1
|
Radukic MT, Le DT, Krassuski T, Borchert P, Leach DRF, Müller KM. Degradation and stable maintenance of adeno-associated virus inverted terminal repeats in E. coli. Nucleic Acids Res 2025; 53:gkae1170. [PMID: 39657764 PMCID: PMC11754738 DOI: 10.1093/nar/gkae1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Current plasmid propagation in E. coli compromises large inverted repeats, such as inverted terminal repeats (ITRs) of adeno-associated virus (AAV). Direct long-read sequencing analyses upon varying strains and culture conditions revealed ITR instability caused by a slipped misalignment mechanism, although other mechanism probably contribute. ITRs stabilized in absence of SbcC, which is part of the SbcCD nuclease complex, a human Mre11-Rad50 homolog, or at elevated growth temperatures (e.g. 42°C), with a combination being optimal. Resulting full ITR transgene plasmids improved rAAV yield and purity in HEK-293 productions. The findings advance plasmid biology, cloneable sequences and therapeutic AAV manufacturing.
Collapse
Affiliation(s)
- Marco T Radukic
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - Dinh To Le
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - Timo Krassuski
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - Philipp Borchert
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - David R F Leach
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Kristian M Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| |
Collapse
|
2
|
Zhong G, Liu W, Venkatesan JK, Wang D, Madry H, Cucchiarini M. Autologous transplantation of mitochondria/rAAV IGF-I platforms in human osteoarthritic articular chondrocytes to treat osteoarthritis. Mol Ther 2024:S1525-0016(24)00847-5. [PMID: 39741406 DOI: 10.1016/j.ymthe.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Despite various available treatments, highly prevalent osteoarthritis (OA) cannot be cured in patients. In light of evidence showing mitochondria dysfunction during the disease progression, our goal was to develop a novel therapeutic concept based on the transplantation of mitochondria as a platform to deliver recombinant adeno-associated virus (rAAV) gene vectors with potency for OA. For the first time, to our best knowledge, we report the successful creation of a safe mitochondria/rAAV system effectively promoting the overexpression of a candidate insulin-like growth factor I (IGF-I) by administration to autologous human osteoarthritic articular chondrocytes versus control conditions (reporter mitochondria/rAAV lacZ system, rAAV-free system, absence of mitochondria transplantation; up to 8.4-fold difference). The candidate mitochondria/rAAV IGF-I system significantly improved key activities in the transplanted cells (proliferation/survival, extracellular matrix production, mitochondria functions) relative to the control conditions (up to a 9.5-fold difference), including when provided in a pluronic F127 (PF127) hydrogel for reinforced delivery (up to a 5.9-fold difference). Such effects were accompanied by increased levels of cartilage-specific SOX9 and Mfn-1 (mitochondria fusion) and decreased levels of Drp-1 (mitochondria fission) and proinflammatory tumor necrosis factor alpha (TNF-α; up to 4.5-fold difference). This study shows the potential of combining the use of mitochondria with rAAV as a promising approach for human OA.
Collapse
Affiliation(s)
- Gang Zhong
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Dan Wang
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, 66421 Homburg/Saar, Germany.
| |
Collapse
|
3
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024; 32:4185-4207. [PMID: 39489915 PMCID: PMC11638839 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Stehle M, Amini M, Venkatesan JK, Liu W, Wang D, Nguyen TN, Leroux A, Madry H, Migonney V, Cucchiarini M. Commitment of human mesenchymal stromal cells towards ACL fibroblast differentiation upon rAAV-mediated FGF-2 and TGF-β overexpression using pNaSS-grafted PCL films. Biotechnol Bioeng 2024; 121:3196-3210. [PMID: 38877726 DOI: 10.1002/bit.28773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
Despite various clinical options, human anterior cruciate ligament (ACL) lesions do not fully heal. Biomaterial-guided gene therapy using recombinant adeno-associated virus (rAAV) vectors may improve the intrinsic mechanisms of ACL repair. Here, we examined whether poly(sodium styrene sulfonate)-grafted poly(ε-caprolactone) (pNaSS-grafted PCL) films can deliver rAAV vectors coding for the reparative basic fibroblast growth factor (FGF-2) and transforming growth factor beta (TGF-β) in human mesenchymal stromal cells (hMSCs) as a source of implantable cells in ACL lesions. Efficient and sustained rAAV-mediated reporter (red fluorescent protein) and therapeutic (FGF-2 and TGF-β) gene overexpression was achieved in the cells for at least 21 days in particular with pNaSS-grafted PCL films relative to all other conditions (up to 5.2-fold difference). Expression of FGF-2 and TGF-β mediated by rAAV using PCL films increased the levels of cell proliferation, the DNA contents, and the deposition of proteoglycans and of type-I and -III collagen (up to 2.9-fold difference) over time in the cells with higher levels of transcription factor expression (Mohawk, Scleraxis) (up to 1.9-fold difference), without activation of inflammatory tumor necrosis alpha especially when using pNaSS-grafted PCL films compared with the controls. Overall, the effects mediated by TGF-β were higher than those promoted by FGF-2, possibly due to higher levels of gene expression achieved upon rAAV gene transfer. This study shows the potential of using functionalized PCL films to apply rAAV vectors for ACL repair.
Collapse
Affiliation(s)
- Meret Stehle
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Dan Wang
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Tuan N Nguyen
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Saarland, Germany
| |
Collapse
|
5
|
Fernandez-Cassi X, Kohn T. Comparison of Three Viral Nucleic Acid Preamplification Pipelines for Sewage Viral Metagenomics. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:1-22. [PMID: 38647859 PMCID: PMC11422458 DOI: 10.1007/s12560-024-09594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 04/25/2024]
Abstract
Viral metagenomics is a useful tool for detecting multiple human viruses in urban sewage. However, more refined protocols are required for its effective use in disease surveillance. In this study, we investigated the performance of three different preamplification pipelines (specific to RNA viruses, DNA viruses or both) for viral genome sequencing using spiked-in Phosphate Buffered Saline and sewage samples containing known concentrations of viruses. We found that compared to the pipeline targeting all genome types, the RNA pipeline performed better in detecting RNA viruses in both spiked and unspiked sewage samples, allowing the detection of various mammalian viruses including members from the Reoviridae, Picornaviridae, Astroviridae and Caliciviridae. However, the DNA-specific pipeline did not improve the detection of mammalian DNA viruses. We also measured viral recovery by quantitative reverse transcription polymerase chain reaction and assessed the impact of genetic background (non-viral genetic material) on viral coverage. Our results indicate that viral recoveries were generally lower in sewage (average of 11.0%) and higher in Phosphate Buffered Saline (average of 23.4%) for most viruses. Additionally, spiked-in viruses showed lower genome coverage in sewage, demonstrating the negative effect of genetic background on sequencing. Finally, correlation analysis revealed a relationship between virus concentration and genome normalized reads per million, indicating that viral metagenomic sequencing can be semiquantitative.
Collapse
Affiliation(s)
- Xavier Fernandez-Cassi
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, Lausanne, Switzerland.
- Departament of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona (UB), Barcelona, Catalunya, Spain.
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Vaud, Lausanne, Switzerland
| |
Collapse
|
6
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Catalán-Tatjer D, Tzimou K, Nielsen LK, Lavado-García J. Unravelling the essential elements for recombinant adeno-associated virus (rAAV) production in animal cell-based platforms. Biotechnol Adv 2024; 73:108370. [PMID: 38692443 DOI: 10.1016/j.biotechadv.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Recombinant adeno-associated viruses (rAAVs) stand at the forefront of gene therapy applications, holding immense significance for their safe and efficient gene delivery capabilities. The constantly increasing and unmet demand for rAAVs underscores the need for a more comprehensive understanding of AAV biology and its impact on rAAV production. In this literature review, we delved into AAV biology and rAAV manufacturing bioprocesses, unravelling the functions and essentiality of proteins involved in rAAV production. We discuss the interconnections between these proteins and how they affect the choice of rAAV production platform. By addressing existing inconsistencies, literature gaps and limitations, this review aims to define a minimal set of genes that are essential for rAAV production, providing the potential to advance rAAV biomanufacturing, with a focus on minimizing the genetic load within rAAV-producing cells.
Collapse
Affiliation(s)
- David Catalán-Tatjer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Konstantina Tzimou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Lars K Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia
| | - Jesús Lavado-García
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
8
|
Aksu Kuz C, Ning K, Hao S, Cheng F, Qiu J. Role of the membrane-associated accessory protein (MAAP) in adeno-associated virus (AAV) infection. J Virol 2024; 98:e0063324. [PMID: 38775479 PMCID: PMC11237668 DOI: 10.1128/jvi.00633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
Adeno-associated viruses (AAVs) package a single-stranded (ss) DNA genome of 4.7 kb in their capsid of ~20 nm in diameter. AAV replication requires co-infection of a helper virus, such as adenovirus. During the optimization of recombinant AAV production, a small viral nonstructural protein, membrane-associated accessory protein (MAAP), was identified. However, the function of the MAAP in the context of AAV infection remains unknown. Here, we investigated the expression strategy and function of the MAAP during infection of both AAV2 and AAV5 in human embryonic kidney (HEK)293 cells. We found that AAV2 MAAP2 and AAV5 MAAP5 are expressed from the capsid gene (cap)-transcribing mRNA spliced from the donor to the second splice site that encodes VP2 and VP3. Thus, this AAV cap gene transcribes a multicistronic mRNA that can be translated to four viral proteins, MAAP, VP2, AAP, and VP3 in order. In AAV2 infection, MAAP2 predominantly localized in the cytoplasm, alongside the capsid, near the nuclear and plasma membranes, but a fraction of MAAP2 exhibited nuclear localization. In AAV5 infection, MAAP5 revealed a distinct pattern, predominantly localizing within the nucleus. In the cells infected with an MAAP knockout mutant of AAV2 or AAV5, both viral DNA replication and virus replication increased, whereas virus egress decreased, and the decrease in virus egress can be restored by providing MAAP in trans. In summary, MAAP, a novel AAV nonstructural protein translated from a multicistronic viral cap mRNA, not only facilitates cellular egress of AAV but also likely negatively affects viral DNA replication during infection. IMPORTANCE Recombinant adeno-associated virus (rAAV) has been used as a gene delivery vector in clinical gene therapy. In current gene therapies employing rAAV, a high dose of the vector is required. Consequently, there is a high demand for efficient and high-purity vector production systems. In this study, we demonstrated that membrane-associated accessory protein (MAAP), a small viral nonstructural protein, is translated from the same viral mRNA transcript encoding VP2 and VP3. In AAV-infected cells, apart from its prevalent expression in the cytoplasm with localization near the plasma and nuclear membranes, the MAAP also exhibits notable localization within the nucleus. During AAV infection, MAAP expression increases the cellular egress of progeny virions and decreases viral DNA replication and progeny virion production. Thus, the choice of MAAP expression has pros and cons during AAV infection, which could provide a guide to rAAV production.
Collapse
Affiliation(s)
- Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
9
|
Wang JH, Gessler DJ, Zhan W, Gallagher TL, Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther 2024; 9:78. [PMID: 38565561 PMCID: PMC10987683 DOI: 10.1038/s41392-024-01780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a pivotal delivery tool in clinical gene therapy owing to its minimal pathogenicity and ability to establish long-term gene expression in different tissues. Recombinant AAV (rAAV) has been engineered for enhanced specificity and developed as a tool for treating various diseases. However, as rAAV is being more widely used as a therapy, the increased demand has created challenges for the existing manufacturing methods. Seven rAAV-based gene therapy products have received regulatory approval, but there continue to be concerns about safely using high-dose viral therapies in humans, including immune responses and adverse effects such as genotoxicity, hepatotoxicity, thrombotic microangiopathy, and neurotoxicity. In this review, we explore AAV biology with an emphasis on current vector engineering strategies and manufacturing technologies. We discuss how rAAVs are being employed in ongoing clinical trials for ocular, neurological, metabolic, hematological, neuromuscular, and cardiovascular diseases as well as cancers. We outline immune responses triggered by rAAV, address associated side effects, and discuss strategies to mitigate these reactions. We hope that discussing recent advancements and current challenges in the field will be a helpful guide for researchers and clinicians navigating the ever-evolving landscape of rAAV-based gene therapy.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, 3002, Australia
| | - Dominic J Gessler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurological Surgery, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
10
|
Peifer C, Oláh T, Venkatesan JK, Goebel L, Orth P, Schmitt G, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M, Madry H. Locally Directed Recombinant Adeno- Associated Virus-Mediated IGF-1 Gene Therapy Enhances Osteochondral Repair and Counteracts Early Osteoarthritis In Vivo. Am J Sports Med 2024; 52:1336-1349. [PMID: 38482805 DOI: 10.1177/03635465241235149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Restoration of osteochondral defects is critical, because osteoarthritis (OA) can arise. HYPOTHESIS Overexpression of insulin-like growth factor 1 (IGF-1) via recombinant adeno-associated viral (rAAV) vectors (rAAV-IGF-1) would improve osteochondral repair and reduce parameters of early perifocal OA in sheep after 6 months in vivo. STUDY DESIGN Controlled laboratory study. METHODS Osteochondral defects were created in the femoral trochlea of adult sheep and treated with rAAV-IGF-1 or rAAV-lacZ (control) (24 defects in 6 knees per group). After 6 months in vivo, osteochondral repair and perifocal OA were assessed by well-established macroscopic, histological, and immunohistochemical scoring systems as well as biochemical and micro-computed tomography evaluations. RESULTS Application of rAAV-IGF-1 led to prolonged (6 months) IGF-1 overexpression without adverse effects, maintaining a significantly superior overall cartilage repair, together with significantly improved defect filling, extracellular matrix staining, cellular morphology, and surface architecture compared with rAAV-lacZ. Expression of type II collagen significantly increased and that of type I collagen significantly decreased. Subchondral bone repair and tidemark formation were significantly improved, and subchondral bone plate thickness and subarticular spongiosa mineral density returned to normal. The OA parameters of perifocal structure, cell cloning, and matrix staining were significantly better preserved upon rAAV-IGF-1 compared with rAAV-lacZ. Novel mechanistic associations between parameters of osteochondral repair and OA were identified. CONCLUSION Local rAAV-mediated IGF-1 overexpression enhanced osteochondral repair and ameliorated parameters of perifocal early OA. CLINICAL RELEVANCE IGF-1 gene therapy may be beneficial in repair of focal osteochondral defects and prevention of perifocal OA.
Collapse
Affiliation(s)
- Carolin Peifer
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | | | - Lars Goebel
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Departments of Anesthesia and Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
11
|
Lopez-Gordo E, Chamberlain K, Riyad JM, Kohlbrenner E, Weber T. Natural Adeno-Associated Virus Serotypes and Engineered Adeno-Associated Virus Capsid Variants: Tropism Differences and Mechanistic Insights. Viruses 2024; 16:442. [PMID: 38543807 PMCID: PMC10975205 DOI: 10.3390/v16030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.
Collapse
|
12
|
Chen K, Kim S, Yang S, Varadkar T, Zhou ZZ, Zhang J, Zhou L, Liu XM. Advanced biomanufacturing and evaluation of adeno-associated virus. J Biol Eng 2024; 18:15. [PMID: 38360753 PMCID: PMC10868095 DOI: 10.1186/s13036-024-00409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Recombinant adeno-associated virus (rAAV) has been developed as a safe and effective gene delivery vehicle to treat rare genetic diseases. This study aimed to establish a novel biomanufacturing process to achieve high production and purification of various AAV serotypes (AAV2, 5, DJ, DJ8). First, a robust suspensive production process was developed and optimized using Gibco Viral Production Cell 2.0 in 30-60 mL shaker flask cultures by evaluating host cells, cell density at the time of transfection and plasmid amount, adapted to 60-100 mL spinner flask production, and scaled up to 1.2-2.0-L stirred-tank bioreactor production at 37 °C, pH 7.0, 210 rpm and DO 40%. The optimal process generated AAV titer of 7.52-8.14 × 1010 vg/mL. Second, a new AAV purification using liquid chromatography was developed and optimized to reach recovery rate of 85-95% of all four serotypes. Post-purification desalting and concentration procedures were also investigated. Then the generated AAVs were evaluated in vitro using Western blotting, transmission electron microscope, confocal microscope and bioluminescence detection. Finally, the in vivo infection and functional gene expression of AAV were confirmed in tumor xenografted mouse model. In conclusion, this study reported a robust, scalable, and universal biomanufacturing platform of AAV production, clarification and purification.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH, 43210, USA
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH, 43210, USA
| | - Siying Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH, 43210, USA
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH, 43210, USA
| | - Zhuoxin Zora Zhou
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH, 43210, USA
| | - Jiashuai Zhang
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH, 43210, USA
| | - Lufang Zhou
- Department of Biomedical Engineering, The Ohio State University, 140 W 19th Ave, Columbus, OH, 43210, USA
| | - Xiaoguang Margaret Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH, 43210, USA.
- Comprehensive Cancer Center (CCC), The Ohio State University, 650 Ackerman Rd, Columbus, OH, 43202, USA.
| |
Collapse
|
13
|
Merten OW. Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors. Microorganisms 2024; 12:384. [PMID: 38399788 PMCID: PMC10892526 DOI: 10.3390/microorganisms12020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Today, recombinant adeno-associated virus (rAAV) vectors represent the vector systems which are mostly used for in vivo gene therapy for the treatment of rare and less-rare diseases. Although most of the past developments have been performed by using a transfection-based method and more than half of the authorized rAAV-based treatments are based on transfection process, the tendency is towards the use of stable inducible packaging and producer cell lines because their use is much more straightforward and leads in parallel to reduction in the overall manufacturing costs. This article presents the development of HeLa cell-based packaging/producer cell lines up to their use for large-scale rAAV vector production, the more recent development of HEK293-based packaging and producer cell lines, as well as of packaging cell lines based on the use of Sf9 cells. The production features are presented in brief (where available), including vector titer, specific productivity, and full-to-empty particle ratio.
Collapse
|
14
|
He X, Fu Y, Ma L, Yao Y, Ge S, Yang Z, Fan X. AAV for Gene Therapy in Ocular Diseases: Progress and Prospects. RESEARCH (WASHINGTON, D.C.) 2023; 6:0291. [PMID: 38188726 PMCID: PMC10768554 DOI: 10.34133/research.0291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
Owing to the promising therapeutic effect and one-time treatment advantage, gene therapy may completely change the management of eye diseases, especially retinal diseases. Adeno-associated virus (AAV) is considered one of the most promising viral gene delivery tools because it can infect various types of tissues and is considered as a relatively safe gene delivery vector. The eye is one of the most popular organs for gene therapy, since its limited volume is suitable for small doses of AAV stably transduction. Recently, an increasing number of clinical trials of AAV-mediated gene therapy are underway. This review summarizes the biological functions of AAV and its application in the treatment of various ocular diseases, as well as the characteristics of different AAV delivery routes in clinical applications. Here, the latest research progresses in AAV-mediated gene editing and silencing strategies to modify that the genetic ocular diseases are systematically outlined, especially by base editing and prime editing. We discuss the progress of AAV in ocular optogenetic therapy. We also summarize the application of AAV-mediated gene therapy in animal models and the difficulties in its clinical transformation.
Collapse
Affiliation(s)
- Xiaoyu He
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yidian Fu
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Liang Ma
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yizheng Yao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University; Clinical Research Center of Neurological Disease,
The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhi Yang
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People’s Hospital,
Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
15
|
Amini M, Venkatesan JK, Nguyen TN, Liu W, Leroux A, Madry H, Migonney V, Cucchiarini M. rAAV TGF-β and FGF-2 Overexpression via pNaSS-Grafted PCL Films Stimulates the Reparative Activities of Human ACL Fibroblasts. Int J Mol Sci 2023; 24:11140. [PMID: 37446318 DOI: 10.3390/ijms241311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Lesions in the human anterior cruciate ligament (ACL) are frequent, unsolved clinical issues due to the limited self-healing ability of the ACL and lack of treatments supporting full, durable ACL repair. Gene therapy guided through the use of biomaterials may steadily activate the processes of repair in sites of ACL injury. The goal of the present study was to test the hypothesis that functionalized poly(sodium styrene sulfonate)-grafted poly(ε-caprolactone) (pNaSS-grafted PCL) films can effectively deliver recombinant adeno-associated virus (rAAV) vectors as a means of overexpressing two reparative factors (transforming growth factor beta-TGF-β and basic fibroblast growth factor-FGF-2) in primary human ACL fibroblasts. Effective, durable rAAV reporter red fluorescent protein and candidate TGF-β and FGF-2 gene overexpression was achieved in the cells for at least 21 days, especially when pNaSS-grafted PCL films were used versus control conditions, such as ungrafted films and systems lacking vectors or films (between 1.8- and 5.2-fold differences), showing interactive regulation of growth factor production. The expression of TGF-β and FGF-2 from rAAV via PCL films safely enhanced extracellular matrix depositions of type-I/-III collagen, proteoglycans/decorin, and tenascin-C (between 1.4- and 4.5-fold differences) in the cells over time with increased levels of expression of the specific transcription factors Mohawk and scleraxis (between 1.7- and 3.7-fold differences) and without the activation of the inflammatory mediators IL-1β and TNF-α, most particularly with pNaSS-grafted PCL films relative to the controls. This work shows the value of combining rAAV gene therapy with functionalized PCL films to enhance ACL repair.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Germany
| | - Tuan N Nguyen
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Germany
| | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Germany
| |
Collapse
|
16
|
Srivastava A. Rationale and strategies for the development of safe and effective optimized AAV vectors for human gene therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:949-959. [PMID: 37293185 PMCID: PMC10244667 DOI: 10.1016/j.omtn.2023.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recombinant adeno-associated virus (AAV) vectors have been, or are currently in use, in 332 phase I/II/III clinical trials in a number of human diseases, and in some cases, remarkable clinical efficacy has also been achieved. There are now three US Food and Drug Administration (FDA)-approved AAV "drugs," but it has become increasingly clear that the first generation of AAV vectors are not optimal. In addition, relatively large vector doses are needed to achieve clinical efficacy, which has been shown to provoke host immune responses culminating in serious adverse events and, more recently, in the deaths of 10 patients to date. Thus, there is an urgent need for the development of the next generation of AAV vectors that are (1) safe, (2) effective, and (3) human tropic. This review describes the strategies to potentially overcome each of the limitations of the first generation of AAV vectors and the rationale and approaches for the development of the next generation of AAV serotype vectors. These vectors promise to be efficacious at significant reduced doses, likely to achieve clinical efficacy, thereby increasing the safety as well as reducing vector production costs, ensuring translation to the clinic with higher probability of success, without the need for the use of immune suppression, for gene therapy of a wide variety of diseases in humans.
Collapse
Affiliation(s)
- Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics, Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
17
|
Zin EA, Ozturk BE, Dalkara D, Byrne LC. Developing New Vectors for Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041291. [PMID: 36987583 PMCID: PMC10691475 DOI: 10.1101/cshperspect.a041291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Since their discovery over 55 years ago, adeno-associated virus (AAV) vectors have become powerful tools for experimental and therapeutic in vivo gene delivery, particularly in the retina. Increasing knowledge of AAV structure and biology has propelled forward the development of engineered AAV vectors with improved abilities for gene delivery. However, major obstacles to safe and efficient therapeutic gene delivery remain, including tropism, inefficient and untargeted gene delivery, and limited carrying capacity. Additional improvements to AAV vectors will be required to achieve therapeutic benefit while avoiding safety issues. In this review, we provide an overview of recent methods for engineering-enhanced AAV capsids, as well as remaining challenges that must be overcome to achieve optimized therapeutic gene delivery in the eye.
Collapse
Affiliation(s)
- Emilia A Zin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Bilge E Ozturk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
18
|
Zhou K, Han J, Wang Y, Zhang Y, Zhu C. Routes of administration for adeno-associated viruses carrying gene therapies for brain diseases. Front Mol Neurosci 2022; 15:988914. [PMID: 36385771 PMCID: PMC9643316 DOI: 10.3389/fnmol.2022.988914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 08/27/2023] Open
Abstract
Gene therapy is a powerful tool to treat various central nervous system (CNS) diseases ranging from monogenetic diseases to neurodegenerative disorders. Adeno-associated viruses (AAVs) have been widely used as the delivery vehicles for CNS gene therapies due to their safety, CNS tropism, and long-term therapeutic effect. However, several factors, including their ability to cross the blood-brain barrier, the efficiency of transduction, their immunotoxicity, loading capacity, the choice of serotype, and peripheral off-target effects should be carefully considered when designing an optimal AAV delivery strategy for a specific disease. In addition, distinct routes of administration may affect the efficiency and safety of AAV-delivered gene therapies. In this review, we summarize different administration routes of gene therapies delivered by AAVs to the brain in mice and rats. Updated knowledge regarding AAV-delivered gene therapies may facilitate the selection from various administration routes for specific disease models in future research.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Department of Hematology and Oncology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Centre for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Shoti J, Qing K, Srivastava A. Development of an AAV DNA-based synthetic vector for the potential gene therapy of hemophilia in children. Front Microbiol 2022; 13:1033615. [PMID: 36274690 PMCID: PMC9583144 DOI: 10.3389/fmicb.2022.1033615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Recombinant AAV serotype vectors and their variants have been or are currently being used for gene therapy for hemophilia in several phase I/II/III clinical trials in humans. However, none of these trials have included children with hemophilia since the traditional liver-directed AAV gene therapy will not work in these patients because of the following reasons: (i) Up until age 10–12, the liver is still growing and dividing, and with every cell division, the AAV vector genomes will be diluted out due to their episomal nature; and (ii) Repeated gene delivery will be needed, but repeat dosing, even with an ideal AAV vector is not an option because of pre-existing antibodies to AAV vectors following the first administration. Here we describe the development of an optimized human Factor IX (hF.IX) gene expression cassette under the control of a human liver-specific transthyretin promoter covalently flanked by AAV inverted terminal repeats (ITRs) with no open ends (optNE-TTR-hF.IX), which mediated ~sixfold higher hF.IX levels than that from a linear TTR-hF.IX DNA construct in human hepatoma cells up to four-weeks post-transfection. In future studies, encapsidation of the optNE-TTR-hF.IX DNA in liver-targeted synthetic liposomes, may provide a viable approach for the potential gene therapy for hemophilia in children.
Collapse
Affiliation(s)
- Jakob Shoti
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Keyun Qing
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, United States
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Arun Srivastava,
| |
Collapse
|
20
|
Sutter SO, Lkharrazi A, Schraner EM, Michaelsen K, Meier AF, Marx J, Vogt B, Büning H, Fraefel C. Adeno-associated virus type 2 (AAV2) uncoating is a stepwise process and is linked to structural reorganization of the nucleolus. PLoS Pathog 2022; 18:e1010187. [PMID: 35816507 PMCID: PMC9302821 DOI: 10.1371/journal.ppat.1010187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/21/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleoli are membrane-less structures located within the nucleus and are known to be involved in many cellular functions, including stress response and cell cycle regulation. Besides, many viruses can employ the nucleolus or nucleolar proteins to promote different steps of their life cycle such as replication, transcription and assembly. While adeno-associated virus type 2 (AAV2) capsids have previously been reported to enter the host cell nucleus and accumulate in the nucleolus, both the role of the nucleolus in AAV2 infection, and the viral uncoating mechanism remain elusive. In all prior studies on AAV uncoating, viral capsids and viral genomes were not directly correlated on the single cell level, at least not in absence of a helper virus. To elucidate the properties of the nucleolus during AAV2 infection and to assess viral uncoating on a single cell level, we combined immunofluorescence analysis for detection of intact AAV2 capsids and capsid proteins with fluorescence in situ hybridization for detection of AAV2 genomes. The results of our experiments provide evidence that uncoating of AAV2 particles occurs in a stepwise process that is completed in the nucleolus and supported by alteration of the nucleolar structure.
Collapse
Affiliation(s)
| | - Anouk Lkharrazi
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | | - Kevin Michaelsen
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | | - Jennifer Marx
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Bernd Vogt
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Venkatesan JK, Schmitt G, Speicher-Mentges S, Orth P, Madry H, Cucchiarini M. Effects of rAAV-mediated overexpression of bone morphogenetic protein 3 (BMP-3) on the chondrogenic fate of human bone marrow-derived mesenchymal stromal cells. Hum Gene Ther 2022; 33:950-958. [PMID: 35722904 DOI: 10.1089/hum.2022.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Implantation of genetically modified chondrogenically competent human bone marrow-derived mesenchymal stromal cells (hMSCs) is an attractive strategy to improve cartilage repair. The goal of this study was to examine the potential benefits of transferring a sequence coding for the bone morphogenetic protein 3 (BMP-3) that modulates bone and cartilage formation, using recombinant adeno-associated virus (rAAV) vectors on the chondroreparative activities of hMSCs. Undifferentiated and chondrogenically induced primary human MSCs were treated with an rAAV-hBMP-3 construct to evaluate its effects on the proliferative, metabolic, and chondrogenic activities of the cells compared with control (reporter rAAV-lacZ vector) condition. Effective BMP-3 expression was noted both in undifferentiated and chondrogenically differentiated cells in the presence of rAAV-hBMP-3 relative to rAAV-lacZ, stimulating cell proliferation and extracellular matrix (proteoglycans, type-II collagen) deposition together with higher levels of chondrogenic SOX9 expression. rAAV-hBMP-3 also advantageously decreased terminal differentiation, hypertrophy, and osteogenesis (type-I/-X collagen and alkaline phosphatase expression), with reduced levels of osteoblast-related RUNX-2 transcription factor and β-catenin (osteodifferentiation mediator) and enhanced PTHrP expression (inhibitor of hypertrophic maturation, calcification, and bone formation). This study shows the advantage of modifying hMSCs with rAAV-hBMP-3 to trigger adapted chondroreparative activities as a source of improved cells for transplantation protocols in cartilage defects.
Collapse
Affiliation(s)
- Jagadeesh Kumar Venkatesan
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Gertrud Schmitt
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Susanne Speicher-Mentges
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Patrick Orth
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Henning Madry
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Saarland, Germany;
| | - Magali Cucchiarini
- Saarland University Hospital and Saarland University Faculty of Medicine, 39072, Center of Experimental Orthopaedics, Homburg, Germany, 66421;
| |
Collapse
|
22
|
Pan X, Yue Y, Boftsi M, Wasala LP, Tran NT, Zhang K, Pintel DJ, Tai PWL, Duan D. Rational engineering of a functional CpG-free ITR for AAV gene therapy. Gene Ther 2022; 29:333-345. [PMID: 34611321 PMCID: PMC8983793 DOI: 10.1038/s41434-021-00296-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Inverted terminal repeats (ITRs) are the only wild-type components retained in the genome of adeno-associated virus (AAV) vectors. To determine whether ITR modification is a viable approach for AAV vector engineering, we rationally deleted all CpG motifs in the ITR and examined whether CpG elimination compromises AAV-vector production and transduction. Modified ITRs were stable in the plasmid and maintained the CpG-free nature in purified vectors. Replacing the wild-type ITR with the CpG-free ITR did not affect vector genome encapsidation. However, the vector yield was decreased by approximately 3-fold due to reduced vector genome replication. To study the biological potency, we made micro-dystrophin (μDys) AAV vectors carrying either the wild-type ITR or the CpG-free ITR. We delivered the CpG-free μDys vector to one side of the tibialis anterior muscle of dystrophin-null mdx mice and the wild-type μDys vector to the contralateral side. Evaluation at four months after injection showed no difference in the vector genome copy number, microdystrophin expression, and muscle histology and force. Our results suggest that the complete elimination of the CpG motif in the ITR does not affect the biological activity of the AAV vector. CpG-free ITRs could be useful in engineering therapeutic AAV vectors.
Collapse
Affiliation(s)
- Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Maria Boftsi
- Pathobiology Area Graduate Program, University of Missouri, Columbia, MO, 65212, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA
| | - Lakmini P Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
- Pathobiology Area Graduate Program, University of Missouri, Columbia, MO, 65212, USA
| | - Ngoc Tam Tran
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - David J Pintel
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65212, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, 01605, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65212, USA.
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
23
|
Tran NT, Lecomte E, Saleun S, Namkung S, Robin C, Weber K, Devine E, Blouin V, Adjali O, Ayuso E, Gao G, Penaud-Budloo M, Tai PW. Human and Insect Cell-Produced Recombinant Adeno-Associated Viruses Show Differences in Genome Heterogeneity. Hum Gene Ther 2022; 33:371-388. [PMID: 35293222 PMCID: PMC9063199 DOI: 10.1089/hum.2022.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
In the past two decades, adeno-associated virus (AAV) vector manufacturing has made remarkable advancements to meet large-scale production demands for preclinical and clinical trials. In addition, AAV vectors have been extensively studied for their safety and efficacy. In particular, the presence of empty AAV capsids and particles containing "inaccurate" vector genomes in preparations has been a subject of concern. Several methods exist to separate empty capsids from full particles; but thus far, no single technique can produce vectors that are free of empty or partial (non-unit length) capsids. Unfortunately, the exact genome compositions of full, intermediate, and empty capsids remain largely unknown. In this work, we used AAV-genome population sequencing to explore the compositions of DNase-resistant, encapsidated vector genomes produced by two common production pipelines: plasmid transfection in human embryonic kidney cells (pTx/HEK293) and baculovirus expression vectors in Spodoptera frugiperda insect cells (rBV/Sf9). Intriguingly, our results show that vectors originating from the same construct design that were manufactured by the rBV/Sf9 system produced a higher degree of truncated and unresolved species than those generated by pTx/HEK293 production. We also demonstrate that empty particles purified by cesium chloride gradient ultracentrifugation are not truly empty but are instead packaged with genomes composed of a single truncated and/or unresolved inverted terminal repeat (ITR). Our data suggest that the frequency of these "mutated" ITRs correlates with the abundance of inaccurate genomes in all fractions. These surprising findings shed new light on vector efficacy, safety, and how clinical vectors should be quantified and evaluated.
Collapse
Affiliation(s)
- Ngoc Tam Tran
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Emilie Lecomte
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Sylvie Saleun
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Suk Namkung
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Cécile Robin
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | | | - Eric Devine
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Veronique Blouin
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Eduard Ayuso
- INSERM UMR 1089, University of Nantes, CHU of Nantes, Nantes, France
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute of Rare Diseases Research; UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | - Phillip W.L. Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, USA
- Li Weibo Institute of Rare Diseases Research; UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
24
|
Zhang F, Wu LB, Yu Q, Wang MJ, Zeng XL, Wei XT, Wu ZJ, Cai RL, Hu L. Neurotropic Viruses as a Tool for Neural Circuit-Tracing. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Lange C, Madry H, Venkatesan JK, Schmitt G, Speicher-Mentges S, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M. rAAV-Mediated sox9 Overexpression Improves the Repair of Osteochondral Defects in a Clinically Relevant Large Animal Model Over Time In Vivo and Reduces Perifocal Osteoarthritic Changes. Am J Sports Med 2021; 49:3696-3707. [PMID: 34643471 DOI: 10.1177/03635465211049414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Gene transfer of the transcription factor SOX9 with clinically adapted recombinant adeno-associated virus (rAAV) vectors offers a powerful tool to durably enhance the repair process at sites of osteochondral injuries and counteract the development of perifocal osteoarthritis (OA) in the adjacent articular cartilage. PURPOSE To examine the ability of an rAAV sox9 construct to improve the repair of focal osteochondral defects and oppose perifocal OA development over time in a large translational model relative to control gene transfer. STUDY DESIGN Controlled laboratory study. METHODS Standardized osteochondral defects created in the knee joints of adult sheep were treated with rAAV-FLAG-hsox9 relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair and degenerative changes in the adjacent cartilage were monitored using macroscopic, histological, immunohistological, and biochemical evaluations after 6 months. The microarchitecture of the subchondral bone was assessed by micro-computed tomography. RESULTS Effective, prolonged sox9 overexpression via rAAV was significantly achieved in the defects after 6 months versus rAAV-lacZ treatment. The application of rAAV-FLAG-hsox9 improved the individual parameters of defect filling, matrix staining, cellular morphology, defect architecture, surface architecture, subchondral bone, and tidemark as well as the overall score of cartilage repair in the defects compared with rAAV-lacZ. The overexpression of sox9 led to higher levels of proteoglycan production, stronger type II collagen deposition, and reduced type I collagen immunoreactivity in the sox9- versus lacZ-treated defects, together with decreased cell densities and DNA content. rAAV-FLAG-hsox9 enhanced semiquantitative histological subchondral bone repair, while the microstructure of the incompletely restored subchondral bone in the sox9 defects was not different from that in the lacZ defects. The articular cartilage adjacent to the sox9-treated defects showed reduced histological signs of perifocal OA changes versus rAAV-lacZ. CONCLUSION rAAV-mediated sox9 gene transfer enhanced osteochondral repair in sheep after 6 months and reduced perifocal OA changes. These results underline the potential of rAAV-FLAG-hsox9 as a therapeutic tool to treat cartilage defects and afford protection against OA. CLINICAL RELEVANCE The delivery of therapeutic rAAV sox9 to sites of focal injuries may offer a novel, convenient tool to enhance the repair of osteochondral defects involving both the articular cartilage and the underlying subchondral bone and provide a protective role by reducing the extent of perifocal OA.
Collapse
Affiliation(s)
- Cliff Lange
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | | | - David Zurakowski
- Departments of Anesthesia and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
26
|
Song L, Samulski RJ, Hirsch ML. Adeno-Associated Virus Vector Mobilization, Risk Versus Reality. Hum Gene Ther 2021; 31:1054-1067. [PMID: 32829671 DOI: 10.1089/hum.2020.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recombinant adeno-associated viral (rAAV) vector mobilization is a largely theoretical process in which intact AAV vectors spread or "mobilize" from transduced cells and infect additional cells within, or external of, the initial host. This process can be helper virus-independent (vector alone) or helper virus-dependent (de novo rAAV production facilitated by superinfection of both wild-type AAV [wtAAV] and Adenovirus 5 [Ad] helper virus). Herein, rAAV production and mobilization with and without wtAAV were analyzed following plasmid transfection or viral transduction utilizing well-established in vitro conditions and analytical measurements. During in vitro production, wtAAV produced the highest titer with rAAV-luc (4.1 kb), rAAV-IDUA (3.7 kb), and rAAV-Nano-dysferlin (4.9 kb) generating 2.5-, 5.9-, or 10.7-fold lower amounts, respectively. Surprisingly, cotransfection of a wtAAV and an rAAV plasmid resulted in a uniform decrease in production of wtAAV in all instances with a concomitant increase of rAAV such that wtAAV:rAAV titers were at a ratio of 1:1 for all constructs investigated. These results were shown to be independent of the rAAV transgenic sequence, size, transgene, or promoter choice and point to novel aspects of wtAAV complementation that enhance current vector production systems yet to be defined. In a mobilization assay, a sizeable amount of rAAV recovered from infected 293 cell lysate remained intact and competent for a secondary round of infection (termed Ad-independent mobilization). In rAAV-infected cells coinfected with Ad and wtAAV, rAAV particle production was increased >50-fold compared with no Ad conditions. In addition, Ad-dependent rAAV vectors mobilized and resulted in >1,000-fold transduction upon a subsequent second-round infection, highlighting the reality of these theoretical safety concerns that can be manifested under various conditions. Overall, these studies document and signify the need for mobilization-resistant vectors and the opportunity to derive better vector production systems.
Collapse
Affiliation(s)
- Liujiang Song
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew L Hirsch
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
27
|
Wagner JE, Zobel L, Gerhardt MJ, O'Riordan CR, Frederick A, Petersen-Jones SM, Biel M, Michalakis S. In vivo potency testing of subretinal rAAV5.hCNGB1 gene therapy in the Cngb1 knockout mouse model of retinitis pigmentosa. Hum Gene Ther 2021; 32:1158-1170. [PMID: 34376057 DOI: 10.1089/hum.2021.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retinitis pigmentosa type 45 (RP45) is an autosomal-recessively inherited blinding disease caused by mutations in the cyclic nucleotide gated channel subunit beta 1 (CNGB1) gene. In this study, we developed and tested a novel gene supplementation therapy suitable for clinical translation. To this end, we designed a recombinant adeno-associated virus (rAAV) vector carrying a genome that features a novel human rhodopsin promoter (hRHO194) driving rod-specific expression of full-length human CNGB1 (rAAV5.hCNGB1). rAAV5.hCNGB1 was evaluated for efficacy in the Cngb1 knockout (Cngb1-/-) mouse model of RP45. In particular, increasing doses of rAAV5.hCNGB1 were delivered via single subretinal injection in 4-week-old Cngb1-/- mice and the treatment effect was assessed over a follow-up period of 9 months at the level of (i) retinal morphology, (ii) retinal function, (iii) vision-guided behavior, and (iv) transgene expression. We found that subretinal treatment with rAAV5.hCNGB1 resulted in efficient expression of the human CNGB1 protein in mouse rods and was able to normalize the expression of the endogenous mouse CNGA1 subunit, which together with CNGB1 forms the native heterotetrameric cGMP-gated cation channel in rod photoreceptors. The treatment led to a dose-dependent recovery of rod photoreceptor-driven function and preservation of retinal morphology in Cngb1-/- mice. In summary, these results demonstrate the efficacy of hCNGB1 gene supplementation therapy in the Cngb1-/- mouse model of RP45 and support the translation of this approach towards future clinical application.
Collapse
Affiliation(s)
- Johanna E Wagner
- Ludwig-Maximilians-Universität München, 9183, Department of Pharmacy - Center for Drug Research, Munich, Bayern, Germany;
| | - Lena Zobel
- Ludwig-Maximilians-Universität München, 9183, Department of Pharmacy - Center for Drug Research, Munich, Bayern, Germany.,Ludwig-Maximilians-Universität München, 9183, University Hospital - Department of Ophthalmology, Munich, Bayern, Germany;
| | - Maximilian Joachim Gerhardt
- Ludwig-Maximilians-Universität München, 9183, University Hospital - Department of Ophthalmology, Munich, Bayern, Germany;
| | - Catherine R O'Riordan
- Sanofi Genzyme, 2194, Gene Therapy, Rare Diseases, Framingham, Massachusetts, United States; Catherine.O'
| | - Amy Frederick
- Sanofi Genzyme, 2194, Gene Therapy, Rare Diseases, Framingham, Massachusetts, United States;
| | - Simon M Petersen-Jones
- Michigan State University, Veterinary Medical Center, East Lansing, Michigan, United States;
| | - Martin Biel
- Ludwig-Maximilians-Universität München, 9183, Department of Pharmacy - Center for Drug Research, Munich, Bayern, Germany;
| | - Stylianos Michalakis
- Ludwig-Maximilians-Universität München, 9183, Department of Pharmacy - Center for Drug Research, Munich, Bayern, Germany.,Ludwig-Maximilians-Universität München, 9183, University Hospital - Department of Ophthalmology, Munich, Bayern, Germany;
| |
Collapse
|
28
|
Meier AF, Tobler K, Leisi R, Lkharrazi A, Ros C, Fraefel C. Herpes simplex virus co-infection facilitates rolling circle replication of the adeno-associated virus genome. PLoS Pathog 2021; 17:e1009638. [PMID: 34061891 PMCID: PMC8195378 DOI: 10.1371/journal.ppat.1009638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated virus (AAV) genome replication only occurs in the presence of a co-infecting helper virus such as adenovirus type 5 (AdV5) or herpes simplex virus type 1 (HSV-1). AdV5-supported replication of the AAV genome has been described to occur in a strand-displacement rolling hairpin replication (RHR) mechanism initiated at the AAV 3' inverted terminal repeat (ITR) end. It has been assumed that the same mechanism applies to HSV-1-supported AAV genome replication. Using Southern analysis and nanopore sequencing as a novel, high-throughput approach to study viral genome replication we demonstrate the formation of double-stranded head-to-tail concatemers of AAV genomes in the presence of HSV-1, thus providing evidence for an unequivocal rolling circle replication (RCR) mechanism. This stands in contrast to the textbook model of AAV genome replication when HSV-1 is the helper virus.
Collapse
Affiliation(s)
| | - Kurt Tobler
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Remo Leisi
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Anouk Lkharrazi
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Carlos Ros
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Venkatesan JK, Cai X, Meng W, Rey-Rico A, Schmitt G, Speicher-Mentges S, Falentin-Daudré C, Leroux A, Madry H, Migonney V, Cucchiarini M. pNaSS-Grafted PCL Film-Guided rAAV TGF-β Gene Therapy Activates the Chondrogenic Activities in Human Bone Marrow Aspirates. Hum Gene Ther 2021; 32:895-906. [PMID: 33573471 DOI: 10.1089/hum.2020.329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Scaffold-guided viral gene therapy is a novel, powerful tool to enhance the processes of tissue repair in articular cartilage lesions by the delivery and overexpression of therapeutic genes in a noninvasive, controlled release manner based on a procedure that may protect the gene vehicles from undesirable host immune responses. In this study, we examined the potential of transferring a recombinant adeno-associated virus (rAAV) vector carrying a sequence for the highly chondroregenerative transforming growth factor beta (TGF-β), using poly(ɛ-caprolactone) (PCL) films functionalized by the grafting of poly(sodium styrene sulfonate) (pNaSS) in chondrogenically competent bone marrow aspirates as future targets for therapy in cartilage lesions. Effective overexpression of TGF-β in the aspirates by rAAV was achieved upon delivery using pNaSS-grafted and ungrafted PCL films for up to 21 days (the longest time point evaluated), with superior levels using the grafted films, compared with respective conditions without vector coating. The production of rAAV-mediated TGF-β by pNaSS-grafted and ungrafted PCL films significantly triggered the biological activities and chondrogenic processes in the samples (proteoglycan and type-II collagen deposition and cell proliferation), while containing premature mineralization and hypertrophy relative to the other conditions, with overall superior effects supported by the pNaSS-grafted films. These observations demonstrate the potential of PCL film-assisted rAAV TGF-β gene transfer as a convenient, off-the-shelf technique to enhance the reparative potential of the bone marrow in patients in future approaches for improved cartilage repair.
Collapse
Affiliation(s)
- Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Weikun Meng
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | | | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
30
|
Morscheid YP, Venkatesan JK, Schmitt G, Orth P, Zurakowski D, Speicher-Mentges S, Menger MD, Laschke MW, Cucchiarini M, Madry H. rAAV-Mediated Human FGF-2 Gene Therapy Enhances Osteochondral Repair in a Clinically Relevant Large Animal Model Over Time In Vivo. Am J Sports Med 2021; 49:958-969. [PMID: 33606561 DOI: 10.1177/0363546521988941] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral defects, if left untreated, do not heal and can potentially progress toward osteoarthritis. Direct gene transfer of basic fibroblast growth factor 2 (FGF-2) with the clinically adapted recombinant adeno-associated viral (rAAV) vectors is a powerful tool to durably activate osteochondral repair processes. PURPOSE To examine the ability of an rAAV-FGF-2 construct to target the healing processes of focal osteochondral injury over time in a large translational model in vivo versus a control gene transfer condition. STUDY DESIGN Controlled laboratory study. METHODS Standardized osteochondral defects created in the knee joints of adult sheep were treated with an rAAV human FGF-2 (hFGF-2) vector by direct administration into the defect relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair was monitored using macroscopic, histological, immunohistological, and biochemical methods and by micro-computed tomography after 6 months. RESULTS Effective, localized prolonged FGF-2 overexpression was achieved for 6 months in vivo relative to the control condition without undesirable leakage of the vectors outside the defects. Such rAAV-mediated hFGF-2 overexpression significantly increased the individual histological parameter "percentage of new subchondral bone" versus lacZ treatment, reflected in a volume of mineralized bone per unit volume of the subchondral bone plate that was equal to a normal osteochondral unit. Also, rAAV-FGF-2 significantly improved the individual histological parameters "defect filling,""matrix staining," and "cellular morphology" and the overall cartilage repair score versus the lacZ treatment and led to significantly higher cell densities and significantly higher type II collagen deposition versus lacZ treatment. Likewise, rAAV-FGF-2 significantly decreased type I collagen expression within the cartilaginous repair tissue. CONCLUSION The current work shows the potential of direct rAAV-mediated FGF-2 gene therapy to enhance osteochondral repair in a large, clinically relevant animal model over time in vivo. CLINICAL RELEVANCE Delivery of therapeutic (hFGF-2) rAAV vectors in sites of focal injury may offer novel, convenient tools to enhance osteochondral repair in the near future.
Collapse
Affiliation(s)
- Yannik P Morscheid
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Patrick Orth
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center and Saarland University, Homburg/Saar, Germany
| |
Collapse
|
31
|
Fischer MD, Michalakis S, Wilhelm B, Zobor D, Muehlfriedel R, Kohl S, Weisschuh N, Ochakovski GA, Klein R, Schoen C, Sothilingam V, Garcia-Garrido M, Kuehlewein L, Kahle N, Werner A, Dauletbekov D, Paquet-Durand F, Tsang S, Martus P, Peters T, Seeliger M, Bartz-Schmidt KU, Ueffing M, Zrenner E, Biel M, Wissinger B. Safety and Vision Outcomes of Subretinal Gene Therapy Targeting Cone Photoreceptors in Achromatopsia: A Nonrandomized Controlled Trial. JAMA Ophthalmol 2021; 138:643-651. [PMID: 32352493 PMCID: PMC7193523 DOI: 10.1001/jamaophthalmol.2020.1032] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Question What are the safety and vision outcomes associated with gene therapy for achromatopsia? Findings In this nonrandomized controlled trial of 9 patients with confirmed CNGA3-linked achromatopsia, gene therapy applying an adeno-associated viral vector encoding CNGA3, was not associated with substantial safety concerns and was associated with improvements of vision in patients. Meaning This study provides clinical proof of concept for viral vector–mediated gene supplementation therapy of inherited day blindness caused by pathogenic variants in the cone photoreceptor-specific gene CNGA3. Importance Achromatopsia linked to variations in the CNGA3 gene is associated with day blindness, poor visual acuity, photophobia, and involuntary eye movements owing to lack of cone photoreceptor function. No treatment is currently available. Objective To assess safety and vision outcomes of supplemental gene therapy with adeno-associated virus (AAV) encoding CNGA3 (AAV8.CNGA3) in patients with CNGA3-linked achromatopsia. Design, Setting, and Participants This open-label, exploratory nonrandomized controlled trial tested safety and vision outcomes of gene therapy vector AAV8.CNGA3 administered by subretinal injection at a single center. Nine patients (3 per dose group) with a clinical diagnosis of achromatopsia and confirmed biallelic disease-linked variants in CNGA3 were enrolled between November 5, 2015, and September 22, 2016. Data analysis was performed from June 6, 2017, to March 12, 2018. Intervention Patients received a single unilateral injection of 1.0 × 1010, 5.0 × 1010, or 1.0 × 1011 total vector genomes of AAV8.CNGA3 and were followed up for a period of 12 months (November 11, 2015, to October 10, 2017). Main Outcomes and Measures Safety as the primary end point was assessed by clinical examination of ocular inflammation. Systemic safety was assessed by vital signs, routine clinical chemistry testing, and full and differential blood cell counts. Secondary outcomes were change in visual function from baseline in terms of spatial and temporal resolution and chromatic, luminance, and contrast sensitivity throughout a period of 12 months after treatment. Results Nine patients (mean [SD] age, 39.6 [11.9] years; age range, 24-59 years; 8 [89%] male) were included in the study. Baseline visual acuity letter score (approximate Snellen equivalent) ranged from 34 (20/200) to 49 (20/100), whereas baseline contrast sensitivity log scores ranged from 0.1 to 0.9. All 9 patients underwent surgery and subretinal injection of AAV8.CNGA3 without complications. No substantial safety problems were observed during the 12-month follow-up period. Despite the congenital deprivation of cone photoreceptor–mediated vision in achromatopsia, all 9 treated eyes demonstrated some level of improvement in secondary end points regarding cone function, including mean change in visual acuity of 2.9 letters (95% CI, 1.65-4.13; P = .006, 2-sided t test paired samples). Contrast sensitivity improved by a mean of 0.33 log (95% CI, 0.14-0.51 log; P = .003, 2-sided t test paired samples). Conclusions and Relevance Subretinal gene therapy with AAV8.CNGA3 was not associated with substantial safety problems and was associated with cone photoreceptor activation in adult patients, as reflected by visual acuity and contrast sensitivity gains. Trial Registration ClinicalTrials.gov Identifier: NCT02610582
Collapse
Affiliation(s)
- M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Ophthalmology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Barbara Wilhelm
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Ditta Zobor
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Regine Muehlfriedel
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - G Alex Ochakovski
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Reinhild Klein
- Department of Internal Medicine II, University Hospital Tübingen, Germany
| | - Christian Schoen
- Center for Integrated Protein Science Munich, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Vithiyanjali Sothilingam
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Marina Garcia-Garrido
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Laura Kuehlewein
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Nadine Kahle
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Annette Werner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Daniyar Dauletbekov
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Stephen Tsang
- Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, University Hospital Tübingen, Tübingen, Germany
| | - Tobias Peters
- Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Mathias Seeliger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | | | - Marius Ueffing
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Eberhart Zrenner
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich, Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Nguyen GN, Everett JK, Kafle S, Roche AM, Raymond HE, Leiby J, Wood C, Assenmacher CA, Merricks EP, Long CT, Kazazian HH, Nichols TC, Bushman FD, Sabatino DE. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat Biotechnol 2021; 39:47-55. [PMID: 33199875 PMCID: PMC7855056 DOI: 10.1038/s41587-020-0741-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Nine dogs with hemophilia A were treated with adeno-associated viral (AAV) gene therapy and followed for up to 10 years. Administration of AAV8 or AAV9 vectors expressing canine factor VIII (AAV-cFVIII) corrected the FVIII deficiency to 1.9-11.3% of normal FVIII levels. In two of nine dogs, levels of FVIII activity increased gradually starting about 4 years after treatment. None of the dogs showed evidence of tumors or altered liver function. Analysis of integration sites in liver samples from six treated dogs identified 1,741 unique AAV integration events in genomic DNA and expanded cell clones in five dogs, with 44% of the integrations near genes involved in cell growth. All recovered integrated vectors were partially deleted and/or rearranged. Our data suggest that the increase in FVIII protein expression in two dogs may have been due to clonal expansion of cells harboring integrated vectors. These results support the clinical development of liver-directed AAV gene therapy for hemophilia A, while emphasizing the importance of long-term monitoring for potential genotoxicity.
Collapse
Affiliation(s)
- Giang N Nguyen
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samita Kafle
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aoife M Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hayley E Raymond
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Leiby
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Wood
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Tyler Long
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Koch M, Scheel C, Ma H, Yang F, Stadlmeier M, Glück AF, Murenu E, Traube FR, Carell T, Biel M, Ding XQ, Michalakis S. The cGMP-Dependent Protein Kinase 2 Contributes to Cone Photoreceptor Degeneration in the Cnga3-Deficient Mouse Model of Achromatopsia. Int J Mol Sci 2020; 22:E52. [PMID: 33374621 PMCID: PMC7793084 DOI: 10.3390/ijms22010052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations in the CNGA3 gene, which encodes the A subunit of the cyclic guanosine monophosphate (cGMP)-gated cation channel in cone photoreceptor outer segments, cause total colour blindness, also referred to as achromatopsia. Cones lacking this channel protein are non-functional, accumulate high levels of the second messenger cGMP and degenerate over time after induction of ER stress. The cell death mechanisms that lead to loss of affected cones are only partially understood. Here, we explored the disease mechanisms in the Cnga3 knockout (KO) mouse model of achromatopsia. We found that another important effector of cGMP, the cGMP-dependent protein kinase 2 (Prkg2) is crucially involved in cGMP cytotoxicity of cones in Cnga3 KO mice. Virus-mediated knockdown or genetic ablation of Prkg2 in Cnga3 KO mice counteracted degeneration and preserved the number of cones. Analysis of markers of endoplasmic reticulum stress and unfolded protein response confirmed that induction of these processes in Cnga3 KO cones also depends on Prkg2. In conclusion, we identified Prkg2 as a novel key mediator of cone photoreceptor degeneration in achromatopsia. Our data suggest that this cGMP mediator could be a novel pharmacological target for future neuroprotective therapies.
Collapse
Affiliation(s)
- Mirja Koch
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.K.); (C.S.); (E.M.); (M.B.)
| | - Constanze Scheel
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.K.); (C.S.); (E.M.); (M.B.)
| | - Hongwei Ma
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (H.M.); (F.Y.); (X.-Q.D.)
| | - Fan Yang
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (H.M.); (F.Y.); (X.-Q.D.)
| | - Michael Stadlmeier
- Department of Chemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.S.); (A.F.G.); (F.R.T.); (T.C.)
| | - Andrea F. Glück
- Department of Chemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.S.); (A.F.G.); (F.R.T.); (T.C.)
| | - Elisa Murenu
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.K.); (C.S.); (E.M.); (M.B.)
- Department of Ophthalmology, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Franziska R. Traube
- Department of Chemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.S.); (A.F.G.); (F.R.T.); (T.C.)
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.S.); (A.F.G.); (F.R.T.); (T.C.)
| | - Martin Biel
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.K.); (C.S.); (E.M.); (M.B.)
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (H.M.); (F.Y.); (X.-Q.D.)
| | - Stylianos Michalakis
- Department of Pharmacy—Center for Drug Research, Ludwig-Maximilians-University, 81377 Munich, Germany; (M.K.); (C.S.); (E.M.); (M.B.)
- Department of Ophthalmology, Ludwig-Maximilians-University, 80336 Munich, Germany
| |
Collapse
|
34
|
Bobo TA, Samowitz PN, Robinson MI, Fu H. Targeting the Root Cause of Mucopolysaccharidosis IIIA with a New scAAV9 Gene Replacement Vector. Mol Ther Methods Clin Dev 2020; 19:474-485. [PMID: 33313335 PMCID: PMC7704409 DOI: 10.1016/j.omtm.2020.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/17/2020] [Indexed: 11/30/2022]
Abstract
No treatment is available to address the unmet needs of mucopolysaccharidosis (MPS) IIIA patients. Targeting the root cause, we developed a new self-complementary adeno-associated virus 9 (scAAV9) vector to deliver the human N-sulfoglucosamine sulfohydrolase (hSGSH) gene driven by a miniature cytomegalovirus (mCMV) promoter. In pre-clinical studies, the vector was tested at varying doses by a single intravenous (i.v.) infusion into MPS IIIA mice at different ages. The vector treatments resulted in rapid and long-term expression of functional recombinant SGSH (rSGSH) enzyme and elimination of lysosomal storage pathology throughout the CNS and periphery in all tested animals. Importantly, MPS IIIA mice treated with the vector at up to 6 months of age showed significantly improved behavior performance in a hidden task in the Morris water maze, as well as extended lifespan, with most of the animals surviving within the normal range, indicating that the vector treatment can prevent and reverse MPS IIIA disease progression. Notably, 2.5 × 1012 vector genomes (vg)/kg was functionally effective. Furthermore, the vector treatment did not lead to detectable systemic toxicity or adverse events in MPS IIIA mice. These data demonstrate the development of a safe and effective new gene therapy product for treating MPS IIIA, which further support the extended clinical relevance of platform recombinant AAV9 (rAAV9 gene delivery for treating broad neurogenetic diseases.
Collapse
Affiliation(s)
- Tierra A. Bobo
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Preston N. Samowitz
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I. Robinson
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Fu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Genetics and Metabolism, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
35
|
Jacob A, Brun L, Jiménez Gil P, Ménard L, Bouzelha M, Broucque F, Roblin A, Vandenberghe LH, Adjali O, Robin C, François A, Blouin V, Penaud-Budloo M, Ayuso E. Homologous Recombination Offers Advantages over Transposition-Based Systems to Generate Recombinant Baculovirus for Adeno-Associated Viral Vector Production. Biotechnol J 2020; 16:e2000014. [PMID: 33067902 DOI: 10.1002/biot.202000014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Viral vectors have a great potential for gene delivery, but manufacturing is a big challenge for the industry. The baculovirus-insect cell is one of the most scalable platforms to produce recombinant adeno-associated virus (rAAV) vectors. The standard procedure to generate recombinant baculovirus is based on Tn7 transposition which is time-consuming and suffers technical constraints. Moreover, baculoviral sequences adjacent to the AAV ITRs are preferentially encapsidated into the rAAV vector particles. This observation raises concerns about safety due to the presence of bacterial and antibiotic resistance coding sequences with a Tn7-mediated system for the construction of baculoviruses reagents. Here, a faster and safer method based on homologous recombination (HR) is investigated. First, the functionality of the inserted cassette and the absence of undesirable genes into HR-derived baculoviral genomes are confirmed. Strikingly, it is found that the exogenous cassette showed increased stability over passages when using the HR system. Finally, both materials generated high rAAV vector genome titers, with the advantage of the HR system being exempted from undesirable bacterial genes which provides an additional level of safety for its manufacturing. Overall, this study highlights the importance of the upstream process and starting biologic materials to generate safer rAAV biotherapeutic products.
Collapse
Affiliation(s)
- Aurélien Jacob
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Laurie Brun
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | | | - Lucie Ménard
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Mohammed Bouzelha
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Frédéric Broucque
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Aline Roblin
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Luk H Vandenberghe
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.,Grousbeck Gene Therapy Center, Mass Eye and Ear, Schepens Eye Research Institute, Boston, MA, 02114, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Oumeya Adjali
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Cécile Robin
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Achille François
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | - Véronique Blouin
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| | | | - Eduard Ayuso
- CHU Nantes, INSERM UMR1089, University of Nantes, Nantes, 44200, France
| |
Collapse
|
36
|
Lecomte E, Saleun S, Bolteau M, Guy-Duché A, Adjali O, Blouin V, Penaud-Budloo M, Ayuso E. The SSV-Seq 2.0 PCR-Free Method Improves the Sequencing of Adeno-Associated Viral Vector Genomes Containing GC-Rich Regions and Homopolymers. Biotechnol J 2020; 16:e2000016. [PMID: 33064875 DOI: 10.1002/biot.202000016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/29/2020] [Indexed: 11/08/2022]
Abstract
Adeno-associated viral vectors (AAV) are efficient engineered tools for delivering genetic material into host cells. The commercialization of AAV-based drugs must be accompanied by the development of appropriate quality control (QC) assays. Given the potential risk of co-transfer of oncogenic or immunogenic sequences with therapeutic vectors, accurate methods to assess the level of residual DNA in AAV vector stocks are particularly important. An assay based on high-throughput sequencing (HTS) to identify and quantify DNA species in recombinant AAV batches is developed. Here, it is shown that PCR amplification of regions that have a local GC content >90% and include successive mononucleotide stretches, such as the CAG promoter, can introduce bias during DNA library preparation, leading to drops in sequencing coverage. To circumvent this problem, SSV-Seq 2.0, a PCR-free protocol for sequencing AAV vector genomes containing such sequences, is developed. The PCR-free protocol improves the evenness of the rAAV genome coverage and consequently leads to a more accurate relative quantification of residual DNA. HTS-based assays provide a more comprehensive assessment of DNA impurities and AAV vector genome integrity than conventional QC tests based on real-time PCR and are useful methods to improve the safety and efficacy of these viral vectors.
Collapse
Affiliation(s)
- Emilie Lecomte
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Sylvie Saleun
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Mathieu Bolteau
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Aurélien Guy-Duché
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Oumeya Adjali
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Véronique Blouin
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Magalie Penaud-Budloo
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| | - Eduard Ayuso
- INSERM UMR1089, Translational Gene Therapy Laboratory, University of Nantes, Centre Hospitalier Universitaire of Nantes, Nantes, 44200, France
| |
Collapse
|
37
|
Therapeutic Delivery of rAAV sox9 via Polymeric Micelles Counteracts the Effects of Osteoarthritis-Associated Inflammatory Cytokines in Human Articular Chondrocytes. NANOMATERIALS 2020; 10:nano10061238. [PMID: 32630578 PMCID: PMC7353187 DOI: 10.3390/nano10061238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is a prevalent joint disease linked to the irreversible degradation of key extracellular cartilage matrix (ECM) components (proteoglycans, type-II collagen) by proteolytic enzymes due to an impaired tissue homeostasis, with the critical involvement of OA-associated pro-inflammatory cytokines (interleukin 1 beta, i.e., IL-1β, and tumor necrosis factor alpha, i.e., TNF-α). Gene therapy provides effective means to re-establish such degraded ECM compounds by rejuvenating the altered OA phenotype of the articular chondrocytes, the unique cell population ubiquitous in the articular cartilage. In particular, overexpression of the highly specialized SOX9 transcription factor via recombinant adeno-associated viral (rAAV) vectors has been reported for its ability to readjust the metabolic balance in OA, in particular via controlled rAAV delivery using polymeric micelles as carriers to prevent a possible vector neutralization by antibodies present in the joints of patients. As little is known on the challenging effects of such naturally occurring OA-associated pro-inflammatory cytokines on such rAAV/polymeric gene transfer, we explored the capacity of polyethylene oxide (PEO) and polypropylene oxide (PPO)-based polymeric micelles to deliver a candidate rAAV-FLAG-hsox9 construct in human OA chondrocytes in the presence of IL-1β and TNF-α. We report that effective, micelle-guided rAAV sox9 overexpression enhanced the deposition of ECM components and the levels of cell survival, while advantageously reversing the deleterious effects afforded by the OA cytokines on these processes. These findings highlight the potentiality of polymeric micelles as effective rAAV controlled delivery systems to counterbalance the specific contribution of major OA-associated inflammatory cytokines, supporting the concept of using such systems for the treatment for chronic inflammatory diseases like OA.
Collapse
|
38
|
Meier AF, Fraefel C, Seyffert M. The Interplay between Adeno-Associated Virus and its Helper Viruses. Viruses 2020; 12:E662. [PMID: 32575422 PMCID: PMC7354565 DOI: 10.3390/v12060662] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The adeno-associated virus (AAV) is a small, nonpathogenic parvovirus, which depends on helper factors to replicate. Those helper factors can be provided by coinfecting helper viruses such as adenoviruses, herpesviruses, or papillomaviruses. We review the basic biology of AAV and its most-studied helper viruses, adenovirus type 5 (AdV5) and herpes simplex virus type 1 (HSV-1). We further outline the direct and indirect interactions of AAV with those and additional helper viruses.
Collapse
Affiliation(s)
| | | | - Michael Seyffert
- Institute of Virology, University of Zurich, CH-8057 Zurich, Switzerland; (A.F.M.); (C.F.)
| |
Collapse
|
39
|
Meng W, Rey-Rico A, Claudel M, Schmitt G, Speicher-Mentges S, Pons F, Lebeau L, Venkatesan JK, Cucchiarini M. rAAV-Mediated Overexpression of SOX9 and TGF-β via Carbon Dot-Guided Vector Delivery Enhances the Biological Activities in Human Bone Marrow-Derived Mesenchymal Stromal Cells. NANOMATERIALS 2020; 10:nano10050855. [PMID: 32354138 PMCID: PMC7712756 DOI: 10.3390/nano10050855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Scaffold-assisted gene therapy is a highly promising tool to treat articular cartilage lesions upon direct delivery of chondrogenic candidate sequences. The goal of this study was to examine the feasibility and benefits of providing highly chondroreparative agents, the cartilage-specific sex-determining region Y-type high-mobility group 9 (SOX9) transcription factor or the transforming growth factor beta (TGF-β), to human bone marrow-derived mesenchymal stromal cells (hMSCs) via clinically adapted, independent recombinant adeno-associated virus (rAAV) vectors formulated with carbon dots (CDs), a novel class of carbon-dominated nanomaterials. Effective complexation and release of a reporter rAAV-lacZ vector was achieved using four different CDs elaborated from 1-citric acid and pentaethylenehexamine (CD-1); 2-citric acid, poly(ethylene glycol) monomethyl ether (MW 550 Da), and N,N-dimethylethylenediamine (CD-2); 3-citric acid, branched poly(ethylenimine) (MW 600 Da), and poly(ethylene glycol) monomethyl ether (MW 2 kDa) (CD-3); and 4-citric acid and branched poly(ethylenimine) (MW 600 Da) (CD-4), allowing for the genetic modification of hMSCs. Among the nanoparticles, CD-2 showed an optimal ability for rAAV delivery (up to 2.2-fold increase in lacZ expression relative to free vector treatment with 100% cell viability for at least 10 days, the longest time point examined). Administration of therapeutic (SOX9, TGF-β) rAAV vectors in hMSCs via CD-2 led to the effective overexpression of each independent transgene, promoting enhanced cell proliferation (TGF-β) and cartilage matrix deposition (glycosaminoglycans, type-II collagen) for at least 21 days relative to control treatments (CD-2 lacking rAAV or associated to rAAV-lacZ), while advantageously restricting undesirable type-I and -X collagen deposition. These results reveal the potential of CD-guided rAAV gene administration in hMSCs as safe, non-invasive systems for translational strategies to enhance cartilage repair.
Collapse
Affiliation(s)
- Weikun Meng
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, ES-15071 A Coruña, Spain
| | - Mickaël Claudel
- Laboratoire de Conception et Application de Molécules Bioactives, Faculty of Pharmacy, UMR 7199 CNRS—University of Strasbourg, F-67401 Illkirch, France
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, Faculty of Pharmacy, UMR 7199 CNRS—University of Strasbourg, F-67401 Illkirch, France
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, Faculty of Pharmacy, UMR 7199 CNRS—University of Strasbourg, F-67401 Illkirch, France
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-1624-987; Fax: +49-6841-1624-988
| |
Collapse
|
40
|
Alvarez-Rivera F, Rey-Rico A, Venkatesan JK, Diaz-Gomez L, Cucchiarini M, Concheiro A, Alvarez-Lorenzo C. Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene Therapy. Pharmaceutics 2020; 12:pharmaceutics12040335. [PMID: 32283694 PMCID: PMC7238179 DOI: 10.3390/pharmaceutics12040335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
As an alternative to eye drops and ocular injections for gene therapy, the aim of this work was to design for the first time hydrogel contact lenses that can act as platforms for the controlled delivery of viral vectors (recombinant adeno-associated virus, rAAV) to the eye in an effective way with improved patient compliance. Hydrogels of hydroxyethyl methacrylate (HEMA) with aminopropyl methacrylamide (APMA) (H1: 40, and H2: 80 mM) or without (Hc: 0 mM) were synthesized, sterilized by steam heat (121 °C, 20 min), and then tested for gene therapy using rAAV vectors to deliver the genes to the cornea. The hydrogels showed adequate light transparency, oxygen permeability, and swelling for use as contact lenses. Loading of viral vectors (rAAV-lacZ, rAAV-RFP, or rAAV-hIGF-I) was carried out at 4 °C to maintain viral vector titer. Release in culture medium was monitored by fluorescence with Cy3-rAAV-lacZ and AAV Titration ELISA. Transduction efficacy was tested through reporter genes lacZ and RFP in human bone marrow derived mesenchymal stem cells (hMSCs). lacZ was detected with X-Gal staining and quantified with Beta-Glo®, and RFP was monitored by fluorescence. The ability of rAAV-hIGF-I-loaded hydrogels to trigger cell proliferation in hMSCs was evaluated by immunohistochemistry. Finally, the ability of rAAV-lacZ-loaded hydrogels to transduce bovine cornea was confirmed through detection with X-Gal staining of β-galactosidase expressed within the tissue.
Collapse
Affiliation(s)
- Fernando Alvarez-Rivera
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain;
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany; (J.K.V.); (M.C.)
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg, Germany; (J.K.V.); (M.C.)
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+DFarma, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.A.-R.); (L.D.-G.); (A.C.)
- Correspondence: ; Tel.: +34-881815239
| |
Collapse
|
41
|
Srivastava A, Weitzman M, Chatterjee S, Engelhardt JF, Owens RA, Muzyczka N, Ali R. A Tribute to Barrie J. Carter. Hum Gene Ther 2020; 31:491-493. [PMID: 32239977 DOI: 10.1089/hum.2020.29118.bca] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Arun Srivastava
- Arun Srivastava, PhD, George H. Kitzman Professor of Genetics, Chief, Division of Cellular and Molecular Therapy, Departments of Pediatrics, Molecular Genetics, and Microbiology, Powell Gene Therapy Center, Cancer and Genetics Research Complex, 2033 Mowry Road, Room 492-A, University of Florida College of Medicine, Gainesville, FL, USA
| | - Matthew Weitzman
- Matthew Weitzman, PhD, Professor of Microbiology, Professor of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 4050 Colket Translational Research Building, The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Blvd, Philadelphia, PA, USA
| | - Saswati Chatterjee
- Saswati Chatterjee, PhD, Professor, Department of Surgery, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, USA
| | - John F Engelhardt
- John F. Engelhardt, Professor and Chair, Department of Anatomy and Cell Biology, Director, Center for Gene Therapy, Roy J. Carver Chair in Molecular Medicine, University of Iowa, Room 1-111 Bowen Science Building, 51 Newton Road, Iowa City, IA, USA
| | - Roland A Owens
- Roland A. Owens, Director of Research Workforce Development, Office of Intramural Research, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bldg. 1, Room 158, 1 Center DR MSC-0140, Bethesda, MD, USA
| | - Nick Muzyczka
- Nick Muzyczka, Professor, Molecular Genetics and Microbiology, University of Florida College of Medicine, 1600 Archer Rd, Rm. R1-118B, Gainesville, FL, USA
| | - Robin Ali
- Robin Ali, Professor, Molecular Therapy, Institute of Ophthalmology, Bath Street, London, EC1V 9EL, United Kingdom
| |
Collapse
|
42
|
Venkatesan JK, Falentin-Daudré C, Leroux A, Migonney V, Cucchiarini M. Biomaterial-Guided Recombinant Adeno-associated Virus Delivery from Poly(Sodium Styrene Sulfonate)-Grafted Poly(ɛ-Caprolactone) Films to Target Human Bone Marrow Aspirates. Tissue Eng Part A 2020; 26:450-459. [DOI: 10.1089/ten.tea.2019.0165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Amélie Leroux
- Université Paris 13-UMR CNRS 7244-CSPBAT-LBPS-UFR SMBH, Bobigny, France
| | | | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
43
|
Venkatesan JK, Meng W, Rey-Rico A, Schmitt G, Speicher-Mentges S, Falentin-Daudré C, Leroux A, Madry H, Migonney V, Cucchiarini M. Enhanced Chondrogenic Differentiation Activities in Human Bone Marrow Aspirates via sox9 Overexpression Mediated by pNaSS-Grafted PCL Film-Guided rAAV Gene Transfer. Pharmaceutics 2020; 12:pharmaceutics12030280. [PMID: 32245159 PMCID: PMC7151167 DOI: 10.3390/pharmaceutics12030280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The delivery of therapeutic genes in sites of articular cartilage lesions using non-invasive, scaffold-guided gene therapy procedures is a promising approach to stimulate cartilage repair while protecting the cargos from detrimental immune responses, particularly when targeting chondroreparative bone marrow-derived mesenchymal stromal cells in a natural microenvironment like marrow aspirates. METHODS Here, we evaluated the benefits of providing a sequence for the cartilage-specific sex-determining region Y-type high-mobility group box 9 (SOX9) transcription factor to human marrow aspirates via recombinant adeno-associated virus (rAAV) vectors delivered by poly(ε-caprolactone) (PCL) films functionalized via grafting with poly(sodium styrene sulfonate) (pNaSS) to enhance the marrow chondrogenic potential over time. RESULTS Effective sox9 overexpression was observed in aspirates treated with pNaSS-grafted or ungrafted PCL films coated with the candidate rAAV-FLAG-hsox9 (FLAG-tagged rAAV vector carrying a human sox9 gene sequence) vector for at least 21 days relative to other conditions (pNaSS-grafted and ungrafted PCL films without vector coating). Overexpression of sox9 via rAAV sox9/pNaSS-grafted or ungrafted PCL films led to increased biological and chondrogenic differentiation activities (matrix deposition) in the aspirates while containing premature osteogenesis and hypertrophy without impacting cell proliferation, with more potent effects noted when using pNaSS-grafted films. CONCLUSIONS These findings show the benefits of targeting patients' bone marrow via PCL film-guided therapeutic rAAV (sox9) delivery as an off-the-shelf system for future strategies to enhance cartilage repair in translational applications.
Collapse
Affiliation(s)
- Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Weikun Meng
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Susanne Speicher-Mentges
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
| | - Céline Falentin-Daudré
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Amélie Leroux
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
- Department of Orthopaedic Surgery, Saarland University Medical Center, D-66421 Homburg/Saar, Germany
| | - Véronique Migonney
- LBPS/CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France; (C.F.-D.); (A.L.); (V.M.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany; (J.K.V.); (W.M.); (A.R.-R.); (G.S.); (S.S.-M.); (H.M.)
- Correspondence: ; Tel.: +49-6841-1624-987; Fax: +49-6841-1624-988
| |
Collapse
|
44
|
RAD52: Viral Friend or Foe? Cancers (Basel) 2020; 12:cancers12020399. [PMID: 32046320 PMCID: PMC7072633 DOI: 10.3390/cancers12020399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian Radiation Sensitive 52 (RAD52) is a gene whose scientific reputation has recently seen a strong resurgence. In the past decade, RAD52, which was thought to be dispensable for most DNA repair and recombination reactions in mammals, has been shown to be important for a bevy of DNA metabolic pathways. One of these processes is termed break-induced replication (BIR), a mechanism that can be used to re-start broken replication forks and to elongate the ends of chromosomes in telomerase-negative cells. Viruses have historically evolved a myriad of mechanisms in which they either conscript cellular factors or, more frequently, inactivate them as a means to enable their own replication and survival. Recent data suggests that Adeno-Associated Virus (AAV) may replicate its DNA in a BIR-like fashion and/or utilize RAD52 to facilitate viral transduction and, as such, likely conscripts/requires the host RAD52 protein to promote its perpetuation.
Collapse
|
45
|
Abstract
Baculoviruses are arthropod-specific, enveloped viruses with circular, supercoiled double-stranded deoxyribonucleic acid genomes. While many viruses are studied to seek solutions for their adverse impact on human, veterinary, and plant health, the study of baculoviruses was stimulated initially by their potential utility to control insect pests. Later, the utility of baculovirus as gene expression vectors was evidenced leading to numerous applications. Several strategies are employed to obtain recombinant viruses that express large quantities of heterologous proteins. A major step forward was the development of bacmid technology (the construction of bacterial artificial chromosomes containing the genome of the baculovirus) which allows the manipulation of the baculovirus genome in bacteria. With this technology, foreign genes can be introduced into the bacmid by homologous and site-directed recombination or by transposition. Baculoviruses have been used to explore fundamental questions in molecular biology such as the nature of programmed cell-death. Moreover, the ability of baculoviruses to transduce mammalian cells led to the consideration of their use as gene-therapy and vaccine vectors. Strategies for genetic engineering of baculoviruses have been developed to meet the requirements of new application areas. Display of foreign proteins on the surface of virions or in nucleocapsid structures, the assembly of expressed proteins to form virus-like particles or protein complexes have been explored and validated as vaccines. The aim of this chapter is to update the areas of application of the baculoviruses in protein expression, alternative vaccine designs and gene therapy of infectious diseases and genetic disorders. Finally, we review the baculovirus-derived products on the market and in the pipeline for biomedical and veterinary use.
Collapse
|
46
|
Wilmott P, Lisowski L, Alexander IE, Logan GJ. A User's Guide to the Inverted Terminal Repeats of Adeno-Associated Virus. Hum Gene Ther Methods 2019; 30:206-213. [DOI: 10.1089/hgtb.2019.276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Patrick Wilmott
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Leszek Lisowski
- Translational Vectorology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
- Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, Puławy, Poland
- Vector and Genome Engineering Facility; Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ian E. Alexander
- Discipline of Child and Adolescent Health, University of Sydney, Westmead, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, University of Sydney, Westmead, Australia
| | - Grant J. Logan
- Gene Therapy Research Unit, Children's Medical Research Institute and Sydney Children's Hospitals Network, University of Sydney, Westmead, Australia
| |
Collapse
|
47
|
Schmit PF, Pacouret S, Zinn E, Telford E, Nicolaou F, Broucque F, Andres-Mateos E, Xiao R, Penaud-Budloo M, Bouzelha M, Jaulin N, Adjali O, Ayuso E, Vandenberghe LH. Cross-Packaging and Capsid Mosaic Formation in Multiplexed AAV Libraries. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:107-121. [PMID: 31909084 PMCID: PMC6938944 DOI: 10.1016/j.omtm.2019.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022]
Abstract
Generation and screening of libraries of adeno-associated virus (AAV) variants have emerged as a powerful method for identifying novel capsids for gene therapy applications. For the majority of libraries, vast population diversity requires multiplexed production, in which a library of inverted terminal repeat (ITR)-containing plasmid variants is transfected together into cells to generate the viral library. This process has the potential to be confounded by cross-packaging and mosaicism, in which particles are comprised of genomes and capsid monomers derived from different library members. Here, we investigate the prevalence of cross-packaging and mosaicism in simplified, minimal libraries using novel assays designed to assess capsid composition and packaging fidelity. We show that AAV library variants are prone to cross-packaging and capsid mosaic formation when produced at high plasmid levels, although to a lesser extent than in a recombinant context. We also provide experimental evidence that dilution of input library DNA significantly increases capsid monomer homogeneity and increases capsid:genome correlation in AAV libraries. Lastly, we determine that similar dilution methods yield higher-quality libraries when used for in vivo screens. Together, these findings quantitatively characterized the prevalence of cross-packaging and mosaicism in AAV libraries and established conditions that minimize related noise in subsequent screens.
Collapse
Affiliation(s)
- Pauline F Schmit
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Simon Pacouret
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA.,INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Eric Zinn
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Elizabeth Telford
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Fotini Nicolaou
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Frédéric Broucque
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Ru Xiao
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA
| | - Magalie Penaud-Budloo
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Mohammed Bouzelha
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Nicolas Jaulin
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Oumeya Adjali
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA 02114, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
48
|
Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment. J Clin Med 2019; 8:jcm8101637. [PMID: 31591319 PMCID: PMC6832991 DOI: 10.3390/jcm8101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Gene therapy for osteoarthritis offers powerful, long-lasting tools that are well adapted to treat such a slow, progressive disorder, especially those therapies based on the clinically adapted recombinant adeno-associated viral (rAAV) vectors. Here, we examined the ability of an rAAV construct carrying a therapeutic sequence for the cartilage-specific SOX9 transcription factor to modulate the phenotype of human osteoarthritic articular chondrocytes compared with normal chondrocytes in a three-dimensional environment where the cells are embedded in their extracellular matrix. Successful sox9 overexpression via rAAV was noted for at least 21 days, leading to the significant production of major matrix components (proteoglycans, type-II collagen) without affecting the proliferation of the cells, while the cells contained premature hypertrophic processes relative to control conditions (reporter rAAV-lacZ application, absence of vector treatment). These findings show the value of using rAAV to adjust the osteoarthritic phenotype when the chondrocytes are confined in their inherently altered environment and the possibility of impacting key cellular processes via gene therapy to remodel human osteoarthritic cartilage lesions.
Collapse
|
49
|
Keeler AM, Flotte TR. Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where Are We, and How Did We Get Here? Annu Rev Virol 2019; 6:601-621. [PMID: 31283441 PMCID: PMC7123914 DOI: 10.1146/annurev-virology-092818-015530] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recent market approvals of recombinant adeno-associated virus (rAAV) gene therapies in Europe and the United States are landmark achievements in the history of modern science. These approvals are also anticipated to herald the emergence of a new class of therapies for monogenic disorders, which had hitherto been considered untreatable. These events can be viewed as stemming from the convergence of several important historical trends: the study of basic virology, the development of genomic technologies, the imperative for translational impact of National Institutes of Health-funded research, and the development of economic models for commercialization of rare disease therapies. In this review, these historical trends are described and the key developments that have enabled clinical rAAV gene therapies are discussed, along with an overview of the current state of the field and future directions.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| | - Terence R Flotte
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| |
Collapse
|
50
|
Remodeling of Human Osteochondral Defects via rAAV-Mediated Co-Overexpression of TGF-β and IGF-I from Implanted Human Bone Marrow-Derived Mesenchymal Stromal Cells. J Clin Med 2019; 8:jcm8091326. [PMID: 31466339 PMCID: PMC6781264 DOI: 10.3390/jcm8091326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/01/2022] Open
Abstract
The application of chondrogenic gene sequences to human bone marrow-derived mesenchymal stromal cells (hMSCs) is an attractive strategy to activate the reparative activities of these cells as a means to enhance the processes of cartilage repair using indirect cell transplantation procedures that may improve the repopulation of cartilage lesions. In the present study, we examined the feasibility of co-delivering the highly competent transforming growth factor beta (TGF-β) with the insulin-like growth factor I (IGF-I) in hMSCs via recombinant adeno-associated virus (rAAV) vector-mediated gene transfer prior to implantation in a human model of osteochondral defect (OCD) ex vivo that provides a microenvironment similar to that of focal cartilage lesions. The successful co-overexpression of rAAV TGF-β/IGF-I in implanted hMSCs promoted the durable remodeling of tissue injury in human OCDs over a prolonged period of time (21 days) relative to individual gene transfer and the control (reporter lacZ gene) treatment, with enhanced levels of cell proliferation and matrix deposition (proteoglycans, type-II collagen) both in the lesions and at a distance, while hypertrophic, osteogenic, and catabolic processes could be advantageously delayed. These findings demonstrate the value of indirect, progenitor cell-based combined rAAV gene therapy to treat human focal cartilage defects in a natural environment as a basis for future clinical applications.
Collapse
|