1
|
Tang X, Li S, Zhou J, Bian X, Wang J, Han N, Zhu X, Tao R, Wang W, Sun M, Li P, Zhang X, Li B. Recombinant bivalent subunit vaccine combining truncated VP4 from P[7] and P[23] induces protective immunity against prevalent porcine rotaviruses. J Virol 2024; 98:e0021224. [PMID: 38591886 PMCID: PMC11092341 DOI: 10.1128/jvi.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Porcine rotaviruses (PoRVs) cause severe economic losses in the swine industry. P[7] and P[23] are the predominant genotypes circulating on farms, but no vaccine is yet available. Here, we developed a bivalent subunit PoRV vaccine using truncated versions (VP4*) of the VP4 proteins from P[7] and P[23]. The vaccination of mice with the bivalent subunit vaccine elicited more robust neutralizing antibodies (NAbs) and cellular immune responses than its components, even at high doses. The bivalent subunit vaccine and inactivated bivalent vaccine prepared from strains PoRVs G9P[7] and G9P[23] were used to examine their protective efficacy in sows and suckling piglets after passive immunization. The immunized sows showed significantly elevated NAbs in the serum and colostrum, and the suckling piglets acquired high levels of sIgA antibodies from the colostrum. Challenging subunit-vaccinated or inactivated-vaccinated piglets with homologous virulent strains did not induce diarrhea, except in one or two piglets, which had mild diarrhea. Immunization with the bivalent subunit vaccine and inactivated vaccine also alleviated the microscopic lesions in the intestinal tissues caused by the challenge with the corresponding homologous virulent strain. However, all the piglets in the challenged group displayed mild to watery diarrhea and high levels of viral shedding, whereas the feces and intestines of the piglets in the bivalent subunit vaccine and inactivated vaccine groups had lower viral loads. In summary, our data show for the first time that a bivalent subunit vaccine combining VP4*P[7] and VP4*P[23] effectively protects piglets against the diarrhea caused by homologous virulent strains.IMPORTANCEPoRVs are the main causes of diarrhea in piglets worldwide. The multisegmented genome of PoRVs allows the reassortment of VP4 and VP7 genes from different RV species and strains. The P[7] and P[23] are the predominant genotypes circulating in pig farms, but no vaccine is available at present in China. Subunit vaccines, as nonreplicating vaccines, are an option to cope with variable genotypes. Here, we have developed a bivalent subunit candidate vaccine based on a truncated VP4 protein, which induced robust humoral and cellular immune responses and protected piglets against challenge with homologous PoRV. It also appears to be safe. These data show that the truncated VP4-protein-based subunit vaccine is a promising candidate for the prevention of PoRV diarrhea.
Collapse
MESH Headings
- Animals
- Female
- Mice
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Diarrhea/prevention & control
- Diarrhea/virology
- Diarrhea/veterinary
- Diarrhea/immunology
- Genotype
- Immunity, Cellular
- Mice, Inbred BALB C
- Rotavirus/immunology
- Rotavirus Infections/prevention & control
- Rotavirus Infections/veterinary
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Rotavirus Vaccines/immunology
- Rotavirus Vaccines/administration & dosage
- Swine
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Vaccination
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Xuechao Tang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Sufen Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xianyu Bian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Jianxin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Nan Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Ran Tao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- College of Animal Science, Yangtze University, Jingzhou, China
- Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
2
|
Asensio-Cob D, Rodríguez JM, Luque D. Rotavirus Particle Disassembly and Assembly In Vivo and In Vitro. Viruses 2023; 15:1750. [PMID: 37632092 PMCID: PMC10458742 DOI: 10.3390/v15081750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rotaviruses (RVs) are non-enveloped multilayered dsRNA viruses that are major etiologic agents of diarrheal disease in humans and in the young in a large number of animal species. The viral particle is composed of three different protein layers that enclose the segmented dsRNA genome and the transcriptional complexes. Each layer defines a unique subparticle that is associated with a different phase of the replication cycle. Thus, while single- and double-layered particles are associated with the intracellular processes of selective packaging, genome replication, and transcription, the viral machinery necessary for entry is located in the third layer. This modular nature of its particle allows rotaviruses to control its replication cycle by the disassembly and assembly of its structural proteins. In this review, we examine the significant advances in structural, molecular, and cellular RV biology that have contributed during the last few years to illuminating the intricate details of the RV particle disassembly and assembly processes.
Collapse
Affiliation(s)
- Dunia Asensio-Cob
- Department of Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G0A4, Canada;
| | - Javier M. Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Luque
- Electron Microscopy Unit UCCT/ISCIII, 28220 Majadahonda, Spain
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Amimo JO, Raev SA, Chepngeno J, Mainga AO, Guo Y, Saif L, Vlasova AN. Rotavirus Interactions With Host Intestinal Epithelial Cells. Front Immunol 2021; 12:793841. [PMID: 35003114 PMCID: PMC8727603 DOI: 10.3389/fimmu.2021.793841] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Rotavirus (RV) is the foremost enteric pathogen associated with severe diarrheal illness in young children (<5years) and animals worldwide. RV primarily infects mature enterocytes in the intestinal epithelium causing villus atrophy, enhanced epithelial cell turnover and apoptosis. Intestinal epithelial cells (IECs) being the first physical barrier against RV infection employs a range of innate immune strategies to counteract RVs invasion, including mucus production, toll-like receptor signaling and cytokine/chemokine production. Conversely, RVs have evolved numerous mechanisms to escape/subvert host immunity, seizing translation machinery of the host for effective replication and transmission. RV cell entry process involve penetration through the outer mucus layer, interaction with cell surface molecules and intestinal microbiota before reaching the IECs. For successful cell attachment and entry, RVs use sialic acid, histo-blood group antigens, heat shock cognate protein 70 and cell-surface integrins as attachment factors and/or (co)-receptors. In this review, a comprehensive summary of the existing knowledge of mechanisms underlying RV-IECs interactions, including the role of gut microbiota, during RV infection is presented. Understanding these mechanisms is imperative for developing efficacious strategies to control RV infections, including development of antiviral therapies and vaccines that target specific immune system antagonists within IECs.
Collapse
Affiliation(s)
- Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Sergei Alekseevich Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Alfred Omwando Mainga
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Yusheng Guo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
4
|
Rotavirus in Calves and Its Zoonotic Importance. Vet Med Int 2021; 2021:6639701. [PMID: 33968359 PMCID: PMC8081619 DOI: 10.1155/2021/6639701] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022] Open
Abstract
Rotavirus is a major pathogen responsible for diarrheal disease in calves, resulting in loss of productivity and economy of farmers. However, various facets of diarrheal disease caused by rotavirus in calves in the world are inadequately understood, considering that diarrheal disease caused by rotavirus is a vital health problem in calves that interrupts production benefits with reduced weight gain and increased mortality, and its potential for zoonotic spread. The pathological changes made by rotavirus are almost exclusively limited to the small intestine that leads to diarrhea. It is environmentally distributed worldwide and was extensively studied. Reassortment is one of the important mechanisms for generating genetic diversity of rotaviruses and eventually for viral evolution. So, the primary strategy is to reduce the burden of rotavirus infections by practicing early colostrum's feeding in newborn calves, using vaccine, and improving livestock management. Rotaviruses have a wide host range, infecting many animal species as well as humans. As it was found that certain animal rotavirus strains had antigenic similarities to some human strains, this may be an indication for an animal to play a role as a source of rotavirus infection in humans. Groups A to C have been shown to infect both humans and animals. The most commonly detected strains in both human and animals are G2, G3, G4, and G9, P [6]. Therefore, this review was made to get overview epidemiology status and zoonotic importance of bovine rotavirus.
Collapse
|
5
|
Daddi-Moussa-Ider A, Goh S, Liebchen B, Hoell C, Mathijssen AJTM, Guzmán-Lastra F, Scholz C, Menzel AM, Löwen H. Membrane penetration and trapping of an active particle. J Chem Phys 2019; 150:064906. [DOI: 10.1063/1.5080807] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Segun Goh
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | | | - Francisca Guzmán-Lastra
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Facultad de Ciencias, Universidad Mayor, Ave. Manuel Montt 367, Providencia, Santiago de Chile, Chile
| | - Christian Scholz
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Rodríguez JM, Luque D. Structural Insights into Rotavirus Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:45-68. [DOI: 10.1007/978-3-030-14741-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
7
|
González-Parra G, Dobrovolny HM, Aranda DF, Chen-Charpentier B, Guerrero Rojas RA. Quantifying rotavirus kinetics in the REH tumor cell line using in vitro data. Virus Res 2017; 244:53-63. [PMID: 29109019 DOI: 10.1016/j.virusres.2017.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Globally, rotavirus is the most common cause of diarrhea in children younger than 5 years of age, however, a quantitative understanding of the infection dynamics is still lacking. In this paper, we present the first study to extract viral kinetic parameters for in vitro rotavirus infections in the REH cell tumor line. We use a mathematical model of viral kinetics to extract parameter values by fitting the model to data from rotavirus infection of REH cells. While accurate results for some of the parameters of the mathematical model were not achievable due to its global non-identifiability, we are able to quantify approximately the time course of the infection for the first time. We also find that the basic reproductive number of rotavirus, which gives the number of secondary infections from a single infected cell, is much greater than one. Quantifying the kinetics of rotavirus leads not only to a better understanding of the infection process, but also provides a method for quantitative comparison of kinetics of different strains or for quantifying the effectiveness of antiviral treatment.
Collapse
Affiliation(s)
- Gilberto González-Parra
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA; Department of Mathematics, New Mexico Tech, Socorro, NM, USA
| | | | - Diego F Aranda
- Facultad de Ciencias, Departamento de Matemáticas, Universidad El Bosque, Bogotá D.C., Colombia
| | | | | |
Collapse
|
8
|
Chingwaru W, Vidmar J. A novel porcine cell culture based protocol for the propagation of hepatitis E virus. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Swaine T, Dittmar MT. CDC42 Use in Viral Cell Entry Processes by RNA Viruses. Viruses 2015; 7:6526-36. [PMID: 26690467 PMCID: PMC4690878 DOI: 10.3390/v7122955] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/03/2015] [Accepted: 11/30/2015] [Indexed: 01/08/2023] Open
Abstract
The cellular actin cytoskeleton presents a barrier that must be overcome by many viruses, and it has become increasingly apparent many viral species have developed a diverse repertoire of mechanisms to hijack cellular actin-regulating signalling pathways as part of their cell entry processes. The Rho family GTPase Cdc42 is appreciated as a key moderator of cellular actin dynamics, and the development of specific Cdc42-inhibiting agents has given us an unprecedented ability to investigate its individual role in signalling pathways. However, investigative use of said agents, and the subsequent characterisation of the role Cdc42 plays in viral entry processes has been lacking. Here, we describe the current literature on the role of Cdc42 in human immunodeficiency virus (HIV)-1 cell entry, which represents the most investigated instance of Cdc42 function in viral cell entry processes, and also review evidence of Cdc42 use in other RNA virus cell entries, demonstrating prime areas for more extensive research using similar techniques.
Collapse
Affiliation(s)
- Thomas Swaine
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark Street, London E1 2AT, UK.
| | - Matthias T Dittmar
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
10
|
Otto PH, Reetz J, Eichhorn W, Herbst W, Elschner MC. Isolation and propagation of the animal rotaviruses in MA-104 cells—30 years of practical experience. J Virol Methods 2015; 223:88-95. [DOI: 10.1016/j.jviromet.2015.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022]
|
11
|
Chen Q, Xue H, Chen M, Gao F, Xu J, Liu Q, Yang X, Zheng L, Chen H. High serum trypsin levels and the -409 T/T genotype of PRSS1 gene are susceptible to neonatal sepsis. Inflammation 2015; 37:1751-6. [PMID: 24777884 DOI: 10.1007/s10753-014-9904-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neonatal sepsis remains an important and common cause of morbidity and mortality among newborn infants, especially in developing countries. The aim of the present study was to determine whether serum trypsin levels and genotypes of cationic trypsinogen (PRSS1) gene could be served as markers for predicting neonatal sepsis. The serum trypsin levels and genotypes of PRSS1 were examined in both 50 infants with infection during neonatal period and 56 healthy neonates as controls. The infected infants were further subdivided into infants with sepsis group (n=18) and infected infants without sepsis (n=32). The genotype of PRSS1 was analyzed by direct sequencing, and the serum trypsin level was measured by immunoassay. It showed that the median value of serum trypsin was significantly higher in infected infants (31.90 ng/mL) than in controls (12.85 ng/mL; P=0.030). More importantly, sepsis subgroup (50.95 ng/mL) had significantly higher median serum trypsin than infected infants without sepsis subgroup (19.10 ng/mL) and controls (12.85 ng/mL) (P=0.015 and P=0.002, respectively). Additionally, the median serum trypsin levels were found significantly higher in infants who had T/T (37.90 ng/mL) genotype of PRSS1 compared with those who had C/T genotype (12.80 ng/mL; P=0.005). This study suggested that serum trypsin and rs10273639 C/T of PRSS1 were revealed to be novel markers for predicting neonatal sepsis.
Collapse
Affiliation(s)
- Qingquan Chen
- Department of Laboratory Medicine, Medical Technology and Engineering College, Fujian Medical University, 350004, Fuzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Romero-Maraccini OC, Shisler JL, Nguyen TH. Solar and temperature treatments affect the ability of human rotavirus wa to bind to host cells and synthesize viral RNA. Appl Environ Microbiol 2015; 81:4090-7. [PMID: 25862222 PMCID: PMC4524135 DOI: 10.1128/aem.00027-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/01/2015] [Indexed: 12/13/2022] Open
Abstract
Rotavirus, the leading cause of diarrheal diseases in children under the age of five, is often resistant to conventional wastewater treatment and thus can remain infectious once released into the aquatic environment. Solar and heat treatments can inactivate rotavirus, but it is unknown how these treatments inactivate the virus on a molecular level. To answer this question, our approach was to correlate rotavirus inactivation with the inhibition of portions of the virus life cycle as a means to identify the mechanisms of solar or heat inactivation. Specifically, the integrity of the rotavirus NSP3 gene, virus-host cell interaction, and viral RNA synthesis were examined after heat (57°C) or solar treatment of rotavirus. Only the inhibition of viral RNA synthesis positively correlated with a loss of rotavirus infectivity; 57°C treatment of rotavirus resulted in a decrease of rotavirus RNA synthesis at the same rate as rotavirus infectivity. These data suggest that heat treatment neutralized rotaviruses primarily by targeting viral transcription functions. In contrast, when using solar disinfection, the decrease in RNA synthesis was responsible for approximately one-half of the decrease in infectivity, suggesting that other mechanisms, including posttranslational, contribute to inactivation. Nevertheless, both solar and heat inactivation of rotaviruses disrupted viral RNA synthesis as a mechanism for inactivation.
Collapse
Affiliation(s)
- Ofelia C Romero-Maraccini
- Department of Civil and Environmental Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joanna L Shisler
- Department of Microbiology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Abdelhakim AH, Salgado EN, Fu X, Pasham M, Nicastro D, Kirchhausen T, Harrison SC. Structural correlates of rotavirus cell entry. PLoS Pathog 2014; 10:e1004355. [PMID: 25211455 PMCID: PMC4161437 DOI: 10.1371/journal.ppat.1004355] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 07/24/2014] [Indexed: 01/06/2023] Open
Abstract
Cell entry by non-enveloped viruses requires translocation into the cytosol of a macromolecular complex--for double-strand RNA viruses, a complete subviral particle. We have used live-cell fluorescence imaging to follow rotavirus entry and penetration into the cytosol of its ∼ 700 Å inner capsid particle ("double-layered particle", DLP). We label with distinct fluorescent tags the DLP and each of the two outer-layer proteins and track the fates of each species as the particles bind and enter BSC-1 cells. Virions attach to their glycolipid receptors in the host cell membrane and rapidly become inaccessible to externally added agents; most particles that release their DLP into the cytosol have done so by ∼ 10 minutes, as detected by rapid diffusional motion of the DLP away from residual outer-layer proteins. Electron microscopy shows images of particles at various stages of engulfment into tightly fitting membrane invaginations, consistent with the interpretation that rotavirus particles drive their own uptake. Electron cryotomography of membrane-bound virions also shows closely wrapped membrane. Combined with high resolution structural information about the viral components, these observations suggest a molecular model for membrane disruption and DLP penetration.
Collapse
Affiliation(s)
- Aliaa H. Abdelhakim
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric N. Salgado
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaofeng Fu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mithun Pasham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniela Nicastro
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Tomas Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Teimoori A, Soleimanjahi H, Makvandi M. Characterization and Transferring of Human Rotavirus Double-Layered Particles in MA104 Cells. Jundishapur J Microbiol 2014; 7:e10375. [PMID: 25371799 PMCID: PMC4217670 DOI: 10.5812/jjm.10375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/25/2013] [Accepted: 06/01/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Rotavirus (RV) is a major cause of gastroenteritis in infants and children and is one of the most severe public health problems. Rotaviruses outer layer contains two proteins including VP4 and VP7. These proteins are necessary for host-cell binding and penetration. TLP (triple layer virus particle) of RV is a complete infectious virion that binds to the target cells and internalized at the cytoplasm. The DLP (double layer virus particle) is a non-infectious particle that is formed through exclusion of the outer layer proteins including VP4 and VP7. These DLPs are the transcriptionally active forms of rotavirus. OBJECTIVES The aim of this study was to transfer DLP of RV into cytoplasm of MA104 cells by Lipofectamine and to analyze their replication. MATERIALS AND METHODS Initially, rotavirus was purified by CsCl discontinuous gradient and DLP was separated from TLP based on density differences. For confirmation, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the proteins were conducted Then the purified DLP of RV was transferred into MA104 cells using Lipofectamine. RESULTS We attempt to avoid the attachment and entry of the rotavirus by using Lipofectamine to mediate the delivery of viral particles directly into the cytoplasm. DLP was endocytosed into the cytoplasm following treatment by Lipofectamine and then replicated in cytoplasm. CONCLUSIONS Therefore the non-infectious DLPs were became infectious if introduced into the cytoplasm of permissive and cancerous cells, without passing attachment and entry process.
Collapse
Affiliation(s)
- Ali Teimoori
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
- Corresponding author: Hoorieh Soleimanjahi, Department of Virology, Faculty of Medical Science, Tarbiat Modares University, Tehran, IR Iran. Tel/Fax: +98-2182883561, E-mail:
| | - Manoochehr Makvandi
- Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| |
Collapse
|
15
|
New insights into rotavirus entry machinery: stabilization of rotavirus spike conformation is independent of trypsin cleavage. PLoS Pathog 2014; 10:e1004157. [PMID: 24873828 PMCID: PMC4038622 DOI: 10.1371/journal.ppat.1004157] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/16/2014] [Indexed: 12/31/2022] Open
Abstract
The infectivity of rotavirus, the main causative agent of childhood diarrhea, is dependent on activation of the extracellular viral particles by trypsin-like proteases in the host intestinal lumen. This step entails proteolytic cleavage of the VP4 spike protein into its mature products, VP8* and VP5*. Previous cryo-electron microscopy (cryo-EM) analysis of trypsin-activated particles showed well-resolved spikes, although no density was identified for the spikes in uncleaved particles; these data suggested that trypsin activation triggers important conformational changes that give rise to the rigid, entry-competent spike. The nature of these structural changes is not well understood, due to lack of data relative to the uncleaved spike structure. Here we used cryo-EM and cryo-electron tomography (cryo-ET) to characterize the structure of the uncleaved virion in two model rotavirus strains. Cryo-EM three-dimensional reconstruction of uncleaved virions showed spikes with a structure compatible with the atomic model of the cleaved spike, and indistinguishable from that of digested particles. Cryo-ET and subvolume average, combined with classification methods, resolved the presence of non-icosahedral structures, providing a model for the complete structure of the uncleaved spike. Despite the similar rigid structure observed for uncleaved and cleaved particles, trypsin activation is necessary for successful infection. These observations suggest that the spike precursor protein must be proteolytically processed, not to achieve a rigid conformation, but to allow the conformational changes that drive virus entry. Rotavirus is responsible for more than 400,000 annual infant deaths worldwide. Its viral particle bears 60 protuberant spikes that constitute the machinery responsible for virus binding to and entry into the host cell. For efficient infection, the protein molecules that build the spike must be cleaved. Despite the importance of this activation step, the nature of the changes induced in the spike structure is unknown. According to the current hypothesis, the uncleaved spike is very flexible, and activation stabilizes the spike in an entry-competent conformation. Here we used distinct electron microscopy techniques to determine the structure of the uncleaved particle in two model rotavirus strains. Our results provide a complete structure of the uncleaved spike and demonstrate that cleaved and uncleaved spikes have similar conformations, indicating that proteolytic processing is not involved in stabilization of the spike. We suggest that spike processing is important for infection since it is necessary to allow the spike domain movements involved in rotavirus entry.
Collapse
|
16
|
Rotaviruses reach late endosomes and require the cation-dependent mannose-6-phosphate receptor and the activity of cathepsin proteases to enter the cell. J Virol 2014; 88:4389-402. [PMID: 24501398 DOI: 10.1128/jvi.03457-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Rotaviruses (RVs) enter cells through different endocytic pathways. Bovine rotavirus (BRV) UK uses clathrin-mediated endocytosis, while rhesus rotavirus (RRV) employs an endocytic process independent of clathrin and caveolin. Given the differences in the cell internalization pathway used by these viruses, we tested if the intracellular trafficking of BRV UK was the same as that of RRV, which is known to reach maturing endosomes (MEs) to infect the cell. We found that BRV UK also reaches MEs, since its infectivity depends on the function of Rab5, the endosomal sorting complex required for transport (ESCRT), and the formation of endosomal intraluminal vesicles (ILVs). However, unlike RRV, the infectivity of BRV UK was inhibited by knocking down the expression of Rab7, indicating that it has to traffic to late endosomes (LEs) to infect the cell. The requirement for Rab7 was also shared by other RV strains of human and porcine origin. Of interest, most RV strains that reach LEs were also found to depend on the activities of Rab9, the cation-dependent mannose-6-phosphate receptor (CD-M6PR), and cathepsins B, L, and S, suggesting that cellular factors from the trans-Golgi network (TGN) need to be transported by the CD-M6PR to LEs to facilitate RV cell infection. Furthermore, using a collection of UK × RRV reassortant viruses, we found that the dependence of BRV UK on Rab7, Rab9, and CD-M6PR is associated with the spike protein VP4. These findings illustrate the elaborate pathway of RV entry and reveal a new process (Rab9/CD-M6PR/cathepsins) that could be targeted for drug intervention. IMPORTANCE Rotavirus is an important etiological agent of severe gastroenteritis in children. In most instances, viruses enter cells through an endocytic pathway that delivers the viral particle to vesicular organelles known as early endosomes (EEs). Some viruses reach the cytoplasm from EEs, where they start to replicate their genome. However, other viruses go deeper into the cell, trafficking from EEs to late endosomes (LEs) to disassemble and reach the cytoplasm. In this work, we show that most RV strains have to traffic to LEs, and the transport of endolysosomal proteases from the Golgi complex to LEs, mediated by the mannose-6-phosphate receptor, is necessary for the virus to exit the vesicular compartment and efficiently start viral replication. We also show that this deep journey into the cell is associated with the virus spike protein VP4. These findings illustrate the elaborate pathway of RV entry that could be used for drug intervention.
Collapse
|
17
|
Martínez-Álvarez L, Piña-Vázquez C, Zarco W, Padilla-Noriega L. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells. Mem Inst Oswaldo Cruz 2013. [PMID: 23827992 PMCID: PMC3970611 DOI: 10.1590/0074-0276108042013005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.
Collapse
Affiliation(s)
- Laura Martínez-Álvarez
- Instituto de Investigaciones Biomédicas, Universidad Nacional
Autónoma de México, Mexico DF, Mexico
| | - Carolina Piña-Vázquez
- Instituto de Investigaciones Biomédicas, Universidad Nacional
Autónoma de México, Mexico DF, Mexico
| | - Wilbert Zarco
- Instituto de Investigaciones Biomédicas, Universidad Nacional
Autónoma de México, Mexico DF, Mexico
| | - Luis Padilla-Noriega
- Instituto de Investigaciones Biomédicas, Universidad Nacional
Autónoma de México, Mexico DF, Mexico, Corresponding author:
| |
Collapse
|
18
|
Martínez-Álvarez L, Piña-Vázquez C, Zarco W, Padilla-Noriega L. The shift from low to high non-structural protein 1 expression in rotavirus-infected MA-104 cells. Mem Inst Oswaldo Cruz 2013; 108:421-8. [PMID: 23827992 PMCID: PMC3970611 DOI: 10.1590/s0074-0276108042013005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/14/2013] [Indexed: 11/22/2022] Open
Abstract
A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.
Collapse
Affiliation(s)
- Laura Martínez-Álvarez
- Instituto de Investigaciones Biomédicas, Universidad Nacional
Autónoma de México, Mexico DF, Mexico
| | - Carolina Piña-Vázquez
- Instituto de Investigaciones Biomédicas, Universidad Nacional
Autónoma de México, Mexico DF, Mexico
| | - Wilbert Zarco
- Instituto de Investigaciones Biomédicas, Universidad Nacional
Autónoma de México, Mexico DF, Mexico
| | - Luis Padilla-Noriega
- Instituto de Investigaciones Biomédicas, Universidad Nacional
Autónoma de México, Mexico DF, Mexico
| |
Collapse
|
19
|
|
20
|
Abstract
A rare human G10P[8] rotavirus with a reassortment between bovine and human viruses was detected from a patient with acute gastroenteritis in Vietnam. Genetic analysis using complete coding sequences of all segments showed a genomic constellation of this virus of G10-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Its VP7 region was genetically related to that of a bovine rotavirus derived from Australia (strain VICG10.01), whereas all other genes were identical to those of a human rotavirus derived from Australia (strain Victoria/CK00047). These results indicate a possibility that the reassortment of the rotavirus was caused by immune escape in Australia and the rotavirus was carried to Vietnam. Additionally, this finding will help further understanding the evolution of rotaviruses circulating in Vietnam.
Collapse
|
21
|
Chen W, Cao Y, Liu M, Zhao Q, Huang J, Zhang H, Deng Z, Dai J, Williams DF, Zhang Z. Rotavirus capsid surface protein VP4-coated Fe3O4 nanoparticles as a theranostic platform for cellular imaging and drug delivery. Biomaterials 2012; 33:7895-902. [DOI: 10.1016/j.biomaterials.2012.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/08/2012] [Indexed: 01/20/2023]
|
22
|
Park JO, Chang KH, Lee HH, Chung IS. Biochemical analysis of Hyphantria cunea NPV attachment to Spodoptera frugiperda 21 cells. Cytotechnology 2012; 31:159-63. [PMID: 19003136 DOI: 10.1023/a:1008007818967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Binding characteristics of Hyphantria cunea nuclear polyhedrosis virus (HcNPV) to Spodoptera frugiperda 21 (Sf21) cells was determined. The cells displayed an affinity of 0.9 x 10(10) M(-1) with about 8900 binding sites per cell. The biochemical nature of HcNPV-binding sites on the cell surface was also partially elucidated. There were 45 to 49% reductions in HcNPV binding following the pretreatment of cells with three proteases, suggesting the involvement of a cellular protein component in virus binding. Tunicamycin, which inhibits N-linked glycosylation and the expression of some membrane proteins on the cell surface, reduced virus binding suggesting a role for glycoprotein(s) in binding. Treatment of cells with wheat germ agglutinin or neuraminidase did not measurably reduce virus binding, indicating that oligosaccharides containing N-acetylglucosamine or sialic acid are not directly involved in HcNPV attachment. The negative effect of methylamine on HcNPV binding seems to be due to the fact that HcNPV entry via an endocytic pathway is blocked by the increased pH of the endosome. Data on energy inhibitors (sodium azide and dinitrophenol) indicates that HcNPV attachment to Sf21 cells may be closely linked to viral entry via receptor-mediated endocytosis. These findings suggest that the binding site moiety has a glycoprotein component, but that direct involvement of oligosacccharides containing N-acetylglucosamine or sialic acid residues in binding is unlikely, and that HcNPV attachment to Sf21 cells might be via receptor-mediated endocytosis.
Collapse
|
23
|
Cho MK, Jheong WH, Lee SG, Park CJ, Jung KH, Paik SY. Full genomic analysis of a human rotavirus G1P[8] strain isolated in South Korea. J Med Virol 2012; 85:157-70. [PMID: 23023979 DOI: 10.1002/jmv.23366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2012] [Indexed: 11/07/2022]
Abstract
A rotavirus G1P[8] strain C1-81 was isolated from a 5-month-old female infant admitted to hospital with fever and severe diarrhea in Incheon, South Korea. To investigate its full genomic relatedness and its group, the full genome of strain C1-81 was determined. Based on a full genome classification system, C1-81 was shown to possess the typical Wa-like genotype constellation: G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. On the basis of sequence similarities, the strain was shown to be the closest related strain to contemporary human rotavirus strains with recent strains isolated in Asia. This C1-81 strain showed the highest degree of nucleic acid similarity (98.8% and 97%) to G1 B4633-03 and P[8] (Thai-1604 and Dhaka8-02), respectively. This is the first report that group A rotavirus was analyzed with G1P[8] in South Korea. The study of the complete genome of the virus will help understanding of the evolution of rotavirus.
Collapse
Affiliation(s)
- Min-Kyu Cho
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Rhesus rotavirus trafficking during entry into MA104 cells is restricted to the early endosome compartment. J Virol 2012; 86:4009-13. [PMID: 22278225 DOI: 10.1128/jvi.06667-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endocytosis has recently been implicated in rotavirus (RV) entry. We examined the role of Rabs, which regulate endosomal trafficking, during RV entry. Several structural proteins of neuraminidase-sensitive and -insensitive RVs colocalized with Rab5, an early endosome marker, but not Rab7, a late endosome marker. Dominant-negative and constitutively active mutants demonstrated that Rab5 but not Rab4 or Rab7 affects rhesus RV (RRV) infectivity. These data suggest that early RRV trafficking is confined to the early endosome compartment and requires Rab5.
Collapse
|
25
|
Full genomic analysis of Indian G1P[8] rotavirus strains. INFECTION GENETICS AND EVOLUTION 2011; 11:504-11. [DOI: 10.1016/j.meegid.2011.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/27/2010] [Accepted: 01/04/2011] [Indexed: 01/05/2023]
|
26
|
Lee JI, Song KY, Chon JW, Hyeon JY, Seo KH. Inhibitory Effect of Polysaccharide from Kefir Grain on the Infection of MA-104 Cell by Human Rotavirus. Korean J Food Sci Anim Resour 2011. [DOI: 10.5851/kosfa.2011.31.1.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Rhesus rotavirus entry into a polarized epithelium is endocytosis dependent and involves sequential VP4 conformational changes. J Virol 2010; 85:2492-503. [PMID: 21191022 DOI: 10.1128/jvi.02082-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rotavirus (RV) cell entry is an incompletely understood process, involving VP4 and VP7, the viral proteins composing the outermost layer of the nonenveloped RV triple-layered icosahedral particle (TLP), encasing VP6. VP4 can exist in three conformational states: soluble, cleaved spike, and folded back. In order to better understand the events leading to RV entry, we established a detection system to image input virus by monitoring the rhesus RV (RRV) antigens VP4, VP6, and VP7 at very early times postinfection. We provide evidence that decapsidation occurs directly after cell membrane penetration. We also demonstrate that several VP4 and VP7 conformational changes take place during entry. In particular, we detected, for the first time, the generation of folded-back VP5 in the context of the initiation of infection. Folded-back VP5 appears to be limited to the entry step. We furthermore demonstrate that RRV enters the cell cytoplasm through an endocytosis pathway. The endocytosis hypothesis is supported by the colocalization of RRV antigens with the early endosome markers Rab4 and Rab5. Finally, we provide evidence that the entry process is likely dependent on the endocytic Ca(2+) concentration, as bafilomycin A1 treatment as well as an augmentation of the extracellular calcium reservoir using CaEGTA, which both lead to an elevated intraendosomal calcium concentration, resulted in the accumulation of intact virions in the actin network. Together, these findings suggest that internalization, decapsidation, and cell membrane penetration involve endocytosis, calcium-dependent uncoating, and VP4 conformational changes, including a fold-back.
Collapse
|
28
|
Fleming FE, Graham KL, Takada Y, Coulson BS. Determinants of the specificity of rotavirus interactions with the alpha2beta1 integrin. J Biol Chem 2010; 286:6165-74. [PMID: 21138834 DOI: 10.1074/jbc.m110.142992] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human α2β1 integrin binds collagen and acts as a cellular receptor for rotaviruses and human echovirus 1. These ligands require the inserted (I) domain within the α2 subunit of α2β1 for binding. Previous studies have identified the binding sites for collagen and echovirus 1 in the α2 I domain. We used CHO cells expressing mutated α2β1 to identify amino acids involved in binding to human and animal rotaviruses. Residues where mutation affected rotavirus binding were located in several exposed loops and adjacent regions of the α2 I domain. Binding by all rotaviruses was eliminated by mutations in the activation-responsive αC-α6 and αF helices. This is a novel feature that distinguishes rotavirus from other α2β1 ligands. Mutation of residues that co-ordinate the metal ion (Ser-153, Thr-221, and Glu-256 in α2 and Asp-130 in β1) and nearby amino acids (Ser-154, Gln-215, and Asp-219) also inhibited rotavirus binding. The importance of most of these residues was greatest for binding by human rotaviruses. These mutations inhibit collagen binding to α2β1 (apart from Glu-256) but do not affect echovirus binding. Overall, residues where mutation affected both rotavirus and collagen recognition are located at one side of the metal ion-dependent adhesion site, whereas those important for collagen alone cluster nearby. Mutations eliminating rotavirus and echovirus binding are distinct, consistent with the respective preference of these viruses for activated or inactive α2β1. In contrast, rotavirus and collagen utilize activated α2β1 and show an overlap in α2β1 residues important for binding.
Collapse
Affiliation(s)
- Fiona E Fleming
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
29
|
Different rotavirus strains enter MA104 cells through different endocytic pathways: the role of clathrin-mediated endocytosis. J Virol 2010; 84:9161-9. [PMID: 20631149 DOI: 10.1128/jvi.00731-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rotaviruses, the single most important agents of acute severe gastroenteritis in children, are nonenveloped viruses formed by a three-layered capsid that encloses a genome formed by 11 segments of double-stranded RNA. The mechanism of entry of these viruses into the host cell is not well understood. The best-studied strain, RRV, which is sensitive to neuraminidase (NA) treatment of the cells, uses integrins alpha2 beta1 and alphav beta3 and the heat shock protein hsc70 as receptors and enters MA104 cells through a non-clathrin-, non-caveolin-mediated pathway that depends on a functional dynamin and on the presence of cholesterol on the cell surface. In this work, using a combination of pharmacological, biochemical, and genetic approaches, we compared the entry characteristics of four rotavirus strains known to have different receptor requirements. We chose four rotavirus strains that represent all phenotypic combinations of NA resistance or sensitivity and integrin dependence or independence. We found that even though all the strains share their requirements for hsc70, dynamin, and cholesterol, three of them differ from the simian strain RRV in the endocytic pathway used. The human strain Wa, porcine strain TFR-41, and bovine strain UK seem to enter the cell through clathrin-mediated endocytosis, since treatments that inhibit this pathway block their infectivity; consistent with this entry route, these strains were sensitive to changes in the endosomal pH. The inhibition of other endocytic mechanisms, such as macropinocytosis or caveola-mediated uptake, had no effect on the internalization of the rotavirus strains tested here.
Collapse
|
30
|
Autographa californica multicapsid nucleopolyhedrovirus efficiently infects Sf9 cells and transduces mammalian cells via direct fusion with the plasma membrane at low pH. J Virol 2010; 84:5351-9. [PMID: 20219938 DOI: 10.1128/jvi.02517-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The budded virus (BV) of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) infects insect cells and transduces mammalian cells mainly through the endocytosis pathway. However, this study revealed that the treatment of the virus bound to Sf9 cells at low pH could efficiently rescue the infectivity of AcMNPV in the presence of endocytosis pathway inhibitors. A colocalization assay of the major capsid protein VP39 with the early endosome marker EEA1 showed that at low pH, AcMNPV entered Sf9 cells via an endosome-independent pathway. Using a fluorescent probe (R18), we showed that at low pH, the viral nucleocapsid entered Sf9 cells via direct fusion at the cell surface. By using the myosin-specific inhibitor 2,3-butanedione monoxime (BDM) and the microtubule inhibitor nocodazole, the low pH-triggered direct fusion was demonstrated to be dependent on myosin-like proteins and independent of microtubules. The reverse transcription-PCR of the IE1 gene as a marker for viral entry showed that the kinetics of AcMNPV in cells triggered by low pH was similar to that of the normal entry via endocytosis. The low pH-mediated infection assay and VP39 and EEA1 colocalization assay also demonstrated that AcMNPV could efficiently transduce mammalian cells via direct membrane fusion at the cell surface. More importantly, we found that a low-pH trigger could significantly improve the transduction efficiency of AcMNPV in mammalian cells, leading to the potential application of this method when using baculovirus as a vector for heterologous gene expression and for gene therapy.
Collapse
|
31
|
Abstract
Infecting nearly every child by age five, rotaviruses are the major causative agents of severe gastroenteritis in young children. While much is known about the structure of these nonenveloped viruses and their components, the exact mechanism of viral cell entry is still poorly understood. A consensus opinion that appears to be emerging from recent studies is that rotavirus cell entry involves a series of complex and coordinated events following proteolytic priming of the virus. Rotaviruses attach to the cell through sialic acid containing receptors, with integrins and Hsc70 acting as postattachment receptors, all localized on lipid rafts. Unlike other endocytotic mechanisms, this internalization pathway appears to be independent of clathrin or caveola. Equally complex and coordinated is the fascinating structural gymnastics of the VP4 spikes that are implicated in facilitating optimal interface between viral and host components. While these studies only begin to capture the basic cellular, molecular, and structural mechanisms of cell entry, the unusual features they have uncovered and many intriguing questions they have raised undoubtedly will prompt further investigations.
Collapse
Affiliation(s)
- Matthew Baker
- National Center for Macromolecular Imaging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | |
Collapse
|
32
|
Abstract
During rotavirus entry, a virion penetrates a host cell membrane, sheds its outer capsid proteins, and releases a transcriptionally active subviral particle into the cytoplasm. VP5, the rotavirus protein believed to interact with the membrane bilayer, is a tryptic cleavage product of the outer capsid spike protein, VP4. When a rotavirus particle uncoats, VP5 folds back, in a rearrangement that resembles the fusogenic conformational changes in enveloped-virus fusion proteins. We present direct experimental evidence that this rearrangement leads to membrane binding. VP5 does not associate with liposomes when mounted as part of the trypsin-primed spikes on intact virions, nor does it do so after it has folded back into a stably trimeric, low-energy state. But it does bind liposomes when they are added to virions before uncoating, and VP5 rearrangement is then triggered by addition of EDTA. The presence of liposomes during the rearrangement enhances the otherwise inefficient VP5 conformational change. A VP5 fragment, VP5CT, produced from monomeric recombinant VP4 by successive treatments with chymotrypsin and trypsin, also binds liposomes only when the proteolysis proceeds in their presence. A monoclonal antibody that neutralizes infectivity by blocking a postattachment entry event also blocks VP5 liposome association. We propose that VP5 binds lipid bilayers in an intermediate conformational state, analogous to the extended intermediate conformation of enveloped-virus fusion proteins.
Collapse
|
33
|
Dutta D, Bagchi P, Chatterjee A, Nayak MK, Mukherjee A, Chattopadhyay S, Nagashima S, Kobayashi N, Komoto S, Taniguchi K, Chawla-Sarkar M. The molecular chaperone heat shock protein-90 positively regulates rotavirus infectionx. Virology 2009; 391:325-33. [PMID: 19628238 DOI: 10.1016/j.virol.2009.06.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 06/07/2009] [Accepted: 06/26/2009] [Indexed: 11/17/2022]
Abstract
Rotaviruses are the major cause of severe dehydrating gastroenteritis in children worldwide. In this study, we report a positive role of cellular chaperone Hsp90 during rotavirus infection. A highly specific Hsp90 inhibitor, 17-allylamono-demethoxygeldanamycin (17-AAG) was used to delineate the functional role of Hsp90. In MA104 cells treated with 17-AAG after viral adsorption, replication of simian (SA11) or human (KU) strains was attenuated as assessed by quantitating both plaque forming units and expression of viral genes. Phosphorylation of Akt and NFkappaB observed 2-4 hpi with SA11, was strongly inhibited in the presence of 17-AAG. Direct Hsp90-Akt interaction in virus infected cells was also reduced in the presence of 17-AAG. Anti-rotaviral effects of 17-AAG were due to inhibition of activation of Akt that was confirmed since, PI3K/Akt inhibitors attenuated rotavirus growth significantly. Thus, Hsp90 regulates rotavirus by modulating cellular signaling proteins. The results highlight the importance of cellular proteins during rotavirus infection and the possibility of targeting cellular chaperones for developing new anti-rotaviral strategies.
Collapse
Affiliation(s)
- Dipanjan Dutta
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata-700010, West Bengal, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abe M, Ito N, Morikawa S, Takasu M, Murase T, Kawashima T, Kawai Y, Kohara J, Sugiyama M. Molecular epidemiology of rotaviruses among healthy calves in Japan: isolation of a novel bovine rotavirus bearing new P and G genotypes. Virus Res 2009; 144:250-7. [PMID: 19464329 DOI: 10.1016/j.virusres.2009.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/08/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
A total of 171 fecal specimens collected from healthy calves on a beef farm in Gifu Prefecture, Japan in 2006-2007 were examined for group A rotaviruses by RT-semi-nested PCR targeting the coding region for VP8*. Nine specimens were positive for rotavirus. G and P genotyping indicated that one strain was G10P[11]-like and six strains were considered to be the same unknown G and P genotypes. Among these six untypeable strains, one strain, AzuK-1, was adapted to cell culture and analyzed. Sequence and phylogenetic analyses of the full lengths of VP4 and VP7 genes revealed that AzuK-1 strain is a novel bovine rotavirus bearing new G21 and P[29] genotypes as confirmed by the RCWG. Furthermore, we detected G21P[29] rotaviruses in fecal specimens collected from healthy calves in Hokkaido, Japan during the period from 1997 to 1998. These findings suggest that novel G21P[29] rotaviruses have been widely prevalent among cattle for over 10 years in Japan.
Collapse
Affiliation(s)
- Masako Abe
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Rotavirus, a nonturreted member of the Reoviridae, is the causative agent of severe infantile diarrhea. The double-stranded RNA genome encodes six structural proteins that make up the triple-layer particle. X-ray crystallography has elucidated the structure of one of these capsid proteins, VP6, and two domains from VP4, the spike protein. Complementing this work, electron cryomicroscopy (cryoEM) has provided relatively low-resolution structures for the triple-layer capsid in several biochemical states. However, a complete, high-resolution structural model of rotavirus remains unresolved. Combining new structural analysis techniques with the subnanometer-resolution cryoEM structure of rotavirus, we now provide a more detailed structural model for the major capsid proteins and their interactions within the triple-layer particle. Through a series of intersubunit interactions, the spike protein (VP4) adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside one of the three types of aqueous channels between VP7 and VP6 capsid layers. While the trimeric base suggests the presence of three VP4 molecules in one spike, only hints of the third molecule are observed above the capsid surface. Beyond their interactions with VP4, the interactions between VP6 and VP7 subunits could also be readily identified. In the innermost T=1 layer composed of VP2, visualization of the secondary structure elements allowed us to identify the polypeptide fold for VP2 and examine the complex network of interactions between this layer and the T=13 VP6 layer. This integrated structural approach has resulted in a relatively high-resolution structural model for the complete, infectious structure of rotavirus, as well as revealing the subtle nuances required for maintaining interactions in such a large macromolecular assembly.
Collapse
|
36
|
|
37
|
Clark HF, Offit PA, Parashar UD, Ward RL. Rotavirus vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
38
|
Song JO, Kim TJ, Kim YH. Inhibitory Effect on Rotavirus by Exopolysaccharides Extracted from Kefir. Korean J Food Sci Anim Resour 2007. [DOI: 10.5851/kosfa.2007.27.4.538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Kim S, Pang HB, Kay MS. Peptide mimic of the HIV envelope gp120-gp41 interface. J Mol Biol 2007; 376:786-97. [PMID: 18178220 DOI: 10.1016/j.jmb.2007.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 09/29/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
The human immunodeficiency virus envelope glycoprotein (Env) is composed of surface (gp120) and transmembrane (gp41) subunits, which are noncovalently associated on the viral surface. Human immunodeficiency virus Env mediates viral entry after undergoing a complex series of conformational changes induced by interaction with cellular CD4 and a chemokine coreceptor. These changes propagate from gp120 to gp41 via the gp120-gp41 interface, ultimately exposing gp41 and allowing it to form the trimer-of-hairpins structure that provides the driving force for membrane fusion. Key unresolved questions about the gp120-gp41 interface include the specific regions of gp41 and gp120 involved, the mechanism by which receptor and coreceptor-binding-induced conformational changes in gp120 are communicated to gp41, how trimer-of-hairpins formation is prevented in the prefusogenic gp120-gp41 complex, and, ultimately, the structure of the prefusion gp120-gp41 complex. Here, we develop a biochemical model system that mimics a key portion of the gp120-gp41 interface in the prefusogenic state. We find that a gp41 fragment containing the disulfide bond loop and C-peptide region binds primarily to the gp120 C5 region and that this interaction is incompatible with trimer-of-hairpins formation. Based on these data, we propose that in prefusogenic Env, gp120 sequesters the gp41 C-peptide region away from the N-trimer region, preventing trimer-of-hairpins formation until coreceptor binding disrupts this interface. This model system is a valuable tool for studying the gp120-gp41 complex, conformational changes induced by CD4 and coreceptor binding, and the mechanism of membrane fusion.
Collapse
Affiliation(s)
- Sunghwan Kim
- Department of Biochemistry, University of Utah School of Medicine, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650, USA
| | | | | |
Collapse
|
40
|
Rotavirus replication in intestinal cells differentially regulates integrin expression by a phosphatidylinositol 3-kinase-dependent pathway, resulting in increased cell adhesion and virus yield. J Virol 2007; 82:148-60. [PMID: 17942548 DOI: 10.1128/jvi.01980-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Changes in the interactions between intestinal cells and their surrounding environment during virus infection have not been well documented. The growth and survival of intestinal epithelial cells, the main targets of rotavirus infection, are largely dependent on the interaction of cell surface integrins with the extracellular matrix. In this study, we detected alterations in cellular integrin expression following rotavirus infection, identified the signaling components required, and analyzed the subsequent effects on cell binding to the matrix component collagen. After rotavirus infection of intestinal cells, expression of alpha2beta1 and beta2 integrins was up-regulated, whereas that of alphaVbeta3, alphaVbeta5, and alpha5beta1 integrins, if present, was down-regulated. This differential regulation of integrins was reflected at the transcriptional level. It was unrelated to the use of integrins as rotavirus receptors, as both integrin-using and integrin-independent viruses induced integrin regulation. Using pharmacological agents that inhibit kinase activity, integrin regulation was shown to be dependent on phosphatidylinositol 3-kinase (PI3K) but independent of the activities of the mitogen-activated protein kinases p38 and ERK1/2, and cyclooxygenase-2. Replication-dependent activation of the PI3K/Akt pathway was observed following infection of intestinal and nonintestinal cell lines. Rotavirus activation of PI3K was important for regulation of alpha2beta1 expression. Blockade of integrin regulation by PI3K inhibition led to decreased adherence of infected intestinal cells to collagen and a concomitant decrease in virus titer. These findings indicate that rotavirus-induced PI3K activation causes regulation of integrin expression in intestinal cells, leading to prolonged adherence of infected cells to collagen and increased virus production.
Collapse
|
41
|
Song JO, Shin HC, Kim YH. Studies on the Anti-rotaviral and Anti-bacterial Effects of Phellinus linteus Mushroom Rice. Korean J Food Sci Anim Resour 2007. [DOI: 10.5851/kosfa.2007.27.3.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Abstract
Rotaviruses are the leading cause of childhood diarrhea. The entry of rotaviruses into the host cell is a complex process that includes several interactions of the outer layer proteins of the virus with different cell surface molecules. The fact that neuraminidase treatment of the cells, or preincubation of the virus with sialic acid-containing compounds decrease the infectivity of some rotavirus strains, suggested that these viruses interact with sialic acid on the cell surface. The infectivity of some other rotavirus strains is not affected by neuraminidase treatment of the cells, and therefore they are considered neuraminidase-resistant. However, the current evidence suggests that even these neuraminidase-resistant strains might interact with sialic acids located in context different from that of the sialic acids used by the neuraminidase-sensitive strains. This review summarizes our current knowledge of the rotavirus-sialic acid interaction, its structural basis, the specificity with which distinct rotavirus isolates interact with sialic acid-containing compounds, and also the potential use of these compounds as therapeutic agents.
Collapse
Affiliation(s)
- Pavel Isa
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| | | | | |
Collapse
|
43
|
Pesavento JB, Crawford SE, Estes MK, Prasad BVV. Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 2006; 309:189-219. [PMID: 16913048 DOI: 10.1007/3-540-30773-7_7] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major pathogen of infantile gastroenteritis. It is a large and complex virus with a multilayered capsid organization that integrates the determinants of host specificity, cell entry, and the enzymatic functions necessary for endogenous transcription of the genome that consists of 11 dsRNA segments. These segments encode six structural and six nonstructural proteins. In the last few years, there has been substantial progress in our understanding of both the structural and functional aspects of a variety of molecular processes involved in the replication of this virus. Studies leading to this progress using of a variety of structural and biochemical techniques including the recent application of RNA interference technology have uncovered several unique and intriguing features related to viral morphogenesis. This review focuses on our current understanding of the structural basis of the molecular processes that govern the replication of rotavirus.
Collapse
Affiliation(s)
- J B Pesavento
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Graham KL, Takada Y, Coulson BS. Rotavirus spike protein VP5* binds alpha2beta1 integrin on the cell surface and competes with virus for cell binding and infectivity. J Gen Virol 2006; 87:1275-1283. [PMID: 16603530 DOI: 10.1099/vir.0.81580-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rotaviruses recognize several cell-surface molecules, including the alpha2beta1 integrin, and the processes of rotavirus cell attachment and entry appear to be multifactorial. The VP5* subunit of the rotavirus spike protein VP4 contains the alpha2beta1 ligand sequence Asp-Gly-Glu at residues 308-310. Binding to alpha2beta1 and infectivity of monkey rotavirus strain RRV and human rotavirus strain Wa, but not porcine rotavirus strain CRW-8, are inhibited by peptides containing Asp-Gly-Glu. Asp308 and Gly309 are necessary for the binding of RRV VP5* (aa 248-474) to expressed I domain of the alpha2 integrin subunit. Here, the ability of RRV VP5* to bind cells and affect rotavirus-integrin interactions was determined. Interestingly, VP5* bound to cells at 4 and 37 degrees C, both via alpha2beta1 and independently of this integrin. Prior VP5* binding at 37 degrees C eliminated RRV binding to cellular alpha2beta1 and reduced RRV and Wa infectivity in MA104 cells by 38-46 %. VP5* binding did not affect the infectivity of CRW-8. VP5* binding at 4 degrees C did not affect permissive-cell infection by RRV, indicating an energy requirement for VP5* competition with virus for infectivity. Mutagenesis of VP5* Asp308 and Gly309 eliminated VP5* binding to alpha2beta1 and the VP5* inhibition of rotavirus cell binding and infection, but not alpha2beta1-independent cell binding by VP5*. These studies show for the first time that expressed VP5* binds cell-surface alpha2beta1 using Asp308 and Gly309 and inhibits the infection of homologous and heterologous rotaviruses that use alpha2beta1 as a receptor.
Collapse
Affiliation(s)
- Kate L Graham
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Yoshikazu Takada
- The University of California, Davis, UC Davis Medical Center, 4645 2nd Avenue, Sacramento, CA 95817, USA
| | - Barbara S Coulson
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
45
|
Pérez-Vargas J, Romero P, López S, Arias CF. The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol 2006; 80:3322-31. [PMID: 16537599 PMCID: PMC1440403 DOI: 10.1128/jvi.80.7.3322-3331.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The heat shock cognate protein hsc70 has been implicated as a postattachment cell receptor for rotaviruses. Here we show that hsc70 interacts specifically with rotaviruses through its peptide-binding domain, since a recombinant full-length hsc70 protein and its peptide-binding domain, but not its ATPase domain, bound triple-layered particles in a solid-phase assay, and known ligands of hsc70 competed this binding. The peptide ligands of hsc70 were also shown to block rotavirus infectivity when added to cells before virus infection, suggesting that hsc70 on the surface of MA104 cells also interacts with the virus through its peptide-binding domain and that this interaction is important for virus entry. When purified infectious virus was incubated with soluble hsc70 in the presence of the cochaperone hsp40 and ATP and then pelleted through a sucrose cushion, the recovered virus had lost 60% of its infectivity, even though hsc70 was not detected in the pellet fraction. The hsc70-treated virus showed slightly different reactivities with monoclonal antibodies and was more susceptible to heat and basic pHs than the untreated virus, suggesting that hsc70 induces a subtle conformational change in the virus that results in a reduction of its infectivity. The relevance of the ATPase activity of hsc70 for reducing virus infectivity was demonstrated by the finding that in the presence of a nonhydrolyzable analogue of ATP, virus infectivity was not affected, and a mutant protein lacking ATPase activity failed to reduce virus infection. Altogether, these results suggest that during cell infection, the interaction of the virus with hsc70 on the surface of MA104 cells results in a conformational change of virus particles that facilitates their entry into the cell cytoplasm.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | | | | | | |
Collapse
|
46
|
Benureau Y, Huet JC, Charpilienne A, Poncet D, Cohen J. Trypsin is associated with the rotavirus capsid and is activated by solubilization of outer capsid proteins. J Gen Virol 2005; 86:3143-3151. [PMID: 16227238 DOI: 10.1099/vir.0.81045-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rotavirus capsid is made up of three concentric protein layers. The outer layer, consisting of VP7 and VP4, is lost during virus entry into the host cell. Rotavirus field isolates can be adapted to high-titre growth in tissue culture by treatment with trypsin and by supplementing the culture medium with trypsin, which cleaves VP4 into two fragments, VP8* and VP5*. It is known that protease inhibitors reduce the replication of rotavirus in vitro and in vivo and also diminish disease symptoms in a mouse model. To clarify the molecular basis of these observations, a series of assays were conducted on purified rotavirus particles grown in the presence of trypsin. Results of HPLC and mass spectrometry followed by N-terminal sequencing showed that viral particles contain molecules of trypsin. When associated with triple-layer particles (TLPs), trypsin is inactive and not accessible to protease inhibitors, such as aprotinin. When the outer layer is solubilized by calcium-chelating agents, VP5*, VP8* and VP7 are released and the associated trypsin is activated, allowing cleavage of the viral capsid proteins, as well as other exogenous proteins. It is shown that addition of trypsin inhibitors significantly reduces synthesis of viral mRNA and viral proteins in cells and has a major inhibitory effect if present when virus enters the cell. These data indicate that incorporation of trypsin into rotavirus particles may enhance its infectivity.
Collapse
Affiliation(s)
- Yann Benureau
- Virologie Moléculaire et Structurale, CNRS-INRA, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jean Claude Huet
- Biochimie et Structure des Protéines, INRA, 78352 Jouy-en-Josas Cedex, France
| | - Annie Charpilienne
- Virologie Moléculaire et Structurale, CNRS-INRA, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Didier Poncet
- Virologie Moléculaire et Structurale, CNRS-INRA, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Jean Cohen
- Virologie Moléculaire et Structurale, CNRS-INRA, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
47
|
Pesavento JB, Crawford SE, Roberts E, Estes MK, Prasad BVV. pH-induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization. J Virol 2005; 79:8572-80. [PMID: 15956598 PMCID: PMC1143764 DOI: 10.1128/jvi.79.13.8572-8580.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rotavirus spike protein, VP4, is a major determinant of infectivity and neutralization. Previously, we have shown that trypsin-enhanced infectivity of rotavirus involves a transformation of the VP4 spike from a flexible to a rigid bilobed structure. Here we show that at elevated pH the spike undergoes a drastic, irreversible conformational change and becomes stunted, with a pronounced trilobed appearance. These particles with altered spikes, at a normal pH of 7.5, despite the loss of infectivity and the ability to hemagglutinate, surprisingly exhibit sialic acid (SA)-independent cell binding in contrast to the SA-dependent cell binding exhibited by native virions. Remarkably, a neutralizing monoclonal antibody that remains bound to spikes throughout the pH changes (pH 7 to 11 and back to pH 7) completely prevents this conformational change, preserving the SA-dependent cell binding and hemagglutinating functions of the virion. A hypothesis that emerges from the present study is that high-pH treatment triggers a conformational change that mimics a post-SA-attachment step to expose an epitope recognized by a downstream receptor in the rotavirus cell entry process. This process involves sequential interactions with multiple receptors, and the mechanism by which the antibody neutralizes is by preventing this conformational change.
Collapse
Affiliation(s)
- Joseph B Pesavento
- Verna and McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
48
|
Vijay-Kumar M, Gentsch JR, Kaiser WJ, Borregaard N, Offermann MK, Neish AS, Gewirtz AT. Protein kinase R mediates intestinal epithelial gene remodeling in response to double-stranded RNA and live rotavirus. THE JOURNAL OF IMMUNOLOGY 2005; 174:6322-31. [PMID: 15879132 DOI: 10.4049/jimmunol.174.10.6322] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As sentinels of host defense, intestinal epithelial cells respond to the viral pathogen rotavirus by activating a gene expression that promotes immune cell recruitment and activation. We hypothesized that epithelial sensing of rotavirus might target dsRNA, which can be detected by TLR3 or protein kinase R (PKR). Accordingly, we observed that synthetic dsRNA, polyinosinic acid:cytidylic acid (poly(I:C)), potently induced gene remodeling in model intestinal epithelia with the specific pattern of expressed genes, including both classic proinflammatory genes (e.g., IL-8), as well as genes that are classically activated in virus-infected cells (e.g., IFN-responsive genes). Poly(I:C)-induced IL-8 was concentration dependent (2-100 mug/ml) and displayed slower kinetics compared with IL-8 induced by bacterial flagellin (ET(50) approximately 24 vs 8 h poly(I:C) vs flagellin, respectively). Although model epithelia expressed detectable TLR3 mRNA, neither TLR3-neutralizing Abs nor chloroquine, which blocks activation of intracellular TLR3, attenuated epithelial responses to poly(I:C). Conversely, poly(I:C)-induced phosphorylation of PKR and inhibitors of PKR, 2-aminopurine and adenine, ablated poly(I:C)-induced gene expression but had no effect on gene expression induced by flagellin, thus suggesting that intestinal epithelial cell detection of dsRNA relies on PKR. Consistent with poly(I:C) detection by an intracellular molecule such as PKR, we observed that both uptake of and responses to poly(I:C) were polarized to the basolateral side. Lastly, we observed that the pattern of pharmacologic inhibition of responses to poly(I:C) was identical to that seen in response to infection by live rotavirus, indicating a potentially important role for PKR in activating intestinal epithelial gene expression in rotavirus infection.
Collapse
Affiliation(s)
- Matam Vijay-Kumar
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology Unit, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Zárate S, Romero P, Espinosa R, Arias CF, López S. VP7 mediates the interaction of rotaviruses with integrin alphavbeta3 through a novel integrin-binding site. J Virol 2004; 78:10839-47. [PMID: 15452204 PMCID: PMC521812 DOI: 10.1128/jvi.78.20.10839-10847.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rotavirus entry is a complex multistep process that depends on the trypsin cleavage of the virus spike protein VP4 into polypeptides VP5 and VP8 and on the interaction of these polypeptides and of VP7, the second viral surface protein, with several cell surface molecules, including integrin alphavbeta3. We characterized the effect of the trypsin cleavage of VP4 on the binding to MA104 cells of the sialic acid-dependent virus strain RRV and its sialic acid-independent variant, nar3. We found that, although the trypsin treatment did not affect the attachment of these viruses to the cell surface, their binding was qualitatively different. In contrast to the trypsin-treated viruses, which initially bound to the cell surface through VP4, the non-trypsin-treated variant nar3 bound to the cell through VP7. Amino acid sequence comparison of the surface proteins of rotavirus and hantavirus, both of which interact with integrin alphavbeta3 in an RGD-independent manner, identified a region shared by rotavirus VP7 and hantavirus G1G2 protein in which six of nine amino acids are identical. This region, which is highly conserved among the VP7 proteins of different rotavirus strains, mediates the binding of rotaviruses to integrin alphavbeta3 and probably represents a novel binding motif for this integrin.
Collapse
Affiliation(s)
- Selene Zárate
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | | | | | | | | |
Collapse
|
50
|
Isa P, Realpe M, Romero P, López S, Arias CF. Rotavirus RRV associates with lipid membrane microdomains during cell entry. Virology 2004; 322:370-81. [PMID: 15110534 DOI: 10.1016/j.virol.2004.02.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2003] [Revised: 01/13/2004] [Accepted: 02/20/2004] [Indexed: 12/15/2022]
Abstract
Rotavirus cell entry is a multistep process, not completely understood, which requires at least four interactions between the virus and cell surface molecules. In this work, we investigated the role of the sphingolipid- and cholesterol-enriched lipid microdomains (rafts) in the entry of rotavirus strain RRV to MA104 cells. We found that ganglioside GM1, integrin subunits alpha2 and beta3, and the heat shock cognate protein 70 (hsc70), all of which have been implicated as rotavirus receptors, are associated with TX-100 and Lubrol WX detergent-resistant membranes (DRMs). Integrin subunits alpha2 and beta3 were found to be particularly enriched in DRMs resistant to lysis by Lubrol WX. When purified RRV particles were incubated with cells at 4 degrees C, about 10% of the total infectious virus was found associated with DRMs, and the DRM-associated virus increased to 37% in Lubrol-resistant membrane domains after 60-min incubation at 37 degrees C. The virus was excluded from DRMs if the cells were treated with methyl-beta-cyclodextrin (MbetaCD). Immunoblot analysis of the viral proteins showed that the virus surface proteins became enriched in DRMs upon incubation at 37 degrees C, being almost exclusively localized in Lubrol-resistant DRMs after 60 min. These data suggest that detergent-resistant membrane domains play an important role in the cell entry of rotaviruses, which could provide a platform to facilitate the efficient interaction of the rotavirus receptors with the virus particle.
Collapse
Affiliation(s)
- Pavel Isa
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos CP 62210, Mexico
| | | | | | | | | |
Collapse
|