1
|
Affiliation(s)
- K J Cremer
- Biological Carcinogenesis Branch, National Cancer Institute, Bethesda, MD 20892
| | | |
Collapse
|
2
|
Ramsay JD, Evanoff R, Wilkinson TE, Divers TJ, Knowles DP, Mealey RH. Experimental transmission of equine hepacivirus in horses as a model for hepatitis C virus. Hepatology 2015; 61:1533-46. [PMID: 25580897 DOI: 10.1002/hep.27689] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 12/31/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Equine hepacivirus (EHCV; nonprimate hepacivirus) is a hepatotropic member of the Flaviviridae family that infects horses. Although EHCV is the closest known relative to hepatitis C virus (HCV), its complete replication kinetics in vivo have not been described, and direct evidence that it causes hepatitis has been lacking. In this study, we detected EHCV in 2 horses that developed post-transfusion hepatitis. Plasma and serum from these horses were used to experimentally transmit EHCV to 4 young adult Arabian horses, two 1-month-old foals (1 Arabian and 1 Arabian-pony cross), and 2 foals (1 Arabian and 1 Arabian-pony cross) with severe combined immunodeficiency (SCID). Our results demonstrated that EHCV had infection kinetics similar to HCV and that infection was associated with acute and chronic liver disease as measured by elevations of liver-specific enzymes and/or by histopathology. Although most of these animals were coinfected with equine pegivirus (EPgV), also a flavivirus, EPgV viral loads were much lower and often undetectable in both liver and blood. Three additional young adult Arabian-pony crosses and 1 SCID foal were then inoculated with plasma containing only EHCV, and evidence of mild hepatocellular damage was observed. The different levels of liver-specific enzyme elevation, hepatic inflammation, and duration of viremia observed during EHCV infection suggested that the magnitude and course of liver disease was mediated by the virus inoculum and/or by host factors, including breed, age, and adaptive immune status. CONCLUSION This work documents the complete infection kinetics and liver pathology associated with acute and chronic EHCV infection in horses and further justifies it as a large animal model for HCV.
Collapse
Affiliation(s)
- Joshua D Ramsay
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA
| | | | | | | | | | | |
Collapse
|
3
|
Issel CJ, Cook RF, Mealey RH, Horohov DW. Equine infectious anemia in 2014: live with it or eradicate it? Vet Clin North Am Equine Pract 2014; 30:561-77. [PMID: 25441114 DOI: 10.1016/j.cveq.2014.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
In the absence of an effective vaccine, the success of the test and removal approach for the control of equine infectious anemia (EIA) cannot be overstated, at least in those areas where testing has been traditionally routine. This article addresses 4 main aspects: what has been learned about EIA virus, host control of its replication, and inapparent carriers; international status regarding the control of EIA; diagnostic and laboratory investigation; and reducing the spread of blood-borne infections by veterinarians. An attempt is made to put these issues into practical contemporary perspectives for the equine practitioner.
Collapse
Affiliation(s)
- Charles J Issel
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - R Frank Cook
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, PO Box 647040, Pullman, WA 99164-7040, USA
| | - David W Horohov
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
4
|
Liu C, Cook SJ, Craigo JK, Cook FR, Issel CJ, Montelaro RC, Horohov DW. Epitope shifting of gp90-specific cellular immune responses in EIAV-infected ponies. Vet Immunol Immunopathol 2014; 161:161-9. [PMID: 25176006 DOI: 10.1016/j.vetimm.2014.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/02/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
Abstract
Unlike other lentiviruses, EIAV replication can be controlled in most infected horses leading to an inapparent carrier state free of overt clinical signs which lasts for many years. While the resolution of the initial infection is correlated with the appearance of virus specific cellular immune responses, the precise immune mechanisms responsible for control of the infection are not yet identified. Since the virus undergoes rapid mutation following infection, the immune response must also adapt to meet this challenge. We hypothesize that this adaptation involves peptide-specific recognition shifting from immunodominant variable determinants to conserved immunorecessive determinants following EIAV infection. Forty-four peptides, spanning the entire surface unit protein (gp90) of EIAV, were used to monitor peptide-specific T cell responses in vivo over a six-month period following infection. Peptides were injected intradermally and punch biopsies were collected for real-time PCR analysis to monitor the cellular peptide-specific immune responses in vivo. Similar to the CMI response to HIV infection, peptide-specific T cell recognition patterns changed over time. Early post infection (1 month), immune responses were directed to the peptides in the carboxyl-terminus variable region. By six months post infection, the peptide recognition spanned the entire gp90 sequence. These results indicate that peptide recognition broadens during EIAV infection.
Collapse
Affiliation(s)
- Chong Liu
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Sheila J Cook
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Jodi K Craigo
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank R Cook
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Charles J Issel
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Ronald C Montelaro
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David W Horohov
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Schwartz EJ, Smith RJ. Identifying the Conditions Under Which Antibodies Protect Against Infection by Equine Infectious Anemia Virus. Vaccines (Basel) 2014; 2:397-421. [PMID: 26344625 PMCID: PMC4494265 DOI: 10.3390/vaccines2020397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/04/2014] [Accepted: 04/16/2014] [Indexed: 11/16/2022] Open
Abstract
The ability to predict the conditions under which antibodies protect against viral infection would transform our approach to vaccine development. A more complete understanding is needed of antibody protection against lentivirus infection, as well as the role of mutation in resistance to an antibody vaccine. Recently, an example of antibody-mediated vaccine protection has been shown via passive transfer of neutralizing antibodies before equine infectious anemia virus (EIAV) infection of horses with severe combined immunodeficiency (SCID). Viral dynamic modeling of antibody protection from EIAV infection in SCID horses may lead to insights into the mechanisms of control of infection by antibody vaccination. In this work, such a model is constructed in conjunction with data from EIAV infection of SCID horses to gain insights into multiple strain competition in the presence of antibody control. Conditions are determined under which wild-type infection is eradicated with the antibody vaccine. In addition, a three-strain competition model is considered in which a second mutant strain may coexist with the first mutant strain. The conditions that permit viral escape by the mutant strains are determined, as are the effects of variation in the model parameters. This work extends the current understanding of competition and antibody control in lentiviral infection, which may provide insights into the development of vaccines that stimulate the immune system to control infection effectively.
Collapse
Affiliation(s)
- Elissa J Schwartz
- School of Biological Sciences and Department of Mathematics, Washington State University, Pullman, WA 99164, USA.
| | - Robert J Smith
- Department of Mathematics and Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
6
|
Ciupe SM, Schwartz EJ. Understanding virus-host dynamics following EIAV infection in SCID horses. J Theor Biol 2014; 343:1-8. [PMID: 24252283 DOI: 10.1016/j.jtbi.2013.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022]
Abstract
We develop a mathematical model for the interaction between two competing equine infectious anemia virus strains and neutralizing antibodies. We predict that elimination of one or both virus strains depends on the initial antibody levels, the strength of antibody mediated neutralization, and the persistence of antibody over time. We further show that the ability of a subdominant, neutralization resistant virus to dominate the infection transiently or permanently is dependent on the antibody-mediated neutralization effect. Finally, we determine conditions for persistence of both virus strains. We fit our models to virus titers from horses (foals) with severe combined immunodeficiency to estimate virus-host parameters and to validate analytical results.
Collapse
Affiliation(s)
- Stanca M Ciupe
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24060, United States.
| | - Elissa J Schwartz
- School of Biological Sciences and Department of Mathematics, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
7
|
Craigo JK, Montelaro RC. Lessons in AIDS vaccine development learned from studies of equine infectious, anemia virus infection and immunity. Viruses 2013; 5:2963-76. [PMID: 24316675 PMCID: PMC3967156 DOI: 10.3390/v5122963] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 11/16/2022] Open
Abstract
Equine infectious anemia (EIA), identified in 1843 [1] as an infectious disease of horses and as a viral infection in 1904, remains a concern in veterinary medicine today. Equine infectious anemia virus (EIAV) has served as an animal model of HIV-1/AIDS research since the original identification of HIV. Similar to other lentiviruses, EIAV has a high propensity for genomic sequence and antigenic variation, principally in its envelope (Env) proteins. However, EIAV possesses a unique and dynamic disease presentation that has facilitated comprehensive analyses of the interactions between the evolving virus population, progressive host immune responses, and the definition of viral and host correlates of immune control and vaccine efficacy. Summarized here are key findings in EIAV that have provided important lessons toward understanding long term immune control of lentivirus infections and the parameters for development of an enduring broadly protective AIDS vaccine.
Collapse
Affiliation(s)
- Jodi K Craigo
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
8
|
Cook R, Leroux C, Issel C. Equine infectious anemia and equine infectious anemia virus in 2013: A review. Vet Microbiol 2013; 167:181-204. [DOI: 10.1016/j.vetmic.2013.09.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
|
9
|
Wise LN, Kappmeyer LS, Mealey RH, Knowles DP. Review of equine piroplasmosis. J Vet Intern Med 2013; 27:1334-46. [PMID: 24033559 DOI: 10.1111/jvim.12168] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/15/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022] Open
Abstract
Equine piroplasmosis is caused by one of 2 erythrocytic parasites Babesia caballi or Theileria equi. Although the genus of the latter remains controversial, the most recent designation, Theileria, is utilized in this review. Shared pathogenesis includes tick-borne transmission and erythrolysis leading to anemia as the primary clinical outcome. Although both parasites are able to persist indefinitely in their equid hosts, thus far, only B. caballi transmits across tick generations. Pathogenesis further diverges after transmission to equids in that B. caballi immediately infects erythrocytes, whereas T.equi infects peripheral blood mononuclear cells. The recent re-emergence of T.equi in the United States has increased awareness of these tick-borne pathogens, especially in terms of diagnosis and control. This review focuses in part on factors leading to the re-emergence of infection and disease of these globally important pathogens.
Collapse
Affiliation(s)
- L N Wise
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA; Animal Disease Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Pullman, WA
| | | | | | | |
Collapse
|
10
|
Blacklaws BA. Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp Immunol Microbiol Infect Dis 2012; 35:259-69. [PMID: 22237012 DOI: 10.1016/j.cimid.2011.12.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
The small ruminant lentiviruses include the prototype for the genus, visna-maedi virus (VMV) as well as caprine arthritis encephalitis virus (CAEV). Infection of sheep or goats with these viruses causes slow, progressive, inflammatory pathology in many tissues, but the most common clinical signs result from pathology in the lung, mammary gland, central nervous system and joints. This review examines replication, immunity to and pathogenesis of these viruses and highlights major differences from and similarities to some of the other lentiviruses.
Collapse
Affiliation(s)
- Barbara A Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.
| |
Collapse
|
11
|
Protective effects of passively transferred merozoite-specific antibodies against Theileria equi in horses with severe combined immunodeficiency. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:100-4. [PMID: 22038847 DOI: 10.1128/cvi.05301-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Theileria equi immune plasma was infused into young horses (foals) with severe combined immunodeficiency. Although all foals became infected following intravenous challenge with homologous T. equi merozoite stabilate, delayed time to peak parasitemia occurred. Protective effects were associated with a predominance of passively transferred merozoite-specific IgG3.
Collapse
|
12
|
Lin YZ, Shen RX, Zhu ZY, Deng XL, Cao XZ, Wang XF, Ma J, Jiang CG, Zhao LP, Lv XL, Shao YM, Zhou JH. An attenuated EIAV vaccine strain induces significantly different immune responses from its pathogenic parental strain although with similar in vivo replication pattern. Antiviral Res 2011; 92:292-304. [PMID: 21893100 DOI: 10.1016/j.antiviral.2011.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/25/2011] [Accepted: 08/18/2011] [Indexed: 01/06/2023]
Abstract
The EIAV (equine infectious anemia virus) multi-species attenuated vaccine EIAV(DLV121) successfully prevented the spread of equine infectious anemia (EIA) in China in the 1970s and provided an excellent model for the study of protective immunity to lentiviruses. In this study, we compared immune responses induced by EIAV(DLV121) to immunity elicited by the virulent EIAV(LN40) strain and correlated immune responses to protection from infection. Horses were randomly grouped and inoculated with either EIAV(DLV121) (Vaccinees, Vac) or a sublethal dose of EIAV(LN40) (asymptomatic carriers, Car). Car horses became EIAV(LN40) carriers without disease symptoms. Two of the four Vac horses were protected against infection and the other two had delayed onset or reduced severity of EIA with a lethal EIAV(LN40) challenge 5.5 months post initial inoculation. In contrast, all three Car animals developed acute EIA and two succumbed to death. Specific humoral and cellular immune responses in both Vac and Car groups were evaluated for potential correlations with protection. These analyses revealed that although plasma viral loads remained between 10(3) and 10(5)copies/ml for both groups before EIAV(LN40) challenge, Vac-treated animals developed significantly higher levels of conformational dependent, Env-specific antibody, neutralizing antibody as well as significantly elevated CD4(+) T cell proliferation and IFN-γ-secreting CD8(+) T cells than those observed in EIAV(LN40) asymptomatic carriers. Further analysis of protected and unprotected cases in vaccinated horses identified that cellular response parameters and the reciprocal anti-p26-specific antibody titers closely correlated with protection against infection with the pathogenic EIAV(LN40). These data provide a better understanding of protective immunity to lentiviruses.
Collapse
Affiliation(s)
- Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Division of Livestock Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Protective effects of broadly neutralizing immunoglobulin against homologous and heterologous equine infectious anemia virus infection in horses with severe combined immunodeficiency. J Virol 2011; 85:6814-8. [PMID: 21543497 DOI: 10.1128/jvi.00077-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using the equine infectious anemia virus (EIAV) lentivirus model system, we previously demonstrated protective effects of broadly neutralizing immune plasma in young horses (foals) with severe combined immunodeficiency (SCID). However, in vivo selection of a neutralization-resistant envelope variant occurred. Here, we determined the protective effects of purified immunoglobulin with more potent broadly neutralizing activity. Overall, protection correlated with the breadth and potency of neutralizing activity in vitro. Four of five SCID foals were completely protected against homologous challenge, while partial protection occurred following heterologous challenge. These results support the inclusion of broadly neutralizing antibodies in lentivirus control strategies.
Collapse
|
14
|
Selection of a rare neutralization-resistant variant following passive transfer of convalescent immune plasma in equine infectious anemia virus-challenged SCID horses. J Virol 2010; 84:6536-48. [PMID: 20392850 DOI: 10.1128/jvi.00218-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccines preventing HIV-1 infection will likely elicit antibodies that neutralize diverse strains. However, the capacity for lentiviruses to escape broadly neutralizing antibodies (NAbs) is not completely understood, nor is it known whether NAbs alone can control heterologous infection. Here, we determined that convalescent immune plasma from a horse persistently infected with equine infectious anemia virus (EIAV) neutralized homologous virus and several envelope variants containing heterologous principal neutralizing domains (PND). Plasma was infused into young horses (foals) affected with severe combined immunodeficiency (SCID), followed by challenge with a homologous EIAV stock. Treated SCID foals were protected against clinical disease, with complete prevention of infection occurring in one foal. In three SCID foals, a novel neutralization-resistant variant arose that was found to preexist at a low frequency in the challenge inoculum. In contrast, SCID foals infused with nonimmune plasma developed acute disease associated with high levels of the predominant challenge virus. Following transfer to an immunocompetent horse, the neutralization-resistant variant induced a single febrile episode and was subsequently controlled in the absence of type-specific NAb. Long-term control was associated with the presence of cytotoxic T lymphocytes (CTL). Our results demonstrate that immune plasma with neutralizing activity against heterologous PND variants can prevent lentivirus infection and clinical disease in the complete absence of T cells. Importantly, however, rare neutralization-resistant envelope variants can replicate in vivo under relatively broad selection pressure, highlighting the need for protective lentivirus vaccines to elicit NAb responses with increased breadth and potency and/or CTL that target conserved epitopes.
Collapse
|
15
|
Mealey RH, Leib SR, Littke MH, Wagner B, Horohov DW, McGuire TC. Viral load and clinical disease enhancement associated with a lentivirus cytotoxic T lymphocyte vaccine regimen. Vaccine 2009; 27:2453-68. [PMID: 19368787 DOI: 10.1016/j.vaccine.2009.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/04/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Effective DNA-based vaccines against lentiviruses will likely induce CTL against conserved viral proteins. Equine infectious anemia virus (EIAV) infects horses worldwide, and serves as a useful model for lentiviral immune control. Although attenuated live EIAV vaccines have induced protective immune responses, DNA-based vaccines have not. In particular, DNA-based vaccines have had limited success in inducing CTL responses against intracellular pathogens in the horse. We hypothesized that priming with a codon-optimized plasmid encoding EIAV Gag p15/p26 with co-administration of a plasmid encoding an equine IL-2/IgG fusion protein as a molecular adjuvant, followed by boosting with a vaccinia vector expressing Gag p15/p26, would induce protective Gag-specific CTL responses. Although the regimen induced Gag-specific CTL in four of seven vaccinated horses, CTL were not detected until after the vaccinia boost, and protective effects were not observed in EIAV challenged vaccinates. Unexpectedly, vaccinates had significantly higher viral loads and more severe clinical disease, associated with the presence of vaccine-induced CTL. It was concluded that (1) further optimization of the timing and route of DNA immunization was needed for efficient CTL priming in vivo, (2) co-administration of the IL-2/IgG plasmid did not enhance CTL priming by the Gag p15/p26 plasmid, (3) vaccinia vectors are useful for lentivirus-specific CTL induction in the horse, (4) Gag-specific CTL alone are either insufficient or a more robust Gag-specific CTL response is needed to limit EIAV viremia and clinical disease, and (5) CTL-inducing vaccines lacking envelope immunogens can result in lentiviral disease enhancement. Although the mechanisms for enhancement associated with this vaccine regimen remain to be elucidated, these results have important implications for development of lentivirus T cell vaccines.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, 99164-7040, United States.
| | | | | | | | | | | |
Collapse
|
16
|
Development and characterization of an equine infectious anemia virus Env-pseudotyped reporter virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1138-40. [PMID: 18448619 DOI: 10.1128/cvi.00088-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We developed a replication-defective reporter virus pseudotyped with the envelope glycoprotein of equine infectious anemia virus (EIAV). The in vitro host range and neutralization phenotype of EIAV Env-pseudotyped virus were similar to those of replication-competent virus. An EIAV Env pseudovirus will improve antigenic characterization of viral variants and evaluation of lentivirus vaccines.
Collapse
|
17
|
Envelope determinants of equine infectious anemia virus vaccine protection and the effects of sequence variation on immune recognition. J Virol 2008; 82:4052-63. [PMID: 18234792 DOI: 10.1128/jvi.02028-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly effective attenuated equine infectious anemia virus (EIAV) vaccine (EIAV(D9)) capable of protecting 100% of horses from disease induced by a homologous Env challenge strain (EIAV(PV)) was recently tested in ponies to determine the level of protection against divergent Env challenge strains (J. K. Craigo, B. S. Zhang, S. Barnes, T. L. Tagmyer, S. J. Cook, C. J. Issel, and R. C. Montelaro, Proc. Natl. Acad. Sci. USA 104:15105-15110, 2007). An inverse correlation between challenge strain Env variation and vaccine protection from disease was observed. Given the striking differences in protective immunity, we hypothesized that analysis of the humoral and cellular immune responses to the Env protein could reveal potential determinants of vaccine protection. Neutralization activity against the homologous Env or challenge strain-specific Env in immune sera from the vaccinated ponies did not correlate with protection from disease. Cellular analysis with Env peptide pools did not reveal an association with vaccine protection from disease. However, when individual vaccine-specific Env peptides were utilized, eight cytotoxic-T-lymphocyte (CTL) peptides were found to associate closely with vaccine protection. One of these peptides also yielded the only lymphoproliferative response associated with protective immunity. The identified peptides spanned both variable and conserved regions of gp90. Amino acid divergence within the principal neutralization domain and the identified peptides profoundly affected immune recognition, as illustrated by the inability to detect cross-reactive neutralizing antibodies and the observation that certain peptide-specific CTL responses were altered. In addition to identifying potential Env determinants of EIAV vaccine efficacy and demonstrating the profound effects of defined Env variation on immune recognition, these data also illustrate the sensitivity offered by individual peptides compared to peptide pools in measuring cellular immune responses in lentiviral vaccine trials.
Collapse
|
18
|
Mealey RH, Littke MH, Leib SR, Davis WC, McGuire TC. Failure of low-dose recombinant human IL-2 to support the survival of virus-specific CTL clones infused into severe combined immunodeficient foals: lack of correlation between in vitro activity and in vivo efficacy. Vet Immunol Immunopathol 2008; 121:8-22. [PMID: 17727961 PMCID: PMC2967287 DOI: 10.1016/j.vetimm.2007.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/24/2007] [Accepted: 07/11/2007] [Indexed: 01/08/2023]
Abstract
Although CTL are important for control of lentiviruses, including equine infectious anemia virus (EIAV), it is not known if CTL can limit lentiviral replication in the absence of CD4 help and neutralizing antibody. Adoptive transfer of EIAV-specific CTL clones into severe combined immunodeficient (SCID) foals could resolve this issue, but it is not known whether exogenous IL-2 administration is sufficient to support the engraftment and proliferation of CTL clones infused into immunodeficient horses. To address this question we adoptively transferred EIAV Rev-specific CTL clones into four EIAV-challenged SCID foals, concurrent with low-dose aldesleukin (180,000U/m2), a modified recombinant human IL-2 (rhuIL-2) product. The dose was calculated based on the specific activity on equine PBMC in vitro, and resulted in plasma concentrations considered sufficient to saturate high affinity IL-2 receptors in humans. Despite specific activity on equine PBMC that was equivalent to recombinant equine IL-2 and another form of rhuIL-2, aldesleukin did not support the engraftment and expansion of infused CTL clones, and control of viral load and clinical disease did not occur. It was concluded that survival of Rev-specific CTL clones infused into EIAV-challenged SCID foals was not enhanced by aldesleukin at the doses used in this study, and that in vitro specific activity did not correlate with in vivo efficacy. Successful adoptive immunotherapy with CTL clones in immunodeficient horses will likely require higher doses of rhuIL-2, co-infusion of CD4+ T lymphocytes, or administration of equine IL-2.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, United States.
| | | | | | | | | |
Collapse
|
19
|
Mealey RH, Littke MH, Leib SR, Davis WC, McGuire TC. Cloning and large-scale expansion of epitope-specific equine cytotoxic T lymphocytes using an anti-equine CD3 monoclonal antibody and human recombinant IL-2. Vet Immunol Immunopathol 2007; 118:121-8. [PMID: 17498813 PMCID: PMC2002571 DOI: 10.1016/j.vetimm.2007.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 03/20/2007] [Accepted: 04/05/2007] [Indexed: 11/20/2022]
Abstract
Cytotoxic T lymphocytes are involved in controlling intracellular pathogens in many species, including horses. Particularly, CTL are critical for the control of equine infectious anemia virus (EIAV), a lentivirus that infects horses world-wide. In humans and animal models, CTL clones are valuable for evaluating the fine specificity of epitope recognition, and for adoptive immunotherapy against infectious and neoplastic diseases. Cloned CTL would be equally useful for similar studies in the horse. Here we present the first analysis of a method to generate equine CTL clones. Peripheral blood mononuclear cells were obtained from an EIAV-infected horse and stimulated with the EIAV Rev-QW11 peptide. Sorted CD8+ T cells were cloned by limiting dilution, and expanded without further antigen addition using irradiated PBMC, anti-equine CD3, and human recombinant IL-2. Clones could be frozen and thawed without detrimental effects, and could be subsequently expanded to numbers exceeding 2 x 10(9)cells. Flow cytometry of expanded clones confirmed the CD3+/CD8+ phenotype, and chromium release assays confirmed CTL activity. Finally, sequencing TCR beta chain genes confirmed clonality. Our results provide a reliable means to generate large numbers of epitope-specific equine CTL clones that are suitable for use in downstream applications, including functional assays and adoptive transfer studies.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- CD3 Complex/immunology
- Clone Cells/cytology
- Clone Cells/drug effects
- Epitopes, T-Lymphocyte/immunology
- Horses/immunology
- Humans
- Interleukin-2/immunology
- Interleukin-2/pharmacology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombinant Proteins
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Time Factors
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
20
|
Tagmyer TL, Craigo JK, Cook SJ, Issel CJ, Montelaro RC. Envelope-specific T-helper and cytotoxic T-lymphocyte responses associated with protective immunity to equine infectious anemia virus. J Gen Virol 2007; 88:1324-1336. [PMID: 17374779 DOI: 10.1099/vir.0.82391-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine infectious anemia virus (EIAV) infection of horses provides a valuable model for examining the natural immunological control of lentivirus infection and disease and the mechanisms of protective and enhancing vaccine immunity. We have previously hypothesized that the EIAV envelope (Env) proteins gp90 and gp45 are major determinants of vaccine efficacy, and that the development of protective immunity by attenuated viral vaccines may be associated with the progressive redirection of immune responses from immunodominant, variable Env segments to immunorecessive, conserved Env sequences. Whilst the antibody-neutralization determinants of Env have been defined, there are to date no comprehensive analyses of the lymphoproliferative (T-helper, Th) and cytotoxic T-cell (CTL) epitopes of the EIAV Env proteins. Thus, in the current study, synthetic-peptide methodologies were used to define regions of EIAV Env associated with protective vaccine immunity in a panel of 12 horses inoculated with the attenuated EIAVD9 vaccine and two asymptomatic carrier horses infected experimentally with the virulent EIAVPV strain expressing the same Env protein as the vaccine strain. The results of these studies identified 17 broadly reactive Th peptides and six broadly reactive CTL peptides in the Env proteins of EIAV that were associated with protective immunity. Thus, these data provide for the first time a comprehensive mapping of EIAV Env-specific cellular regions that can be used to examine the development of protective immunity and to evaluate potential cellular immune determinants of protective immunity.
Collapse
Affiliation(s)
- Tara L Tagmyer
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Molecular Virology and Microbiology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jodi K Craigo
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sheila J Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516, USA
| | - Charles J Issel
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40516, USA
| | - Ronald C Montelaro
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
21
|
McGuire TC, Fraser DG, Mealey RH. Cytotoxic T lymphocytes in protection against equine infectious anemia virus. Anim Health Res Rev 2007; 5:271-6. [PMID: 15984338 DOI: 10.1079/ahr200482] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractCytotoxic T lymphocytes (CTL) are associated with virus control in horses infected with equine infectious anemia virus (EIAV). Early in infection, control of the initial viremia coincides with the appearance of CTL and occurs before the appearance of neutralizing antibody. In carrier horses, treatment with immunosuppressive drugs results in viremia before a change in serum neutralizing antibody occurs. Clearance of initial viremia caused by other lentiviruses, including human immunodeficiency virus-1 and simian immunodeficiency virus, is also associated with CTL and not neutralizing antibody. In addition, depletion of CD8+cells prior to infection of rhesus monkeys with simian immunodeficiency prevents clearance of virus and the same treatment of persistently infected monkeys results in viremia. Cats given adoptive transfers of lymphocytes from vaccinated cats were protected and the protection was MHC-restricted, occurred in the absence of antiviral humoral immunity, and correlated with the transfer of cells with feline immunodeficiency virus-specific CTL and T-helper lymphocyte activities. Therefore, a lentiviral vaccine, including one for EIAV, needs to induce CTL. Based on initial failures to induce CTL to EIAV proteins by any means other than infection, we attempted to define an experimental system for the evaluation of methods for CTL induction. CTL epitopes restricted by the ELA-A1 haplotype were identified and the MHC class I molecule presenting these peptides was identified. This was done by expressing individual MHC class I molecules from cDNA clones in target cells. The target cells were then pulsed with peptides and used with effector CTL stimulated with the same peptides. In a preliminary experiment, immunization of three ELA-A1 haplotype horses with an Env peptide restricted by this haplotype resulted in CTL in peripheral blood mononuclear cells (PBMC) which recognized the Env peptide and virus-infected cells, but the CTL response was transient. Nevertheless there was significant protection against clinical disease following EIAV challenge of these immunized horses when compared with three control horses given the same virus challenge. These data indicated that responses to peptides in immunized horses needed to be enhanced. Optimal CTL responses require help from CD4+T lymphocytes, and experiments were done to identify EIAV peptides which stimulated CD4+T lymphocytes in PBMC from infected horses with different MHC class II types. Two broadly cross-reactive Gag peptides were identified which stimulated only an interferon γ response by CD4+T lymphocytes, which indicated a T helper 1 response is needed for CTL stimulation. Such peptides should facilitate CTL responses; however, other problems in inducing protection against lentiviruses remain, the most significant of them being EIAV variants that can escape both CTL and neutralizing antibody. A possible solution to CTL escape variants is the induction of high-avidity CTL to multiple EIAV epitopes.
Collapse
Affiliation(s)
- Travis C McGuire
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | |
Collapse
|
22
|
Mealey RH, Lee JH, Leib SR, Littke MH, McGuire TC. A single amino acid difference within the alpha-2 domain of two naturally occurring equine MHC class I molecules alters the recognition of Gag and Rev epitopes by equine infectious anemia virus-specific CTL. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:7377-90. [PMID: 17082657 PMCID: PMC3342702 DOI: 10.4049/jimmunol.177.10.7377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CTL are critical for control of lentiviruses, including equine infectious anemia virus, relatively little is known regarding the MHC class I molecules that present important epitopes to equine infectious anemia virus-specific CTL. The equine class I molecule 7-6 is associated with the equine leukocyte Ag (ELA)-A1 haplotype and presents the Env-RW12 and Gag-GW12 CTL epitopes. Some ELA-A1 target cells present both epitopes, whereas others are not recognized by Gag-GW12-specific CTL, suggesting that the ELA-A1 haplotype comprises functionally distinct alleles. The Rev-QW11 CTL epitope is also ELA-A1-restricted, but the molecule that presents Rev-QW11 is unknown. To determine whether functionally distinct class I molecules present ELA-A1-restricted CTL epitopes, we sequenced and expressed MHC class I genes from three ELA-A1 horses. Two horses had the 7-6 allele, which when expressed, presented Env-RW12, Gag-GW12, and Rev-QW11 to CTL. The other horse had a distinct allele, designated 141, encoding a molecule that differed from 7-6 by a single amino acid within the alpha-2 domain. This substitution did not affect recognition of Env-RW12, but resulted in more efficient recognition of Rev-QW11. Significantly, CTL recognition of Gag-GW12 was abrogated, despite Gag-GW12 binding to 141. Molecular modeling suggested that conformational changes in the 141/Gag-GW12 complex led to a loss of TCR recognition. These results confirmed that the ELA-A1 haplotype is comprised of functionally distinct alleles, and demonstrated for the first time that naturally occurring MHC class I molecules that vary by only a single amino acid can result in significantly different patterns of epitope recognition by lentivirus-specific CTL.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Amino Acid Substitution/immunology
- Animals
- Antigen Presentation/immunology
- Computer Simulation
- Crystallography, X-Ray
- Cytotoxicity Tests, Immunologic
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Gene Products, gag/chemistry
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Gene Products, rev/chemistry
- Gene Products, rev/immunology
- Gene Products, rev/metabolism
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Horses
- Infectious Anemia Virus, Equine/chemistry
- Infectious Anemia Virus, Equine/immunology
- Male
- Molecular Sequence Data
- Protein Binding/immunology
- Protein Structure, Tertiary
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
23
|
Mealey RH, Sharif A, Ellis SA, Littke MH, Leib SR, McGuire TC. Early detection of dominant Env-specific and subdominant Gag-specific CD8+ lymphocytes in equine infectious anemia virus-infected horses using major histocompatibility complex class I/peptide tetrameric complexes. Virology 2005; 339:110-26. [PMID: 15979679 PMCID: PMC3342685 DOI: 10.1016/j.virol.2005.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 04/27/2005] [Accepted: 05/23/2005] [Indexed: 11/16/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical for control of lentiviruses, including equine infectious anemia virus (EIAV). Measurement of equine CTL responses has relied on chromium-release assays, which do not allow accurate quantitation. Recently, the equine MHC class I molecule 7-6, associated with the ELA-A1 haplotype, was shown to present both the Gag-GW12 and Env-RW12 EIAV CTL epitopes. In this study, 7-6/Gag-GW12 and 7-6/Env-RW12 MHC class I/peptide tetrameric complexes were constructed and used to analyze Gag-GW12- and Env-RW12-specific CTL responses in two EIAV-infected horses (A2164 and A2171). Gag-GW12 and Env-RW12 tetramer-positive CD8+ cells were identified in nonstimulated peripheral blood mononuclear cells as early as 14 days post-EIAV inoculation, and frequencies of tetramer-positive cells ranged from 0.4% to 6.7% of nonstimulated peripheral blood CD8+ cells during the 127-day study period. Although both horses terminated the initial viremic peak, only horse A2171 effectively controlled viral load. Neutralizing antibody was present during the initial control of viral load in both horses, but the ability to maintain control correlated with Gag-GW12-specific CD8+ cells in A2171. Despite Env-RW12 dominance, Env-RW12 escape viral variants were identified in both horses and there was no correlation between Env-RW12-specific CD8+ cells and control of viral load. Although Gag-GW12 CTL escape did not occur, a Gag-GW12 epitope variant arose in A2164 that was recognized less efficiently than the original epitope. These data indicate that tetramers are useful for identification and quantitation of CTL responses in horses, and suggest that the observed control of EIAV replication and clinical disease was associated with sustained CTL recognition of Gag-specific epitopes.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Chung C, Mealey RH, McGuire TC. Evaluation of high functional avidity CTL to Gag epitope clusters in EIAV carrier horses. Virology 2005; 342:228-39. [PMID: 16139857 PMCID: PMC3348724 DOI: 10.1016/j.virol.2005.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/25/2005] [Accepted: 07/29/2005] [Indexed: 11/24/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are critical for lentivirus control including EIAV. Since CTL from most EIAV carrier horses recognize Gag epitope clusters (EC), the hypothesis that carrier horses would have high functional avidity CTL to optimal epitopes in Gag EC was tested. Twenty-two optimal EC epitopes were identified; two in EC1, six in EC2, and seven each in EC3 and 4. However, only five of nine horses had high functional avidity CTL (<or=11 nM) recognizing six epitopes in EC; four in relatively conserved EC3; and one each in EC1 and 2. Horses with high functional avidity CTL had significantly more days since the last clinical episode than horses with low avidity CTL, and this was not explained by analyzing duration of infection. Furthermore, there was a significant inverse correlation between the CTL functional avidity of the nine horses and the days since the last clinical episode. Gag CTL epitope escape variants were found in three horses, but only one of these was recognized by high functional avidity CTL. Thus, not all carrier horses had high functional avidity CTL to Gag EC, but those that did had longer periods without disease episodes.
Collapse
|
25
|
Sellon DC, Knowles DP, Greiner EC, Long MT, Hines MT, Hochstatter T, Tibary A, Dame JB. Infection of immunodeficient horses with Sarcocystis neurona does not result in neurologic disease. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:1134-9. [PMID: 15539518 PMCID: PMC524751 DOI: 10.1128/cdli.11.6.1134-1139.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Equine protozoal myeloencephalitis is a progressive neurologic disease of horses most commonly caused by infection with the apicomplexan parasite Sarcocystis neurona. Factors affecting neuroinvasion and neurovirulence have not been determined. We investigated the pathogenesis of infection with S. neurona in horses with severe combined immune deficiency (SCID). Two immunocompetent (IC) Arabian horses and two Arabian horses with SCID were infected orally with 5 x 10(5) sporocysts of S. neurona. Four IC horses and one SCID horse were infected intravenously (i.v.) with 5 x 10(8) merozoites of the WSU-1 isolate of S. neurona. Despite prolonged parasitemia and persistent infection of visceral tissues (skeletal muscle, cardiac muscle, lung, liver, and spleen) as demonstrated by PCR and culture, SCID horses did not develop neurologic signs after oral or i.v. infection. S. neurona was undetectable in the neuronal tissues of SCID horses by either PCR, immunohistochemistry, or culture. In contrast, although parasitemia was undetectable in orally infected IC horses and of only short duration in i.v. infected IC horses, four of six IC horses developed neurologic signs. S. neurona was detectable by PCR and/or culture of neural tissue but not visceral tissue of IC horses with neurologic disease. Infected SCID horses are unable to clear S. neurona from visceral tissues, but the infection does not result in neurologic signs; in contrast, IC horses rapidly control parasitemia and infection of visceral tissues but frequently experience neuroinvasion and exhibit clinical signs of neurologic disease.
Collapse
Affiliation(s)
- Debra C Sellon
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA 99163, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Howe L, Craigo JK, Issel CJ, Montelaro RC. Specificity of serum neutralizing antibodies induced by transient immune suppression of inapparent carrier ponies infected with a neutralization-resistant equine infectious anemia virus envelope strain. J Gen Virol 2005; 86:139-149. [PMID: 15604441 DOI: 10.1099/vir.0.80374-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been previously reported that transient corticosteroid immune suppression of ponies experimentally infected with a highly neutralization resistant envelope variant of equine infectious anemia virus (EIAV), designated EIAVΔPND, resulted in the appearance of type-specific serum antibodies to the infecting EIAVΔPNDvirus. The current study was designed to determine if this induction of serum neutralizing antibodies was associated with changes in the specificity of envelope determinants targeted by serum antibodies or caused by changes in the nature of the antibodies targeted to previously defined surface envelope gp90 V3 and V4 neutralization determinants. To address this question, the envelope determinants of neutralization by post-immune suppression serum were mapped. The results demonstrated that the neutralization sensitivity to post-immune suppression serum antibodies mapped specifically to the surface envelope gp90 V3 and V4 domains, individually or in combination. Thus, these data indicate that the development of serum neutralizing antibodies to the resistant EIAVΔPNDwas due to an enhancement of host antibody responses caused by transient immune suppression and the associated increase in virus replication.
Collapse
Affiliation(s)
- Laryssa Howe
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jodi K Craigo
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, W1144 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | - Charles J Issel
- Department of Veterinary Sciences, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ronald C Montelaro
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, W1144 Biomedical Science Tower, Pittsburgh, PA 15261, USA
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
27
|
Chung C, Mealey RH, McGuire TC. CTL from EIAV carrier horses with diverse MHC class I alleles recognize epitope clusters in Gag matrix and capsid proteins. Virology 2004; 327:144-54. [PMID: 15327905 PMCID: PMC3342308 DOI: 10.1016/j.virol.2004.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/11/2004] [Accepted: 06/23/2004] [Indexed: 11/29/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are important for controlling equine infectious anemia virus (EIAV). Because Gag matrix (MA) and capsid (CA) are the most frequently recognized proteins, the hypothesis that CTL from EIAV-infected horses with diverse MHC class I alleles recognize epitope clusters (EC) in these proteins was tested. Four EC were identified by CTL from 15 horses and 8 of these horses had diverse MHC class I alleles. Two of the eight had CTL to EC1, six to EC2, five to EC3, and four to EC4. Because EC2-4 were recognized by CTL from >50% of horses with diverse alleles, the hypothesis was accepted. EC1 and EC3 were the most conserved EC and these more conserved broadly recognized EC may be most useful for CTL induction, helping overcome MHC class I polymorphism and antigenic variation.
Collapse
Affiliation(s)
| | | | - Travis C. McGuire
- Corresponding author. Department of Veterinary Microbiology and Pathology, Washington State University, PO Box 647040, Pullman, WA 99165-7040. Fax: +1 509 335 8529. (T.C. McGuire)
| |
Collapse
|
28
|
Mealey RH, Leib SR, Pownder SL, McGuire TC. Adaptive immunity is the primary force driving selection of equine infectious anemia virus envelope SU variants during acute infection. J Virol 2004; 78:9295-305. [PMID: 15308724 PMCID: PMC506964 DOI: 10.1128/jvi.78.17.9295-9305.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine infectious anemia virus (EIAV) is a lentivirus that causes persistent infection in horses. The appearance of antigenically distinct viral variants during recurrent viremic episodes is thought to be due to adaptive immune selection pressure. To test this hypothesis, we evaluated envelope SU cloned sequences from five severe combined immunodeficient (SCID) foals infected with EIAV. Within the SU hypervariable V3 region, 8.5% of the clones had amino acid changes, and 6.4% had amino acid changes within the known cytotoxic T lymphocyte (CTL) epitope Env-RW12. Of all the SU clones, only 3.1% had amino acid changes affecting potential N-linked glycosylation sites. In contrast, a much higher degree of variation was evident in SU sequences obtained from four EIAV-infected immunocompetent foals. Within V3, 68.8% of the clones contained amino acid changes, and 50% of the clones had amino acid changes within the Env-RW12 CTL epitope. Notably, 31.9% of the clones had amino acid changes affecting one or more glycosylation sites. Marked amino acid variation occurred in cloned SU sequences from an immune-reconstituted EIAV-infected SCID foal. Of these clones, 100% had amino acid changes within V3, 100% had amino acid changes within Env-RW12, and 97.5% had amino acid changes affecting glycosylation sites. Analysis of synonymous and nonsynonymous nucleotide substitutions revealed statistically significant differences between SCID and immunocompetent foals and between SCID foals and the reconstituted SCID foal. Interestingly, amino acid selection at one site occurred independently of adaptive immune status. Not only do these data indicate that adaptive immunity primarily drives the selection of EIAV SU variants, but also they demonstrate that other selective forces exist during acute infection.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA.
| | | | | | | |
Collapse
|
29
|
Mealey RH, Zhang B, Leib SR, Littke MH, McGuire TC. Epitope specificity is critical for high and moderate avidity cytotoxic T lymphocytes associated with control of viral load and clinical disease in horses with equine infectious anemia virus. Virology 2003; 313:537-52. [PMID: 12954220 PMCID: PMC3342690 DOI: 10.1016/s0042-6822(03)00344-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Equine infectious anemia virus (EIAV) is a lentivirus that causes persistent infections in horses. We hypothesized that high-avidity CTL specific for nonvariable epitopes might be associated with low viral load and minimal disease in EIAV-infected horses. To test this hypothesis, memory CTL (CTLm) responses were analyzed in two infected horses with high plasma viral loads and recurrent disease (progressors), and in two infected horses with low-to-undetectable viral loads and mild disease (nonprogressors). High-avidity CTLm in one progressor recognized an envelope gp90 epitope, and the data documented for the first time in EIAV that viral variation led to CTL escape. Each of the nonprogressors had high-to-moderate avidity CTLm directed against epitopes within Rev, including the nuclear export and nuclear localization domains. These results suggested that the epitope specificity of high- and moderate-avidity CTLm was an important determinant for disease outcome in the EIAV-infected horses examined.
Collapse
Affiliation(s)
- Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
30
|
Cook RF, Cook SJ, Berger SL, Leroux C, Ghabrial NN, Gantz M, Bolin PS, Mousel MR, Montelaro RC, Issel CJ. Enhancement of equine infectious anemia virus virulence by identification and removal of suboptimal nucleotides. Virology 2003; 313:588-603. [PMID: 12954224 DOI: 10.1016/s0042-6822(03)00351-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pathogenicity was reportedly restored to an avirulent molecular clone of equine infectious anemia virus (EIAV) by substitution of 3' sequences from the pathogenic variant strain (EIAV(PV)). However, the incidence of disease in horses/ponies was found to be significantly lower (P = 0.016) with the chimeric clone (EIAV(UK)) than with EIAV(PV). This was attributable to 3' rather than 5' regions of the proviral genome, where EIAV(UK) differs from the consensus EIAV(PV) sequence by having a 68-bp duplication in the 3' LTR and arginine (R(103)) rather than tryptophan (W(103)) at position 103 in the second exon of rev. In EIAV(UK) recipients the duplication was rapidly eliminated and R(103) replaced by W(103) in the viral population. Furthermore, removal of the 3' variant sequences from EIAV(UK) (EIAV(UK3)) resulted in an equivalent (P = 0.013) disease potential in Equus caballus to EIAV(PV). The 68-bp duplication and/or R(103) may limit peak viral RNA accumulation during acute infection.
Collapse
Affiliation(s)
- R Frank Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
McGuire TC, Leib SR, Mealey RH, Fraser DG, Prieur DJ. Presentation and binding affinity of equine infectious anemia virus CTL envelope and matrix protein epitopes by an expressed equine classical MHC class I molecule. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1984-93. [PMID: 12902502 DOI: 10.4049/jimmunol.171.4.1984] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Control of a naturally occurring lentivirus, equine infectious anemia virus (EIAV), occurs in most infected horses and involves MHC class I-restricted, virus-specific CTL. Two minimal 12-aa epitopes, Env-RW12 and Gag-GW12, were evaluated for presentation by target cells from horses with an equine lymphocyte Ag-A1 (ELA-A1) haplotype. Fifteen of 15 presented Env-RW12 to CTL, whereas 11 of 15 presented Gag-GW12. To determine whether these epitopes were presented by different molecules, MHC class I genes were identified in cDNA clones from Arabian horse A2152, which presented both epitopes. This horse was selected because it is heterozygous for the SCID trait and is used to breed heterozygous females. Offspring with SCID are used as recipients for CTL adoptive transfer, and normal offspring are used for CTL induction. Four classical and three putative nonclassical full-length MHC class I genes were found. Human 721.221 cells transduced with retroviral vectors expressing each gene had equine MHC class I on their surface. Following peptide pulsing, only cells expressing classical MHC class I molecule 7-6 presented Env-RW12 and Gag-GW12 to CTL. Unlabeled peptide inhibition of (125)I-labeled Env-RW12 binding to 7-6-transduced cells demonstrated that Env-RW12 affinity was 15-fold higher than Gag-GW12 affinity. Inhibition with truncated Env-RW12 demonstrated that amino acid positions 1 and 12 were necessary for binding, and single substitutions identified positions 2 and 3 as possible primary anchor residues. Since MHC class I 7-6 presented both epitopes, outbred horses with this allele can be immunized with these epitopes to optimize CTL responses and evaluate their effectiveness against lentiviral challenge.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Amino Acid Substitution/immunology
- Animals
- Antigen Presentation/genetics
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line, Transformed
- Cloning, Molecular
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Expression Regulation/immunology
- Gene Library
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genes, MHC Class I
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Horses
- Humans
- Infectious Anemia Virus, Equine/immunology
- Male
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- RNA, Messenger/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/metabolism
Collapse
Affiliation(s)
- Travis C McGuire
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
32
|
McGuire TC, Fraser DG, Mealey RH. Cytotoxic T lymphocytes and neutralizing antibody in the control of equine infectious anemia virus. Viral Immunol 2003; 15:521-31. [PMID: 12513924 DOI: 10.1089/088282402320914476] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Travis C McGuire
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7040, USA.
| | | | | |
Collapse
|
33
|
Ridgely SL, Zhang B, McGuire TC. Response of ELA-A1 horses immunized with lipopeptide containing an equine infectious anemia virus ELA-A1-restricted CTL epitope to virus challenge. Vaccine 2003; 21:491-506. [PMID: 12531649 DOI: 10.1016/s0264-410x(02)00474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipopeptide containing an ELA-A1-restricted cytotoxic T lymphocyte (CTL) epitope from the envelope surface unit (SU) protein of the EIAV(WSU5) strain was used to immunize three horses having the ELA-A1 haplotype. Peptide-specific ELA-A1-restricted CTL were induced in all three horses, although these were present transiently in PBMC. These horses were further immunized with lipopeptide containing the corresponding CTL epitope from the EIAV(PV) strain. Then, the three immunized horses and three non-immunized horses were challenged by intravenous inoculation with 300 TCID(50) EIAV(PV). All horses developed cell free viremia, fever and thrombocytopenia. However, there was a statistically lower fever and thrombocytopenia severity score in the immunized group. Shorter duration of plasma viral load in two of the three immunized horses likely explains the less severe clinical disease in this group. Results indicate that lipopeptide immunization had a protective effect against development of clinical disease following virus challenge.
Collapse
Affiliation(s)
- Sherritta L Ridgely
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | | | | |
Collapse
|
34
|
Howe L, Leroux C, Issel CJ, Montelaro RC. Equine infectious anemia virus envelope evolution in vivo during persistent infection progressively increases resistance to in vitro serum antibody neutralization as a dominant phenotype. J Virol 2002; 76:10588-97. [PMID: 12368301 PMCID: PMC136617 DOI: 10.1128/jvi.76.21.10588-10597.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine infectious anemia virus (EIAV) infection of horses is characterized by well-defined waves of viremia associated with the sequential evolution of distinct viral populations displaying extensive envelope gp90 variation; however, a correlation of in vivo envelope evolution with in vitro serum neutralization phenotype remains undefined. Therefore, the goal of the present study was to utilize a previously defined panel of natural variant EIAV envelope isolates from sequential febrile episodes to characterize the effects of envelope variation during persistent infection on viral neutralization phenotypes and to define the determinants of EIAV envelope neutralization specificity. To assess the neutralization phenotypes of the sequential EIAV envelope variants, we determined the sensitivity of five variant envelopes to neutralization by a longitudinal panel of immune serum from the source infected pony. The results indicated that the evolution of the EIAV envelope sequences observed during sequential febrile episodes produced an increasingly neutralization-resistant phenotype. To further define the envelope determinants of EIAV neutralization specificity, we examined the neutralization properties of a panel of chimeric envelope constructs derived from reciprocal envelope domain exchanges between selected neutralization-sensitive and neutralization-resistant envelope variants. These results indicated that the EIAV gp90 V3 and V4 domains individually conferred serum neutralization resistance while other envelope segments in addition to V3 and V4 were evidently required for conferring total serum neutralization sensitivity. These data clearly demonstrate for the first time the influence of sequential gp90 variation during persistent infection in increasing envelope neutralization resistance, identify the gp90 V3 and V4 domains as the principal determinants of antibody neutralization resistance, and indicate distinct complex cooperative envelope domain interactions in defining sensitivity to serum antibody neutralization.
Collapse
Affiliation(s)
- Laryssa Howe
- Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
35
|
Zhou W, Cook RF, Cook SJ, Hammond SA, Rushlow K, Ghabrial NN, Berger SL, Montelaro RC, Issel CJ. Multiple RNA splicing and the presence of cryptic RNA splice donor and acceptor sites may contribute to low expression levels and poor immunogenicity of potential DNA vaccines containing the env gene of equine infectious anemia virus (EIAV). Vet Microbiol 2002; 88:127-51. [PMID: 12135633 DOI: 10.1016/s0378-1135(02)00099-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The env gene is an excellent candidate for inclusion in any DNA-based vaccine approach against equine infectious anemia virus (EIAV). Unfortunately, this gene is subjected to mutational pressure in E. coli resulting in the introduction of stop codons at the 5' terminus unless it is molecularly cloned using very-low-copy-number plasmid vectors. To overcome this problem, a mammalian expression vector was constructed based on the low-copy-number pLG338-30 plasmid. This permitted the production of full-length EIAV env gene clones (plcnCMVenv) from which low-level expression of the viral surface unit glycoprotein (gp90) was detected following transfection into COS-1 cells. Although this suggested the nuclear export of complete env mRNA moieties at least two additional polypeptides of 29 and 20kDa (probably Rev) were produced by alternative splicing events as demonstrated by the fact that their synthesis was prevented by mutational inactivation of EIAV env splice donor 3 (SD3) site. The plcnCMVenv did not stimulate immune responses in mice or in horses, whereas an env construct containing an inactivated SD3 site (plcnCMVDeltaSD3) did induce weak humoral responses against gp90 in mice. This poor immunogenicty in vivo was probably not related to the inherent antigenicity of the proteins encoded by these constructs but to some fundamental properties of EIAV env gene expression. Attempts to modify one of these properties by mutational inactivation of known viral RNA splice sites resulted in activation of previously unidentified cryptic SD and slice acceptor sites.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Base Sequence
- Cloning, Molecular/methods
- Codon, Terminator
- Equine Infectious Anemia/immunology
- Equine Infectious Anemia/prevention & control
- Gene Expression Regulation, Viral
- Gene Products, env/genetics
- Genes, env
- Horses
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/immunology
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- RNA Splicing/genetics
- RNA, Viral/chemistry
- Transfection/veterinary
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- W Zhou
- Department of Veterinary Science, University of Kentucky, Maxwell H. Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Long MT, Mines MT, Knowles DP, Tanhauser SM, Dame JB, Cutler TJ, MacKay RJ, Sellon DC. Sarcocystis neurona: parasitemia in a severe combined immunodeficient (SCID) horse fed sporocysts. Exp Parasitol 2002; 100:150-4. [PMID: 12173399 DOI: 10.1016/s0014-4894(02)00012-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sarcocystis neurona was isolated from the blood of a 5-month-old Arabian foal with severe combined immunodeficiency. The foal had been inoculated approximately 3 weeks previously with 5 x 10(5) sporocysts that were isolated from the intestines of an opossum and identified by restriction enzyme analysis of PCR products as S. neurona. The isolate obtained from the blood of this foal was characterized by genetic, serologic, and morphologic methods and identified as S. neurona (WSU1). This represents the first time that S. neurona has been isolated from any tissue after experimental infection of a horse. This is also the first time a parasitemia has been detected during either natural or experimental infection. The severe combined immunodeficiency foal model provides a unique opportunity to study the pathogenesis of S. neurona infection in horses and to determine the role of the immune system in the control of infection with and development of neurologic disease.
Collapse
Affiliation(s)
- Maureen T Long
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mealey RH, Fraser DG, Oaks JL, Cantor GH, McGuire TC. Immune reconstitution prevents continuous equine infectious anemia virus replication in an Arabian foal with severe combined immunodeficiency: lessons for control of lentiviruses. Clin Immunol 2001; 101:237-47. [PMID: 11683583 PMCID: PMC3342689 DOI: 10.1006/clim.2001.5109] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute infection with equine infectious anemia virus (EIAV), a lentivirus of horses, results in a persistent high-level viremia in Arabian foals affected with severe combined immunodeficiency (SCID). This observation argues against the idea that the transient nature of acute lentiviral viremia is solely a function of viral population dynamics. To extend these studies, EIAV-specific immune reconstitution was attempted prior to EIAV challenge in two SCID foals, using adoptively transferred virus-stimulated lymphocytes derived from persistently EIAV-infected half sibling donors. Following transfer, lymphocyte engraftment occurred in one foal, and EIAV-specific cytotoxic T lymphocytes as well as neutralizing antibody activity developed. Following a brief period of plasma viremia in this foal, EIAV replication was controlled and plasma virus could not be detected by RT-PCR or culture. These results provide further direct evidence that a specific immune response is required for termination of plasma viremia in acute lentiviral infections.
Collapse
Affiliation(s)
- R H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
38
|
Metharom P, Takyar S, Xia HQ, Ellem KA, Wilcox GE, Wei MQ. Development of disabled, replication-defective gene transfer vectors from the Jembrana disease virus, a new infectious agent of cattle. Vet Microbiol 2001; 80:9-22. [PMID: 11278119 DOI: 10.1016/s0378-1135(00)00376-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Jembrana disease virus (JDV) is a newly isolated and characterised bovine lentivirus. It causes an acute disease in Bali cattle (Bos javanicus), which can be readily transmitted to susceptible cattle with 17% mortality. There is as yet no treatment or preventive vaccine. We have developed a gene transfer vector system based on JDV that has three components. The first of the components is a bicistronic transfer vector plasmid that was constructed to contain cis-sequences from the JDV genome, including 5'- and 3'-long terminal repeats (LTRs), 0.4kb of truncated gag and 1.1kb of 3'-env, a multiple cloning site to accommodate the gene(s) of interest for transfer, and an internal ribosome entry site plus the neomycin phosphotransferase (Neo) gene cassette for antibiotic selection. The second element is a packaging plasmid that contains trans-sequences, including gag, pol, vif, tat and rev, but without the env and packaging signals. The third is a plasmid encoding the G glycoprotein of vesicular stomatitis virus (VSV-G) to supply the vector an envelope for pseudotyping. Cotransfection of 293T cells with these three plasmid components produced VSV-G pseudotyped, disabled, replication defective, bicistronic JDV vectors encoding the green fluorescent protein (EGFP) and the Neo resistance selection maker simultaneously with a titre range of (0.4-1.2)x10(6)CFU/ml. Transduction of several replicating primary and transformed cells from cattle, primate and human sources and importantly growth-arrested cells with the JDV vectors showed high efficiency of EGFP gene transfer at 35-75%, which was stable and the expression of EGFP was long term. Furthermore, these JDV vectors were designed to suit the inclusion and expression of genes corresponding to JDV specific proteins, such as gag or env, for the development of vaccines for Jembrana disease. This strategy should also be applicable to other bovine diseases as well. The design and construction of the JDV vector system should facilitate the study of the lentivirology and pathogenesis of the diseases associated with JDV or other bovine virus infections. To our knowledge, this is the first such vector system developed from a cattle virus.
Collapse
Affiliation(s)
- P Metharom
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Qld, Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Belshan M, Baccam P, Oaks JL, Sponseller BA, Murphy SC, Cornette J, Carpenter S. Genetic and biological variation in equine infectious anemia virus Rev correlates with variable stages of clinical disease in an experimentally infected pony. Virology 2001; 279:185-200. [PMID: 11145901 DOI: 10.1006/viro.2000.0696] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic and biological variation in the regulatory protein Rev of equine infectious anemia virus (EIAV) were examined throughout a clinically dynamic disease course of an experimentally infected pony. Following infection with the virulent EIAV(Wyo), the pony underwent a variable disease course, including an acute fever episode at 12 days postinfection (DPI), multiple recurrent fever episodes until 135 DPI, a prolonged subclinical period, and two late fever episodes. Viral RNA was isolated from the inoculum and sequential sera samples, and the rev exon 2/gp45 overlapping ORFs were amplified, cloned, and sequenced. Novel variants were found throughout infection, and genetic analyses indicated that both the Rev and gp45 ORFs were under selective pressure. The Rev variant predominant in the inoculum, R1, remained predominant during the early periods following infection (until 35 DPI); however, R1 was replaced by new predominant variants during the recurrent fever period (67-135 DPI). R1 reemerged as the predominant variant during the afebrile period, but a new predominant variant, R93, was associated with the late fever episodes. Rev variants predominant during recurrent febrile and late-febrile periods had significantly higher Rev-mediated nuclear export activity than the variants predominant during the acute and afebrile periods. Statistical correlation was found between Rev activity and different stages of clinical disease. Together, these results suggest that genetic and biological variation in rev may be a contributing factor in EIAV disease progression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Equine Infectious Anemia/physiopathology
- Equine Infectious Anemia/virology
- Evolution, Molecular
- Gene Products, rev/chemistry
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Genetic Variation
- Horses
- Infectious Anemia Virus, Equine/classification
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/pathogenicity
- Infectious Anemia Virus, Equine/physiology
- Molecular Sequence Data
- RNA, Viral/blood
- Sequence Analysis, DNA
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Load
- Virulence
Collapse
Affiliation(s)
- M Belshan
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, 50011, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.
Collapse
Affiliation(s)
- W Maury
- Department of Microbiology, University of South Dakota School of Medicine, Vermillion 57069, USA.
| |
Collapse
|
41
|
Miller RJ, Cairns JS, Bridges S, Sarver N. Human immunodeficiency virus and AIDS: insights from animal lentiviruses. J Virol 2000; 74:7187-95. [PMID: 10906172 PMCID: PMC112239 DOI: 10.1128/jvi.74.16.7187-7195.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- R J Miller
- Targeted Interventions Branch, Basic Sciences Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Primary immunodeficiency disorders are genetically determined failures of immune defense that increase susceptibility to infectious agents. This article reviews the salient features of equine primary immunodeficiency disorders, summarizes the molecular mechanisms of each disorder, and updates information that facilitates diagnosis and management of affected horses. The central theme is to encourage clinicians to ask, "I wonder if this horse has an underlying primary immunodeficiency disorder?" when caring for horses suffering from chronic and recurring infections and responding poorly to standard therapy.
Collapse
Affiliation(s)
- L E Perryman
- Department of Microbiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
43
|
Harrold SM, Cook SJ, Cook RF, Rushlow KE, Issel CJ, Montelaro RC. Tissue sites of persistent infection and active replication of equine infectious anemia virus during acute disease and asymptomatic infection in experimentally infected equids. J Virol 2000; 74:3112-21. [PMID: 10708426 PMCID: PMC111810 DOI: 10.1128/jvi.74.7.3112-3121.2000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine infectious anemia virus (EIAV) infection of horses is characterized by recurring cycles of disease and viremia that typically progress to an inapparent infection in which clinical symptoms are absent as host immune responses maintain control of virus replication indefinitely. The dynamics of EIAV viremia and its association with disease cycles have been well characterized, but there has been to date no comprehensive quantitative analyses of the specific tissue sites of EIAV infection and replication in experimentally infected equids during acute disease episodes and during asymptomatic infections in long-term inapparent carriers. To characterize the in vivo site(s) of viral infection and replication, we developed a quantitative competitive PCR assay capable of detecting 10 copies of viral DNA and a quantitative competitive reverse transcription-PCR assay with a sensitivity of about 30 copies of viral singly spliced mRNA. Animals were experimentally infected with one of two reference viruses: the animal-passaged field isolate designated EIAV(Wyo) and the virulent cell-adapted strain designated EIAV(PV). Tissues and blood cells were isolated during the initial acute disease or from asymptomatic animals and analyzed for viral DNA and RNA levels by the respective quantitative assays. The results of these experiments demonstrated that the appearance of clinical symptoms in experimentally infected equids coincided with rapid widespread seeding of viral infection and replication in a variety of tissues. During acute disease, the predominant cellular site of viral infection and replication was the spleen, which typically accounted for over 90% of the cellular viral burden. In asymptomatic animals, viral DNA and RNA persisted in virtually all tissues tested, but at extremely low levels, a finding indicative of tight but incomplete immune control of EIAV replication. During all disease states, peripheral blood mononuclear cells (PBMC) were found to harbor less than 1% of the cellular viral burden. These quantitative studies demonstrate that tissues, rather than PBMC, constitute the predominant sites of virus replication during acute disease in infected equids and serve as resilient reservoirs of virus infection, even in the presence of highly effective immune responses that maintain a stringent control of virus replication in long-term inapparent carriers. Thus, these observations with EIAV, a predominantly macrophage-tropic lentivirus, highlight the role of tissues in sequestering lentiviral infections from host immune surveillance.
Collapse
Affiliation(s)
- S M Harrold
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
44
|
Zhang W, Auyong DB, Oaks JL, McGuire TC. Natural variation of equine infectious anemia virus Gag protein cytotoxic T lymphocyte epitopes. Virology 1999; 261:242-52. [PMID: 10497109 DOI: 10.1006/viro.1999.9862] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two defined cytotoxic T lymphocyte (CTL) epitopes from equine infectious anemia virus (EIAV)-infected horses, equine leukocyte alloantigen (ELA)-A5.1-restricted epitope 18a, and ELA-A9-restricted epitope 28b-1 were evaluated for conservation among three wild-type EIAV strains. Epitope 18a variation occurred in all three wild-type EIAV strains, while epitope 28b-1 varied in one strain. Further, 12% amino acid changes occurred in the Gag proteins of a recently isolated wild-type strain, documenting a much greater Gag protein variation than previously reported. Evaluation of epitope 18a among two virus isolates from sequential disease episodes in a single horse, H513 (ELA-A5.1/A8), demonstrated that no variation that affected CTL recognition occurred. H513 PBMC had CTLm to epitope 18a before the occurrence of disease episodes caused by viruses expressing epitope 18a; however, the frequencies were low (5-15/10(6) PBMC). Later in infection there was an absence of disease episodes associated with an increase in CTLm frequency to EIAV(WSU5)-infected targets, but not epitope 18a-pulsed targets. Therefore, if CTLm to EIAV epitopes were involved in maintaining the carrier state in H513, they recognized epitopes other than 18a.
Collapse
Affiliation(s)
- W Zhang
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA
| | | | | | | |
Collapse
|
45
|
Lonning SM, Zhang W, Leib SR, McGuire TC. Detection and induction of equine infectious anemia virus-specific cytotoxic T-lymphocyte responses by use of recombinant retroviral vectors. J Virol 1999; 73:2762-9. [PMID: 10074123 PMCID: PMC104033 DOI: 10.1128/jvi.73.4.2762-2769.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) appear to be critical in resolving or reducing the severity of lentivirus infections. Retroviral vectors expressing the Gag/Pr or SU protein of the lentivirus equine infectious anemia virus (EIAV) were constructed and used to evaluate EIAV-specific CTL responses in horses. Three promoters, cytomegalovirus, simian virus SV40, and Moloney murine sarcoma virus (MoMSV) long terminal repeat (LTR), were used, and there was considerable variation in their ability to direct expression of Gag/Pr and SU. Vectors expressing EIAV proteins under the direction of MoMSV LTR and using the gibbon ape leukemia virus (GALV) Env for internalization were efficient at transducing equine kidney (EK) target cells and were effective targets for EIAV-specific CTL lysis. CTL from EIAV-infected horses caused lysis of retroviral vector-transduced EK cells expressing either Gag/Pr or SU in an ELA-A-restricted manner. In contrast, lysis of recombinant vaccinia virus-infected EK cells expressing Gag/Pr and SU/TM was often non-LA-A restricted. Five horses were immunized by direct intramuscular injection with a mixture of retroviral vectors expressing Gag/Pr or SU, and one responded with EIAV-specific CTL. This result indicates that retroviral vector stimulation of CTL in horses needs to be optimized, perhaps by inclusion of appropriate cytokine genes in the constructs. However, the studies demonstrated that retroviral vector-transduced target cells were very effective for in vitro dissection of EIAV-specific CTL responses.
Collapse
Affiliation(s)
- S M Lonning
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
46
|
Murakami K, Sentsui H, Shibahara T, Yokoyama T. Reduction of CD4+ and CD8+ T lymphocytes during febrile periods in horses experimentally infected with equine infectious anemia virus. Vet Immunol Immunopathol 1999; 67:131-40. [PMID: 10077419 DOI: 10.1016/s0165-2427(98)00225-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three horses were experimentally infected with equine infectious anemia virus (EIAV). All horses were febrile after inoculation with EIAV and then developed chronic symptoms with intermittent fever. The febrile period was characterized by a rise in body temperature with reduced PBL and erythrocyte counts. Flow cytometric analysis showed that the reduced number of lymphocytes was due to significant decreases in CD4+ and CD8+ T cells in the absence of any change in B cell number. At the end of the febrile period the body temperature began to recover and numbers of CD4+ and CD8+ T cells showed a tendency to increase. For CD8+ T cells, this increase continued for several days after the febrile period. B cell number also significantly increased after the febrile period in two out of three horses. The decrease of CD8+ T cells was greater than that of CD4+ T cells. Although the PBL numbers and the CD4/CD8 ratio returned to the level of the preinoculation period, erythrocyte numbers decreased as the body temperature normalized after each intermittent fever. These results suggest that the recurring cycle of fever accompanied with viremia is caused by a reciprocal relationship between EIAV replication and the host immune response. Furthermore, we demonstrate that the lymphocytic response mitigates fever and viremia in EIAV infection despite the absence of virus neutralizing antibody.
Collapse
Affiliation(s)
- K Murakami
- Laboratory of Viral Ecology, National Institute of Animal Health, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
47
|
Zhang W, Lonning SM, McGuire TC. Gag protein epitopes recognized by ELA-A-restricted cytotoxic T lymphocytes from horses with long-term equine infectious anemia virus infection. J Virol 1998; 72:9612-20. [PMID: 9811694 PMCID: PMC110470 DOI: 10.1128/jvi.72.12.9612-9620.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most equine infectious anemia virus (EIAV)-infected horses have acute clinical disease, but they eventually control the disease and become lifelong carriers. Cytotoxic T lymphocytes (CTL) are considered an important immune component in the control of infections with lentiviruses including EIAV, but definitive evidence for CTL in the control of disease in carrier horses is lacking. By using retroviral vector-transduced target cells expressing different Gag proteins and overlapping synthetic peptides of 16 to 25 amino acids, peptides containing at least 12 Gag CTL epitopes recognized by virus-stimulated PBMC from six long-term EIAV-infected horses were identified. All identified peptides were located within Gag matrix (p15) and capsid (p26) proteins, as no killing of target cells expressing p11 and p9 occurred. Each of the six horses had CTL recognizing at least one Gag epitope, while CTL from one horse recognized at least eight different Gag epitopes. None of the identified peptides were recognized by CTL from all six horses. Two nonamer peptide epitopes were defined from Gag p26; one (18a) was likely restricted by class I equine leukocyte alloantigen A5.1 (ELA-A5.1) molecules, and the other (28b-1) was likely restricted by ELA-A9 molecules. Sensitization of equine kidney target cells for CTLm killing required 10 nM peptide 18a and 1 nM 28b-1. The results demonstrated that diverse CTL responses against Gag epitopes were generated in long-term EIAV-infected horses and indicated that ELA-A class I molecules were responsible for the diversity of CTL epitopes recognized. This information indicates that multiple epitopes or whole proteins will be needed to induce CTL in horses with different ELA-A alleles in order to evaluate their role in controlling EIAV.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Base Sequence
- Cell Line
- DNA Primers/genetics
- Epitope Mapping
- Epitopes, T-Lymphocyte/genetics
- Equine Infectious Anemia/immunology
- Equine Infectious Anemia/virology
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genes, Viral
- Genetic Vectors
- Histocompatibility Antigens Class I
- Horses
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/immunology
- Infectious Anemia Virus, Equine/pathogenicity
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Retroviridae/genetics
- T-Lymphocytes, Cytotoxic/immunology
- Transduction, Genetic
Collapse
Affiliation(s)
- W Zhang
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040, USA
| | | | | |
Collapse
|
48
|
McGuire TC, Zhang W, Hines MT, Henney PJ, Byrne KM. Frequency of memory cytotoxic T lymphocytes to equine infectious anemia virus proteins in blood from carrier horses. Virology 1997; 238:85-93. [PMID: 9375012 DOI: 10.1006/viro.1997.8795] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Horses with equine infectious anemia virus (EIAV) have episodes of viremia and disease; however, most eventually become inapparent carriers. A possible mechanism of control is cytotoxic T lymphocytes (CTL). To evaluate CTL in inapparent carriers with low viral loads, peripheral blood mononuclear cells (PBMC) were stimulated in vitro with autologous EIAV-infected PBMC and human IL-2 to detect memory CTL (CTLm). In initial studies, three carriers had CTLm and one of these had low-level effector CTL (CTLe). The CTLm were restricted by equine lymphocyte alloantigen-A (ELA-A) locus encoded MHC class I molecules on autologous equine kidney (EK) target cells. In addition, EK cells did not express MHC class II molecules. The CTLm frequency in PBMC from five inapparent carriers infected for 22 to 50 months was determined by limiting dilution analysis. PBMC were diluted, stimulated, and tested on EK cell targets infected with EIAV and recombinant vaccinia viruses expressing EIAV Env or Gag/Pr proteins. All five carriers had CTLm to EIAV-infected targets, while four had CTLm to targets expressing Env and four had CTLm to targets expressing Gag/Pr proteins. The CTLm frequency range was 60 to 468 per 10(6) PBMC to EIAV-infected targets, 4 to 286 to Env-expressing targets, and 25 to 190 to Gag/Pr-expressing targets. These results should facilitate the identification of epitopes recognized by predominant CTLm from horses controlling a lentivirus infection.
Collapse
Affiliation(s)
- T C McGuire
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman 99164-7040, USA.
| | | | | | | | | |
Collapse
|
49
|
Suppression of Megakaryocyte Colony Growth by Plasma From Foals Infected With Equine Infectious Anemia Virus. Blood 1997. [DOI: 10.1182/blood.v90.6.2357] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractFoals infected with equine infectious anemia virus become thrombocytopenic 7 to 20 days after virus inoculation, and within a few days following the onset of detectable viremia. The thrombocytopenia is associated with suppression of platelet production. Possible mediators of suppression of thrombopoiesis include tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β), cytokines that are released during inflammation. To assess effects of plasma or serum from infected foals on megakaryocyte (MK) growth and maturation in vitro, equine low-density bone marrow cells were cultured for clonogenic and ploidy assays. Neutralizing antibodies to TNF-α and TGF-β were added to cultures to determine the contribution of these cytokines to suppression of thrombopoiesis. Plasma from the immediately pre-thrombocytopenia (Pre-Tp) period significantly reduced MK colony numbers. This suppression was partially reversed upon antibody neutralization of plasma TNF-α, TGF-β, or both. There were no differences in ploidy distribution of MK grown in the presence of preinfection serum compared with those grown in the presence of Pre-Tp serum. These results indicate that TNF-α and TGF-β may contribute to suppression of MK proliferation and represent likely factors in the pathogenesis of thrombocytopenia.
Collapse
|
50
|
Suppression of Megakaryocyte Colony Growth by Plasma From Foals Infected With Equine Infectious Anemia Virus. Blood 1997. [DOI: 10.1182/blood.v90.6.2357.2357_2357_2363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foals infected with equine infectious anemia virus become thrombocytopenic 7 to 20 days after virus inoculation, and within a few days following the onset of detectable viremia. The thrombocytopenia is associated with suppression of platelet production. Possible mediators of suppression of thrombopoiesis include tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β), cytokines that are released during inflammation. To assess effects of plasma or serum from infected foals on megakaryocyte (MK) growth and maturation in vitro, equine low-density bone marrow cells were cultured for clonogenic and ploidy assays. Neutralizing antibodies to TNF-α and TGF-β were added to cultures to determine the contribution of these cytokines to suppression of thrombopoiesis. Plasma from the immediately pre-thrombocytopenia (Pre-Tp) period significantly reduced MK colony numbers. This suppression was partially reversed upon antibody neutralization of plasma TNF-α, TGF-β, or both. There were no differences in ploidy distribution of MK grown in the presence of preinfection serum compared with those grown in the presence of Pre-Tp serum. These results indicate that TNF-α and TGF-β may contribute to suppression of MK proliferation and represent likely factors in the pathogenesis of thrombocytopenia.
Collapse
|