1
|
Delaying the expression of herpes simplex virus type 1 glycoprotein B (gB) to a true late gene alters neurovirulence and inhibits the gB-CD8+ T-cell response in the trigeminal ganglion. J Virol 2010; 84:8811-20. [PMID: 20573821 DOI: 10.1128/jvi.00496-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Following herpes simplex virus type 1 (HSV-1) ocular infection of C57BL/6 mice, activated CD8(+) T cells specific for an immunodominant epitope on HSV-1 glycoprotein B (gB-CD8 cells) establish a stable memory population in HSV-1 latently infected trigeminal ganglia (TG), whereas non-HSV-specific CD8(+) T cells are lost over time. The retention and activation of gB-CD8 cells appear to be influenced by persistent viral antigenic exposure within the latently infected TG. We hypothesized that the low-level expression of gB from its native promoter before viral DNA synthesis is critical for the retention and activation of gB-CD8 cells in the TG during HSV-1 latency and for their ability to block HSV-1 reactivation from latency. To test this, we created a recombinant HSV-1 in which gB is expressed only after viral DNA synthesis from the true late gC promoter (gCp-gB). Despite minor growth differences compared to its rescuant in infected corneas, gCp-gB was significantly growth impaired in the TG and produced a reduced latent genome load. The gCp-gB- and rescuant-infected mice mounted similar gB-CD8 effector responses, but the size and activation phenotypes of the memory gB-CD8 cells were diminished in gCp-gB latently infected TG, suggesting that the stimulation of gB-CD8 cells requires gB expression before viral DNA synthesis. Surprisingly, late gB expression did not compromise the capacity of gB-CD8 cells to inhibit HSV-1 reactivation from latency in ex vivo TG cultures, suggesting that gB-CD8 cells can block HSV-1 reactivation at a very late stage in the viral life cycle. These data have implications for designing better immunogens for vaccines to prevent HSV-1 reactivation.
Collapse
|
2
|
Mueller SN, Jones CM, Chen W, Kawaoka Y, Castrucci MR, Heath WR, Carbone FR. The early expression of glycoprotein B from herpes simplex virus can be detected by antigen-specific CD8+ T cells. J Virol 2003; 77:2445-51. [PMID: 12551982 PMCID: PMC141123 DOI: 10.1128/jvi.77.4.2445-2451.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immune response to cutaneous herpes simplex virus type 1 (HSV-1) infection begins with remarkable rapidity. Activation of specific cytotoxic T lymphocytes (CTL) begins within hours of infection, even though the response within the draining lymph nodes peaks nearly 5 days later. HSV gene products are classified into three main groups, alpha, beta, and gamma, based on their kinetics and requirements for expression. In C57BL/6 mice, the immunodominant epitope from HSV is derived from glycoprotein B (gB(498-505)). While gB is considered a gamma or "late" gene product, previous reports have indicated that some level of gene expression may occur soon after infection. Using brefeldin A as a specific inhibitor of viral antigen presentation to major histocompatibility complex class I-restricted CTL, we have formally addressed the timing of gB peptide expression in an immunologically relevant manner following infection. Presentation of gB peptide detected by T-cell activation was first observed within 2 h of infection. Comparison with another viral epitope expressed early during infection, HSV-1 ribonucleotide reductase, demonstrated that gB is presented with the same kinetics as this classical early-gene product. Moreover, this rapidity of gB expression was further illustrated via rapid priming of naïve transgenic CD8(+) T cells in vivo after HSV-1 infection of mice. These results establish that gB is expressed rapidly following HSV-1 infection, at levels capable of effectively stimulating CD8(+) T cells.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
3
|
Hann LE, Cook WJ, Uprichard SL, Knipe DM, Coen DM. The role of herpes simplex virus ICP27 in the regulation of UL24 gene expression by differential polyadenylation. J Virol 1998; 72:7709-14. [PMID: 9733806 PMCID: PMC110073 DOI: 10.1128/jvi.72.10.7709-7714.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus specifies two sets of transcripts from the UL24 gene, short transcripts (e.g., 1.4 kb), processed at the UL24 poly(A) site, and long transcripts (e.g., 5.6 kb), processed at the UL26 poly(A) site. The 1.4- and 5.6-kb transcripts initiate from the same promoter but are expressed with early and late kinetics, respectively. Measurements of transcript levels following actinomycin D treatment of infected cells revealed that the 1.4- and 5.6-kb UL24 transcripts have similar stabilities, consistent with UL24 transcript kinetics being regulated by differential polyadenylation rather than by differential stabilities. Although the UL24 poly(A) site, which gives rise to short transcripts, is encountered first during processing, long transcripts processed at the UL26 site are equally or more abundant; thus, operationally, the UL24 site is weak. Using a series of viral ICP27 mutants, we investigated whether ICP27, which has been suggested to stimulate the usage of weak poly(A) sites, stimulates 1.4-kb transcript accumulation. We found that accumulation of 1.4-kb transcripts did not require ICP27 during viral infection. Rather, ICP27 was required for full expression of 5.6-kb transcripts, and the decrease in 5. 6-kb transcripts relative to 1.4-kb transcripts was not due solely to reduced DNA synthesis. Our results indicate that temporal expression of UL24 transcripts can be regulated by differential polyadenylation and that although ICP27 is not required for processing at the operationally weak UL24 poly(A) site, it does modulate 5.6-kb transcript levels at a step subsequent to transcriptional initiation.
Collapse
Affiliation(s)
- L E Hann
- Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
4
|
Tal-Singer R, Lasner TM, Podrzucki W, Skokotas A, Leary JJ, Berger SL, Fraser NW. Gene expression during reactivation of herpes simplex virus type 1 from latency in the peripheral nervous system is different from that during lytic infection of tissue cultures. J Virol 1997; 71:5268-76. [PMID: 9188595 PMCID: PMC191763 DOI: 10.1128/jvi.71.7.5268-5276.1997] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Herpes simplex virus (HSV) replicates in peripheral tissues and forms latent infections in neurons of the peripheral nervous system. It can be reactivated from latency by various stimuli to cause recurrent disease. During lytic infection in tissue culture cells, there is a well-described temporal pattern of (i) immediate-early, (ii) early, and (iii) late gene expression. However, latency is characterized by little if any expression of genes of the lytic cycle of infection. During reactivation, the pattern of gene expression is presumed to be similar to that during the lytic cycle in tissue culture, though recent work of W. P. Halford et al. (J. Virol. 70:5051-5060, 1996) and P. F. Nichol et al. (J. Virol. 70:5476-5486, 1996) suggests that it is modified in neuronal cell cultures. We have used the mouse trigeminal ganglion explant model and reverse transcription-PCR to determine the pattern of viral and cellular gene expression during reactivation. Surprisingly, the pattern of viral gene expression during lytic infection of cell cultures is not seen during reactivation. During reactivation, early viral transcripts were detected before immediate-early transcripts. The possibility that a cellular factor upregulates early genes during the initial reactivation stimulus is discussed.
Collapse
Affiliation(s)
- R Tal-Singer
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Nichol PF, Chang JY, Johnson EM, Olivo PD. Herpes simplex virus gene expression in neurons: viral DNA synthesis is a critical regulatory event in the branch point between the lytic and latent pathways. J Virol 1996; 70:5476-86. [PMID: 8764059 PMCID: PMC190505 DOI: 10.1128/jvi.70.8.5476-5486.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Herpes simplex virus establishes a latent infection in peripheral neurons. We examined viral gene expression in rat peripheral neurons in vitro and determined that viral gene expression is attenuated and delayed in these neurons compared with that in Vero cells. In addition, using pharmacologic and genetic blocks to viral DNA synthesis, we found that viral alpha and beta gene expression was upregulated by viral DNA synthesis. Although maximal gene expression in neurons requires viral DNA synthetic activity, activation of viral gene expression was seen even in the presence of herpes simplex virus DNA polymerase inhibitors, but not in the absence of the origin-binding protein. Initiation of viral DNA synthesis is apparently a key regulatory event in the balance between the lytic and latent pathways in peripheral neurons.
Collapse
Affiliation(s)
- P F Nichol
- Department of Molecular Biology and Pharmacology, Washington UniversitySchool of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
6
|
Uprichard SL, Knipe DM. Herpes simplex ICP27 mutant viruses exhibit reduced expression of specific DNA replication genes. J Virol 1996; 70:1969-80. [PMID: 8627723 PMCID: PMC190026 DOI: 10.1128/jvi.70.3.1969-1980.1996] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus type 1 mutants with certain lesions in the ICP27 gene show a 5- to 10-fold reduction in viral DNA synthesis. To determine how ICP27 promotes amplification of viral DNA, we examined the synthesis, accumulation, and stability of the essential viral replication proteins and steady-state levels of the replication gene transcripts throughout the course of ICP27 mutant virus infections. These studies reveal that in the absence of ICP27, expression of the UL5, UL8, UL52, UL9, UL42, and UL30 genes is significantly reduced at the level of mRNA accumulation. In contrast to that of these beta genes, ICP8 expression is unaltered in mutant virus-infected cells, indicating that ICP27 selectively stimulates only a subset of herpes simplex virus beta genes. Analysis of multiple ICP27 mutant viruses indicates a quantitative correlation between the ability of these mutants to replicate viral DNA and the level of replication proteins produced by each mutant. Therefore, we conclude that the primary defect responsible for restricted viral DNA synthesis in cells infected with ICP27 mutants is insufficient expression of most of the essential replication genes. Of further interest, this analysis also provides new information about the structure of the UL52 gene transcripts.
Collapse
Affiliation(s)
- S L Uprichard
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
7
|
Kosz-Vnenchak M, Jacobson J, Coen DM, Knipe DM. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J Virol 1993; 67:5383-93. [PMID: 8394454 PMCID: PMC237939 DOI: 10.1128/jvi.67.9.5383-5393.1993] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Thymidine kinase (TK)-negative (TK-) mutant strains of herpes simplex virus type 1 (HSV-1) show reduced expression of alpha and beta viral genes during acute infection of trigeminal ganglion neurons following corneal infection (M. Kosz-Vnenchak, D. M. Coen, and D. M. Knipe, J. Virol. 64:5396-5402, 1990). It was surprising that a defect in a beta gene product would lead to decreased alpha and beta gene expression, given the regulatory pathways demonstrated for HSV infection of cultured cells. In this study, we have examined viral gene expression during reactivation from latent infection in explanted trigeminal ganglion tissue. In explant reactivation studies with wild-type virus, we observed viral productive gene expression over the first 48 h of explant incubation occurring in a temporal order (alpha, beta, gamma) similar to that in cultured cells. This occurred predominantly in latency-associated transcript-positive neurons but was limited to a fraction of these cells. In contrast, TK- mutant viruses showed greatly reduced alpha and beta gene expression upon explant of latently infected trigeminal ganglion tissue. An inhibitor of viral TK or an inhibitor of viral DNA polymerase greatly decreased viral lytic gene expression in trigeminal ganglion tissue latently infected with wild-type virus and explanted in culture. These results indicate that the regulatory mechanisms governing HSV gene expression are different in trigeminal ganglion neurons and cultured cells. We present a new model for viral gene expression in trigeminal ganglion neurons with implications for the nature of the decision process between latent infection and productive infection by HSV.
Collapse
Affiliation(s)
- M Kosz-Vnenchak
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
8
|
Toh Y, Liu Y, Tanaka S, Mori R. Nucleotide sequence of the major DNA-binding protein gene of herpes simplex virus type 2 and a comparison with the type 1. Arch Virol 1993; 129:183-96. [PMID: 8385914 DOI: 10.1007/bf01316894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleotide sequence of a region encompassing about 5,200 base pairs (bp) of the left side of the origin of replication in the long unique region of the herpes simplex virus type 2 (HSV-2) has been determined. This region contained the major DNA-binding protein or the infected-cell protein 8 (ICP 8) gene and 5'-part of the counterpart of HSV-1 ICP 18.5 gene. A comparison of the nucleotide sequence of the ICP8 gene between HSV-1 and HSV-2 showed an 89.8% homology. A primer extension analysis for the HSV-2 ICP 8 mRNA showed that the major transcriptional start site was mapped at 315 bp upstream of the initiation codon. A comparison of the predicted functional amino acid sequence of the ICP 8 between HSV-1 and HSV-2 revealed a striking homology (97.2%), the value of which was the highest among those of the other polypeptides encoded by HSV-1 and HSV-2. Some domains, which were shown to be required for the nuclear function, the binding to single-stranded DNA and the nuclear localization were well conserved. In addition, the nucleotide and the functional amino acid sequences of a part of the HSV-2 counterpart of the HSV-1 ICP 18.5 gene were also compared, demonstrating an 88.4% and 95.9% homology, respectively.
Collapse
Affiliation(s)
- Y Toh
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
9
|
Messerle M, Keil GM, Schneider K, Koszinowski UH. Characterization of the murine cytomegalovirus genes encoding the major DNA binding protein and the ICP18.5 homolog. Virology 1992; 191:355-67. [PMID: 1329325 DOI: 10.1016/0042-6822(92)90198-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In several herpesviruses the genes for the major DNA binding protein (MDBP), a putative assembly protein, the glycoprotein B (gB), and the viral DNA polymerase (pol) collocate. In murine cytomegalovirus (MCMV), two members of this gene block, pol (Elliott, Clark, Jaquish, and Spector, 1991, Virology 185, 169-186) and gB (Rapp, Messerle, Bühler, Tannheimer, Keil, and Koszinowski, 1992, J. Virol., 66, 4399-4406) have been characterized. Here the two other MCMV genes are characterized, the gene encoding the MDBP and the ICP18.5 homolog encoding a putative assembly protein. Like in human cytomegalovirus (HCMV) the genes order is pol, gB, ICP18.5, and MDBP. The 4.2-kb MDBP mRNA is expressed first in the early phase, whereas the 3.0-kb ICP18.5 mRNA is a late transcript. The open reading frame of the MDBP gene has the capacity of encoding a protein of 1191 amino acids with a predicted molecular mass of 131.7 kDa. The MCMV ICP18.5 ORF is translated into a polypeptide of 798 amino acids with a calculated molecular mass of 89.1 kDa. Comparison of the amino acid sequences of the predicted proteins of MCMV with the respective proteins of HCMV, Epstein-Barr virus (EBV), and herpes simplex virus type-1 (HSV-1) reveals a striking homology ranging from 72% (HCMV), 50% (EBV), to 45% (HSV-1) for the MDBP sequence and from 74% (HCMV), 51% (EBV), to 49% (HSV-1) for the ICP18.5 sequence. These results establish the close relationship of the two cytomegaloviruses, and underline the usefulness of the murine model for studies on the biology of the CMV infection.
Collapse
Affiliation(s)
- M Messerle
- Department of Virology, University of Ulm, Germany
| | | | | | | |
Collapse
|
10
|
Bludau H, Freese UK. Analysis of the HSV-1 strain 17 DNA polymerase gene reveals the expression of four different classes of pol transcripts. Virology 1991; 183:505-18. [PMID: 1649503 DOI: 10.1016/0042-6822(91)90980-p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have investigated the structure and the expression of transcripts of the HSV-1 strain 17 DNA polymerase gene (pol) by various mapping methods including cDNA cloning. The majority of mature pol transcripts is strictly colinear with the pol gene. But additionally, pol cDNAs show a defined heterogeneity in respect to their 5'-terminal regions and can be divided into four classes with characteristic differences; (i) class 1 represents the major transcript (pol-R1) with initiation at HSV-1 positions 62,605-62,610, (ii) class 2 initiates about 70 bp downstream, (iii) class 3 is generated by splicing the short open reading frame (SORF) to a 5'-truncated part of the long open reading frame (LORF) which results in a partially different coding potential, and (iv) class 4 starts 120 bp upstream of the major initiation site in the central part of the origin of replication (oriL). S1 and Exo VII nuclease and RNase protection assays as well as primer extension analyses confirm the classification regarding the genuine structure of pol mRNAs and the differential usage of transcriptional start sites. Furthermore, the transcript classes can be distinguished from each other by their kinetics of appearance/disappearance in the cytoplasm: The first transcription of the pol gene is indicated by the predominant presence of class 2 and class 4 mRNAs at 2 hr postinfection (h.p.i.), followed by an increase of class 1 transcripts up to 4 h.p.i. and a parallel decrease of class 2 mRNAs. These data suggest that expression of the pol gene is finely regulated already at the transcriptional and/or posttranscriptional level prior to the translation of pol mRNAs.
Collapse
Affiliation(s)
- H Bludau
- Institut für Virusforschung, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | |
Collapse
|
11
|
Abstract
Using as antigens fusion proteins expressed in bacteria, we have generated polyclonal antisera specific for the herpes simplex virus (HSV) type 1 DNA polymerase. A variety of immunologic, genetic, and biochemical assays were used to characterize these antisera and demonstrate their specificity for the HSV DNA polymerase. Using these antisera, measurements of the synthesis and accumulation of HSV DNA polymerase in infected Vero cells were made. Peak rates of polymerase synthesis were observed at 4 h postinfection, as much as 2 h before peak levels of polymerase mRNA accumulation. At all times examined, the HSV DNA polymerase polypeptide was found to be synthesized at a lower rate per mRNA than the viral thymidine kinase, with this difference being especially dramatic at later times. Infected-cell RNA isolated at 2 and 6 h postinfection directed the synthesis of similar amounts of polymerase polypeptide per polymerase transcript in rabbit reticulocyte lysates, indicating that polymerase transcripts are inherently as translatable at both times. An HSV mutant in which sequences including a short upstream open reading frame in the HSV DNA polymerase transcript were deleted specified polymerase mRNA whose translational efficiency was no more than marginally greater than that of the wild-type virus. These results demonstrate that polymerase expression is regulated by inefficient translation mediated by sequences other than the short upstream open reading frame and that this leads to an early shutoff of polymerase synthesis during HSV infection.
Collapse
Affiliation(s)
- D R Yager
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
12
|
Rice SA, Knipe DM. Genetic evidence for two distinct transactivation functions of the herpes simplex virus alpha protein ICP27. J Virol 1990; 64:1704-15. [PMID: 2157053 PMCID: PMC249308 DOI: 10.1128/jvi.64.4.1704-1715.1990] [Citation(s) in RCA: 210] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infected-cell protein 27 (ICP27) is a herpes simplex virus type 1 alpha, or immediate-early, protein involved in the regulation of viral gene expression. To better understand the function(s) of ICP27 in infected cells, we have isolated and characterized viral recombinants containing defined alterations in the ICP27 gene. The mutant virus d27-1 contains a 1.6-kilobase deletion which removes the ICP27 gene promoter and most of the coding sequences, while n59R, n263R, n406R, and n504R are mutants containing nonsense mutations which encode ICP27 molecules truncated at their carboxyl termini. All five mutants were defective for lytic replication in Vero cells. Analysis of the mutant phenotypes suggests that ICP27 has the following regulatory effects during the viral infection: (i) stimulation of expression of gamma-1 genes, (ii) induction of expression of gamma-2 genes, (iii) down regulation of expression of alpha and beta genes late in infection, and (iv) stimulation of viral DNA replication. Cells infected with the mutant n504R expressed wild-type levels of gamma-1 proteins but appeared to be unable to efficiently express gamma-2 mRNAs or proteins. This result suggests that ICP27 mediates two distinct transactivation functions, one which stimulates gamma-1 gene expression and a second one required for gamma-2 gene induction. Analysis of the mutant n406R suggested that a truncated ICP27 polypeptide can interfere with the expression of many viral beta genes. Our results demonstrate that ICP27 has a variety of positive and negative effects on the expression of viral genes during infection.
Collapse
Affiliation(s)
- S A Rice
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
13
|
Su L, Knipe DM. Herpes simplex virus alpha protein ICP27 can inhibit or augment viral gene transactivation. Virology 1989; 170:496-504. [PMID: 2543126 DOI: 10.1016/0042-6822(89)90441-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three of the five alpha (immediate early) gene products of herpes simplex virus, infected cell proteins (ICPs) 4, 0, and 27 play a role in the control of expression of viral beta (delayed-early) and gamma (late) genes. We report here that ICP27 can inhibit or augment the individual or combined abilities of ICP4 and ICP0 to stimulate expression of chimeric genes containing viral gene promoters in a transient expression system. The specific effect of ICP27 was dependent on the viral gene promoter in the chimeric gene. ICP27 inhibited the ability of ICP4 and ICP0 to activate some beta gene promoters but augmented their ability to activate other beta or gamma 1 gene promoters when they were used in the target genes. Activation of the target genes by adenovirus E1A was not affected by ICP27 under the same conditions. ICP27 also repressed the ability of ICP0 to stimulate expression of a chimeric gene containing an alpha gene promoter. Insertion of a termination codon in the middle of the ICP27 coding region severely reduced the inhibitory effect of the plasmid, indicating that this activity requires expression of functional ICP27 polypeptide. This report focuses on the ICP27 activity that negatively regulates ICP4 transactivation of a chimeric gene containing the upstream sequences of the HSV beta gene ICP8. ICP27 decreased the level of mRNA initiated at the transcriptional start site of the ICP8 gene. The level of expression of the ICP4 gene was not changed by ICP27 but an alteration in the electrophoretic mobility of ICP4 expressed was observed. The modulatory effect of ICP27 on HSV transactivators may control the progress of the lytic cycle or provide a balance that varies in different cell types to affect whether lytic or latent infection ensues.
Collapse
Affiliation(s)
- L Su
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
14
|
Goodrich LD, Rixon FJ, Parris DS. Kinetics of expression of the gene encoding the 65-kilodalton DNA-binding protein of herpes simplex virus type 1. J Virol 1989; 63:137-47. [PMID: 2535721 PMCID: PMC247666 DOI: 10.1128/jvi.63.1.137-147.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The 65-kilodalton DNA-binding protein (65KDBP) of herpes simplex virus type 1, encoded by gene UL42, is required for herpes simplex virus origin-dependent DNA replication (C.A. Wu, N.J. Nelson, D.J. McGeoch, and M.D. Challberg, J. Virol. 62:435-443, 1988). We found by indirect immunofluorescence with monoclonal antibody to 65KDBP that the protein was first detectable at 3 h postinfection. It localized first to the inner periphery of the nucleus, but accumulated in large globular compartments within the nucleus by 6 h postinfection in a pattern similar to that displayed by the major DNA-binding protein ICP8. Immune electron microscopy revealed that 65KDBP was associated with the marginated heterochromatin at the early times, but migrated further into the nucleus at late times when the only discernible areas devoid of 65KDBP were the nucleoli and heterochromatin. The 65KDBP gene is a member of the beta kinetic class as determined by the ability of the mRNA to be expressed at significant levels even in the absence of viral DNA synthesis. Furthermore, in the presence or absence of the DNA polymerase inhibitor phosphonoacetic acid, the patterns of accumulation of protein as well as mRNA were virtually indistinguishable from those displayed by the model beta genes encoding ICP8 and thymidine kinase. Nuclear run-on experiments demonstrated that maximum rates of 65KDBP gene transcription occurred prior to the maximum rate of progeny viral DNA synthesis and confirmed that the expression of the 65KDBP gene is regulated at the level of transcriptional initiation.
Collapse
Affiliation(s)
- L D Goodrich
- Program in Molecular, Cellular, and Developmental Biology, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
15
|
Abstract
Following infection of cells by herpes simplex virus, the cell nucleus is subverted for transcription and replication of the viral genome and assembly of progeny nucleocapsids. The transition from host to viral transcription involves viral proteins that influence the ability of the cellular RNA polymerase II to transcribe a series of viral genes. The regulation of RNA polymerase II activity by viral gene products seems to occur by several different mechanisms: (1) viral proteins complex with cellular proteins and alter their transcription-promoting activity (e.g., alpha TIF), (2) viral proteins bind to specific DNA sequences and alter transcription (e.g., ICP4), and (3) viral proteins affect the posttranslational modification of viral or cellular transcriptional regulatory proteins (e.g., possibly ICP27). Thus, HSV may utilize several different approaches to influence the ability of host-cell RNA polymerase II to transcribe viral genes. Although it is known that viral transcription uses the host-cell polymerase II, it is not known whether viral infection causes a change in the structural elements of the nucleus that promote transcription. In contrast, HSV encodes a new DNA polymerase and accessory proteins that complex with and reorganize cellular proteins to form new structures where viral DNA replication takes place. HSV may encode a large number of DNA replication proteins, including a new polymerase, because it replicates in resting cells where these cellular gene products would never be expressed. However, it imitates the host cell in that it localizes viral DNA replication proteins to discrete compartments of the nucleus where viral DNA synthesis takes place. Furthermore, there is evidence that at least one specific viral gene protein can play a role in organizing the assembly of the DNA replication structures. Further work in this system may determine whether assembly of these structures is essential for efficient viral DNA replication and if so, why assembly of these structures is necessary. Thus, the study of the localization and assembly of HSV DNA replication proteins provides a system to examine the mechanisms involved in morphogenesis of the cell nucleus. Therefore, several critical principles are apparent from these discussions of the metabolism of HSV transcription and DNA replication. First, there are many ways in which the activity of RNA polymerase II can be regulated, and HSV proteins exploit several of these in controlling the transcription of a single DNA molecule. Second, the interplay of these multiple regulatory pathways is likely to control the progress of the lytic cycle and may play a role in determining the lytic versus latent infection decision.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D M Knipe
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
16
|
Chan WL. Functional cross-reactivity between the glycoprotein B of herpes simplex virus type 1 and Epstein-Barr virus. Immunology 1989; 66:14-9. [PMID: 15493256 PMCID: PMC1385113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
A monoclonal antibody (T157) directed against gB-1, the glycoprotein B (gB) of herpes simplex virus-1 (HSV-1) shows positive indirect immunoflourescent staining with an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line B95-8. SDS PAGE and Western blot analysis show that B95-8 cells contain a 110,000 MW protein that co-migrates with the 110,000-115,000 MW gB-1. The gB-1 homologue of EBV (gB-EBV), immunopurified using a T157 affinity column, cross-stimulates HSV-1 immune T cells to proliferate in vitro. Mice immunized by a single subcutaneous injection of 30 microg gB-EBV in saline developed significant protection against HSV-1 challenge infection. Therefore gB-EBV can be considered a potential candidate vaccine and as an antigen to examine the cell-mediated immune response mounted by the host to limit virus spread during productive infection. The significance of a better understanding of the immune response to this and other EBV proteins of productive infection as an alternative to limit tumour growth by preventing virus spread is discussed.
Collapse
Affiliation(s)
- W L Chan
- Department of Biology, University College London, UK
| |
Collapse
|
17
|
Abstract
Herpes simplex virus type 1 (HSV-1) encodes several alpha (immediate-early) gene products that modulate gene expression during viral replication. We report here that the alpha protein ICP27 specifically stimulates expression of a later viral gene, that encoding glycoprotein B (gB). Using temperature-sensitive viral mutants, the effect of ICP27 on HSV-1 protein synthesis was examined at early times after infection or at later times when viral DNA replication was inhibited. Under these conditions, the expression of gB showed a marked dependence on the presence of functional ICP27, whereas several other beta and gamma 1 genes showed a lesser dependence. It was also noted that cells infected with ICP27 temperature sensitive mutants at the nonpermissive temperature showed a reduction in the electrophoretic mobility of the alpha protein ICP4. To examine the mechanism by which ICP27 stimulated gB expression, a plasmid was constructed in which the promoter-regulatory region of the gB gene was fused to the gene encoding chloramphenicol acetyltransferase (CAT). CAT expression from this plasmid was induced significantly by ICP27 expressed from a cotransfected plasmid. Induction of CAT activity by ICP27 correlated well with an increase in the amount of CAT transcripts initiated from the transcriptional start site of the gB gene. The transactivating activity of ICP27 was specific for the gB promoter-regulatory region, as expression from several other HSV-1 promoter-CAT chimeric genes was not stimulated by ICP27. The DNA sequences which conferred the response to ICP27 mapped within 175 base pairs upstream and 41 base pairs downstream of the gB transcriptional start site. Our results suggest that the full expression of gB and perhaps other viral genes during HSV-1 infection requires the combined action of multiple viral transactivators.
Collapse
Affiliation(s)
- S A Rice
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
18
|
Hammerschmidt W, Conraths F, Mankertz J, Buhk HJ, Pauli G, Ludwig H. Common epitopes of glycoprotein B map within the major DNA-binding proteins of bovine herpesvirus type 2 (BHV-2) and herpes simplex virus type 1 (HSV-1). Virology 1988; 165:406-18. [PMID: 2457278 DOI: 10.1016/0042-6822(88)90584-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bovine herpesvirus 2 (BHV-2) specifies a glycoprotein of 130 kDa (gB BHV-2) which shows extensive homology to glycoprotein B (gB-1) of herpes simplex virus 1 (HSV-1). The BHV-2-specific 130-kDa glycoprotein is able to induce cross-reacting antibodies, some of which even cross-neutralize HSV-1. In order to determine the genome localization of gB BHV-2 and in order to identify conserved antigenic domains in both glycoproteins, we established libraries of subgenic fragments of BHV-2 and HSV-1 DNA in the prokaryotic expression vector lambda gt11 and screened them with cross-reacting monoclonal antibodies which allowed us to identify recombinant lambda gt11 clones expressing gB fusion protein. Nucleotide sequencing of inserted DNA fragments within these recombinant lambda gt11 clones revealed that they originated from the carboxy-terminal part of the major DNA-binding proteins (dbp) of BHV-2 (dbp BHV-2) and its counterpart ICP8 in HSV-1. Antisera raised against the beta-galactosidase fusion protein of recombinant phage lambda-113/2 coding for an 84 amino acid (aa) polypeptide originating from dbp BHV-2 neutralized infectivity of BHV-2 and HSV-1 in the presence of complement and precipitated [3H] glucosamine-labeled gB BHV-2 and gB-1. This antiserum also reacts with ICP8 and presumably with dbp BHV-2. Two hypotheses are discussed to explain this unexpected result: (i) epitopes in the carboxy-terminal part of gB BHV-2 and gB-1 are similar to antigenic determinants in the amino-terminal region of the gBs, thus providing cross-reacting antibody-binding sites; (iii) during gene expression a carboxy-terminal part of dbp BHV-2 and ICP8 genes might be spliced to the amino-terminal region of the glycoproteins gB BHV-2 and gB-1.
Collapse
Affiliation(s)
- W Hammerschmidt
- Institut für Virologie der Freien Universität, Berlin, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
19
|
Yager DR, Coen DM. Analysis of the transcript of the herpes simplex virus DNA polymerase gene provides evidence that polymerase expression is inefficient at the level of translation. J Virol 1988; 62:2007-15. [PMID: 2835506 PMCID: PMC253285 DOI: 10.1128/jvi.62.6.2007-2015.1988] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have mapped the termini and determined the relative abundance and ribosome density of the major cytoplasmic transcript of the DNA polymerase (pol) gene of herpes simplex virus type 1. Nuclease protection and primer extension analyses located the 5' end of the major pol transcript at two closely spaced sites 51 and 57 nucleotides to the left of a BamHI site at map position 0.413. S1-sensitive sites corresponding to additional minor transcripts were found to map further upstream within a palindromic sequence that contains a viral replication origin. The major 3' end was found to map 90 nucleotides upstream of a KpnI site at map position 0.439. Quantitative S1 nuclease assays revealed that pol transcripts were nearly as abundant as transcripts encoded by the viral thymidine kinase gene. However, relatively few pol transcripts were found on large polysomes at 5.5 h after infection, when pol transcripts were most abundant. This was in marked contrast to the polyribosome distribution of transcripts from the thymidine kinase gene and the major DNA-binding protein gene. These results and sequence features of the pol transcript suggest that pol expression is regulated, in part, at the level of translation.
Collapse
Affiliation(s)
- D R Yager
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
20
|
Gao M, Bouchey J, Curtin K, Knipe DM. Genetic identification of a portion of the herpes simplex virus ICP8 protein required for DNA-binding. Virology 1988; 163:319-29. [PMID: 2833010 DOI: 10.1016/0042-6822(88)90272-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The major DNA-binding protein or infected cell protein 8 (ICP8) encoded by herpes simplex virus exhibits multiple interactions with the cell nucleus in that it interacts with the host cell nuclear matrix and viral DNA molecules as sequential stages in its maturational process (M. P. Quinlan, L. B. Chen, and D. M. Knipe (1984), Cell 36, 857-868). To define the portion(s) of ICP8 required for DNA binding, we have fine-mapped and identified the sequence changes in mutant genes causing changes in the protein that affect DNA binding. These mutations lead to amino acid changes between residues 348 and 450 of ICP8. Construction of a mutant ICP8 gene specifically altered at residues 499 and 502 led to a gene product that was also defective in a nuclear function. Thus, at least part of the region of ICP8 from residues 348 to 450 is required for DNA binding by ICP8. This portion of the protein may be involved in binding to DNA or forming intermolecular contacts needed for cooperative DNA binding. If this region is directly involved in binding of the protein to DNA, the most likely structure predicted for this region involves folding of beta-strands to form a channel for binding to a nucleotide chain.
Collapse
Affiliation(s)
- M Gao
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
21
|
Anders DG, Gibson W. Location, transcript analysis, and partial nucleotide sequence of the cytomegalovirus gene encoding an early DNA-binding protein with similarities to ICP8 of herpes simplex virus type 1. J Virol 1988; 62:1364-72. [PMID: 2831398 PMCID: PMC253149 DOI: 10.1128/jvi.62.4.1364-1372.1988] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The results presented here locate the gene encoding an early, nonvirion, single-stranded DNA-binding protein of human and simian strains of cytomegalovirus (CMV) [HCMV(Towne) DB140 and SCMV(Colburn) DB129, respectively] and provide additional evidence that this protein is the CMV homolog of the herpes simplex virus type 1 (HSV-1) major DNA-binding protein (ICP8), as proposed earlier (D. G. Anders, A. Irmiere, and W. Gibson, J. Virol. 58:253-262). The ICP8 gene was used as a probe in Southern analyses done at moderate stringency as an approach to locating similar sequences in the CMV genome. The BamHI K and EcoRI V fragments from the center of the long unique segment of HCMV(Towne) hybridized with the ICP8 probe and were in turn used to identify corresponding sequences in the EcoRI D fragment of SCMV(Colburn). RNA prepared from SCMV(Colburn)-infected cells directed the in vitro synthesis of DB129. If the RNA was first hybridized with the cloned 12.5-kilobase EcoRI D fragment, in vitro synthesis of DB129 was specifically inhibited. Additional hybrid-arrested in vitro translation experiments with subclones spanning the EcoRI D fragment demonstrated that the DB129 gene is located in the left half of that fragment, approximately bisected by a SalI site. RNA analyses identified 3.9-, 8.9-, and 10.0-kilobase RNA species expressed from this region. A partial nucleotide sequence of the Colburn region mapping within the boundaries of the 3.9-kilobase transcript, suspected to be the primary coding species, showed significant sequence similarity to the major DNA-binding protein gene homolog identified in B95-8 Epstein-Barr virus.
Collapse
Affiliation(s)
- D G Anders
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
22
|
Kemble GW, McCormick AL, Pereira L, Mocarski ES. A cytomegalovirus protein with properties of herpes simplex virus ICP8: partial purification of the polypeptide and map position of the gene. J Virol 1987; 61:3143-51. [PMID: 3041036 PMCID: PMC255891 DOI: 10.1128/jvi.61.10.3143-3151.1987] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We demonstrated the presence of a single-stranded DNA-binding protein in human cytomegalovirus (CMV)-infected cells with properties analogous to those of herpes simplex virus (HSV) ICP8. Using monoclonal antibody specific for the CMV protein, we analyzed its fluorescence pattern and time of synthesis, mapped the gene encoding it by using a lambda gt11 library of CMV DNA fragments, and monitored its purification by phosphocellulose and DNA-Sepharose chromatography. In all characteristics we examined, the CMV protein behaved analogously to HSV ICP8. Our results are consistent with a functional role of CMV ICP8 in viral replication that is similar to that of HSV ICP8 and with the evolutionary conservation of the gene of interest in two divergent herpesviruses.
Collapse
|
23
|
Pachl C, Burke RL, Stuve LL, Sanchez-Pescador L, Van Nest G, Masiarz F, Dina D. Expression of cell-associated and secreted forms of herpes simplex virus type 1 glycoprotein gB in mammalian cells. J Virol 1987; 61:315-25. [PMID: 3027363 PMCID: PMC253952 DOI: 10.1128/jvi.61.2.315-325.1987] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gene for glycoprotein gB1 of herpes simplex virus type 1 strain Patton was expressed in stable Chinese hamster ovary cell lines. Expression vectors containing the dihydrofolate reductase (dhfr) cDNA plus the complete gB1 gene or a truncated gene lacking the 194 carboxyl-terminal amino acids of gB1 were transfected into CHO DHFR-deficient cells. Radioimmunoprecipitation demonstrated that the complete gB1 protein expressed in CHO cell lines was cell associated, whereas the truncated protein was secreted from the cells due to deletion of the transmembrane and C-terminal domains of gB1. Cells expressing the truncated gB1 protein were subjected to stepwise methotrexate selection, and a cell line was isolated in which the gB1 gene copy number had been amplified 10-fold and the level of expression of gB1 had increased over 60-fold. The truncated gB1 protein was purified from medium conditioned by the amplified cell line. N-terminal amino acid sequence analysis of this purified protein identified the signal peptide cleavage site and predicted the cleavage of a 30-amino-acid signal sequence from the primary protein. The immunogenicity of the truncated gB1 protein was also tested in mice, and high levels of antibody and protection from virus challenge were observed.
Collapse
|
24
|
Su L, Knipe DM. Mapping of the transcriptional initiation site of the herpes simplex virus type 1 ICP8 gene in infected and transfected cells. J Virol 1987; 61:615-20. [PMID: 3027391 PMCID: PMC253992 DOI: 10.1128/jvi.61.2.615-620.1987] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The initiation site for transcription of the herpes simplex virus type 1 (HSV-1) gene encoding the major DNA-binding protein. ICP8, was mapped by nuclease S1 analysis of RNA-DNA hybrids. When RNA isolated from cells infected with HSV-1 was used, one major start site of ICP8 gene transcription was mapped at 89 base pairs to the right of the BstEII site at 0.409 map units. In cells transfected with a cloned ICP8 gene, the same major start site was detected either in the presence or absence of the immediate-early (alpha) genes encoding ICP4 or ICP0, which have been shown to stimulate ICP8 gene expression in transfected cells. Both ICP4 and ICP0 stimulated the accumulation of the ICP8 gene transcripts in the transient expression system, and their effects were synergistic. By comparison of the sequence of the putative promoter region of the ICP8 gene with the promoter of the HSV-1 TK gene, a significant similarity was detected between the three transcriptional regulatory signals of the TK gene and the upstream sequences of the ICP8 gene. Analysis of promoters of other delayed-early (beta) genes showed that they all contained regions of significant homology with the distal signals of the upstream sequences of the TK or ICP8 gene.
Collapse
|
25
|
Stuve LL, Brown-Shimer S, Pachl C, Najarian R, Dina D, Burke RL. Structure and expression of the herpes simplex virus type 2 glycoprotein gB gene. J Virol 1987; 61:326-35. [PMID: 3027364 PMCID: PMC253953 DOI: 10.1128/jvi.61.2.326-335.1987] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The gene for glycoprotein gB2 of herpes simplex virus type 2 strain 333 was cloned, sequenced, and expressed in mammalian cells. The gB2 protein had an overall nucleotide and amino acid sequence homology of 86% with the cognate gB1 protein. However, of the 125 amino acid substitutions or deletions, only 12.5% were conservative replacements. These differences were clustered within an NH2-terminal region, a central region, and a COOH-terminal region, resulting in domains of near identity broken by small regions of marked divergence. Regions of greatest homology included a 90-amino-acid stretch starting at residue 484 and 39 amino acids spanning residues 835 to 873, which cover a rate-of-entry locus mapped to Ala-552 and a syn locus mapped to Arg-857, respectively, in gB1 by Bzik et al. (D. J. Bzik, B. A. Fox, N. A. DeLuca, and S. Person, Virology 133:301-314, 1984). Pellett et al. (P. E. Pellett, K. G. Kousoulas, L. Pereira, and B. Roizman, J. Virol. 53:243-253, 1985) mapped the mutations in three monoclonal antibody-resistant gB1 mutants between amino acids 273 and 443. These epitopes are included in a region of 98 residues identical between gB1 and gB2. The identity of this protein was verified by placing a truncated gene lacking the 303 carboxyl-terminal amino acids of gB2 into mammalian COS and CHO cells. Expression was demonstrated by immunofluorescence and radioimmunoprecipitation. This protein will be purified from the stable CHO cell lines and compared with gB1 for immunogenicity and protective efficacy in animal challenge models.
Collapse
|
26
|
Gong M, Ooka T, Matsuo T, Kieff E. Epstein-Barr virus glycoprotein homologous to herpes simplex virus gB. J Virol 1987; 61:499-508. [PMID: 3027378 PMCID: PMC253974 DOI: 10.1128/jvi.61.2.499-508.1987] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Epstein-Barr virus DNA open reading frame BALF4 (R. Baer, A.T. Bankier, M.D. Biggin, P.L. Deininger, P.J. Farrell, T.J. Gibson, G. Hatfull, G.S. Hudson, S.C. Stachwell, C. Sequin, P.S. Tuffnell, and B.G. Barrell, Nature [London] 310:207-211, 1984), which by nucleotide sequence comparison could encode a protein similar to herpes simplex virus gB (P.E. Pellett, M.D. Biggin, B. Barrell, and B. Roizman, J. Virol. 56:807-813, 1985), has now been shown to encode a 110-kilodalton glycoprotein. Late infectious cycle RNAs of 3.0 and 1.8 kilobases are transcribed from BALF4. Translation of these RNAs in vitro, transcription and translation of BALF4 in vitro, or metabolic labeling of cells in the presence of tunicamycin and immunoprecipitation with BALF4-specific sera results in identification of a 93-kilodalton precursor to gp110. Since N-glycosidase F only reduces the size of gp110 to 105 kilodaltons, gp110 probably has both N- and O-linked glycosylation, gp110 is an abundant glycoprotein in Epstein-Barr virus-infected cells. In infected lymphocytes and in 3T3 cells, in which the gene is expressed from a recombinant expression vector, most of the protein is cytoplasmic and perinuclear. In contrast to gB, gp110 was not detected in the infected-cell plasma membrane. In cells replicating Epstein-Barr virus, gp110 localized to the inner and outer nuclear membrane lamellae and to endoplasmic reticulum structures which sometimes contained enveloped virus. gp110 may play an important role in modifying infected intracellular membranes.
Collapse
|
27
|
Claesson-Welsh L, Spear PG. Amino-terminal sequence, synthesis, and membrane insertion of glycoprotein B of herpes simplex virus type 1. J Virol 1987; 61:1-7. [PMID: 3023687 PMCID: PMC255182 DOI: 10.1128/jvi.61.1.1-7.1987] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glycoprotein B (gB) was purified from cells infected with two strains (KOS and F) of herpes simplex virus type 1. Determination of amino acid sequence at the NH2 termini revealed, by comparison with amino acid sequence deduced from previously published nucleotide sequence, that gB is made with a cleavable signal sequence of 29 or 30 amino acids, depending on the virus strain. Analysis of gB translated in vitro in the presence and absence of membranes showed that gB is inserted into membranes and glycosylated cotranslationally; a large portion of the gB polypeptide made in vitro is protected from proteolysis by membranes; the large protected fragment carries N-linked carbohydrate and is probably the NH2 terminus based on locations of signals for the addition of N-linked carbohydrate; and the size of the protected fragment is 93 kilodaltons (kDa) for gB made in vitro and associated with dog pancreas membranes, whereas both 93- and 98-kDa protected fragments can be detected for gB made in vivo. These last results are consistent with a previous proposal that gB may traverse the membrane three times.
Collapse
|
28
|
Bzik DJ, Debroy C, Fox BA, Pederson NE, Person S. The nucleotide sequence of the gB glycoprotein gene of HSV-2 and comparison with the corresponding gene of HSV-1. Virology 1986; 155:322-33. [PMID: 3024391 DOI: 10.1016/0042-6822(86)90196-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nucleotide sequence of the gB glycoprotein gene of HSV-2 has been determined and compared with the homologous gene of HSV-1. The two genes are specified by the same total number of codons (904); eight additional codons of the HSV-1 gene are found within the signal sequence, and eight additional codons of the HSV-2 gene are found at three different sites in the gene. The signal cleavage, membrane-spanning, and eight potential N-linked oligosaccharide sites, as well as 5'- and 3'-regulatory signals are largely conserved. The overall amino acid homology is 85%; least conserved are the N- and C-terminal regions of the protein. Secondary structure plots were determined for the two proteins, and the structures were compared with each other and with alterations in structure due to several mutations in the HSV-1 gB gene for which sequence analysis is available. The high homology in primary and secondary structure suggests a conserved, essential function for the gene.
Collapse
|
29
|
Abstract
Glycoprotein B (gB) specified by herpes simplex virus can be extracted from virions or infected cells in the form of detergent-stable, heat-dissociable oligomers. The composition of the oligomers and requirements for their formation were investigated. Evidence is presented that the faster-migrating forms of the oligomers are homodimers of gB. Dimerization was shown to occur within minutes of polypeptide synthesis and did not depend on glycosylation, the expression of other viral proteins, or virion morphogenesis. The multiple, electrophoretically distinct forms of gB dimers differ in extent or rate of N-linked oligosaccharide processing and also have other differences that influence electrophoretic mobility.
Collapse
|
30
|
Godowski PJ, Knipe DM. Transcriptional control of herpesvirus gene expression: gene functions required for positive and negative regulation. Proc Natl Acad Sci U S A 1986; 83:256-60. [PMID: 3001729 PMCID: PMC322836 DOI: 10.1073/pnas.83.2.256] [Citation(s) in RCA: 140] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have used an in vitro nuclear run-off assay to measure the levels of transcription of specific herpes simplex virus genes at different times during a lytic infection. We analyzed the effects of inhibition of DNA replication and of defects in two herpes simplex virus regulatory proteins on the transcription of these genes. We present evidence that the transcription of the alpha ICP4 gene is negatively regulated during a lytic infection. The regulation of ICP4 gene transcription requires the beta protein ICP8 (where ICP = infected cell polypeptide). Transcription of the beta ICP8, gamma 1 ICP5, and gamma 2 glycoprotein C (gC) genes was dependent on ICP4, and transcription of the gamma 2gC gene was strongly inhibited when DNA replication was blocked. Defects in ICP8 also resulted in increased levels of transcription of the ICP4, ICP8, ICP5, and gC genes from parental viral genomes. Our results suggest that ICP8 may be important in maintaining the highly ordered cascade of viral gene expression.
Collapse
|
31
|
Gibbs JS, Chiou HC, Hall JD, Mount DW, Retondo MJ, Weller SK, Coen DM. Sequence and mapping analyses of the herpes simplex virus DNA polymerase gene predict a C-terminal substrate binding domain. Proc Natl Acad Sci U S A 1985; 82:7969-73. [PMID: 2999787 PMCID: PMC390892 DOI: 10.1073/pnas.82.23.7969] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The herpes simplex virus DNA polymerase provides an excellent model for studies of eukaryotic replicative polymerases. We report here the nucleotide sequence of the gene which encodes this enzyme. The gene includes a 3705-base-pair major open reading frame capable of encoding a Mr 136,519 polypeptide, in rough agreement with previous estimates of the size of the major polypeptide found in partially purified viral polymerase preparations. The predicted polymerase polypeptide shares extensive sequence homology with the Epstein-Barr virus open frame predicted to encode DNA polymerase and with a 13-amino acid segment of adenovirus 2 DNA polymerase. Mutations conferring altered sensitivity to antiviral deoxynucleoside triphosphate analogs, pyrophosphate analogs, or aphidicolin from eight different mutants map within the region encoding the carboxyl-terminal portion of the predicted polymerase polypeptide. Two of these are separated by a distance corresponding to at least 228 amino acids. We propose that this region of the gene encodes a polypeptide domain that contains the binding sites for deoxynucleoside triphosphates and pyrophosphate.
Collapse
|
32
|
Mutations in the herpes simplex virus major DNA-binding protein gene leading to altered sensitivity to DNA polymerase inhibitors. Virology 1985; 145:213-26. [PMID: 2992151 DOI: 10.1016/0042-6822(85)90155-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Five herpes simplex virus mutants containing temperature-sensitive mutations in the gene for the major DNA-binding protein were assayed for their sensitivities to the DNA polymerase inhibitors aphidicolin and phosphonoacetic acid (PAA). Four of the mutants (tsA1, tsA15, tsA24, and tsA42) exhibited altered sensitivity to one or both of the inhibitors relative to the wild-type parent. In tsA1, a mutation or mutations conferring aphidicolin and PAA hypersensitivity were mapped by corescue with the temperature-sensitivity marker of tsA1 to a region of the DNA-binding protein locus, between map coordinates 0.385 and 0.398. The mutation conferring PAA hypersensitivity in tsA24 similarly corescued with the tsA24 temperature-sensitivity marker, mapping to the DNA-binding protein locus between coordinates 0.398 and 0.413. Thus, mutations outside the DNA polymerase locus and within the DNA-binding protein locus can confer altered sensitivity to certain DNA polymerase inhibitors. Assays of the aphidicolin and PAA sensitivities of ts+ recombinants derived by marker rescue of the DNA-binding protein mutants revealed the presence of additional mutations, separable from the ts mutations, in each of three mutants examined. One such mutation, which contributed to the aphidicolin-hypersensitivity phenotype of tsA1, mapped between coordinates 0.422 and 0.448, and resides, most probably, within the DNA polymerase locus. These additional mutations possibly confer compensating modifications to the DNA polymerase such that functional interaction with altered DNA-binding protein is restored. These findings provide strong evidence that the major DNA-binding protein and the DNA polymerase of herpes simplex virus interact in infected cells.
Collapse
|
33
|
Identification of a herpes simplex virus function that represses late gene expression from parental viral genomes. J Virol 1985; 55:357-65. [PMID: 2991561 PMCID: PMC254941 DOI: 10.1128/jvi.55.2.357-365.1985] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The expression of herpes simplex virus gamma 2 (late) genes is inhibited before the onset of viral DNA replication. We report that the block in the expression of certain gamma 2 genes is relieved, at least in part, by defects in the beta ICP8 protein. We have examined the expression of the gamma 2 gene encoding glycoprotein C (gC) in cells infected with a temperature-sensitive ICP8 mutant. Under conditions in which viral DNA replication is inhibited, cells infected with the ICP8 mutant overproduce the gC family of mRNAs relative to the level observed in cells infected with a wild-type virus. The gC mRNA synthesized in cells infected with the ICP8 mutant virus is correctly initiated and spliced and is translated with the same relative efficiency as in cells infected with a replicating wild-type virus. These results suggest that ICP8 is involved in the negative regulation of gamma 2 genes expressed from parental viral genomes. The level of gC expression was greatest in cells infected with a replicating wild-type virus. These data suggest that DNA replication and genome amplification are not absolute requirements for gamma 2 gene expression but may facilitate full-level expression of these genes.
Collapse
|
34
|
Stimulation of expression of a herpes simplex virus DNA-binding protein by two viral functions. Mol Cell Biol 1985. [PMID: 2987684 DOI: 10.1128/mcb.5.5.957] [Citation(s) in RCA: 77] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We examined the expression and localization of herpesvirus proteins in monkey cells transfected with recombinant plasmids containing herpes simplex virus (HSV) DNA sequences. Low levels of expression of the major HSV DNA-binding protein ICP8 were observed when ICP8-encoding plasmids were introduced into cells alone. ICP8 expression was greatly increased when a recombinant plasmid encoding the HSV alpha (immediate-early) ICP4 and ICP0 genes was transfected with the ICP8 gene. Deletion and subcloning analysis indicated that two separate functions capable of stimulating ICP8 expression were encoded on the alpha gene plasmid. One mapped in or near the ICP4 gene, and one mapped in or near the ICP0 gene. Their stimulatory effects were synergistic when introduced on two separate plasmids. Thus, two separate viral functions can activate herpesvirus early gene expression in transfected cells.
Collapse
|
35
|
A genetic test for expression of a functional herpes simplex virus DNA-binding protein from a transfected plasmid. J Virol 1985; 54:619-22. [PMID: 2985824 PMCID: PMC254836 DOI: 10.1128/jvi.54.2.619-622.1985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The major DNA-binding protein, ICP8, encoded by herpes simplex virus is localized to the infected cell nucleus where it plays a role in viral DNA replication and control of viral gene expression. To identify the parts of the ICP8 protein that are important for its localization and functions, we have developed a system to test the ability of recombinant plasmids to express functional ICP8. A recombinant plasmid containing the wild-type ICP8 gene was transfected into cells. The cells were later infected with a temperature-sensitive ICP8 mutant virus at the nonpermissive temperature. Sufficient wild-type ICP8 was expressed from the transfected plasmid to complement the replication of the mutant virus. This provides a genetic system to test the properties of ICP8 expressed from mutagenized plasmids without the establishment of a stable cell line or the reintroduction of the ICP8 gene into the herpes simplex virus genome.
Collapse
|
36
|
Stimulation of expression of a herpes simplex virus DNA-binding protein by two viral functions. Mol Cell Biol 1985; 5:957-63. [PMID: 2987684 PMCID: PMC366810 DOI: 10.1128/mcb.5.5.957-963.1985] [Citation(s) in RCA: 144] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We examined the expression and localization of herpesvirus proteins in monkey cells transfected with recombinant plasmids containing herpes simplex virus (HSV) DNA sequences. Low levels of expression of the major HSV DNA-binding protein ICP8 were observed when ICP8-encoding plasmids were introduced into cells alone. ICP8 expression was greatly increased when a recombinant plasmid encoding the HSV alpha (immediate-early) ICP4 and ICP0 genes was transfected with the ICP8 gene. Deletion and subcloning analysis indicated that two separate functions capable of stimulating ICP8 expression were encoded on the alpha gene plasmid. One mapped in or near the ICP4 gene, and one mapped in or near the ICP0 gene. Their stimulatory effects were synergistic when introduced on two separate plasmids. Thus, two separate viral functions can activate herpesvirus early gene expression in transfected cells.
Collapse
|
37
|
Norrild B, Andersen AB, Feldborg R. Crossed immunoelectrophoretic analysis of herpes simplex virus type 2 proteins. Characterization of antigen-5. Arch Virol 1985; 85:95-108. [PMID: 2990392 DOI: 10.1007/bf01317009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herpes simplex virus type 2 proteins extracted from infected cells and analysed by crossed immunoelectrophoresis identified a nonglycosylated antigen named Ag-5. The antigen contained two proteins when extracted from the agarose gel and the molecular weights were 128K and 91K. Both proteins are located in the nucleus of the infected cells and the 128K is identical to ICP-8. The 91K protein is based on the reactivity with monoclonal antibodies most likely the alkaline exonuclease mapped by Preston and Cordingly (25). Our data show that although the proteins ICP-8 and 91K coprecipitate they differ in both peptide composition and in immunological specificity.
Collapse
|
38
|
Abstract
In this report, we describe a series of procedures to assay the function of fusion genes in Escherichia coli and the specific application to the carboxy-terminal third of the herpes simplex virus type 1 (HSV-1) DNA-binding protein ICP8. E. coli cells containing the cloned HSV-1 BamHI G fragment with the HSV-1 BamHI-G-V site, map unit 0.388, nearest the tet promoter in pBR322 synthesized an active product containing a portion of ICP8. The new product induced phenotypic alterations in recipient hosts that were measurable and stable yet limited to the stability of the plasmid. The corresponding cloned DNA from the characterized HSV-1 DNA-binding protein mutant tsHA1 exhibited a predictable temperature-sensitive phenotype. Screening procedures based on the loss of induction of the parental plasmid-induced phenotype in E. coli cells allowed us to select additional mutations. One of these, which conferred a phenotype different from that of tsHA1, was transferred to the viral genome by marker transfer techniques. We suggest that any mutant could be isolated in any sequence, provided that the wild-type coding sequences induce alterations in E. coli cells. The observed alterations should have relevance in determining the mode of action of the protein in its normal environment.
Collapse
|
39
|
Vaughan PJ, Purifoy DJ, Powell KL. DNA-binding protein associated with herpes simplex virus DNA polymerase. J Virol 1985; 53:501-8. [PMID: 2578573 PMCID: PMC254663 DOI: 10.1128/jvi.53.2.501-508.1985] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purified preparations of herpes simplex virus type 2 DNA polymerase made by many different laboratories always contain at least two polypeptides. The major one, of about 150,000 molecular weight, has been associated with the polymerase activity. The second protein, of about 54,000 molecular weight, which we previously designated ICSP 34, 35, has now been purified. The purified protein has been used to prepare antisera (both polyclonal rabbit serum and monoclonal antibodies). These reagents have been used to characterize the protein, to demonstrate its quite distinct map location from that of the DNA polymerase on the herpes simplex virus genome, and to demonstrate the close association between the two polypeptides.
Collapse
|
40
|
Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants. J Virol 1985; 53:243-53. [PMID: 2981343 PMCID: PMC255021 DOI: 10.1128/jvi.53.1.243-253.1985] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this paper we report the nucleotide sequence and predicted amino acid sequence of glycoprotein B of herpes simplex virus 1 strain F and the amino acid substitutions in the domains of the glycoprotein B gene of three mutants selected for resistance to monoclonal antibody H126-5 or H233 but not to both. Analyses of the amino acid sequence with respect to hydropathicity and secondary structure yielded a two-dimensional model of the protein. The model predicts an N-terminal, 29-amino-acid cleavable signal sequence, a 696-amino-acid hydrophilic surface domain containing six potential sites for N-linked glycosylation, a 69-amino-acid hydrophobic domain containing three segments traversing the membrane, and a charged 109-amino-acid domain projecting into the cytoplasm and previously shown to marker rescue glycoprotein B syn mutations. The nucleotide sequence of the mutant glycoprotein B DNA fragments previously shown to marker transfer or rescue the mutations revealed that the amino acid substitutions cluster in the hydrophilic surface domain between amino acids 273 and 305. Analyses of the secondary structure of these regions, coupled with the experimentally derived observation that the H126-5- and H233-antibody cognitive sites do not overlap, indicate the approximate locations of the epitopes of these neutralizing, surface-reacting, and immune-precipitating monoclonal antibodies. The predicted perturbations in the secondary structure introduced by the amino acid substitutions correlate with the extent of loss of reactivity with monoclonal antibodies in various immunoassays.
Collapse
|
41
|
Mapping of the structural gene of pseudorabies virus glycoprotein A and identification of two non-glycosylated precursor polypeptides. J Virol 1985; 53:52-7. [PMID: 2981362 PMCID: PMC254977 DOI: 10.1128/jvi.53.1.52-57.1985] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell-free translation of pseudorabies virus RNA isolated during the late phase of the infectious cycle yielded a variety of polypeptides. A monoclonal antibody directed against one of the major viral glycoproteins, gA, immunoprecipitated two polypeptides ranging in molecular weight from 78K to 83K. To localize the structural gene for gA, we used cloned BamHI fragments of the viral DNA to select specific mRNA species and immunoprecipitated their in vitro translation products with the anti-gA monoclonal antibody. This allowed us to map the genomic region encoding the mRNA for the gA within the short unique region of the viral genome on BamHI fragments 7 and 12. Additional polypeptides encoded by this region were characterized by their electrophoretic mobility. In three virus strains tested a similar, but strain-specific, pattern of the two gA precursors was found which was not dependent on the host cell or the state of infection after reaching the late phase.
Collapse
|
42
|
Holland LE, Sandri-Goldin RM, Goldin AL, Glorioso JC, Levine M. Transcriptional and genetic analyses of the herpes simplex virus type 1 genome: coordinates 0.29 to 0.45. J Virol 1984; 49:947-59. [PMID: 6199514 PMCID: PMC255557 DOI: 10.1128/jvi.49.3.947-959.1984] [Citation(s) in RCA: 147] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We have constructed a map of the genes encoded by a 23,000-nucleotide-pair region of herpes simplex virus type 1. This region, defined by the three adjacent EcoRI fragments N (map coordinates 0.298 to 0.315), F (0.315 to 0.421), and M (0.421 to 0.448), has previously been shown by genetic analysis to contain the genes for thymidine kinase, nucleocapsid protein p40, glycoprotein B, DNA-binding protein, and DNA polymerase. We report the identification and mapping of RNAs defining 13 viral genes encoded by the region 0.298 to 0.448. The transcriptional pattern shows families of overlapping messages, similar to those observed in other regions of the viral genome. We also isolated mutants representing four distinct complementation groups and physically mapped several of the mutations to regions within EcoRI fragment F by marker rescue. Mutations representing complementation groups 1-9 (glycoprotein B), 1-1 (DNA-binding protein), and 1-3 (DNA polymerase) were mapped to coordinates 0.361 to 0.368 to 0.411, and 0.411 to 0.421, respectively. A fourth previously undefined complementation group was mapped to the region between glycoprotein B and DNA-binding protein. Comparing the transcription mapping with marker rescue data suggests that the genes for glycoprotein B, DNA-binding protein, DNA polymerase, and nucleocapsid protein p40 are expressed as 3.3-, 4.2-, 4.3- or 4.2- or both, and 2.4-kilobase mRNAs, respectively.
Collapse
|