1
|
Choi KY, El-Hamdi N, McGregor A. T cell inducing vaccine against cytomegalovirus immediate early 1 (IE1) protein provides high level cross strain protection against congenital CMV. Vaccine 2024; 42:126357. [PMID: 39298998 DOI: 10.1016/j.vaccine.2024.126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Human cytomegalovirus (HCMV) is a leading cause of congenital disease resulting in cognitive impairment and deafness in newborns. Multiple strains of HCMV enable re-infection and convalescent immunity does not protect against risk of congenital CMV (cCMV). Consequently, a cross strain protective CMV vaccine is a high priority. The guinea pig is the only small animal model for cCMV and species specific guinea pig cytomegalovirus (GPCMV) encodes homolog HCMV viral proteins making it suitable for vaccine studies. Neutralizing antibodies against viral entry glycoprotein complexes and cell free virus are insufficient for complete protection because highly cell associated virus enables evasion. CMV T-cell antigens are important in HCMV convalescent immunity and potentially in reducing the risk of cCMV. Immediate early protein IE1 is essential to HCMV and a T-cell target in humans. In this study, a recombinant defective adenovirus encoding GPCMV IE1 (AdIE1) was evaluated in a preclinical vaccine study. AdIE1 vaccinated animals evoked a T-cell response in a guinea pig IFNγ ELISPOT assay to IE1 (GP123). Vaccinated animals exhibited protection against subcutaneous challenge by GPCMV prototype strain (22122) with viral load substantially reduced compared to the unvaccinated control group and previous Ad based vaccine study against viral pp65 tegument protein. In a vaccine study against cCMV, dams were challenged mid-pregnancy with dual wild type virus strains (22122 and clinical strain TAMYC). At birth, pups were evaluated for viral load in target organs. AdIE1 vaccine had high efficacy against cCMV with GPCMV pup transmission reduced from 92% in the litters of the unvaccinated control group of dams to 23% in the vaccine group resulting in an absence of virus or statistically significant reduction in viral load in pup organs. Overall, IE1 is a more protective T-cell antigen than previously studied pp65 providing cross strain immunity against cCMV in this preclinical model.
Collapse
Affiliation(s)
- K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, Bryan, TX, USA
| | - Nadia El-Hamdi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, Bryan, TX, USA
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, Bryan, TX, USA.
| |
Collapse
|
2
|
Metzler AD, Tang H. Zika Virus Neuropathogenesis-Research and Understanding. Pathogens 2024; 13:555. [PMID: 39057782 PMCID: PMC11279898 DOI: 10.3390/pathogens13070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, is prominently associated with microcephaly in babies born to infected mothers as well as Guillain-Barré Syndrome in adults. Each cell type infected by ZIKV-neuronal cells (radial glial cells, neuronal progenitor cells, astrocytes, microglia cells, and glioblastoma stem cells) and non-neuronal cells (primary fibroblasts, epidermal keratinocytes, dendritic cells, monocytes, macrophages, and Sertoli cells)-displays its own characteristic changes to their cell physiology and has various impacts on disease. Here, we provide an in-depth review of the ZIKV life cycle and its cellular targets, and discuss the current knowledge of how infections cause neuropathologies, as well as what approaches researchers are currently taking to further advance such knowledge. A key aspect of ZIKV neuropathogenesis is virus-induced neuronal apoptosis via numerous mechanisms including cell cycle dysregulation, mitochondrial fragmentation, ER stress, and the unfolded protein response. These, in turn, result in the activation of p53-mediated intrinsic cell death pathways. A full spectrum of infection models including stem cells and co-cultures, transwells to simulate blood-tissue barriers, brain-region-specific organoids, and animal models have been developed for ZIKV research.
Collapse
Affiliation(s)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
3
|
Creisher PS, Klein SL. Pathogenesis of viral infections during pregnancy. Clin Microbiol Rev 2024; 37:e0007323. [PMID: 38421182 PMCID: PMC11237665 DOI: 10.1128/cmr.00073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYViral infections during pregnancy are associated with significant adverse perinatal and fetal outcomes. Pregnancy is a unique immunologic and physiologic state, which can influence control of virus replication, severity of disease, and vertical transmission. The placenta is the organ of the maternal-fetal interface and provides defense against microbial infection while supporting the semi-allogeneic fetus via tolerogenic immune responses. Some viruses, such as cytomegalovirus, Zika virus, and rubella virus, can breach these defenses, directly infecting the fetus and having long-lasting consequences. Even without direct placental infection, other viruses, including respiratory viruses like influenza viruses and severe acute respiratory syndrome coronavirus 2, still cause placental damage and inflammation. Concentrations of progesterone and estrogens rise during pregnancy and contribute to immunological adaptations, placentation, and placental development and play a pivotal role in creating a tolerogenic environment at the maternal-fetal interface. Animal models, including mice, nonhuman primates, rabbits, and guinea pigs, are instrumental for mechanistic insights into the pathogenesis of viral infections during pregnancy and identification of targetable treatments to improve health outcomes of pregnant individuals and offspring.
Collapse
Affiliation(s)
- Patrick S Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Endothelial Cell Infection by Guinea Pig Cytomegalovirus Is a Lytic or Persistent Infection Depending on Tissue Origin but Requires Viral Pentamer Complex and pp65 Tegument Protein. J Virol 2022; 96:e0083122. [PMID: 36000848 PMCID: PMC9472625 DOI: 10.1128/jvi.00831-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The guinea pig is the only small animal model for congenital cytomegalovirus (CMV) but requires species-specific guinea pig cytomegalovirus (GPCMV). Infection of epithelial cells and trophoblasts by GPCMV requires the viral glycoprotein pentamer complex (PC) and endocytic entry because of the absence of platelet-derived growth factor receptor alpha (PDGFRA). Endothelial cells represent an important cell type for infection, dissemination in the host, and disease but have been poorly evaluated for GPCMV. Novel endothelial cell lines were established from animal vascular systems, including aorta (EndoC) and placental umbilical cord vein (GPUVEC). Cell lines were characterized for endothelial cell protein markers (PECAM1, vWF, and FLI1) and evaluated for GPCMV infection. Only PC-positive virus was capable of infecting endothelial cells. Individual knockout mutants for unique PC components (GP129, GP131, and GP133) were unable to infect endothelial cells without impacting fibroblast infection. Ectopic expression of PDGFRA in EndoC cells enabled GPCMV(PC-) infection via direct cell entry independent of the PC. Neutralizing antibodies to the essential viral gB glycoprotein were insufficient to prevent endothelial cell infection, which also required antibodies to gH/gL and the PC. Endothelial cell infection was also dependent upon viral tegument pp65 protein (GP83) to counteract the IFI16/cGAS-STING innate immune pathway, similar to epithelial cell infection. GPCMV endothelial cells were lytically (EndoC) or persistently (GPUVEC) infected dependent on tissue origin. The ability to establish a persistent infection in the umbilical cord could potentially enable sustained and more significant infection of the fetus in utero. Overall, results demonstrate the importance of this translationally relevant model for CMV research. IMPORTANCE Congenital CMV is a leading cause of cognitive impairment and deafness in newborns, and a vaccine is a high priority. The only small animal model for congenital CMV is the guinea pig and guinea pig cytomegalovirus (GPCMV) encoding functional HCMV homolog viral glycoprotein complexes necessary for cell entry that are neutralizing-antibody vaccine targets. Endothelial cells are important in HCMV for human disease and viral dissemination. GPCMV endothelial cell infection requires the viral pentamer complex (PC), which further increases the importance of this complex as a vaccine target, as antibodies to the immunodominant and essential viral glycoprotein gB fail to prevent endothelial cell infection. GPCMV endothelial cell infection established either a fully lytic or a persistent infection, depending on tissue origin. The potential for persistent infection in the umbilical cord potentially enables sustained infection of the fetus in utero, likely increasing the severity of congenital disease.
Collapse
|
5
|
Choi KY, El-Hamdi NS, McGregor A. Cross Strain Protection against Cytomegalovirus Reduces DISC Vaccine Efficacy against CMV in the Guinea Pig Model. Viruses 2022; 14:760. [PMID: 35458490 PMCID: PMC9031936 DOI: 10.3390/v14040760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Congenital cytomegalovirus (CMV) is a leading cause of disease in newborns and a vaccine is a high priority. The guinea pig is the only small animal model for congenital CMV but requires guinea pig cytomegalovirus (GPCMV). Previously, a disabled infectious single cycle (DISC) vaccine strategy demonstrated complete protection against congenital GPCMV (22122 strain) and required neutralizing antibodies to various viral glycoprotein complexes. This included gB, essential for all cell types, and the pentamer complex (PC) for infection of non-fibroblast cells. All GPCMV research has utilized prototype strain 22122 limiting the translational impact, as numerous human CMV strains exist allowing re-infection and congenital CMV despite convalescent immunity. A novel GPCMV strain isolate (designated TAMYC) enabled vaccine cross strain protection studies. A GPCMV DISC (PC+) vaccine (22122 strain) induced a comprehensive immune response in animals, but vaccinated animals challenged with the TAMYC strain virus resulted in sustained viremia and the virus spread to target organs (liver, lung and spleen) with a significant viral load in the salivary glands. Protection was better than natural convalescent immunity, but the results fell short of previous DISC vaccine sterilizing immunity against the homologous 22122 virus challenge, despite a similarity in viral glycoprotein sequences between strains. The outcome suggests a limitation of the current DISC vaccine design against heterologous infection.
Collapse
Affiliation(s)
| | | | - Alistair McGregor
- Department Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX 77807, USA; (K.Y.C.); (N.S.E.-H.)
| |
Collapse
|
6
|
Sevilla‐Montoya R, Hidalgo‐Bravo A, Estrada‐Gutiérrez G, Villavicencio‐Carrisoza O, Leon‐Juarez M, Villegas‐Mota I, Espino‐y‐Sosa S, Monroy‐Muñoz IE, Martinez‐Portilla RJ, Poon LC, Cardona‐Pérez JA, Helguera‐Repetto AC. Evidence of possible SARS-CoV-2 vertical transmission according to World Health Organization criteria in asymptomatic pregnant women. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:900-908. [PMID: 34580942 PMCID: PMC8661610 DOI: 10.1002/uog.24787] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vertical transmission has been investigated extensively. Recently, the World Health Organization (WHO) published strict criteria to classify the timing of mother-to-child transmission of SARS-CoV-2 into different categories. The aim of this study was to investigate the possibility of vertical transmission in asymptomatic SARS-CoV-2-positive women. METHODS Pregnant women attending for delivery at a perinatology center in Mexico City, Mexico, who had a SARS-CoV-2-positive nasopharyngeal swab 24-48 h before delivery, were asymptomatic at the time of the test and had an obstetric indication for Cesarean section were eligible for inclusion in this study. Amniotic fluid was collected during Cesarean delivery, and neonatal oral and rectal swabs were collected at birth and at 24 h after birth. SARS-CoV-2 detection was carried out using real-time reverse-transcription polymerase chain reaction in all samples. Relevant medical information was retrieved from clinical records. The WHO criteria for classifying the timing of mother-to-child transmission of SARS-CoV-2 were applied to the study population. RESULTS Forty-two SARS-CoV-2-positive asymptomatic pregnant women fulfilled the inclusion criteria. Twenty-five (59%) women developed mild disease after discharge. Neonatal death occurred in three (7%) cases, of which one had a positive SARS-CoV-2 test at birth and none had coronavirus disease 2019-related symptoms. There were five (12%) cases with strong evidence of intrauterine transmission of SARS-CoV-2, according to the WHO criteria, as amniotic fluid samples and neonatal samples at birth and at 24 h after birth were positive for SARS-CoV-2. Our results also showed that 40-60% of infected neonates would have been undetected if only one swab (oral or rectal) was tested. CONCLUSION This study contributes evidence to reinforce the potential for vertical transmission of SARS-CoV-2 even in asymptomatic women and highlights the importance of testing more than one neonatal sample in order to increase the detection rate of SARS-CoV-2 in affected cases. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- R. Sevilla‐Montoya
- Department of Genetics and Human GenomicsNational Institute of PerinatologyMexico CityMexico
| | - A. Hidalgo‐Bravo
- Department of Genetics and Genomic MedicineNational Institute of Rehabilitation Luis Guillermo Ibarra IbarraMexico CityMexico
| | - G. Estrada‐Gutiérrez
- Dirección de InvestigaciónInstituto Nacional de Perinatología Isidro Espinosa de los ReyesMexico CityMexico
| | - O. Villavicencio‐Carrisoza
- Departamento de Inmuno‐BioquímicaInstituto Nacional de Perinatología Isidro Espinosa de los ReyesMexico CityMexico
- Programa de posgrado en Biomedicina y Biotecnología MolecularEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalMexico CityMexico
| | - M. Leon‐Juarez
- Departamento de Inmuno‐BioquímicaInstituto Nacional de Perinatología Isidro Espinosa de los ReyesMexico CityMexico
| | - I. Villegas‐Mota
- Unidad de enfermedades infecciosas y epidemiología, Instituto Nacional de Perinatología Isidro Espinosa de los ReyesMexico CityMexico
| | - S. Espino‐y‐Sosa
- Subdirección de Investigación ClínicaInstituto Nacional de Perinatología Isidro Espinosa de los ReyesMexico CityMexico
| | - I. E. Monroy‐Muñoz
- Department of Genetics and Human GenomicsNational Institute of PerinatologyMexico CityMexico
| | - R. J. Martinez‐Portilla
- Subdirección de Investigación ClínicaInstituto Nacional de Perinatología Isidro Espinosa de los ReyesMexico CityMexico
| | - L. C. Poon
- Department of Obstetrics and GynaecologyPrince of Wales Hospital, The Chinese University of Hong KongShatin, Hong Kong SAR
| | - J. A. Cardona‐Pérez
- Dirección General, Instituto Nacional de Perinatología Isidro Espinosa de los ReyesMexico CityMexico
| | - A. C. Helguera‐Repetto
- Departamento de Inmuno‐BioquímicaInstituto Nacional de Perinatología Isidro Espinosa de los ReyesMexico CityMexico
| | | |
Collapse
|
7
|
Choi KY, McGregor A. A Fully Protective Congenital CMV Vaccine Requires Neutralizing Antibodies to Viral Pentamer and gB Glycoprotein Complexes but a pp65 T-Cell Response Is Not Necessary. Viruses 2021; 13:v13081467. [PMID: 34452332 PMCID: PMC8402731 DOI: 10.3390/v13081467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
A vaccine against congenital cytomegalovirus infection is a high priority. Guinea pig cytomegalovirus (GPCMV) is the only congenital CMV small animal model. GPCMV encodes essential glycoprotein complexes for virus entry (gB, gH/gL/gO, gM/gN) including a pentamer complex (gH/gL/GP129/GP131/GP133 or PC) for endocytic cell entry. The cohorts for protection against congenital CMV are poorly defined. Neutralizing antibodies to the viral glycoprotein complexes are potentially more important than an immunodominant T-cell response to the pp65 protein. In GPCMV, GP83 (pp65 homolog) is an evasion factor, and the GP83 mutant GPCMV has increased sensitivity to type I interferon. Although GP83 induces a cell-mediated response, a GP83-only-based vaccine strategy has limited efficacy. GPCMV attenuation via GP83 null deletion mutant in glycoprotein PC positive or negative virus was evaluated as live-attenuated vaccine strains (GP83dPC+/PC-). Vaccinated animals induced antibodies to viral glycoprotein complexes, and PC+ vaccinated animals had sterilizing immunity against wtGPCMV challenge. In a pre-conception vaccine (GP83dPC+) study, dams challenged mid-2nd trimester with wtGPCMV had complete protection against congenital CMV infection without detectable virus in pups. An unvaccinated control group had 80% pup transmission rate. Overall, gB and PC antibodies are key for protection against congenital CMV infection, but a response to pp65 is not strictly necessary.
Collapse
|
8
|
Berkebile ZW, Putri DS, Abrahante JE, Seelig DM, Schleiss MR, Bierle CJ. The Placental Response to Guinea Pig Cytomegalovirus Depends Upon the Timing of Maternal Infection. Front Immunol 2021; 12:686415. [PMID: 34211475 PMCID: PMC8239309 DOI: 10.3389/fimmu.2021.686415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects the placenta, and these placental infections can cause fetal injury and/or demise. The timing of maternal HCMV infection during pregnancy is a determinant of fetal outcomes, but how development affects the placenta's susceptibility to infection, the likelihood of placental injury post-infection, and the frequency of transplacental HCMV transmission remains unclear. In this study, guinea pig cytomegalovirus (GPCMV) was used to model primary maternal infection and compare the effects of infection at two different times on the placenta. When guinea pigs were infected with GPCMV at either 21- or 35-days gestation (dGA), maternal and placental viral loads, as determined by droplet digital PCR, were not significantly affected by the timing of maternal infection. However, when the transcriptomes of gestational age-matched GPCMV-infected and control placentas were compared, significant infection-associated changes in gene expression were only observed after maternal infection at 35 dGA. Notably, transcripts associated with immune activation (e.g. Cxcl10, Ido1, Tgtp1, and Tlr8) were upregulated in the infected placenta. A GPCMV-specific in situ hybridization assay detected rare infected cells in the main placenta after maternal infection at either time, and maternal infection at 35 dGA also caused large areas of GPCMV-infected cells in the junctional zone. As GPCMV infection after mid-gestation is known to cause high rates of stillbirth and/or fetal growth restriction, our results suggest that the placenta becomes sensitized to infection-associated injury late in gestation, conferring an increased risk of adverse pregnancy outcomes after cytomegalovirus infection.
Collapse
Affiliation(s)
- Zachary W. Berkebile
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| | - Dira S. Putri
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| | - Juan E. Abrahante
- Informatics Institute, University of Minnesota, Minneapolis, MN, United States
| | - Davis M. Seelig
- Department of Veterinary Clinical Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Mark R. Schleiss
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| | - Craig J. Bierle
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Guinea pig cytomegalovirus protective T cell antigen GP83 is a functional pp65 homolog for innate immune evasion and pentamer dependent virus tropism. J Virol 2021; 95:JVI.00324-21. [PMID: 33658350 PMCID: PMC8139670 DOI: 10.1128/jvi.00324-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The guinea pig is the only small animal model for congenital CMV but requires species-specific guinea pig cytomegalovirus (GPCMV). Tegument protein GP83 is the presumed homolog of HCMV pp65 but gene duplication in the UL82-UL84 homolog locus in various animal CMV made it unclear if GP83 was a functional homolog. A GP83 null deletion mutant GPCMV (GP83dPC+) generated in the backdrop of glycoprotein pentamer complex (PC) positive virus, required for non-fibroblast infection, had normal growth kinetics on fibroblasts but was highly impaired on epithelial and trophoblast cells. GP83dPC+ virus was highly sensitive to IFN-I suggesting GP83 had an innate immune evasion function. GP83 interacted with cellular DNA sensors guinea pig IFI16 and cGAS indicating a role in the cGAS/STING pathway. Ectopically expressed GP83 in trophoblast cells restored GP83dPC+ virus growth. Additionally, mutant virus growth was restored in epithelial cells by expression of bovine viral diarrhea virus (BVDV) NPRO protein targeting IRF3 as part of the cGAS/STING pathway or alternatively by expression of fibroblast cell receptor PDGFRA. HCMV pp65 is a T cell target antigen and a recombinant adenovirus encoding GP83 was evaluated as a vaccine. In GPCMV challenge studies, vaccinated animals had varying levels of protection against wild type virus with a protective response against 22122 prototype strain but little protection against a novel clinical strain of GPCMV (TAMYC), despite 100% identity in GP83 protein sequences. Overall, GP83 is a functional pp65 homolog with novel importance for epithelial cell infection but a GP83 T cell response provides limited vaccine efficacy.ImportanceCongenital CMV (cCMV) is a leading cause of cognitive impairment and deafness in newborns and a vaccine is a high priority. The guinea pig is the only small animal model for cCMV but requires guinea pig cytomegalovirus (GPCMV). The translational impact of GPCMV research is potentially reduced if the virus does not encode functional HCMV homolog proteins. This study demonstrates that tegument protein GP83 (pp65 homolog) is involved in innate immune evasion and highly important for infection of non-fibroblast cells via the viral glycoprotein pentamer complex (PC)-dependent endocytic entry pathway. The PC pathway is highly significant for virus dissemination and disease in the host, including cCMV. A GP83 candidate Ad-vaccine strategy in animals induced a cell-mediated response but failed to provide cross strain protection against a novel clinical strain of GPCMV. Results suggest that the pp65 antigen provides very limited efficacy as a stand-alone vaccine, especially in cross strain protection.
Collapse
|
10
|
Choi KY, El-Hamdi NS, McGregor A. A trimeric capable gB CMV vaccine provides limited protection against a highly cell associated and epithelial tropic strain of cytomegalovirus in guinea pigs. J Gen Virol 2021; 102. [PMID: 33729125 DOI: 10.1099/jgv.0.001579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple strains of human cytomegalovirus (HCMV) can cause congenital cytomegalovirus (cCMV) by primary or secondary infection. The viral gB glycoprotein is a leading vaccine candidate, essential for infection of all cell-types, and immunodominant antibody target. Guinea pig cytomegalovirus (GPCMV) is the only small animal model for cCMV. Various gB vaccines have shown efficacy but studies have utilized truncated gB and protection against prototype strain 22122 with preferential tropism to fibroblasts despite encoding a gH-based pentamer complex for non-fibroblast infection. A highly cell-associated novel strain of GPCMV (TAMYC) with 99 % identity in gB sequence to 22122 exhibited preferred tropism to epithelial cells. An adenovirus vaccine encoding full-length gB (AdgB) was highly immunogenic and partially protected against 22122 strain challenge in vaccinated animals but not when challenged with TAMYC strain. GPCMV studies with AdgB vaccine sera on numerous cell-types demonstrated impaired neutralization (NA50) compared to fibroblasts. GPCMV-convalescent sera including pentamer complex antibodies increased virus neutralization on non-fibroblasts and anti-gB depletion from GPCMV-convalescent sera had minimal impact on epithelial cell neutralization. GPCMV(PC+) 22122-convalescent animals challenged with TAMYC exhibited higher protection compared to AdgB vaccine. Overall, results suggest that antibody response to both gB and PC are important components of a GPCMV vaccine.
Collapse
Affiliation(s)
- K Yeon Choi
- Dept. Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Nadia S El-Hamdi
- Dept. Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Alistair McGregor
- Dept. Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| |
Collapse
|
11
|
Choi KY, El-Hamdi NS, McGregor A. Convalescent Immunity to Guinea Pig Cytomegalovirus Induces Limited Cross Strain Protection against Re-Infection but High-Level Protection against Congenital Disease. Int J Mol Sci 2020; 21:ijms21175997. [PMID: 32825429 PMCID: PMC7504201 DOI: 10.3390/ijms21175997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
The guinea pig is the only small animal model for congenital cytomegalovirus (cCMV) but requires guinea pig cytomegalovirus (GPCMV). Current GPCMV research utilizes prototype strain 22122, which limits the translational impact of GPCMV as numerous human CMV strains exist and cCMV is possible in the setting of re-infection. A novel strain of GPCMV (TAMYC) exhibited differences to 22122 in various glycoproteins with GP74 (gO homolog) the most variable (25% difference). Antibody ELISAs for TAMYC-convalescent animals evoked similar immune response to viral glycoprotein complexes (gB, gH/gL, gM/gN, pentamer) and cell-mediated response to pp65 homolog (GP83). Convalescent sera from TAMYC-infected animals neutralized GPCMV infection on fibroblasts but was less effective on epithelial cells. TAMYC-convalescent animals were not protected from dissemination of heterogenous virus challenge (22122). However, in a cCMV protection study, TAMYC-convalescent animals challenged mid-pregnancy (22122) exhibited high-level protection against cCMV compared to seronegative animals with pup transmission reduced from 80% (control) to 12%. Overall, pre-existing immunity in guinea pigs provides limited ability to prevent GPCMV re-infection by a different viral strain but provides a high level of protection against cCMV in heterogenous strain challenge. This level of cross protection against cCMV should be a prerequisite of any CMV vaccine.
Collapse
|
12
|
Putri DS, Berkebile ZW, Mustafa HJ, Fernández-Alarcón C, Abrahante JE, Schleiss MR, Bierle CJ. Cytomegalovirus infection elicits a conserved chemokine response from human and guinea pig amnion cells. Virology 2020; 548:93-100. [PMID: 32838950 DOI: 10.1016/j.virol.2020.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Human cytomegalovirus (HCMV) infects the chorioamnion, but whether these infections cause fetal membrane dysfunction remains poorly understood. We sought to assess whether guinea pig cytomegalovirus (GPCMV) infects amnion-derived cells in vitro, compare the inflammatory response of amnion cells to GPCMV and HCMV, and determine if GPCMV infects the amnion in vivo. We found that GPCMV replicates in primary guinea pig amnion derived cells and HPV16 E6/E7-transduced amniotic epithelial cells (AEC[E6/E7]s). HCMV and GPCMV infection of amnion cells increased the transcription of the chemokines CCL5/Ccl5, CXCL8/Cxcl8, and CXCL10/Cxcl10. Myd88-knockdown decreased Ccl5 and Cxc8 transcription in GPCMV-infected AEC[E6/E7]s. GPCMV was detected in the guinea pig amnion after primary maternal infection, revealing that guinea pigs are an appropriate model to study fetal membrane physiology after cytomegalovirus infection. As inflammation is known to cause fetal membrane weakening, the amnion's response to cytomegalovirus infection may cause preterm birth and other adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Dira S Putri
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Zachary W Berkebile
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Hiba J Mustafa
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota, Minneapolis, MN, USA.
| | - Claudia Fernández-Alarcón
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Juan E Abrahante
- Informatics Institute, University of Minnesota, Minneapolis, MN, USA.
| | - Mark R Schleiss
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Craig J Bierle
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Guinea pig cytomegalovirus trimer complex gH/gL/gO uses PDGFRA as universal receptor for cell fusion and entry. Virology 2020; 548:236-249. [PMID: 32791352 DOI: 10.1016/j.virol.2020.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Species-specific guinea pig cytomegalovirus (GPCMV) causes congenital CMV and the virus encodes homolog glycoprotein complexes to human CMV, including gH-based trimer (gH/gL/gO) and pentamer-complex (PC). Platelet-derived growth factor receptor alpha (gpPDGFRA), only present on fibroblast cells, was identified via CRISPR as the putative receptor for PC-independent GPCMV infection. Immunoprecipitation assays demonstrated direct interaction of gH/gL/gO with gpPDGFRA but not in absence of gO. Expression of viral gB also resulted in precipitation of gB/gH/gL/gO/gpPDGFRA complex. Cell-cell fusion assays determined that expression of gpPDGFRA and gH/gL/gO in adjacent cells enabled cell fusion, which was not enhanced by gB. N-linked gpPDGFRA glycosylation inhibition had limited effect and blocking tyrosine kinase (TK) transduction had no impact on infection. Ectopically expressed gpPDGFRA or TK-domain mutant in trophoblast or epithelial cells previously non-susceptible to GPCMV(PC-) enabled viral infection. In contrast, transient human PDGFRA expression did not complement GPCMV(PC-) infection, a potential basis for viral species specificity.
Collapse
|
14
|
Roark HK, Jenks JA, Permar SR, Schleiss MR. Animal Models of Congenital Cytomegalovirus Transmission: Implications for Vaccine Development. J Infect Dis 2020; 221:S60-S73. [PMID: 32134481 PMCID: PMC7057791 DOI: 10.1093/infdis/jiz484] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although cytomegaloviruses (CMVs) are species-specific, the study of nonhuman CMVs in animal models can help to inform and direct research aimed at developing a human CMV (HCMV) vaccine. Because the driving force behind the development of HCMV vaccines is to prevent congenital infection, the animal model in question must be one in which vertical transmission of virus occurs to the fetus. Fortunately, two such animal models-the rhesus macaque CMV and guinea pig CMV-are characterized by congenital infection. Hence, each model can be evaluated in "proof-of-concept" studies of preconception vaccination aimed at blocking transplacental transmission. This review focuses on similarities and differences in the respective model systems, and it discusses key insights from each model germane to the study of HCMV vaccines.
Collapse
Affiliation(s)
- Hunter K Roark
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Choi KY, El-Hamdi NS, McGregor A. Requirements for guinea pig cytomegalovirus tropism and antibody neutralization on placental amniotic sac cells. J Gen Virol 2020; 101:426-439. [PMID: 32068527 DOI: 10.1099/jgv.0.001394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Congenital cytomegalovirus (cCMV) is a leading cause of birth defects. The guinea pig is the only small cCMV animal model. Guinea pig cytomegalovirus (GPCMV) encodes similar glycoprotein complexes to human CMV (HCMV) including gB and the gH-based pentamer complex (PC). In HCMV, both gB and PC are neutralizing antibody antigens. The relevance of GPCMV PC for virus tropism and vaccine target remains controversial. A novel guinea pig placental amniotic sac epithelial (GPASE) cell-line did not express viral cell receptor platelet derived growth factor receptor alpha (PDGFRA) and resulted in requirement for the PC for GPCMV infection unless PDGFRA was ectopically expressed. High titer anti-gB sera from a GPCMV gB vaccine study was evaluated for GPCMV neutralizing capability on GPASE cells in comparison to convalescent sera from GPCMV(PC+) or GPCMV(PC-) infected animals. Anti-gB sera neutralized fibroblast infection but was less effective compared to anti-GPCMV(PC-), which had antibodies to gH/gL. However, both anti-GPCMV(PC-) and anti-gB sera similarly had reduced neutralizing capability on GPASE and renal epithelial cells in comparison to anti-GPCMV(PC+) sera, which had additional antibodies to PC. Overall, results demonstrate the importance of the PC for GPCMV tropism to various cell types that lack PDGFRA expression and the limited ability of anti-gB sera to neutralize GPCMV on non-fibroblast cells despite the essential nature of gB glycoprotein.
Collapse
Affiliation(s)
- K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Nadia S El-Hamdi
- Department of Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, College of Medicine, Texas A&M University, Bryan, TX, USA
| |
Collapse
|
16
|
Neutralizing antibodies to gB based CMV vaccine requires full length antigen but reduced virus neutralization on non-fibroblast cells limits vaccine efficacy in the guinea pig model. Vaccine 2020; 38:2340-2349. [PMID: 32008881 DOI: 10.1016/j.vaccine.2020.01.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Cytomegalovirus is a leading cause of congenital disease and a vaccine is a high priority. The viral gB glycoprotein is essential for infection on all cell types. The guinea pig is the only small animal model for congenital CMV (cCMV), but requires guinea pig cytomegalovirus (GPCMV). Various GPCMV gB vaccine strategies have been investigated but not with a full length protein. Previous GPCMV gB vaccines have failed to fully protect against cCMV, with approximately 50% efficacy. In an effort to define the basis of GPCMV gB based vaccine failure, we evaluated recombinant defective Ad vectors encoding GPCMV gB full length (gBwt), or truncated protein lacking transmembrane domain (gBTMD). Both candidate vaccines evoked high anti-gB titers and neutralized virus infection on fibroblast cells but had varying weaker results on non-fibroblasts (renal epithelial and placental trophoblasts). Non-fibroblast cells are dependent upon the viral pentamer complex (PC) for endocytic pathway cell entry. In contrast, fibroblasts cells that express the viral receptor platelet derived growth factor receptor alpha (PDGFRA) to enable entry by direct cell fusion independent of the PC. Anti-gBwt sera was approximately 2-fold (renal epithelial) to 3-fold (fibroblasts) more effective at neutralizing virus compared to anti-gBTMD sera. Both gB vaccines were weakest against virus neutralization on trophoblasts. Knockout of PDGFRA cell receptor on fibroblast cells (GPKO) rendered virus dependent upon the PC pathway for cell entry and anti-gB GPCMV NA50 was more similar to epithelial cells. In a gBwt vaccine protection study, vaccination of animals significantly reduced, but did not prevent dissemination of wild type GPCMV challenge virus to target organs. Depletion of complement in vivo had limited impact on vaccine efficacy. Overall, a full length gB antigen has the potential to improve neutralizing antibody titer but fails to fully prevent virus dissemination and likely congenital infection.
Collapse
|
17
|
Lee JK, Oh SJ, Park H, Shin OS. Recent Updates on Research Models and Tools to Study Virus-Host Interactions at the Placenta. Viruses 2019; 12:E5. [PMID: 31861492 PMCID: PMC7020004 DOI: 10.3390/v12010005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
The placenta is a unique mixed organ, composed of both maternal and fetal tissues, that is formed only during pregnancy and serves as the key physiological and immunological barrier preventing maternal-fetal transmission of pathogens. Several viruses can circumvent this physical barrier and enter the fetal compartment, resulting in miscarriage, preterm birth, and birth defects, including microcephaly. The mechanisms underlying viral strategies to evade the protective role of placenta are poorly understood. Here, we reviewed the role of trophoblasts and Hofbauer cells in the placenta and have highlighted characteristics of vertical and perinatal infections caused by a wide range of viruses. Moreover, we explored current progress and future opportunities in cellular targets, pathogenesis, and underlying biological mechanisms of congenital viral infections, as well as novel research models and tools to study the placenta.
Collapse
Affiliation(s)
- Jae Kyung Lee
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308 Korea; (J.K.L.); (S.-J.O.)
| | - Soo-Jin Oh
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308 Korea; (J.K.L.); (S.-J.O.)
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Namgu, Daegu 42415, Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308 Korea; (J.K.L.); (S.-J.O.)
| |
Collapse
|
18
|
Inclusion of the Viral Pentamer Complex in a Vaccine Design Greatly Improves Protection against Congenital Cytomegalovirus in the Guinea Pig Model. J Virol 2019; 93:JVI.01442-19. [PMID: 31484753 DOI: 10.1128/jvi.01442-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
A vaccine against congenital cytomegalovirus (cCMV) is a high priority. The guinea pig is a small-animal model for cCMV. A disabled infectious single-cycle (DISC) viral vaccine strain based on a guinea pig cytomegalovirus (GPCMV) capsid mutant was evaluated. A previous version of this vaccine did not express the gH/gL-based pentamer complex (PC) and failed to fully protect against cCMV. The PC is necessary for GPCMV epithelial cell/trophoblast tropism and congenital infection and is a potentially important neutralizing antigen. Here, we show that a second-generation PC-positive (PC+) DISC (DISCII) vaccine induces neutralizing antibodies to the PC and other glycoproteins and a cell-mediated response to pp65 (GP83). Additionally, a CRISPR/Cas9 strategy identified guinea pig platelet-derived growth factor receptor alpha (PDGFRA) to be the receptor for PC-independent infection of fibroblast cells. Importantly, PDGFRA was absent in epithelial and trophoblast cells, which were dependent upon the viral PC for infection. Virus neutralization by DISCII antibodies on epithelial and trophoblast cells was similar to that in sera from wild-type virus-infected animals and dependent in part on PC-specific antibodies. In contrast, sera from PC-negative virus-infected animals poorly neutralized virus on non-fibroblast cells. DISCII-vaccinated animals were protected against congenital infection, in contrast to a nonvaccinated group. The target organs of pups in the vaccine group were negative for wild-type virus, unlike those of pups in the control group, with GPCMV transmission being approximately 80%. Overall, the DISCII vaccine had 97% efficacy against cCMV. The complete protection provided by this PC+ DISC vaccine makes the possibility of the use of this approach against human cCMV attractive.IMPORTANCE Cytomegalovirus (CMV) is a leading cause of congenital disease in newborns, and an effective vaccine remains an elusive goal. The guinea pig is the only small-animal model for cCMV. Guinea pig cytomegalovirus (GPCMV) encodes a glycoprotein pentamer complex (PC) for entry into non-fibroblast cells, including placental trophoblasts, to enable cCMV. As with human cytomegalovirus (HCMV), GPCMV uses a specific cell receptor (PDGFRA) for fibroblast entry, but other receptors are required for non-fibroblast cells. A disabled infectious single-cycle (DISC) GPCMV vaccine strain induced an antibody immune response to the viral pentamer to enhance virus neutralization on non-fibroblast cells, and vaccinated animals were fully protected against cCMV. Inclusion of the PC as part of a vaccine design dramatically improved vaccine efficacy, and this finding underlines the importance of the immune response to the PC in contributing toward protection against cCMV. This vaccine represents an important milestone in the development of a vaccine against cCMV.
Collapse
|
19
|
Alves MP, Vielle NJ, Thiel V, Pfaender S. Research Models and Tools for the Identification of Antivirals and Therapeutics against Zika Virus Infection. Viruses 2018; 10:v10110593. [PMID: 30380760 PMCID: PMC6265910 DOI: 10.3390/v10110593] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Zika virus recently re-emerged and caused global outbreaks mainly in Central Africa, Southeast Asia, the Pacific Islands and in Central and South America. Even though there is a declining trend, the virus continues to spread throughout different geographical regions of the world. Since its re-emergence in 2015, massive advances have been made regarding our understanding of clinical manifestations, epidemiology, genetic diversity, genomic structure and potential therapeutic intervention strategies. Nevertheless, treatment remains a challenge as there is no licensed effective therapy available. This review focuses on the recent advances regarding research models, as well as available experimental tools that can be used for the identification and characterization of potential antiviral targets and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Marco P Alves
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Nathalie J Vielle
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Stephanie Pfaender
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
20
|
Diamond DJ, LaRosa C, Chiuppesi F, Contreras H, Dadwal S, Wussow F, Bautista S, Nakamura R, Zaia JA. A fifty-year odyssey: prospects for a cytomegalovirus vaccine in transplant and congenital infection. Expert Rev Vaccines 2018; 17:889-911. [PMID: 30246580 PMCID: PMC6343505 DOI: 10.1080/14760584.2018.1526085] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION It has been almost fifty years since the Towne strain was used by Plotkin and collaborators as the first vaccine candidate for cytomegalovirus (CMV). While that approach showed partial efficacy, there have been a multitude of challenges to improve on the promise of a CMV vaccine. Efforts have been dichotomized into a therapeutic vaccine for patients with CMV-infected allografts, either stem cells or solid organ, and a prophylactic vaccine for congenital infection. AREAS COVERED This review will evaluate research prospects for a therapeutic vaccine for transplant recipients that recognizes CMV utilizing primarily T cell responses. Similarly, we will provide an extensive discussion on attempts to develop a vaccine to prevent the manifestations of congenital infection, based on eliciting a humoral anti-CMV protective response. The review will also describe newer developments that have upended the efforts toward such a vaccine through the discovery of a second pathway of CMV infection that utilizes an alternative receptor for entry using a series of antigens that have been determined to be important for prevention of infection. EXPERT COMMENTARY There is a concerted effort to unify separate therapeutic and prophylactic vaccine strategies into a single delivery agent that would be effective for both transplant-related and congenital infection.
Collapse
Affiliation(s)
- Don J. Diamond
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Corinna LaRosa
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Flavia Chiuppesi
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Heidi Contreras
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Sanjeet Dadwal
- Department of Medical Specialties, City of Hope National
Medical Center, Duarte, CA
| | - Felix Wussow
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Supriya Bautista
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoetic Cell
Transplantation, City of Hope National Medical Center, Duarte, CA
| | - John A. Zaia
- Center for Gene Therapy, Hematological Malignancy and Stem
Cell Transplantation Institute, City of Hope, Duarte, CA
| |
Collapse
|
21
|
Kumar M, Krause KK, Azouz F, Nakano E, Nerurkar VR. A guinea pig model of Zika virus infection. Virol J 2017; 14:75. [PMID: 28399888 PMCID: PMC5387205 DOI: 10.1186/s12985-017-0750-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Animal models are critical to understand disease and to develop countermeasures for the ongoing epidemic of Zika virus (ZIKV). Here we report that immunocompetent guinea pigs are susceptible to infection by a contemporary American strain of ZIKV. METHODS Dunkin-Hartley guinea pigs were inoculated with 106 plaque-forming units of ZIKV via subcutaneous route and clinical signs were observed. Viremia, viral load in the tissues, anti-ZIKV neutralizing antibody titer, and protein levels of multiple cytokine and chemokines were analyzed using qRT-PCR, plaque assay, plaque reduction neutralization test (PRNT) and multiplex immunoassay. RESULTS Upon subcutaneous inoculation with PRVABC59 strain of ZIKV, guinea pigs demonstrated clinical signs of infection characterized by fever, lethargy, hunched back, ruffled fur, and decrease in mobility. ZIKV was detected in the whole blood and serum using qRT-PCR and plaque assay. Anti-ZIKV neutralizing antibody was detected in the infected animals using PRNT. ZIKV infection resulted in a dramatic increase in protein levels of multiple cytokines, chemokines and growth factors in the serum. ZIKV replication was observed in spleen and brain, with the highest viral load in the brain. This data demonstrate that after subcutaneous inoculation, the contemporary ZIKV strain is neurotropic in guinea pigs. CONCLUSION The guinea pig model described here recapitulates various clinical features and viral kinetics observed in ZIKV-infected patients, and therefore may serve as a model to study ZIKV pathogenesis, including pregnancy outcomes and for evaluation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA.
| | - Keeton K Krause
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA
| | - Francine Azouz
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA
| | - Eileen Nakano
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, 651 Ilalo Street, BSB 320, Honolulu, HI, 96813, USA
| |
Collapse
|
22
|
Pokalyuk C, Renzette N, Irwin KK, Pfeifer SP, Gibson L, Britt WJ, Yamamoto AY, Mussi-Pinhata MM, Kowalik TF, Jensen JD. Characterizing human cytomegalovirus reinfection in congenitally infected infants: an evolutionary perspective. Mol Ecol 2017; 26:1980-1990. [PMID: 27988973 DOI: 10.1111/mec.13953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 12/12/2016] [Indexed: 02/04/2023]
Abstract
Given the strong selective pressures often faced by populations when colonizing a novel habitat, the level of variation present on which selection may act is an important indicator of adaptive potential. While often discussed in an ecological context, this notion is also highly relevant in our clinical understanding of viral infection, in which the novel habitat is a new host. Thus, quantifying the factors determining levels of variation is of considerable importance for the design of improved treatment strategies. Here, we focus on such a quantification of human cytomegalovirus (HCMV) - a virus which can be transmitted across the placenta, resulting in foetal infection that can potentially cause severe disease in multiple organs. Recent studies using genomewide sequencing data have demonstrated that viral populations in some congenitally infected infants diverge rapidly over time and between tissue compartments within individuals, while in other infants, the populations remain highly stable. Here, we investigate the underlying causes of these extreme differences in observed intrahost levels of variation by estimating the underlying demographic histories of infection. Importantly, reinfection (i.e. population admixture) appears to be an important, and previously unappreciated, player. We highlight illustrative examples likely to represent a single-population transmission from a mother during pregnancy and multiple-population transmissions during pregnancy and after birth.
Collapse
Affiliation(s)
- Cornelia Pokalyuk
- Institute for Mathematics, Goethe Universität Frankfurt, Frankfurt am Main, Germany.,Faculty for Mathematics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Nicholas Renzette
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kristen K Irwin
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Susanne P Pfeifer
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Laura Gibson
- Departments of Medicine and Pediatrics, Divisions of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - William J Britt
- Department of Pediatrics, University of Alabama Birmingham, School of Medicine, Birmingham, AL, USA
| | - Aparecida Y Yamamoto
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marisa M Mussi-Pinhata
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jeffrey D Jensen
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
23
|
Choi KY, Root M, McGregor A. A Novel Non-Replication-Competent Cytomegalovirus Capsid Mutant Vaccine Strategy Is Effective in Reducing Congenital Infection. J Virol 2016; 90:7902-19. [PMID: 27334585 PMCID: PMC4988156 DOI: 10.1128/jvi.00283-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Congenital cytomegalovirus (CMV) infection is a leading cause of mental retardation and deafness in newborns. The guinea pig is the only small animal model for congenital CMV infection. A novel CMV vaccine was investigated as an intervention strategy against congenital guinea pig cytomegalovirus (GPCMV) infection. In this disabled infectious single-cycle (DISC) vaccine strategy, a GPCMV mutant virus was used that lacked the ability to express an essential capsid gene (the UL85 homolog GP85) except when grown on a complementing cell line. In vaccinated animals, the GP85 mutant virus (GP85 DISC) induced an antibody response to important glycoprotein complexes considered neutralizing target antigens (gB, gH/gL/gO, and gM/gN). The vaccine also generated a T cell response to the pp65 homolog (GP83), determined via a newly established guinea pig gamma interferon enzyme-linked immunosorbent spot assay. In a congenital infection protection study, GP85 DISC-vaccinated animals and a nonvaccinated control group were challenged during pregnancy with wild-type GPCMV (10(5) PFU). The pregnant animals carried the pups to term, and viral loads in target organs of pups were analyzed. Based on live pup births in the vaccinated and control groups (94.1% versus 63.6%), the vaccine was successful in reducing mortality (P = 0.0002). Additionally, pups from the vaccinated group had reduced CMV transmission, with 23.5% infected target organs versus 75.9% in the control group. Overall, these preliminary studies indicate that a DISC CMV vaccine strategy has the ability to induce an immune response similar to that of natural virus infection but has the increased safety of a non-replication-competent virus, which makes this approach attractive as a CMV vaccine strategy. IMPORTANCE Congenital CMV infection is a leading cause of mental retardation and deafness in newborns. An effective vaccine against CMV remains an elusive goal despite over 50 years of CMV research. The guinea pig, with a placenta structure similar to that in humans, is the only small animal model for congenital CMV infection and recapitulates disease symptoms (e.g., deafness) in newborn pups. In this report, a novel vaccine strategy against congenital guinea pig cytomegalovirus (GPCMV) infection was developed, characterized, and tested for efficacy. This disabled infectious single-cycle (DISC) vaccine strategy induced a neutralizing antibody or a T cell response to important target antigens. In a congenital infection protection study, animals were protected against CMV in comparison to the nonvaccinated group (52% reduction of transmission). This novel vaccine was more effective than previously tested gB-based vaccines and most other strategies involving live virus vaccines. Overall, the DISC vaccine is a safe and promising approach against congenital CMV infection.
Collapse
Affiliation(s)
- K Yeon Choi
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, Texas, USA
| | - Matthew Root
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, Texas, USA
| | - Alistair McGregor
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, Texas, USA
| |
Collapse
|
24
|
A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus. PLoS Pathog 2016; 12:e1005755. [PMID: 27387220 PMCID: PMC4936736 DOI: 10.1371/journal.ppat.1005755] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022] Open
Abstract
In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.
Collapse
|
25
|
Refractory Immune Thrombocytopenic Purpura and Cytomegalovirus Infection: A Call for a Change in the Current Guidelines. Mediterr J Hematol Infect Dis 2016; 8:e2016010. [PMID: 26740871 PMCID: PMC4696470 DOI: 10.4084/mjhid.2016.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/11/2015] [Indexed: 11/21/2022] Open
Abstract
Immune thrombocytopenic purpura (ITP) is characterized by a decreased platelet count caused by excess destruction of platelets and inadequate platelet production. In many cases, the etiology is not known, but the viral illness is thought to play a role in the development of some cases of ITP. The current (2011) American Society of Hematology ITP guidelines recommend initial diagnostic studies to include testing for HIV and Hepatitis C. The guidelines suggest that initial treatment consist of observation, therapy with corticosteroids, IVIG or anti D. Most cases respond to the standard therapy such that the steroids may be tapered and the platelet counts remain at a hemostatically safe level. Some patients with ITP are dependent on long-term steroid maintenance, and the thrombocytopenia persists with the tapering of the steroids. Recent case reports demonstrate that ITP related to cytomegalovirus (CMV) can persist in spite of standard therapy and that antiviral therapy may be indicated. Herein we report a case of a 26-year-old female with persistent ITP that resolved after the delivery of a CMV-infected infant and placenta. Furthermore, we review the current literature on CMV-associated ITP and propose that the current ITP guidelines be amended to include assessment for CMV, even in the absence of signs and symptoms, as part of the work-up for severe and refractory ITP, especially prior to undergoing an invasive procedure such as splenectomy.
Collapse
|
26
|
An Ex vivo culture model for placental cytomegalovirus infection using slices of Guinea pig placental tissue. Placenta 2015; 37:85-8. [PMID: 26625961 DOI: 10.1016/j.placenta.2015.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 01/01/2023]
Abstract
Congenital infection with human cytomegalovirus (CMV) through the placenta is one of the major causes of birth and developmental abnormalities. Guinea pig CMV (GPCMV) causes in utero infection, which makes its animal models useful for studies on congenital diseases. Here, we established an ex vivo culture method for tissue slices prepared from guinea pig placentas and demonstrated that viral spread in the model resembles those in the placenta of GPCMV-infected animals and that the infection is independent of the pentameric glycoprotein complex for endothelial/epithelial cell tropism. Thus, this model affords a useful tool for pathobiological studies on CMV placental infection.
Collapse
|
27
|
Coleman S, Hornig J, Maddux S, Choi KY, McGregor A. Viral Glycoprotein Complex Formation, Essential Function and Immunogenicity in the Guinea Pig Model for Cytomegalovirus. PLoS One 2015; 10:e0135567. [PMID: 26267274 PMCID: PMC4534421 DOI: 10.1371/journal.pone.0135567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Development of a cytomegalovirus (CMV) vaccine is a major public health priority due to the risk of congenital infection. A key component of a vaccine is thought to be an effective neutralizing antibody response against the viral glycoproteins necessary for cell entry. Species specificity of human CMV (HCMV) precludes direct studies in an animal model. The guinea pig is the only small animal model for congenital cytomegalovirus infection. Analysis of the guinea pig CMV (GPCMV) genome indicates that it potentially encodes homologs to the HCMV glycoproteins (including gB, gH, gL, gM, gN and gO) that form various cell entry complexes on the outside of the virus: gCI (gB); gCII (gH/gL/gO); gCIII (gM/gN). The gB homolog (GP55) has been investigated as a candidate subunit vaccine but little is known about the other homolog proteins. GPCMV glycoproteins were investigated by transient expression studies which indicated that homolog glycoproteins to gN and gM, or gH, gL and gO were able to co-localize in cells and generate respective homolog complexes which could be verified by immunoprecipitation assays. ELISA studies demonstrated that the individual complexes were highly immunogenic in guinea pigs. The gO (GP74) homolog protein has 13 conserved N-glycosylation sites found in HCMV gO. In transient expression studies, only the glycosylated protein is detected but in virus infected cells both N-glycosylated and non-glycosylated gO protein were detected. In protein interaction studies, a mutant gO that lacked N-glycosylation sites had no impact on the ability of the protein to interact with gH/gL which indicated a potential alternative function associated with these sites. Knockout GPCMV BAC mutagenesis of the respective glycoprotein genes (GP55 for gB, GP75 for gH, GP115 for gL, GP100 for gM, GP73 for gN and GP74 for gO) in separate reactions was lethal for virus regeneration on fibroblast cells which demonstrated the essential nature of the GPCMV glycoproteins. The gene knockout results were similar to HCMV, except in the case of the gO homolog, which was non-essential in epithelial tropic virus but essential in lab adapted GPCMV. Overall, the findings demonstrate the similarity between HCMV and GPCMV glycoproteins and strengthen the relevance of this model for development of CMV intervention strategies.
Collapse
Affiliation(s)
- Stewart Coleman
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Julia Hornig
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Sarah Maddux
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - K. Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
28
|
Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol 2014; 36:615-25. [PMID: 25291972 DOI: 10.1007/s00281-014-0449-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Despite the considerable clinical impact of congenital human cytomegalovirus (HCMV) infection, the mechanisms of maternal-fetal transmission and the resultant placental and fetal damage are largely unknown. Here, we discuss animal models for the evaluation of CMV vaccines and virus-induced pathology and particularly explore surrogate human models for HCMV transmission and pathogenesis in the maternal-fetal interface. Studies in floating and anchoring placental villi and more recently, ex vivo modeling of HCMV infection in integral human decidual tissues, provide unique insights into patterns of viral tropism, spread, and injury, defining the outcome of congenital infection, and the effect of potential antiviral interventions.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
29
|
Schleiss MR, Choi KY, Anderson J, Mash JG, Wettendorff M, Mossman S, Van Damme M. Glycoprotein B (gB) vaccines adjuvanted with AS01 or AS02 protect female guinea pigs against cytomegalovirus (CMV) viremia and offspring mortality in a CMV-challenge model. Vaccine 2014; 32:2756-62. [PMID: 23867012 PMCID: PMC3894257 DOI: 10.1016/j.vaccine.2013.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 11/19/2022]
Abstract
The transmission of cytomegalovirus (CMV) from mother to fetus can give rise to severe neurodevelopment defects in newborns. One strategy to prevent these congenital defects is prophylactic vaccination in young women. A candidate vaccine antigen is glycoprotein B (gB). This antigen is abundant on the virion surface and is a major target of neutralization responses in human infections. Here, we have evaluated in a challenge model of congenital guinea pig CMV (GPCMV) infection, GPCMV-gB vaccines formulated with the clinically relevant Adjuvant Systems AS01B and AS02V, or with Freund's adjuvant (FA). Fifty-two GPCMV-seronegative female guinea pigs were administered three vaccine doses before being mated. GPCMV-challenge was performed at Day 45 of pregnancy (of an estimated 65 day gestation). Pup mortality rates in the gB/AS01B, gB/AS02V, and gB/FA groups were 24% (8/34), 10% (4/39) and 36% (12/33), respectively, and in the unvaccinated control group was 65% (37/57). Hence, efficacies against pup mortality were estimated at 64%, 84% and 44% for gB/AS01B (p<0.001), gB/AS02V (p<0.001) and gB/FA (p=0.014), respectively. Efficacies against GPCMV viremia (i.e. DNAemia, detected by PCR) were estimated at 88%, 68% and 25% for the same vaccines, respectively, but were only significant for gB/AS01B (p<0.001), and gB/AS02V (p=0.002). In dams with viremia, viral load was approximately 6-fold lower with vaccination than without. All vaccines were highly immunogenic after two and three doses. In light of these results and of other results of AS01-adjuvanted vaccines in clinical development, vaccine immunogenicity was further explored using human CMV-derived gB antigen adjuvanted with either AS01B or the related formulation AS01E. Both adjuvanted vaccines were highly immunogenic after two doses, in contrast to the lower immunogenicity of the unadjuvanted vaccine. In conclusion, the protective efficacy and immunogenicity of adjuvanted vaccines in this guinea pig model are supportive of investigating gB/AS01 and gB/AS02 in the clinic.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, United States.
| | - K Yeon Choi
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, United States.
| | - Jodi Anderson
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, United States.
| | - Janine Gessner Mash
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, United States.
| | | | - Sally Mossman
- GlaxoSmithKline Vaccines, Rue de l'Institut, 89, B-1330 Rixensart, Belgium.
| | - Marc Van Damme
- GlaxoSmithKline Vaccines, Rue de l'Institut, 89, B-1330 Rixensart, Belgium.
| |
Collapse
|
30
|
Schleiss MR, Buus R, Choi KY, McGregor A. An Attenuated CMV Vaccine with a Deletion in Tegument Protein GP83 (pp65 Homolog) Protects against Placental Infection and Improves Pregnancy Outcome in a Guinea Pig Challenge Model. Future Virol 2013; 8:1151-1160. [PMID: 24465269 DOI: 10.2217/fvl.13.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIMS Congenital human cytomegalovirus (HCMV) infection can lead to long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Preconception vaccine strategies relevant to prevention of HCMV-mediated injury to the newborn can be studied in the guinea pig cytomegalovirus (GPCMV) model. The objectives of this study were: 1) to assess in guinea pigs the protective efficacy against congenital infection and disease of a recombinant live, attenuated vaccine with a targeted deletion of the GPCMV homolog of the HCMV pUL83 tegument protein, GP83; and, 2) to compare the extent of placental infection in vaccine and control groups, using an in situ hybridization (ISH) assay. MATERIALS AND METHODS Outbred Hartley guinea pigs were vaccinated prior to pregnancy with a two-dose series of 5×104 pfu of vAM409, a GP83 deletion virus. Deletion of the GP83 gene resulted in an attenuated virus, and vAM409 vaccinated animals did not demonstrate evidence of DNAemia following vaccination, although ELISA antibody responses were comparable to those observed in natural infection. After mating, pregnant animals were challenged with salivary gland-adapted (SG) GPCMV (1×106 pfu) in the second trimester, and pregnancy outcomes were compared to controls. RESULTS Compared to placebo-immunized controls, vaccination resulted in significantly reduced maternal DNAemia following SG challenge, and there was significantly decreased pup mortality in litters born to vaccinated dams (3/29; 10%), compared to control (35/50; 70%; p<0.001). By in situ hybridization study, recovered placentas in the vAM409 vaccine group demonstrated reduced infection and fewer infectious foci compared to the control group. CONCLUSIONS In summary, preconception immunization with a GP83 deletion vaccine reduced maternal DNAemia and results in protection against congenital GPCMV-associated pup mortality compared to unvaccinated controls. Vaccination resulted in reduced placental infection, probably related to the reduction in maternal DNAemia. Although the pp65 homolog in GPCMV, GP83, is a known target of protective T cell immune responses, it is nevertheless dispensable for effective vaccination against maternal and fetal CMV disease in this model.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - Ryan Buus
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - K Yeon Choi
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| | - Alistair McGregor
- University of Minnesota Medical School, Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, 2001 6 Street SE, Minneapolis, MN 55455-3007
| |
Collapse
|
31
|
Schleiss MR. Developing a Vaccine against Congenital Cytomegalovirus (CMV) Infection: What Have We Learned from Animal Models? Where Should We Go Next? Future Virol 2013; 8:1161-1182. [PMID: 24523827 DOI: 10.2217/fvl.13.106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Congenital human cytomegalovirus (HCMV) infection can lead to long-term neurodevelopmental sequelae, including mental retardation and sensorineural hearing loss. Unfortunately, CMVs are highly adapted to their specific species, precluding the evaluation of HCMV vaccines in animal models prior to clinical trials. Several species-specific CMVs have been characterized and developed in models of pathogenesis and vaccine-mediated protection against disease. These include the murine CMV (MCMV), the porcine CMV (PCMV), the rhesus macaque CMV (RhCMV), the rat CMV (RCMV), and the guinea pig CMV (GPCMV). Because of the propensity of the GPCMV to cross the placenta, infecting the fetus in utero, it has emerged as a model of particular interest in studying vaccine-mediated protection of the fetus. In this paper, a review of these various models, with particular emphasis on the value of the model in the testing and evaluation of vaccines against congenital CMV, is provided. Recent exciting developments and advances in these various models are summarized, and recommendations offered for high-priority areas for future study.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota Medical School Center for Infectious Diseases and Microbiology Translational Research Department of Pediatrics Division of Pediatric Infectious Diseases and Immunology 2001 6 Street SE Minneapolis, MN 55455-3007
| |
Collapse
|
32
|
Hashimoto K, Yamada S, Katano H, Fukuchi S, Sato Y, Kato M, Yamaguchi T, Moriishi K, Inoue N. Effects of immunization of pregnant guinea pigs with guinea pig cytomegalovirus glycoprotein B on viral spread in the placenta. Vaccine 2013; 31:3199-205. [PMID: 23684839 DOI: 10.1016/j.vaccine.2013.04.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/24/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) is the most common cause of congenital virus infection. Infection of guinea pigs with guinea pig CMV (GPCMV) can provide a useful model for the analysis of its pathogenesis as well as for the evaluation of vaccines. Although glycoprotein B (gB) vaccines have been reported to reduce the incidence and mortality of congenital infection in human clinical trials and guinea pig animal models, the mechanisms of protection remain unclear. METHODS To understand the gB vaccine protection mechanisms, we analyzed the spread of challenged viruses in the placentas and fetuses of guinea pig dams immunized with recombinant adenoviruses expressing GPCMV gB and β-galactosidase, rAd-gB and rAd-LacZ, respectively. RESULTS Mean body weight of the fetuses in the dams immunized with rAd-LacZ followed by GPCMV challenge 3 weeks after immunization was 78% of that observed for dams immunized with rAd-gB. Under conditions in which congenital infection occurred in 75% of fetuses in rAd-LacZ-immunized dams, only 13% of fetuses in rAd-gB-immunized dams were congenitally infected. The placentas were infected less frequently in the gB-immunized animals. In the placentas of the rAd-LacZ- and rAd-gB-immunized animals, CMV early antigens were detected mainly in the spongiotrophoblast layer. Focal localization of viral antigens in the spongiotrophoblast layer suggests cell-to-cell viral spread in the placenta. In spite of a similar level of antibodies against gB and avidity indices among fetuses in each gB-immunized dam, congenital infection was sometimes observed in a littermate fetus. In such infected fetuses, CMV spread to most organs. CONCLUSIONS Our results suggest that antibodies against gB protected against infection mainly at the interface of the placenta rather than from the placenta to the fetus. The development of strategies to block cell-to-cell viral spread in the placenta is, therefore, required for effective protection against congenital CMV infection.
Collapse
Affiliation(s)
- Kaede Hashimoto
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ross SA, Novak Z, Pati S, Patro RK, Blumenthal J, Danthuluri VR, Ahmed A, Michaels MG, Sánchez PJ, Bernstein DI, Tolan RW, Palmer AL, Britt WJ, Fowler KB, Boppana SB. Mixed infection and strain diversity in congenital cytomegalovirus infection. J Infect Dis 2011; 204:1003-7. [PMID: 21881114 DOI: 10.1093/infdis/jir457] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cytomegalovirus (CMV), the most common cause of congenital infection, exhibits extensive genetic variability. We sought to determine whether multiple CMV strains can be transmitted to the fetus and to describe the distribution of genotypes in the saliva, urine, and blood. METHODS Study subjects consisted of a convenience sampling of 28 infants found to be CMV-positive on newborn screening as part of an ongoing study. Genotyping was performed on saliva specimens obtained during newborn screening and urine, saliva, and blood obtained at a later time point within the first 3 weeks of life. RESULTS Six (21.4%) of the 28 saliva samples obtained within the first 2 days of life contained >1 CMV genotype. Multiple CMV genotypes were found in 39% (5/13) of urine, saliva, and blood samples obtained within the first 3 weeks of life from 13 of the 28 newborns. There was no predominance of a CMV genotype at a specific site; however, 4 infants demonstrated distinct CMV strains in different compartments. CONCLUSIONS Infection with multiple CMV strains occurs in infants with congenital CMV infection. The impact of intrauterine infection with multiple virus strains on the pathogenesis and long-term outcome remains to be elucidated.
Collapse
Affiliation(s)
- Shannon A Ross
- Department of Pediatrics, University of Alabama, Birmingham, AL 35233, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Davey A, Eastman L, Hansraj P, Hemmings DG. Human cytomegalovirus is protected from inactivation by reversible binding to villous trophoblasts. Biol Reprod 2011; 85:198-207. [PMID: 21368297 DOI: 10.1095/biolreprod.110.088567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading cause of congenital disease in the developed world. Transmission of HCMV to the fetus can occur through the villous placenta. Previously, we have shown that although syncytiotrophoblast (ST) can be productively infected, it is more likely that HCMV reaches the fetus through breaks in the ST than through basal release of progeny virus from infected ST. Progeny virus released on the maternal side could interact back with the ST and accumulate. In pregnancy, the organ distribution of disease burden is dramatically shifted, with the placenta reported as a reservoir for some pathogens. Thus, we propose that the ST layer functions as a viral reservoir, where HCMV is harbored and ultimately protected from degradation. Using primary cytotrophoblasts differentiated into an ST culture in vitro and challenged with HCMV, we have defined reversible binding between the virus and trophoblasts that protects the virus from degradation. This is blocked by treatment with low pH and neutralizing intravenous immunoglobulin. This reversible binding likely is to heparan sulfate proteoglycans, because heparin treatment blocks it. Importantly, we show that bound and released virus maintained in culture for at least 48 h results from inoculum and not progeny virus. Thus, the placenta has the potential to accumulate a relatively high steady-state level of virus within the intervillous space resulting from localized binding and release at the ST. A better understanding of the molecular interactions between HCMV and ST will provide insights regarding interventions to prevent or minimize congenital transmission.
Collapse
Affiliation(s)
- Ashley Davey
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
35
|
Cordier AG, Nedellec S, Benachi A, Frydman R, Picone O. [Arguments for an infectious cause of IUGR]. ACTA ACUST UNITED AC 2011; 40:109-15. [PMID: 21345623 DOI: 10.1016/j.jgyn.2011.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/17/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Intra-uterine growth retardation (IUGR) is a frequent cause of consultation in antenatal care unit. The prognosis relies on the etiology: vascular, chromosomic, genetic, or infectious. Because of chronic fetal distress, hypotrophy increase morbidity, mortality and neurosensorial long term effect. Usually, infection is involved in 5 to 15% of the IUGR, mainly by Cytomegalovirus (CMV), Varicella Zoster virus, rubella, toxoplasmosis, herpes and syphilis. Maternal sera and amniotic liquid analysis make the diagnosis possible but fetal ultrasound scan is used to find other features. Most of the abnormalities are unspecific but their combination can worsen fetal prognosis. Infection should always be ruled out in the assessment of IUGR.
Collapse
|
36
|
Oral hexadecyloxypropyl-cidofovir therapy in pregnant guinea pigs improves outcome in the congenital model of cytomegalovirus infection. Antimicrob Agents Chemother 2010; 55:35-41. [PMID: 21078944 DOI: 10.1128/aac.00971-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytomegalovirus (CMV) infection is the leading cause of congenital infection, producing both sensorineural hearing loss and mental retardation. We evaluated the in vivo efficacy of an orally bioavailable analog of cidofovir, hexadecyloxypropyl-cidofovir (HDP-CDV), against guinea pig CMV (GPCMV) in a guinea pig model of congenital CMV infection. HDP-CDV exhibited antiviral activity against GPCMV with a 50% effective concentration (EC(50)) of 0.004 μM ± 0.001 μM. To evaluate in vivo efficacy, pregnant Hartley guinea pigs were inoculated with GPCMV during the late second/early third trimester of gestation. Animals were administered 20 mg HDP-CDV/kg body weight orally at 24 h postinfection (hpi) and again at 7 days postinfection (dpi) or administered 4 mg/kg HDP-CDV orally each day for 5 days or 9 days. Virus levels in dam and pup tissues were evaluated following delivery, or levels from dam, placenta, and fetal tissues were evaluated following sacrifice of dams at 10 dpi. All HDP-CDV regimens significantly improved pup survival, from 50 to 60% in control animals to 93 to 100% in treated animals (P ≤ 0.019). Treatment with 20 mg/kg HDP-CDV significantly reduced the viral load in pup spleen (P = 0.017) and liver (P = 0.029). Virus levels in the placenta were significantly reduced at 10 dpi following daily treatment with 4 mg/kg HDP-CDV for 5 or 9 days. The 9-day treatment also significantly reduced the viral levels in the dam spleen and liver. Although the 4-mg/kg treatment improved pup survival, virus levels in the fetal tissues were similar to those in control tissues. Taken together, HDP-CDV shows potential as a well-tolerated antiviral candidate for treatment of congenital human CMV (HCMV) infection.
Collapse
|
37
|
Cordier AG, Vauloup-Fellous C, Picone O. [Is maternal infection with cytomegalovirus prevention possible?]. ACTA ACUST UNITED AC 2010; 38:620-3. [PMID: 20884272 DOI: 10.1016/j.gyobfe.2010.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/28/2010] [Indexed: 11/18/2022]
Abstract
Cytomegalovirus (CMV) is the most frequent cause of congenital viral infection in developed countries. Vaccines are currently under development and antiviral treatment or passive immunizations for pregnant women with CMV primary infection are about to be evaluated in randomized trials. However, as it has been shown in few studies, preventing transmission through behavioral changes could be, at the moment, the most effective and inexpensive way to decrease risk of CMV infection during pregnancy. Despite difficulties, such counseling programs deserve to be established.
Collapse
|
38
|
Schleiss MR, McVoy MA. Guinea Pig Cytomegalovirus (GPCMV): A Model for the Study of the Prevention and Treatment of Maternal-Fetal Transmission. Future Virol 2010; 5:207-217. [PMID: 23308078 DOI: 10.2217/fvl.10.8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A major public health challenge today is the problem of congenital cytomegalovirus (CMV) transmission. Maternal-fetal CMV infections are common, occurring in 0.5-2% of pregnancies, and these infections often lead to long-term injury of the newborn infant. In spite of the well-recognized burden that these infections place on society, there are as yet no clearly established interventions available to prevent transmission of CMV. In order to study potential interventions, such as vaccines or antiviral therapies, an animal model of congenital CMV transmission is required. The best small animal model of CMV transmission is the guinea pig cytomegalovirus (GPCMV) model. This article summarizes the GPCMV model, putting it into the larger context of how studies in this system have relevance to human health. An emphasis is placed on how the vertical transmission of GPCMV recapitulates the pathogenesis of congenital CMV in infants, making this a uniquely well-suited model for the study of potential CMV vaccines.
Collapse
Affiliation(s)
- Mark R Schleiss
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6 Street SE, Minneapolis, MN 55455,
| | | |
Collapse
|
39
|
Muller WJ, Jones CA, Koelle DM. Immunobiology of herpes simplex virus and cytomegalovirus infections of the fetus and newborn. ACTA ACUST UNITED AC 2010; 6:38-55. [PMID: 20467462 DOI: 10.2174/157339510790231833] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immunologic "immaturity" is often blamed for the increased susceptibility of newborn humans to infection, but the precise mechanisms and details of immunologic development remain somewhat obscure. Herpes simplex virus (HSV) and cytomegalovirus (CMV) are two of the more common severe infectious agents of the fetal and newborn periods. HSV infection in the newborn most commonly occurs after exposure to the virus during delivery, and can lead to a spectrum of clinical disease ranging from isolated skin-eye-mucous membrane infection to severe disseminated multiorgan disease, often including encephalitis. In contrast to HSV, clinically severe CMV infections early in life are usually acquired during the intrauterine period. These infections can result in a range of clinical disease, including hearing loss and neurodevelopmental delay. However, term newborns infected with CMV after delivery are generally asymptomatic, and older children and adults often acquire infection with HSV or CMV with either no or mild clinical symptoms. The reasons for these widely variable clinical presentations are not completely understood, but likely relate to developmental differences in immune responses.This review summarizes recent human and animal studies of the immunologic response of the fetus and newborn to these two infections, in comparison to the responses of older children and adults. The immunologic defense of the newborn against each virus is considered under the broader categories of (i) the placental barrier to infection, (ii) skin and mucosal barriers (including antimicrobial peptides), (iii) innate responses, (iv) humoral responses, and (v) cellular responses. A specific focus is made on recent studies of innate and cellular immunity to HSV and CMV.
Collapse
Affiliation(s)
- William J Muller
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
40
|
Abstract
Congenital cytomegalovirus (CMV) infection is a significant cause of brain disorders, such as microcephaly, mental retardation, hearing loss and visual disorders in humans. The type and severity of brain disorder may be dependent on the stage of embryonic development when the congenital infection occurs. Developmental disorders may be associated with the type of embryonic cells to which CMV is susceptible and the effects of the infection on the cellular functions of these cells. Early murine embryos, including embryonic stem (ES) cells, are not susceptible to CMV infection. A part of the embryonic cells acquire susceptibility during early development. Mesenchymal cells are the targets of infection at midgestation, affecting organogenesis of the brain, eyes and oral-facial regions. In contrast to ES cells, neural stem progenitor cells (NSPC) from fetal brains are susceptible to murine CMV (MCMV) infection. The viral infection inhibits proliferation and differentiation of the NSPC to neuronal and glial cells in addition to induction of neuronal cell loss. These cellular events may cause brain malformations, such as microcephaly and polymicrogyria. Furthermore, MCMV persists in neuronal cells in developing brains, presumably resulting in neuronal dysfunction.
Collapse
|
41
|
A live guinea pig cytomegalovirus vaccine deleted of three putative immune evasion genes is highly attenuated but remains immunogenic in a vaccine/challenge model of congenital cytomegalovirus infection. Vaccine 2009; 27:4209-18. [PMID: 19389443 DOI: 10.1016/j.vaccine.2009.04.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/09/2009] [Accepted: 04/13/2009] [Indexed: 12/29/2022]
Abstract
Live attenuated vaccines for prevention of congenital cytomegalovirus infections encode numerous immune evasion genes. Their removal could potentially improve vaccine safety and efficacy. To test this hypothesis, three genes encoding MHC class I homologs (presumed NK evasins) were deleted from the guinea pig cytomegalovirus genome and the resulting virus, 3DX, was evaluated as a live attenuated vaccine in the guinea pig congenital infection model. 3DX was attenuated in vivo but not in vitro. Vaccination with 3DX produced elevated cytokine levels and higher antibody titers than wild type (WT) virus while avidity and neutralizing titers were similar. Protection, assessed by maternal viral loads and pup mortality following pathogenic viral challenge during pregnancy, was comparable between 3DX and WT and significant compared to naïve animals. These results suggest that the safety and perhaps efficacy of live attenuated human cytomegalovirus vaccines could be enhanced by deletion of viral immunomodulatory genes.
Collapse
|
42
|
Santhanakrishnan M, Ray K, Oppenheimer K, Bonney EA. Dynamic regulation of alpha-dystroglycan in mouse placenta. Placenta 2008; 29:932-6. [PMID: 18930541 DOI: 10.1016/j.placenta.2008.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/26/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
Alpha dystroglycan (alpha-DG) is a peripheral membrane protein important in cellular interaction with other cells and the extracellular matrix. Recent data suggests that the Dag1 gene, which encodes alpha-DG, is important for implantation. In addition to its importance in cellular function, alpha-DG also serves as a cellular receptor for members of the arenaviridae family of viruses, which can cause placental infection. Because of its apparent dual role in implantation and its role as a viral receptor, we sought to determine placental and uterine alpha-DG expression during mouse pregnancy. Dag1 is expressed throughout gestation in the placenta and to a lesser extent in the uterus, with the highest levels in early gestation. By Western blot analysis, the glycosylated protein is also expressed and the pattern of glycosylation changes to favor the most highly glycosylated forms at mid gestation. These data support the idea that alpha-DG may be a target for evolutionary host-pathogen interactions at the maternal-fetal interface.
Collapse
Affiliation(s)
- M Santhanakrishnan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
43
|
Britt W. Manifestations of human cytomegalovirus infection: proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol 2008; 325:417-70. [PMID: 18637519 DOI: 10.1007/978-3-540-77349-8_23] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Infections with human cytomegalovirus (HCMV) are a major cause of morbidity and mortality in humans with acquired or developmental deficits in innate and adaptive immunity. In the normal immunocompetent host, symptoms rarely accompany acute infections, although prolonged virus shedding is frequent. Virus persistence is established in all infected individuals and appears to be maintained by both a chronic productive infections as well as latency with restricted viral gene expression. The contributions of the each of these mechanisms to the persistence of this virus in the individual is unknown but frequent virus shedding into the saliva and genitourinary tract likely accounts for the near universal incidence of infection in most populations in the world. The pathogenesis of disease associated with acute HCMV infection is most readily attributable to lytic virus replication and end organ damage either secondary to virus replication and cell death or from host immunological responses that target virus-infected cells. Antiviral agents limit the severity of disease associated with acute HCMV infections, suggesting a requirement for virus replication in clinical syndromes associated with acute infection. End organ disease secondary to unchecked virus replication can be observed in infants infected in utero, allograft recipients receiving potent immunosuppressive agents, and patients with HIV infections that exhibit a loss of adaptive immune function. In contrast, diseases associated with chronic or persistent infections appear in normal individuals and in the allografts of the transplant recipient. The manifestations of these infections appear related to chronic inflammation, but it is unclear if poorly controlled virus replication is necessary for the different phenotypic expressions of disease that are reported in these patients. Although the relationship between HCMV infection and chronic allograft rejection is well known, the mechanisms that account for the role of this virus in graft loss are not well understood. However, the capacity of this virus to persist in the midst of intense inflammation suggests that its persistence could serve as a trigger for the induction of host-vs-graft responses or alternatively host responses to HCMV could contribute to the inflammatory milieu characteristic of chronic allograft rejection.
Collapse
Affiliation(s)
- W Britt
- Department of Pediatrics, University of Alabama School of Medicine, Childrens Hospital, Harbor Bldg. 104, 1600 7th Ave. South Birmingham, AL 35233, USA.
| |
Collapse
|
44
|
Abstract
Cytomegalovirus (CMV) is the most significant infectious cause of brain disorders in humans. Although the brain is the principal target organ for CMV infection in infants with congenital infection and in immunocompromised patients, little has been known about cellular events in pathogenesis of the brain disorders. Mouse models have been developed by the authors for studying the cell tropism, infectious dynamics of CMV infection and the effects of CMV infection on proliferation, regeneration and differentiation of neural cells. It has been shown, using brain slice cultures and neurospheres, that neural stem progenitor (NSP) cells are the most susceptible to CMV infection in developing brains. The NSP cells are also susceptible to CMV infection in adult and aged brains. The susceptibility can be enhanced by stimulation of neurogenesis. It was shown that latent murine CMV infection occurs in NSP cells by demonstrating the reactivation in brain slice culture or neurospheres. It is hypothesized that CMV brain disorder such as microcephaly is caused by disturbance of cellular events in the ventricular regions, including proliferation and differentiation of the neural stem cells, whereas neurons are also targets in persistent CMV infection, presumably resulting in functional disorders such as mental retardation.
Collapse
|
45
|
Cui X, McGregor A, Schleiss MR, McVoy MA. Cloning the complete guinea pig cytomegalovirus genome as an infectious bacterial artificial chromosome with excisable origin of replication. J Virol Methods 2008; 149:231-9. [PMID: 18359520 DOI: 10.1016/j.jviromet.2008.01.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 01/05/2023]
Abstract
Congenital human cytomegalovirus infections are the major infectious cause of birth defects in the United States. How this virus crosses the placenta and causes fetal disease is poorly understood. Guinea pig cytomegalovirus (GPCMV) is a related virus that provides an important model for studying cytomegaloviral congenital transmission and pathogenesis. In order to facilitate genetic analysis of GPCMV, the 232kb GPCMV genome was cloned as an infectious bacterial artificial chromosome (BAC). The BAC vector sequences were flanked by LoxP sites to allow efficient excision using Cre recombinase. All initial clones contained spontaneous deletions of viral sequences and reconstituted mutant viruses with impaired growth kinetics in vitro. The deletions in one BAC were repaired using Escherichia coli genetics. The resulting repaired BAC reconstituted a virus with in vitro replication kinetics identical to the wild type parental virus; moreover, its genome was indistinguishable from that of the wild type parental virus by restriction pattern analysis using multiple restriction enzymes. These results suggest that the repaired BAC is an authentic representation of the complete GPCMV genome. It should provide a valuable tool for evaluating the impact of genetic modifications on the safety and efficacy of live attenuated vaccines and for identifying genes important for congenital transmission and fetal disease.
Collapse
Affiliation(s)
- Xiaohong Cui
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, P.O. Box 980163, Richmond, VA, 23298-0163, United States
| | | | | | | |
Collapse
|
46
|
Expression of the human cytomegalovirus UL97 gene in a chimeric guinea pig cytomegalovirus (GPCMV) results in viable virus with increased susceptibility to ganciclovir and maribavir. Antiviral Res 2008; 78:250-9. [PMID: 18325607 DOI: 10.1016/j.antiviral.2008.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 11/21/2022]
Abstract
In lieu of a licensed vaccine, antivirals are being considered as an intervention to prevent congenital human cytomegalovirus (HCMV) infection. Ideally, antiviral therapies should undergo pre-clinical evaluation in an animal model prior to human use. Guinea pig cytomegalovirus (GPCMV) is the only small animal model for congenital CMV. However, GPCMV is not susceptible to the most commonly used HCMV antiviral, ganciclovir (GCV), rendering in vivo study of this agent problematic in the guinea pig model. Human cytomegalovirus (HCMV) susceptibility to GCV is linked to the UL97 gene. We hypothesized that GPCMV susceptibility to GCV could be improved by inserting the HCMV (Towne) UL97 gene into the GPCMV genome in place of the homolog, GP97. A chimeric GPCMV (GPCMV::UL97) expressed UL97 protein, and replicated efficiently in cell culture, with kinetics similar to wild-type GPCMV. In contrast, deletion of GP97 resulted in a virus (GPCMVdGP97) that grew poorly in culture. GPCMV::UL97 had substantially improved susceptibility to the inhibitory effects of GCV in comparison to wild-type GPCMV. Additionally, GPCMV::UL97 exhibited improved susceptibility to another antiviral undergoing clinical trials, maribavir (MBV; benzimidazole riboside 1263W94), which also acts through UL97.
Collapse
|
47
|
Woolf NK, Jaquish DV, Koehrn FJ. Transplacental murine cytomegalovirus infection in the brain of SCID mice. Virol J 2007; 4:26. [PMID: 17349048 PMCID: PMC1838414 DOI: 10.1186/1743-422x-4-26] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 03/09/2007] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Congenital cytomegalovirus (CMV) infection is the most common congenital viral infection in humans and the major nonhereditary cause of central nervous system (CNS) developmental disorders. Previous attempts to develop a murine CMV (MCMV) model of natural congenital human CMV (HCMV) infection have failed because MCMV does not cross the placenta in immunocompetent mice. RESULTS In marked contrast with immunocompetent mice, C.B-17 SCID (severe combined immunodeficient) mice were found to be highly susceptible to natural MCMV transplacental transmission and congenital infection. Timed-pregnant SCID mice were intraperitoneally (IP) injected with MCMV at embryonic (E) stages E0-E7, and vertical MCMV transmission was evaluated using nested polymerase chain reaction (nPCR), in situ hybridization (ISH) and immunohistochemical (IHC) assays. SCID mouse dams IP injected at E0 with 102 PFU of MCMV died or resorbed their fetuses by E18. Viable fetuses collected at E18 from SCID mice IP injected with 102-104 PFU of MCMV at E7 did not demonstrate vertical MCMV transmission. Notably, transplacental MCMV transmission was confirmed in E18 fetuses from SCID mice IP injected with 103 PFU of MCMV at stages E3-E5. The maximum rate of transplacental MCMV transmission (53%) at E18 occurred when SCID mouse dams were IP injected with 103 PFU of MCMV at E4. Congenital infection was confirmed by IHC immunostaining of MCMV antigens in 26% of the MCMV nPCR positive E18 fetuses. Transplacental MCMV transmission was associated with intrauterine growth retardation and microcephaly. Additionally, E18 fetuses with MCMV nPCR positive brains had cerebral interleukin-1alpha (IL-1alpha) expression significantly upregulated and cerebral IL-1 receptor II (IL-1RII) transcription significantly downregulated. However, MCMV-induced changes in cerebral cytokine expression were not associated with any histological signs of MCMV infection or inflammation in the brain. CONCLUSION Severe T- and B-cell immunodeficiencies in SCID mice significantly enhance the rate of natural MCMV transplacental transmission and congenital infection. During gestation MCMV exhibits a tissue tropism for the developing brain, and vertical MCMV transmission is correlated with fetal growth retardation and abnormal cerebral proinflammatory cytokine expression. These data confirm that natural vertical MCMV infection in SCID mice constitutes a useful new experimental rodent model of congenital HCMV infection.
Collapse
Affiliation(s)
- Nigel K Woolf
- Departments of Surgery/Anatomy, University of California Medical School at San Diego Life, 9500 Gilman Drive, La Jolla, CA 92093-0604, USA
- Department of Surgery, Veterans Affairs Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, La Jolla, CA 92161, USA
| | - Dawn V Jaquish
- Departments of Surgery/Anatomy, University of California Medical School at San Diego Life, 9500 Gilman Drive, La Jolla, CA 92093-0604, USA
- Department of Surgery, Veterans Affairs Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, La Jolla, CA 92161, USA
| | - Fred J Koehrn
- Departments of Surgery/Anatomy, University of California Medical School at San Diego Life, 9500 Gilman Drive, La Jolla, CA 92093-0604, USA
- Department of Surgery, Veterans Affairs Research Service, VA San Diego Healthcare System, 3350 La Jolla Village Drive, La Jolla, CA 92161, USA
| |
Collapse
|
48
|
Katano H, Sato Y, Tsutsui Y, Sata T, Maeda A, Nozawa N, Inoue N, Nomura Y, Kurata T. Pathogenesis of cytomegalovirus-associated labyrinthitis in a guinea pig model. Microbes Infect 2006; 9:183-91. [PMID: 17208485 DOI: 10.1016/j.micinf.2006.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/08/2006] [Accepted: 11/10/2006] [Indexed: 11/22/2022]
Abstract
Cytomegalovirus infects fetuses through the placenta, resulting in various congenital disorders in newborns, including hearing loss. We developed a monoclonal antibody to guinea pig cytomegalovirus (GPCMV) that was available for immunohistochemistry, and investigated the expression of the GPCMV antigen in animal models of direct and congenital infections. Injection of GPCMV, directly to the inner ear, increased the sound pressure level and resulted in labyrinthitis with severe inflammation. Immunohistochemistry detected GPCMV-infected cells mainly in the scala tympani, scala vestibule and spinal ganglion, but rarely in the cochlear duct. Injection of GPCMV to 5-week pregnant guinea pigs resulted in severe labyrinthitis in fetuses. Immunohistochemistry detected GPCMV-infected cells in the perilymph area and spinal ganglion, but not in the endolymph area, including hair cells. These data suggest that the virus spreads via the perilymph and neural routes in the inner ear of both models of direct and congenital infections.
Collapse
Affiliation(s)
- Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Protection against congenital cytomegalovirus (CMV) disease, conferred by a replication-disabled, bacterial artificial chromosome (BAC)-based DNA vaccine. Vaccine 2006; 24:6175-86. [PMID: 16879902 DOI: 10.1016/j.vaccine.2006.06.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/30/2006] [Accepted: 06/23/2006] [Indexed: 11/28/2022]
Abstract
It is unclear if protective immunity can be conferred by a cytomegalovirus (CMV) vaccine encoding a single protein subunit, or if multiple viral genes need to be targeted. Using the guinea pig model of congenital CMV infection, these studies examined the immunogenicity and efficacy of a DNA vaccine based on the guinea pig cytomegalovirus (GPCMV) genome cloned as a non-infectious BAC plasmid, modified by transposon insertion into the homolog of the HCMV tegument protein, UL48. Following vaccination of female Hartley guinea pigs with BAC DNA, adverse GPCMV-related pregnancy outcome were assessed after establishment of pregnancy, followed by GPCMV third-trimester challenge. Animals immunized with recombinant BACmid engendered anti-GPCMV antibodies by ELISA assay. Immunogenicity of BAC plasmid DNA was augmented by inclusion of the lipid adjuvant, DOTMA/DOPE, in the vaccine regimen. Among pups born to 12 control (sham-immunized) dams challenged with GPCMV in the third trimester, mortality was 23/35 (66%). In contrast, among evaluable pregnancy outcomes in pups born to 10 BAC-immunized pregnant dams, preconception immunization resulted in reduced pup mortality, to 10/34 pups (29%; p<0.005 versus control, Fisher's exact test). In addition, vaccinated dams had reduced viral load, compared to controls, as assessed by quantitative, real-time PCR.
Collapse
|
50
|
Schleiss MR, Heineman TC. Progress toward an elusive goal: current status of cytomegalovirus vaccines. Expert Rev Vaccines 2006; 4:381-406. [PMID: 16026251 DOI: 10.1586/14760584.4.3.381] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although infection with human cytomegalovirus (CMV) is ubiquitous and generally asymptomatic in most individuals, certain patient populations are at high risk for CMV-associated disease. These include HIV-infected individuals with AIDS, transplant patients, and newborn infants with congenital CMV infection. Immunity to CMV infection, both in the transplant setting and among women of childbearing age, plays a vital role in the control of CMV-induced injury and disease. Although immunity induced by CMV infection is not completely protective against reinfection, there is nevertheless a sound basis on which to believe that vaccination could help control CMV disease in high-risk patient populations. Evidence from several animal models of CMV infection indicates that a variety of vaccine strategies are capable of inducing immune responses sufficient to protect against CMV-associated illness following viral challenge. Vaccination has also proven effective in improving pregnancy outcomes following CMV challenge of pregnant guinea pigs, providing a 'proof-of-principle' relevant to human clinical trials of CMV vaccines. Although there are no licensed vaccines currently available for human CMV, progress toward this goal has been made, as evidenced by ongoing clinical trial testing of a number of immunization strategies. CMV vaccines currently in various stages of preclinical and clinical testing include: protein subunit vaccines; DNA vaccines; vectored vaccines using viral vectors, such as attenuated pox- and alphaviruses; peptide vaccines; and live attenuated vaccines. This review summarizes some of the obstacles that must be overcome in development of a CMV vaccine, and provides an overview of the current state of preclinical and clinical trial evaluation of vaccines for this important public health problem.
Collapse
Affiliation(s)
- Mark R Schleiss
- University of Minnesota School of Medicine, 420 Delaware Street SE, MMC 296, Minneapolis, MN 55455, USA.
| | | |
Collapse
|