisms are mounted specifically by the erythroid lineage that maintain an effective erythropoiesis. The results show that infection of SCID mice with the parvovirus MVMi causes a novel dysregulation of murine hemopoiesis in vivo.
Collapse
Affiliation(s)
- J C Segovia
- Departamento de Biología Molecular y Celular, CIEMAT, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Agbandje-McKenna M, Llamas-Saiz AL, Wang F, Tattersall P, Rossmann MG. Functional implications of the structure of the murine parvovirus, minute virus of mice. Structure 1998; 6:1369-81. [PMID: 9817841 DOI: 10.1016/s0969-2126(98)00137-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Minute virus of mice (MVM) is a single-stranded (ss) DNA-containing, murine parvovirus with a capsid built up of 60 icosahedrally related polypeptide chains, each of which consists of the C-terminal region common to two structural proteins, VP1 and VP2. In infectious virions, most VP2 molecules are cleaved to VP3 by the removal of about 20 amino acids from the N terminus. Of the 587 amino acids in VP2, approximately half are identical to those in the analogous capsid protein of the antigenically distinct canine parvovirus (CPV), the crystal structure of which has previously been determined. The three-dimensional structure determination of MVMi (the immunosuppressive strain of MVM) was previously reported to 3.5 A resolution. RESULTS We report here an analysis of the MVMi virus structure and provide insights into tissue tropism, antigenicity and DNA packaging. Amino acids determining MVM tissue tropism were found to cluster on, or near, the viral surface. A conserved, glycine-rich, N-terminal peptide was seen to run through a cylindrical channel along each fivefold axis and may have implications for antigenicity. Density within the virion was interpreted as 29 ssDNA nucleotides per icosahedral asymmetric unit, and accounts for over one-third of the viral genome. CONCLUSIONS The presence of the glycine-rich sequence in the fivefold channels of MVMi provides a possible mechanism to explain how the unique N-terminal region of VP1 becomes externalized in infectious parvovirions. Residues that determine tropism may form an attachment recognition site for a secondary host-cell factor that modulates tissue specificity. The ordering of nucleotides in a similar region of the interior surface in the CPV and MVMi capsids suggests the existence of a genomic DNA-recognition site within the parvoviral capsid.
Collapse
Affiliation(s)
- M Agbandje-McKenna
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907-1392, USA
| | | | | | | | | |
Collapse
|
39
|
Parker JS, Parrish CR. Canine parvovirus host range is determined by the specific conformation of an additional region of the capsid. J Virol 1997; 71:9214-22. [PMID: 9371580 PMCID: PMC230224 DOI: 10.1128/jvi.71.12.9214-9222.1997] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We analyzed a region of the capsid of canine parvovirus (CPV) which determines the ability of the virus to infect canine cells. This region is distinct from those previously shown to determine the canine host range differences between CPV and feline panleukopenia virus. It lies on a ridge of the threefold spike of the capsid and is comprised of five interacting loops from three capsid protein monomers. We analyzed 12 mutants of CPV which contained amino acid changes in two adjacent loops exposed on the surface of this region. Nine mutants infected and grew in feline cells but were restricted in replication in one or the other of two canine cell lines tested. Three other mutants whose genomes contain mutations which affect one probable interchain bond were nonviable and could not be propagated in either canine or feline cells, although the VP1 and VP2 proteins from those mutants produced empty capsids when expressed from a plasmid vector. Although wild-type and mutant capsids bound to canine and feline cells in similar amounts, infection or viral DNA replication was greatly reduced after inoculation of canine cells with most of the mutants. The viral genomes of two host range-restricted mutants and two nonviable mutants replicated to wild-type levels in both feline and canine cells upon transfection with plasmid clones. The capsids of wild-type CPV and two mutants were similar in susceptibility to heat inactivation, but one of those mutants and one other were more stable against urea denaturation. Most mutations in this structural region altered the ability of monoclonal antibodies to recognize epitopes within a major neutralizing antigenic site, and that site could be subdivided into a number of distinct epitopes. These results argue that a specific structure of this region is required for CPV to retain its canine host range.
Collapse
Affiliation(s)
- J S Parker
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
40
|
Previsani N, Fontana S, Hirt B, Beard P. Growth of the parvovirus minute virus of mice MVMp3 in EL4 lymphocytes is restricted after cell entry and before viral DNA amplification: cell-specific differences in virus uncoating in vitro. J Virol 1997; 71:7769-80. [PMID: 9311862 PMCID: PMC192129 DOI: 10.1128/jvi.71.10.7769-7780.1997] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two murine parvoviruses with genomic sequences differing only in 33 nucleotides (8 amino acids) in the region coding for the capsid proteins show different host cell specificities: MVMi grows in EL4 T lymphocytes and MVMp3 grows in A9 fibroblasts. In this study we compared the courses of infections with these two viruses in EL4 cells in order to investigate at which step(s) the infection process of MVMp3 is interrupted. The two viruses bound equally well to EL4 cells, and similar amounts of MVMi and MVMp3 input virion DNA appeared in the nuclear fractions of EL4 cells 1 h after infection. However, double-stranded replicative-form (RF) DNA of the two viruses appeared at different times, at 10 h postinfection with MVMi and at 24 h postinfection with MVMp3. The amount of MVMp3 RF DNA detected at 24 h was very small because it was produced only in a tiny subset of the population of EL4 cells that proved to be permissive for MVMp3. Replication of double-stranded viral DNA in EL4 cells was measured after transfection of purified RF DNA, cloned viral DNA, and cloned viral DNA with a mutation preventing synthesis of the capsid proteins. In each of these cases, DNA replication was comparable for MVMi and MVMp3. Production of virus particles also appeared to be similar after transfection of the two types of RF DNA into EL4 cells. Conversion of incoming 32P-labeled single-stranded MVM DNA to 32P-labeled double-stranded RF DNA was detected only after RF DNA amplification, indicating that few molecules serve as templates for viral DNA amplification. We showed that extracts of EL4 cells contain a factor which can destabilize MVMi virions but not MVMp3 by testing the sensitivity of viral DNA to DNase and by CsCl gradient analyses of viral particles. We therefore conclude that the MVMp3 life cycle is arrested after the transport of virions to the nucleus and prior to the replication of RF DNA, most likely at the stage of viral decapsidation.
Collapse
Affiliation(s)
- N Previsani
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| | | | | | | |
Collapse
|
41
|
Ueno Y, Sugiyama F, Sugiyama Y, Ohsawa K, Sato H, Yagami K. Epidemiological characterization of newly recognized rat parvovirus, "rat orphan parvovirus". J Vet Med Sci 1997; 59:265-9. [PMID: 9152934 DOI: 10.1292/jvms.59.265] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Newly recognized rat parvovirus (rat orphan parvovirus: ROPV) was examined for viral excretion and persistence in infected rats, and also for infectivity to mice and hamsters. The virus appeared to replicate mainly in lymphoid or hematopoietic tissues, and was detected in feces, urine and oropharynx of the infected rats at 1 to 4 weeks postinfection. The infective virus was also detected in peripheral leukocytes and various tissues at an acute phase of infection, and decreased in every tissue at 8 weeks postinfection. Viral DNA, however, was persistent in lymphoid tissues at least up to 24 weeks postinfection. When the virus was inoculated to mice and hamsters, no evidence of viral production and antibody response was demonstrated. ROPV is assumed to be a variant of the known rat parvovirus which resulted to alter cell tropism and persist in lymphoid or hematopoietic tissues, in order to escape from host immune system.
Collapse
Affiliation(s)
- Y Ueno
- Laboratory Animal Research Center, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND AND OBJECTIVES Human B19 parvovirus (B19), identified in 1975, was only recognised as the causative agent of fifth disease in 1983. The incidence of viraemia is low, around 1 in 1,000, but is sufficient to ensure that most plasma pools for fractionation contain some virus. While infection usually occurs in childhood and is benign, chronic infection sometimes occurs and may be of concern in certain patient groups. MATERIALS AND METHODS This review is based on a meeting held in March 1995, and addresses recent concerns regarding the potential transmission of B19 infection by pooled plasma products. RESULTS Recent data on the pathophysiology and assay of this virus are summarised along with possible approaches to donor screening, product screening, and virus removal. Only five cases of symptomatic infection have been reported in persons with haemophilia, but no technology for virus removal is established, and infection may be of concern in pregnant women, and in patients with enhanced red cell turnover or who are immunosuppressed, including those infected with human immunodeficiency virus, but only rarely in immunocompetent patients. CONCLUSIONS For the future, well-validated assays relevant to virus infectivity are required if blood donations, plasma pools, or plasma products are to be screened, and an in-process virus inactivation step for B19 would be highly desirable. In the interim, non-plasma or recombinant products or a selective transfusion policy might be used in patient groups in which B19 infection is of particular concern. Further clinical data on the prognosis and impact of B19 infection are needed to justify both such policies and the future adoption of new technologies designed to reduce any excess B19 infectivity arising from transfused products.
Collapse
Affiliation(s)
- C Prowse
- National Science Laboratory, Scottish National Blood Transfusion Service, Edinburgh, UK
| | | | | |
Collapse
|
43
|
Ramírez JC, Fairén A, Almendral JM. Parvovirus minute virus of mice strain i multiplication and pathogenesis in the newborn mouse brain are restricted to proliferative areas and to migratory cerebellar young neurons. J Virol 1996; 70:8109-16. [PMID: 8892936 PMCID: PMC190885 DOI: 10.1128/jvi.70.11.8109-8116.1996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Newborn BALB/c mice intranasally inoculated at birth with a lethal dose of the immunosuppressive strain of the parvovirus minute virus of mice (MVMi) developed motor disabilities and intention tremors with a high incidence by the day 6 postinfection (dpi). These neurological syndromes paralleled the synthesis of virus intermediate DNA replicative forms and yield of infectious particles in the brain, with kinetics that peaked by this time. The preferred virus replicative sites in the brain were established early in the infection (2 dpi) and at the onset of clinical symptoms (6 dpi) and were compared with major regions of cellular proliferative activity found after intraperitoneal injection of bromodeoxyuridine 24 h before encephalons were subjected to immunohistochemistry detection. At 2 dpi, viral capsid antigen was located in the laterodorsal thalamic and the pontine nuclei but not in the extensive proliferative regions of the mouse brain at this postnatal day. At 6 dpi, however, the neurotropism of the MVMi was highlighted by its ability to target the subventricular zone of the ventricles, the subependymal zone of the olfactory bulb, and the dentate gyrus of the hippocampus, which are the three main germinal centers of the cerebrum in mouse postbirth neurogenesis. Unexpectedly, in the cerebellum, the MVMi capsid antigen was confined exclusively to cells that have undergone mitosis and have migrated to the internal granular layer (IGL) and not to the proliferative external granular layer (EGL), which was stained with antiproliferative cell nuclear antigen antibody and is the main target in other parvovirus infections. This result implies temporal or differentiation coupling between MVMi cycle and neuroblast morphogenesis, since proliferative granules of the EGL should primarily be infected but must migrate in a virus carrier state into the IGL in order to express the capsid proteins. During migration, many cells undergo destruction, accounting for the marked hypocellularity specifically found in the IGL and the irregular alignment of Purkinje cell bodies, both consistent histopathological hallmarks of animals developing cerebellar symptoms. We conclude that MVMi impairs postmitotic neuronal migration occurring in the first postnatal week, when, through the natural respiratory route of infection, the virus titer peaks in the encephalon. The results illustrate the intimate connection between MVMi neuropathogenesis and mouse brain morphogenetic stage, underscoring the potential of parvoviruses as markers of host developmental programs.
Collapse
Affiliation(s)
- J C Ramírez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Spain
| | | | | |
Collapse
|
44
|
Srivastava A, Wang XS, Ponnazhagan S, Zhou SZ, Yoder MC. Adeno-associated virus 2-mediated transduction and erythroid lineage-specific expression in human hematopoietic progenitor cells. Curr Top Microbiol Immunol 1996; 218:93-117. [PMID: 8794248 DOI: 10.1007/978-3-642-80207-2_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Srivastava
- Division of Hematology and Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis 46202-5120, USA
| | | | | | | | | |
Collapse
|
45
|
Maxwell IH, Spitzer AL, Maxwell F, Pintel DJ. The capsid determinant of fibrotropism for the MVMp strain of minute virus of mice functions via VP2 and not VP1. J Virol 1995; 69:5829-32. [PMID: 7637028 PMCID: PMC189452 DOI: 10.1128/jvi.69.9.5829-5832.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The minute virus of mice, prototype strain MVMp, productively infects cultured murine fibroblasts but not T cells. The immunosuppressive strain, MVMi, shows the converse tropism. These reciprocal tropisms are mediated by the viral capsids, in which their determinants have been mapped to a few specific amino acids in the primary sequence shared by VP1 and VP2. Which of these proteins is relevant in presenting these determinants during infection is not known. We have approached this question using a recombinant parvovirus system in which a LuIII-derived transducing genome, containing the luciferase reporter in place of viral coding sequences, can be packaged by capsid proteins from separate helper sources. We generated transducing virions by using helper constructs expressing either VP1 or VP2, containing the MVMp or MVMi tropic determinant region, in various combinations. The virions were used to infect human NB324K cells and murine A9 fibroblasts. Transduction of the human cells (permissive for both MVMp and MVMi) required both VP1 and VP2 and was successful with all combinations of these proteins. In contrast, significant transducing activity for A9 cells was detected only with recombinant virions containing VP2 of MVMp, while the use of either source of VP1 had little effect. We conclude that VP2 from MVMp is necessary to enable infection of murine A9 fibroblasts.
Collapse
Affiliation(s)
- I H Maxwell
- University of Colorado Cancer Center, Denver 80262, USA
| | | | | | | |
Collapse
|
46
|
Segovia JC, Bueren JA, Almendral JM. Myeloid depression follows infection of susceptible newborn mice with the parvovirus minute virus of mice (strain i). J Virol 1995; 69:3229-32. [PMID: 7707557 PMCID: PMC189031 DOI: 10.1128/jvi.69.5.3229-3232.1995] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The in vivo myelosuppressive capacity of strain i of the parovirus minute virus of mice (MVMi) was investigated in newborn BALB/c mice inoculated with a lethal intranasal dose. MVMi infection reached maximum levels of DNA synthesis and infectious titers in lymphohemopoietic organs at 4 to 6 days postinoculation and was restricted by an early neutralizing humoral immune response. After viral control (by 10 days postinoculation), a significant decrease in femoral and splenic cellularity, as well as in granulocyte-macrophage colony-forming unit and erythroid burst-forming unit hemopoietic progenitors, was observed in most inoculated animals. This delayed myeloid depression, although it may be not a major cause of the lethality of the infection, implies indirect pathogenic mechanisms induced by MVMi infection in a susceptible host.
Collapse
Affiliation(s)
- J C Segovia
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | | |
Collapse
|
47
|
Abstract
B19 parvovirus is pathogenic in man and causes a variety of clinical illnesses, among them several haematological diseases. Acute infection of a host with underlying haemolysis produces transient aplastic crisis; of the midtrimester fetus, hydrops fetalis; and of an immunocompromised patient, pure red cell aplasia. The target of B19 parvovirus infection is the human erythroid progenitor cell. Infection is cytotoxic due to expression of the viral nonstructural protein. The virus can be propagated in cultures of human bone marrow, blood, and fetal liver. Humoral immunity normally terminates infection, and commercially available immunoglobulin can be used to treat persistent infection. Recombinant capsids, produced in a baculovirus system, are suitable as a vaccine reagent.
Collapse
Affiliation(s)
- N S Young
- Hematology Branch, National Heart, Lung & Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Dupont F, Tenenbaum L, Guo LP, Spegelaere P, Zeicher M, Rommelaere J. Use of an autonomous parvovirus vector for selective transfer of a foreign gene into transformed human cells of different tissue origins and its expression therein. J Virol 1994; 68:1397-406. [PMID: 8107203 PMCID: PMC236593 DOI: 10.1128/jvi.68.3.1397-1406.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this work, we report the transduction of a chloramphenicol acetyltransferase (CAT) reporter gene into a variety of normal and transformed human cells of various tissue origins. The vector used was MVM/P38cat, a recombinant of the prototype strain of the autonomous parvovirus minute virus of mice (MVMp). The CAT gene was inserted into the capsid-encoding region of the infectious molecular clone of MVMp genome, under the control of the MVM P38 promoter. When used to transfect permissive cells, the MVM/P38cat DNA was efficiently replicated and expressed the foreign CAT gene at high levels. By cotransfecting with a helper plasmid expressing the capsid proteins, it was possible to produce mixed virus stocks containing MVM/P38cat infectious particles and variable amounts of recombinant MVM. MVM/P38cat viral particles were successfully used to transfer the CAT gene and to express it in a variety of human cells. Both viral DNA replication and P38-driven CAT expression were achieved in fibroblasts, epithelial cells, T lymphocytes, and macrophages in a transformation-dependent way, but with an efficiency depending on the cell type. In transformed B lymphocytes, however, the vector was not replicated, nor did it express the CAT gene.
Collapse
Affiliation(s)
- F Dupont
- Department of Molecular Biology, Université Libre de Bruxelles, Rhode Saint Genèse, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- J R Schlehofer
- Centre National de la Recherche Scientifique (CNRS), URA 1160, Institut Pasteur de Lille, France
| |
Collapse
|
50
|
Brown KE, Young NS, Liu JM. Molecular, cellular and clinical aspects of parvovirus B19 infection. Crit Rev Oncol Hematol 1994; 16:1-31. [PMID: 8074799 DOI: 10.1016/1040-8428(94)90040-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- K E Brown
- Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD
| | | | | |
Collapse
|