1
|
Epstein-Barr Virus Viral Processivity Factor EA-D Facilitates Virus Lytic Replication by Inducing Poly(ADP-Ribose) Polymerase 1 Degradation. J Virol 2022; 96:e0037122. [PMID: 36286483 PMCID: PMC9645209 DOI: 10.1128/jvi.00371-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PARP1 acts as a negative regulator of lytic replication in EBV. To successfully enter the reactivation cycle, EBV has developed multiple strategies to counteract the host’s repressive mechanisms.
Collapse
|
2
|
Ali A, Ohashi M, Casco A, Djavadian R, Eichelberg M, Kenney SC, Johannsen E. Rta is the principal activator of Epstein-Barr virus epithelial lytic transcription. PLoS Pathog 2022; 18:e1010886. [PMID: 36174106 PMCID: PMC9553042 DOI: 10.1371/journal.ppat.1010886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/11/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
The transition from latent Epstein-Barr virus (EBV) infection to lytic viral replication is mediated by the viral transcription factors Rta and Zta. Although both are required for virion production, dissecting the specific roles played by Rta and Zta is challenging because they induce each other's expression. To circumvent this, we constructed an EBV mutant deleted for the genes encoding Rta and Zta (BRLF1 and BZLF1, respectively) in the Akata strain BACmid. This mutant, termed EBVΔRZ, was used to infect several epithelial cell lines, including telomerase-immortalized normal oral keratinocytes, a highly physiologic model of EBV epithelial cell infection. Using RNA-seq, we determined the gene expression induced by each viral transactivator. Surprisingly, Zta alone only induced expression of the lytic origin transcripts BHLF1 and LF3. In contrast, Rta activated the majority of EBV early gene transcripts. As expected, Zta and Rta were both required for expression of late gene transcripts. Zta also cooperated with Rta to enhance a subset of early gene transcripts (Rtasynergy transcripts) that Zta was unable to activate when expressed alone. Interestingly, Rta and Zta each cooperatively enhanced the other's binding to EBV early gene promoters, but this effect was not restricted to promoters where synergy was observed. We demonstrate that Zta did not affect Rtasynergy transcript stability, but increased Rtasynergy gene transcription despite having no effect on their transcription when expressed alone. Our results suggest that, at least in epithelial cells, Rta is the dominant transactivator and that Zta functions primarily to support DNA replication and co-activate a subset of early promoters with Rta. This closely parallels the arrangement in KSHV where ORF50 (Rta homolog) is the principal activator of lytic transcription and K8 (Zta homolog) is required for DNA replication at oriLyt.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- National Center for Research, Khartoum, Sudan
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Mark Eichelberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
3
|
Van Sciver N, Ohashi M, Nawandar DM, Pauly NP, Lee D, Makielski KR, Bristol JA, Tsao SW, Lambert PF, Johannsen EC, Kenney SC. ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathog 2021; 17:e1010045. [PMID: 34748616 PMCID: PMC8601603 DOI: 10.1371/journal.ppat.1010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/18/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.
Collapse
Affiliation(s)
- Nicholas Van Sciver
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Dhananjay M. Nawandar
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Currently at Ring Therapeutics, Cambridge, Massachusetts, United States of America
| | - Nicholas P. Pauly
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Denis Lee
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Kathleen R. Makielski
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Jillian A. Bristol
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul F. Lambert
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Eric C. Johannsen
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Inagaki T, Sato Y, Ito J, Takaki M, Okuno Y, Yaguchi M, Masud HMAA, Watanabe T, Sato K, Iwami S, Murata T, Kimura H. Direct Evidence of Abortive Lytic Infection-Mediated Establishment of Epstein-Barr Virus Latency During B-Cell Infection. Front Microbiol 2021; 11:575255. [PMID: 33613459 PMCID: PMC7888302 DOI: 10.3389/fmicb.2020.575255] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Viral infection induces dynamic changes in transcriptional profiles. Virus-induced and antiviral responses are intertwined during the infection. Epstein-Barr virus (EBV) is a human gammaherpesvirus that provides a model of herpesvirus latency. To measure the transcriptome changes during the establishment of EBV latency, we infected EBV-negative Akata cells with EBV-EGFP and performed transcriptome sequencing (RNA-seq) at 0, 2, 4, 7, 10, and 14 days after infection. We found transient downregulation of mitotic division-related genes, reflecting reprogramming of cell growth by EBV, and a burst of viral lytic gene expression in the early phase of infection. Experimental and mathematical investigations demonstrate that infectious virions were not produced in the pre-latent phase, suggesting the presence of an abortive lytic infection. Fate mapping using recombinant EBV provided direct evidence that the abortive lytic infection in the pre-latent phase converges to latent infection during EBV infection of B-cells, shedding light on novel roles of viral lytic gene(s) in establishing latency. Furthermore, we find that the BZLF1 protein, which is a key regulator of reactivation, was dispensable for abortive lytic infection in the pre-latent phase, suggesting the divergent regulation of viral gene expressions from a productive lytic infection.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mitsuaki Takaki
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Okuno
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Yaguchi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - H. M. Abdullah Al Masud
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Japan
- MIRAI, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Takayuki Murata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Shindiapina P, Ahmed EH, Mozhenkova A, Abebe T, Baiocchi RA. Immunology of EBV-Related Lymphoproliferative Disease in HIV-Positive Individuals. Front Oncol 2020; 10:1723. [PMID: 33102204 PMCID: PMC7556212 DOI: 10.3389/fonc.2020.01723] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Bar virus (EBV) can directly cause lymphoproliferative disease (LPD), including AIDS-defining lymphomas such as Burkitt’s lymphoma and other non-Hodgkin lymphomas (NHL), as well as human immunodeficiency virus (HIV)-related Hodgkin lymphoma (HL). The prevalence of EBV in HL and NHL is elevated in HIV-positive individuals compared with the general population. Rates of incidence of AIDS-defining cancers have been declining in HIV-infected individuals since initiation of combination anti-retroviral therapy (cART) use in 1996. However, HIV-infected persons remain at an increased risk of cancers related to infections with oncogenic viruses. Proposed pathogenic mechanisms of HIV-related cancers include decreased immune surveillance, decreased ability to suppress infection-related oncogenic processes and a state of chronic inflammation marked by alteration of the cytokine profile and expanded numbers of cytotoxic T lymphocytes with down-regulated co-stimulatory molecules and increased expression of markers of senescence in the setting of treated HIV infection. Here we discuss the cooperation of EBV-infected B cell- and environment-associated factors that may contribute to EBV-related lymphomagenesis in HIV-infected individuals. Environment-derived lymphomagenic factors include impaired host adaptive and innate immune surveillance, cytokine dysregulation and a pro-inflammatory state observed in the setting of chronic, cART-treated HIV infection. B cell factors include distinctive EBV latency patterns and host protein expression in HIV-associated LPD, as well as B cell-stimulating factors derived from HIV infection. We review the future directions for expanding therapeutic approaches in targeting the viral and immune components of EBV LPD pathogenesis.
Collapse
Affiliation(s)
- Polina Shindiapina
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Elshafa H Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Anna Mozhenkova
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Tamrat Abebe
- Department of Microbiology, Immunology, and Parasitology, School of Medicine Tikur Anbessa Specialized Hospital, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Robert A Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Santos CA, Andrade SCS, Fernandes JMO, Freitas PD. Shedding the Light on Litopenaeus vannamei Differential Muscle and Hepatopancreas Immune Responses in White Spot Syndrome Virus (WSSV) Exposure. Genes (Basel) 2020; 11:E805. [PMID: 32708590 PMCID: PMC7397224 DOI: 10.3390/genes11070805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
White Spot Syndrome Virus (WSSV) is one of the main threats to farming Litopenaeus vannamei, the most important crustacean commercialized in aquaculture worldwide. Here, we performed RNA-seq analyses in hepatopancreas and muscle from WSSV-negative (healthy) and WSSV-positive (unhealthy) L. vannamei, previously exposed to the virus, to obtain new insights about the molecular basis of resistance to WSSV. We detected 71% of our reads mapped against the recently described L. vannamei genome. This is the first report mapping RNA-seq transcripts from shrimps exposed to WSSV against the species reference genome. Differentially expressed gene (DEG) analyses were performed for four independent comparisons, and 13,338 DEGs were identified. When the redundancies and isoforms were disregarded, we observed 8351 and 6514 DEGs, respectively. Interestingly, after crossing the data, we detected a common set of DEGs for hepatopancreas and healthy shrimps, as well as another one for muscle and unhealthy shrimps. Our findings indicate that genes related to apoptosis, melanization, and the Imd pathway are likely to be involved in response to WSSV, offering knowledge about WSSV defense in shrimps exposed to the virus but not infected. These data present potential to be applied in further genetic studies in penaeids and other farmed shrimp species.
Collapse
Affiliation(s)
- Camilla A. Santos
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 676, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil;
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil;
| | | | - Patrícia D. Freitas
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 676, Brazil
| |
Collapse
|
7
|
Huang HH, Wang WH, Feng TH, Chang LK. Rta is an Epstein-Barr virus tegument protein that improves the stability of capsid protein BORF1. Biochem Biophys Res Commun 2020; 523:773-779. [PMID: 31948747 DOI: 10.1016/j.bbrc.2020.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/05/2020] [Indexed: 11/30/2022]
Abstract
Rta, a key transcription factor expressed by Epstein-Barr virus (EBV), primarily acts to induce activation of the EBV lytic cycle. Interestingly, we observed from an immunogold assay that Rta is also present on the EBV capsid in the host cell nucleus, and a centrifugation study further revealed that Rta cofractionates with EBV virions. Importantly, cofractionated Rta showed similar properties as the EBV tegument protein, BGLF4. Glutathione S-transferase (GST)-pulldown and coimmunoprecipitation assays subsequently demonstrated that Rta directly interacts with the EBV capsid protein, BORF1. Rta was observed to colocalize with BORF1 in the nucleus during EBV lytic induction, and this interaction appears to influence BORF1 stability. Moreover, we found that BORF1 is modified by ubiquitin, and Rta reduces this ubiquitination. These results indicate that Rta may act as an inner tegument protein to improve EBV capsid stability and critical to viral infection.
Collapse
Affiliation(s)
- Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Hui Feng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Thipwong J, Saelim H, Panrat T, Phongdara A. Penaeus monodon GILT enzyme restricts WSSV infectivity by reducing disulfide bonds in WSSV proteins. DISEASES OF AQUATIC ORGANISMS 2019; 135:59-70. [PMID: 31244485 DOI: 10.3354/dao03377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) is involved in the adaptive immune response via its effects on major histocompatibility complex (MHC)-restricted antigen presentation. In addition to antigen presentation, GILT exerts its antiviral activity by reducing disulfide bonds in proteins involved in viral infection and assembly, thereby inhibiting viral envelope-mediated infection and viral progeny production. In black tiger shrimp, Penaeus monodon GILT (PmGILT) was cloned and characterized, and found to be involved in the shrimp innate immune response and to exert neutralizing activity against white spot syndrome virus (WSSV) infection. However, the anti-WSSV mechanism of PmGILT in the shrimp innate immune response has not been defined. To explore the anti-WSSV activity of PmGILT, a yeast 2-hybrid (Y2H) assay was performed to identify WSSV proteins targeted by PmGILT. The assay revealed 4 potential PmGILT-interacting WSSV proteins: WSSV002, WSSV164, WSSV189, and WSSV471. Three of these 4 WSSV proteins (WSSV002, WSSV164 and WSSV189) were successfully produced and confirmed to interact with PmGILT in in vitro pull-down assays. WSSV189 and WSSV471 were previously identified as structural proteins, whereas WSSV164 is an immediate-early protein which has anti-melanization activity, and WSSV002 is an unknown. Because of the thiol reductase activity of PmGILT, WSSV164 and WSSV189, both of which are cysteine-containing WSSV proteins, were chosen for disulfide bond reduction assays. PmGILT reduced intrachain disulfide bonds in both WSSV proteins, suggesting that PmGILT exerts its anti-WSSV activity via its thiol reductase activity to disrupt the WSSV protein complex and restore the melanization activity of PmproPO1 and PmproPO2.
Collapse
Affiliation(s)
- Jaturon Thipwong
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | | | | | | |
Collapse
|
9
|
Mutant Cellular AP-1 Proteins Promote Expression of a Subset of Epstein-Barr Virus Late Genes in the Absence of Lytic Viral DNA Replication. J Virol 2018; 92:JVI.01062-18. [PMID: 30021895 DOI: 10.1128/jvi.01062-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) ZEBRA protein activates the EBV lytic cycle. Cellular AP-1 proteins with alanine-to-serine [AP-1(A/S)] substitutions homologous to ZEBRA(S186) assume some functions of EBV ZEBRA. These AP-1(A/S) mutants bind methylated EBV DNA and activate expression of some EBV genes. Here, we compare expression of 67 viral genes induced by ZEBRA versus expression induced by AP-1(A/S) proteins. AP-1(A/S) activated 24 genes to high levels and 15 genes to intermediate levels; activation of 28 genes by AP-1(A/S) was severely impaired. We show that AP-1(A/S) proteins are defective at stimulating viral lytic DNA replication. The impairment of expression of many late genes compared to that of ZEBRA is likely due to the inability of AP-1(A/S) proteins to promote viral DNA replication. However, even in the absence of detectable viral DNA replication, AP-1(A/S) proteins stimulated expression of a subgroup of late genes that encode viral structural proteins and immune modulators. In response to ZEBRA, expression of this subgroup of late genes was inhibited by phosphonoacetic acid (PAA), which is a potent viral replication inhibitor. However, when the lytic cycle was activated by AP-1(A/S), PAA did not reduce expression of this subgroup of late genes. We also provide genetic evidence, using the BMRF1 knockout bacmid, that these genes are true late genes in response to ZEBRA. AP-1(A/S) binds to the promoter region of at least one of these late genes, BDLF3, encoding an immune modulator.IMPORTANCE Mutant c-Jun and c-Fos proteins selectively activate expression of EBV lytic genes, including a subgroup of viral late genes, in the absence of viral DNA replication. These findings indicate that newly synthesized viral DNA is not invariably required for viral late gene expression. While viral DNA replication may be obligatory for late gene expression driven by viral transcription factors, it does not limit the ability of cellular transcription factors to activate expression of some viral late genes. Our results show that expression of all late genes may not be strictly dependent on viral lytic DNA replication. The c-Fos A151S mutation has been identified in a human cancer. c-Fos A151S in combination with wild-type c-Jun activates the EBV lytic cycle. Our data provide proof of principle that mutant cellular transcription factors could cause aberrant regulation of viral lytic cycle gene expression and play important roles in EBV-associated diseases.
Collapse
|
10
|
Manet E, Allera C, Gruffat H, Mikaelian I, Rigolet A, Sergeant A. The acidic activation domain of the Epstein-Barr virus transcription factor R interacts in vitro with both TBP and TFIIB and is cell-specifically potentiated by a proline-rich region. Gene Expr 2018; 3:49-59. [PMID: 8389627 PMCID: PMC6081622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In cells latently infected with Epstein-Barr virus (EBV), the expression of two viral transactivators, EB1 and R, is responsible for the switch from latency to a productive cycle. R contains a DNA-binding/dimerization domain localized at the N-terminus. The domain required for transcriptional activation is localized at the C-terminus and contains two regions of very different amino acid composition. The first is very rich in prolines, whereas the second is rich in acidic residues and contains two potential alpha-helices. We investigated the activation potential of these subregions when linked to the heterologous Gal4 DNA-binding domain. We found that the acidic region--more precisely, the second putative alpha-helix--is an activating domain. In contrast, the proline-rich region is insufficient by itself for activation but collaborates with the acidic region in a cell-specific manner to make transactivation more efficient. We demonstrated that R interacts in vitro with the basal transcription factors TBP and TFIIB, and that the acidic domain of R mediates these interactions.
Collapse
Affiliation(s)
- E Manet
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR 49 CNRS-ENS, Lyon, France
| | | | | | | | | | | |
Collapse
|
11
|
Almohammed R, Osborn K, Ramasubramanyan S, Perez-Fernandez IBN, Godfrey A, Mancini EJ, Sinclair AJ. Mechanism of activation of the BNLF2a immune evasion gene of Epstein-Barr virus by Zta. J Gen Virol 2018; 99:805-817. [PMID: 29580369 PMCID: PMC6096924 DOI: 10.1099/jgv.0.001056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human gamma herpes virus Epstein–Barr virus (EBV) exploits multiple routes to evade the cellular immune response. During the EBV lytic replication cycle, viral proteins are expressed that provide excellent targets for recognition by cytotoxic T cells. This is countered by the viral BNLF2a gene. In B cells during latency, where BNLF2a is not expressed, we show that its regulatory region is embedded in repressive chromatin. The expression of BNLF2a mirrors the expression of a viral lytic cycle transcriptional regulator, Zta (BZLF1, EB1, ZEBRA), in B cells and we propose that Zta plays a role in up-regulating BNLF2a. In cells undergoing EBV lytic replication, we identified two distinct regions of interaction of Zta with the chromatin-associated BNLF2a promoter. We identify five potential Zta-response elements (ZREs) in the promoter that are highly conserved between virus isolates. Zta binds to these elements in vitro and activates the expression of the BNLF2a promoter in both epithelial and B cells. We also found redundancy amongst the ZREs. The EBV genome undergoes a biphasic DNA methylation cycle during its infection cycle. One of the ZREs contains an integral CpG motif. We show that this can be DNA methylated during EBV latency and that both Zta binding and promoter activation are enhanced by its methylation. In summary, we find that the BNLF2a promoter is directly targeted by Zta and that DNA methylation within the proximal ZRE aids activation. The implications for regulation of this key viral gene during the reactivation of EBV from latency are discussed.
Collapse
Affiliation(s)
- Rajaei Almohammed
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Present address: Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Sharada Ramasubramanyan
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK.,Present address: RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Anja Godfrey
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Erika J Mancini
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| | - Alison J Sinclair
- School of Life Sciences, University of Sussex, Brighton, East Sussex, UK
| |
Collapse
|
12
|
Kim DE, Jung S, Ryu HW, Choi M, Kang M, Kang H, Yuk HJ, Jeong H, Baek J, Song JH, Kim J, Kang H, Han SB, Oh SR, Cho S. Selective oncolytic effect in Epstein-Barr virus (EBV)-associated gastric carcinoma through efficient lytic induction by Euphorbia extracts. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Nandakumar A, Uwatoko F, Yamamoto M, Tomita K, Majima HJ, Akiba S, Koriyama C. Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection. Tumour Biol 2017; 39:1010428317717718. [PMID: 28675108 DOI: 10.1177/1010428317717718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus, a ubiquitous human herpes virus with oncogenic activity, can be found in 6%-16% of gastric carcinomas worldwide. In Epstein-Barr virus-associated gastric carcinoma, only a few latent genes of the virus are expressed. Ionizing irradiation was shown to induce lytic Epstein-Barr virus infection in lymphoblastoid cell lines with latent Epstein-Barr virus infection. In this study, we examined the effect of ionizing radiation on the Epstein-Barr virus reactivation in a gastric epithelial cancer cell line (SNU-719, an Epstein-Barr virus-associated gastric carcinoma cell line). Irradiation with X-ray (dose = 5 and 10 Gy; dose rate = 0.5398 Gy/min) killed approximately 25% and 50% of cultured SNU-719 cells, respectively, in 48 h. Ionizing radiation increased the messenger RNA expression of immediate early Epstein-Barr virus lytic genes (BZLF1 and BRLF1), determined by real-time reverse transcription polymerase chain reaction, in a dose-dependent manner at 48 h and, to a slightly lesser extent, at 72 h after irradiation. Similar findings were observed for other Epstein-Barr virus lytic genes (BMRF1, BLLF1, and BcLF1). After radiation, the expression of transforming growth factor beta 1 messenger RNA increased and reached a peak in 12-24 h, and the high-level expression of the Epstein-Barr virus immediate early genes can convert latent Epstein-Barr virus infection into the lytic form and result in the release of infectious Epstein-Barr virus. To conclude, Ionizing radiation activates lytic Epstein-Barr virus gene expression in the SNU-719 cell line mainly through nuclear factor kappaB activation. We made a brief review of literature to explore underlying mechanism involved in transforming growth factor beta-induced Epstein-Barr virus reactivation. A possible involvement of nuclear factor kappaB was hypothesized.
Collapse
Affiliation(s)
- Athira Nandakumar
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Futoshi Uwatoko
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Megumi Yamamoto
- 2 Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Japan
| | - Kazuo Tomita
- 3 Department of Dental Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hideyuki J Majima
- 3 Department of Dental Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Suminori Akiba
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Chihaya Koriyama
- 1 Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
14
|
Chen ZY, Chiou PP, Liou CJ, Lai YS. Production and characterization of a monoclonal antibody against a late gene encoded by grouper iridovirus 64L. JOURNAL OF FISH DISEASES 2016; 39:129-141. [PMID: 25630349 DOI: 10.1111/jfd.12331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Viral envelope proteins play important roles in viral infection and assembly. The grouper iridovirus ORF 64L (GIV-64L) was predicted to encode an envelope protein and was conserved in all sequenced Ranaviruses. In this study, the complete nucleotide sequence of the GIV-64L gene (1215 bp) was cloned into the isopropyl β-D-1-thiogalactopyranoside (IPTG) induction prokaryotic expression vector pET23a. The approximately 50.2 kDa recombinant GIV-64L-His protein was induced, purified and used as an immunogen to immunize BALB/c mice. Three monoclonal antibodies (mAbs), all IgG1 class antibodies against GIV-64L protein, were produced by enzyme-linked immunosorbent assay. Reverse transcription polymerase chain reaction analyses revealed GIV-64L to be a late gene when expressed in grouper kidney cells during GIV infection with cycloheximide (an inhibitor of protein synthesis) or cytosine arabinoside (an inhibitor of DNA synthesis) present. Finally, one of the established mAbs, GIV-64L-mAb-17, was used in Western blotting and an immunofluorescence assay, which showed that GIV-64L protein was expressed at 24 h post-infection and localized only in the cytoplasm in GIV-infected cells, packed into a whole virus particle. The presently characterized GIV-64L mAbs should have widespread applications in GIV immunodiagnostics and other research, and these results should offer important insights into the pathogenesis of GIV.
Collapse
Affiliation(s)
- Z-Y Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - P P Chiou
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - C-J Liou
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Y-S Lai
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| |
Collapse
|
15
|
Balan N, Osborn K, Sinclair AJ. Repression of CIITA by the Epstein-Barr virus transcription factor Zta is independent of its dimerization and DNA binding. J Gen Virol 2015; 97:725-732. [PMID: 26653871 DOI: 10.1099/jgv.0.000369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Repression of the cellular CIITA gene is part of the immune evasion strategy of the γherpes virus Epstein-Barr virus (EBV) during its lytic replication cycle in B-cells. In part, this is mediated through downregulation of MHC class II gene expression via the targeted repression of CIITA, the cellular master regulator of MHC class II gene expression. This repression is achieved through a reduction in CIITA promoter activity, initiated by the EBV transcription and replication factor, Zta (BZLF1, EB1, ZEBRA). Zta is the earliest gene expressed during the lytic replication cycle. Zta interacts with sequence-specific elements in promoters, enhancers and the replication origin (ZREs), and also modulates gene expression through interaction with cellular transcription factors and co-activators. Here, we explore the requirements for Zta-mediated repression of the CIITA promoter. We find that repression by Zta is specific for the CIITA promoter and can be achieved in the absence of other EBV genes. Surprisingly, we find that the dimerization region of Zta is not required to mediate repression. This contrasts with an obligate requirement of this region to correctly orientate the DNA contact regions of Zta to mediate activation of gene expression through ZREs. Additional support for the model that Zta represses the CIITA promoter without direct DNA binding comes from promoter mapping that shows that repression does not require the presence of a ZRE in the CIITA promoter.
Collapse
Affiliation(s)
- Nicolae Balan
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kay Osborn
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
16
|
Epstein-Barr Virus MicroRNA miR-BART20-5p Suppresses Lytic Induction by Inhibiting BAD-Mediated caspase-3-Dependent Apoptosis. J Virol 2015; 90:1359-68. [PMID: 26581978 DOI: 10.1128/jvi.02794-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/08/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with a variety of tumor types. EBV can establish latency or undergo lytic replication in host cells. In general, EBV remains latent in tumors and expresses a limited repertoire of latent proteins to avoid host immune surveillance. When the lytic cycle is triggered by some as-yet-unknown form of stimulation, lytic gene expression and progeny virus production commence. Thus far, the exact mechanism of EBV latency maintenance and the in vivo triggering signal for lytic induction have yet to be elucidated. Previously, we have shown that the EBV microRNA miR-BART20-5p directly targets the immediate early genes BRLF1 and BZLF1 as well as Bcl-2-associated death promoter (BAD) in EBV-associated gastric carcinoma. In this study, we found that both mRNA and protein levels of BRLF1 and BZLF1 were suppressed in cells following BAD knockdown and increased after BAD overexpression. Progeny virus production was also downregulated by specific knockdown of BAD. Our results demonstrated that caspase-3-dependent apoptosis is a prerequisite for BAD-mediated EBV lytic cycle induction. Therefore, our data suggest that miR-BART20-5p plays an important role in latency maintenance and tumor persistence of EBV-associated gastric carcinoma by inhibiting BAD-mediated caspase-3-dependent apoptosis, which would trigger immediate early gene expression. IMPORTANCE EBV has an ability to remain latent in host cells, including EBV-associated tumor cells hiding from immune surveillance. However, the exact molecular mechanisms of EBV latency maintenance remain poorly understood. Here, we demonstrated that miR-BART20-5p inhibited the expression of EBV immediate early genes indirectly, by suppressing BAD-induced caspase-3-dependent apoptosis, in addition to directly, as we previously reported. Our study suggests that EBV-associated tumor cells might endure apoptotic stress to some extent and remain latent with the aid of miR-BART20-5p. Blocking the expression or function of BART20-5p may expedite EBV-associated tumor cell death via immune attack and apoptosis.
Collapse
|
17
|
Nawandar DM, Wang A, Makielski K, Lee D, Ma S, Barlow E, Reusch J, Jiang R, Wille CK, Greenspan D, Greenspan JS, Mertz JE, Hutt-Fletcher L, Johannsen EC, Lambert PF, Kenney SC. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells. PLoS Pathog 2015; 11:e1005195. [PMID: 26431332 PMCID: PMC4592227 DOI: 10.1371/journal.ppat.1005195] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL) in immunosuppressed patients. However, the cellular mechanism(s) that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1) promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs) cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells. Lytic EBV infection of differentiated oral epithelial cells results in the release of infectious viral particles and is required for efficient transmission of EBV from host to host. Lytic infection also causes a tongue lesion known as oral hairy leukoplakia (OHL). However, surprisingly little is known in regard to how EBV gene expression is regulated in epithelial cells. Using a stably EBV- infected, telomerase-immortalized normal oral keratinocyte cell line, we show here that undifferentiated basal epithelial cells support latent EBV infection, while differentiation of epithelial cells promotes lytic reactivation. Furthermore, we demonstrate that the KLF4 cellular transcription factor, which is required for normal epithelial cell differentiation and is expressed in differentiated, but not undifferentiated, normal epithelial cells, induces lytic EBV reactivation by activating transcription from the two EBV immediate-early gene promoters. We also show that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, synergistically activates lytic gene expression in epithelial cells. We confirm that KLF4 and BLIMP1 expression in normal tongue epithelium is confined to differentiated cells, and that KLF4 and BLIMP1 are expressed in a patient-derived OHL tongue lesion. These results suggest that differentiation-dependent expression of KLF4 and BLIMP1 in epithelial cells promotes lytic EBV infection.
Collapse
Affiliation(s)
- Dhananjay M. Nawandar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Anqi Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Kathleen Makielski
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Denis Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Shidong Ma
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Elizabeth Barlow
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jessica Reusch
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Cellular and Molecular Biology Graduate Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ru Jiang
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Coral K. Wille
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Medical Microbiology and Immunology Graduate Program, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Deborah Greenspan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, California, United States of America
| | - John S. Greenspan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Janet E. Mertz
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Lindsey Hutt-Fletcher
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Eric C. Johannsen
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
18
|
Lin HY, Cheng CF, Chiou PP, Liou CJ, Yiu JC, Lai YS. Identification and characterization of a late gene encoded by grouper iridovirus 2L (GIV-2L). JOURNAL OF FISH DISEASES 2015; 38:881-890. [PMID: 25271832 DOI: 10.1111/jfd.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/29/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
Grouper iridovirus (GIV) belongs to the Ranavirus genus and is one of the most important viral pathogens in grouper, particularly at the fry and fingerling stages. In this study, we identified and characterized the GIV-2L gene, which encodes a protein of unknown function. GIV-2L is 1242 bp in length, with a predicted protein mass of 46.2 kDa. It displayed significant identity only with members of the Ranavirus and Iridovirus genera. We produced mouse monoclonal antibodies against the GIV-2L protein by immunizing mice with GIV-2L-His-tag recombinant protein. By inhibiting de novo protein and DNA synthesis in GIV-infected cells, we showed that GIV-2L was a late gene during the viral replication. Finally, immunofluorescence microscopy revealed that GIV-2L protein accumulated in both the nucleus and cytoplasm of infected cells. These results offer important insights into the pathogenesis of GIV.
Collapse
Affiliation(s)
- H-Y Lin
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
- Department of Horticulture, National Ilan University, Yilan, Taiwan
| | - C-F Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - P P Chiou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - C-J Liou
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - J-C Yiu
- Department of Horticulture, National Ilan University, Yilan, Taiwan
| | - Y-S Lai
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| |
Collapse
|
19
|
Yang YC, Feng TH, Chen TY, Huang HH, Hung CC, Liu ST, Chang LK. RanBPM regulates Zta-mediated transcriptional activity in Epstein–Barr virus. J Gen Virol 2015; 96:2336-2348. [DOI: 10.1099/vir.0.000157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tzu-Hui Feng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tse-Yao Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| |
Collapse
|
20
|
Chen ZY, Hsieh WY, Lai YS. Identification and characterization of a late gene of grouper iridovirus 61l and antibody production against the protein encoded by it. JOURNAL OF FISH BIOLOGY 2015; 87:386-399. [PMID: 26180031 DOI: 10.1111/jfb.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
In this study, a late gene encoded by grouper iridovirus, giv-61L, was identified and classified, and mouse monoclonal antibodies (mAbs) were raised against this protein. Giv-61L homologues were found only in the genus Ranavirus. Three mAbs to Giv-61L protein were produced. In drug inhibition assays, giv-61L was identified as a late gene. Finally, GIV-61L-mAb-8 was used in western blotting and immunofluorescence assays to demonstrate that Giv-61L protein was included in the GIV particle, expressed at 18 h, and localized only in the cytoplasm of GIV-infected cells. The results of this study provide insight into GIV pathogenesis and GIV-61L-mAbs will have broad applications in GIV immunodiagnostics.
Collapse
Affiliation(s)
- Z Y Chen
- Department of Biotechnology and Animal Science, National Ilan University 1, Sec. 1, Shen-Lung Road, Yilan, 26047, Taiwan
| | - W Y Hsieh
- Department of Biotechnology and Animal Science, National Ilan University 1, Sec. 1, Shen-Lung Road, Yilan, 26047, Taiwan
| | - Y S Lai
- Department of Biotechnology and Animal Science, National Ilan University 1, Sec. 1, Shen-Lung Road, Yilan, 26047, Taiwan
| |
Collapse
|
21
|
Chen ZY, Chiou PP, Liou CJ, Lai YS. Monoclonal antibody against a putative myristoylated membrane protein encoded by grouper iridovirus 59L gene. DISEASES OF AQUATIC ORGANISMS 2015; 113:215-226. [PMID: 25850399 DOI: 10.3354/dao02834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Groupers (Epinephelus spp.) are economically important fish species worldwide, and ranaviruses are major viral pathogens causing heavy economic losses in grouper aquaculture. In this study, the 59L gene of grouper iridovirus (GIV-59L) was cloned and characterized. This gene is 1521 bp and encodes a protein of 506 amino acids with a predicted molecular mass of 53.9 kDa. Interestingly, GIV-59L and its homologs are found in all genera of the family Iridoviridae. A mouse monoclonal antibody specific for the C-terminal domain (amino acid positions 254-506) of the GIV-59L protein, GIV-59L(760-1518)-MAb-21, was produced and proved to be well suited for use in a number of GIV immunoassays. RT-PCR, Western blotting, and cycloheximide and cytosine arabinoside drug inhibition analyses indicated that GIV-59L is a viral late gene in GIV-infected grouper kidney cells. Immunofluorescence analysis revealed that GIV-59L protein mainly accumulates in the cytoplasm of infected cells and is finally packed into a whole virus particle. The GIV-59L(760-1518)-MAb-21 characterized in this study could have widespread application in GIV immunodiagnostics and other research on GIV. In addition, the results presented here offer important insights into the pathogenesis of GIV.
Collapse
Affiliation(s)
- Zhi-Yu Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | | | | | | |
Collapse
|
22
|
Hu SL, Liou CJ, Cheng YH, Yiu JC, Chiou PP, Lai YS. Development and characterization of two monoclonal antibodies against grouper iridovirus 55L and 97L proteins. JOURNAL OF FISH DISEASES 2015; 38:249-258. [PMID: 24476022 DOI: 10.1111/jfd.12230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Grouper iridovirus (GIV) is one of the most important viral pathogens in grouper, particularly at the fry and fingerling stages. The study of GIV pathogenicity has been hampered by the lack of proper immunological reagents to study the expression and function of viral proteins in the infected cells. In this study, two mouse monoclonal antibodies (mAbs) against GIV 55L and 97L proteins were produced. Enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to screen these hybridomas, resulting in the identification of two high-affinity mAbs named GIV55L-mAb-2 and GIV97L-mAb-3, respectively. Both mAbs belong to the IgG1 isotype and were effective in detecting their respective target viral protein. Reverse-transcription polymerase chain reaction (RT-PCR) and Western blot analyses of GIV-infected GK cells revealed that GIV 97L is an immediate early gene, whereas GIV 55L a late one. The localization of 55L and 97L in GIV-infected cells was further characterized by immunofluorescence microscopy with the mAbs. The 55L protein mainly aggregated in the cytoplasm while 97L distributed in both the nucleus and cytoplasm of the infected cells. These studies demonstrate the validity of the two mAbs as immunodiagnostic and research reagents.
Collapse
Affiliation(s)
- S-L Hu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Development and application of a monoclonal antibody against grouper iridovirus (GIV) major capsid protein. J Virol Methods 2014; 205:31-7. [DOI: 10.1016/j.jviromet.2014.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 12/27/2022]
|
24
|
Epstein-barr virus blocks the autophagic flux and appropriates the autophagic machinery to enhance viral replication. J Virol 2014; 88:12715-26. [PMID: 25142602 DOI: 10.1128/jvi.02199-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Autophagy is a catabolic pathway that helps cells to survive under stressful conditions. Cells also use autophagy to clear microbiological infections, but microbes have learned how to manipulate the autophagic pathway for their own benefit. The experimental evidence obtained in this study suggests that the autophagic flux is blocked at the final steps during the reactivation of Epstein-Barr virus (EBV) from latency. This is indicated by the level of the lipidated form of LC3 that does not increase in the presence of bafilomycin and by the lack of colocalization of autophagosomes with lysosomes, which correlates with reduced Rab7 expression. Since the inhibition of the early phases of autophagy impaired EBV replication and viral particles were observed in autophagic vesicles in the cytoplasm of producing cells, we suggest that EBV exploits the autophagic machinery for its transportation in order to enhance viral production. The autophagic block was not mediated by ZEBRA, an immediate-early EBV lytic gene, whose transfection in Ramos, Akata, and 293 cells promoted a complete autophagic flux. The block occurred only when the complete set of EBV lytic genes was expressed. We suggest that the inhibition of the early autophagic steps or finding strategies to overcome the autophagic block, allowing viral degradation into the lysosomes, can be exploited to manipulate EBV replication. IMPORTANCE This study shows, for the first time, that autophagy is blocked at the final degradative steps during EBV replication in several cell types. Through this block, EBV hijacks the autophagic vesicles for its intracellular transportation and enhances viral production. A better understanding of virus-host interactions could help in the design of new therapeutic approaches against EBV-associated malignancies.
Collapse
|
25
|
MCAF1 and Rta-activated BZLF1 transcription in Epstein-Barr virus. PLoS One 2014; 9:e90698. [PMID: 24598729 PMCID: PMC3944714 DOI: 10.1371/journal.pone.0090698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/03/2014] [Indexed: 01/25/2023] Open
Abstract
Epstein-Barr virus (EBV) expresses two transcription factors, Rta and Zta, which are involved in the transcriptional activation of EBV lytic genes. This study sought to elucidate the mechanism by which Rta activates transcription of the Zta-encoding gene, BZLF1, through the ZII element in the gene promoter. In a DNA affinity precipitation assay, ATF2 was found to associate with an Rta-interacting protein, MCAF1, at the ZII element. The interaction between Rta, MCAF1, and ATF2 at the same site in the ZII region was further verified in vivo by chromatin immunoprecipitation assay. The complex appears to be crucial for the activation of BZLF1 transcription, as the overexpression of two ATF2-dominant negative mutants, or the introduction of MCAF1 siRNA into 293T cells, were both found to substantially reduce Rta-mediated transcription levels of BZLF1. Moreover, this study also found that the Rta-MCAF1-ATF2 complex binds to a typical AP-1 binding sequence on the promoter of BMRF2, a key viral gene for EBV infection. Mutation of this sequence decreased Rta-mediated promoter activity significantly. Taken together, these results indicate a critical role for MCAF1 in AP-1-dependent Rta activation of BZLF1 transcription.
Collapse
|
26
|
Yang Y, Jia Y, Wang Y, Wang X, Sun Z, Luo B. Sequence analysis of EBV immediate-early gene BZLF1 and BRLF1 in lymphomas. J Med Virol 2014; 86:1788-95. [PMID: 24615673 DOI: 10.1002/jmv.23911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
Abstract
The immediate-early (IE) genes, BZLF1 and BRLF1, play an important role in switching Epstein-Barr virus from the latent to the lytic state. The functions of the two IE genes and their respective proteins: ZEBRA and Rta have been well studied, but little is known about their DNA coding sequence variations and disease association. In order to investigate the sequence variation patterns and elucidate their association with lymphomas, BZLF1 and BRLF1 were analyzed in 26 and 33 lymphomas using PCR-direct sequencing method respectively. Three sequence variation types of BZLF1 gene were identified. The type BZLF1-A and BZLF1-B was detected in 34.6% (9/26) and 57.7% (15/26) of the tumor specimens, respectively. Among the three functional domains of ZEBRA, the transactivation domain had the most mutations. Three variation types were also identified in BRLF1 gene where type BR1-A and BR1-C were detected in 27.3% (9/33) and 69.7% (23/33) of specimens, respectively. Among the three functional domains of Rta, the dimerization domain was well conserved while multiple mutations were detected in both the DNA binding domain and the transactivation domain. The variation types BZLF1-B and BR1-C were more frequent in the lymphomas, compared with the throat washing samples from the healthy donors. These results suggest that the type BZLF1-B and BR1-C may be associated with the tumorigenesis of lymphoma.
Collapse
Affiliation(s)
- Ying Yang
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, 266021, China
| | | | | | | | | | | |
Collapse
|
27
|
Yang YC, Yoshikai Y, Hsu SW, Saitoh H, Chang LK. Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus. J Biol Chem 2013; 288:12866-79. [PMID: 23504328 DOI: 10.1074/jbc.m112.413393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) encodes a transcription factor, Rta, which is required to activate the transcription of EBV lytic genes. This study demonstrates that treating P3HR1 cells with a proteasome inhibitor, MG132, causes the accumulation of SUMO-Rta and promotes the expression of EA-D. GST pulldown and coimmunoprecipitation studies reveal that RNF4, a RING-domain-containing ubiquitin E3 ligase, interacts with Rta. RNF4 also targets SUMO-2-conjugated Rta and promotes its ubiquitination in vitro. Additionally, SUMO interaction motifs in RNF4 are important to the ubiquitination of Rta because the RNF4 mutant with a mutation at the motifs eliminates ubiquitination. The mutation of four lysine residues on Rta that abrogated SUMO-3 conjugation to Rta also decreases the enhancement of the ubiquitination of Rta by RNF4. This finding demonstrates that RNF4 is a SUMO-targeted ubiquitin E3 ligase of Rta. Finally, knockdown of RNF4 enhances the expression of Rta and EA-D, subsequently promoting EBV lytic replication and virions production. Results of this study significantly contribute to efforts to elucidate a SUMO-targeted ubiquitin E3 ligase that regulates Rta ubiquitination to influence the lytic development of EBV.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Lan YY, Yeh TH, Lin WH, Wu SY, Lai HC, Chang FH, Takada K, Chang Y. Epstein-Barr virus Zta upregulates matrix metalloproteinases 3 and 9 that synergistically promote cell invasion in vitro. PLoS One 2013; 8:e56121. [PMID: 23409137 PMCID: PMC3567054 DOI: 10.1371/journal.pone.0056121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/04/2013] [Indexed: 02/03/2023] Open
Abstract
Zta is a lytic transactivator of Epstein-Barr virus (EBV) and has been shown to promote migration and invasion of epithelial cells. Although previous studies indicate that Zta induces expression of matrix metalloproteinase (MMP) 9 and MMP1, direct evidence linking the MMPs to Zta-induced cell migration and invasion is still lacking. Here we performed a series of in vitro studies to re-examine the expression profile and biologic functions of Zta-induced MMPs in epithelial cells derived from nasopharyngeal carcinoma. We found that, in addition to MMP9, MMP3 was a new target gene upregulated by Zta. Ectopic Zta expression in EBV-negative cells increased both mRNA and protein production of MMP3. Endogenous Zta also contributed to induction of MMP3 expression, migration and invasion of EBV-infected cells. Zta activated the MMP3 promoter through three AP-1 elements, and its DNA-binding domain was required for the promoter binding and MMP3 induction. We further tested the effects of MMP3 and MMP9 on cell motility and invasiveness in vitro. Zta-promoted cell migration required MMP3 but not MMP9. On the other hand, both MMP3 and MMP9 were essential for Zta-induced cell invasion, and co-expression of the two MMPs synergistically increased cell invasiveness. Therefore, this study provides integrated evidence demonstrating that, at least in the in vitro cell models, Zta drives cell migration and invasion through MMPs.
Collapse
Affiliation(s)
- Yu-Yan Lan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Graduate Institute of Basic Medical Sciences, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Hao Yeh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yi Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Hsiao-Ching Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Graduate Institute of Basic Medical Sciences, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Fang-Hsin Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Kenzo Takada
- Department of Tumor Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Graduate Institute of Basic Medical Sciences, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Yang YC, Chang LK. Role of TAF4 in transcriptional activation by Rta of Epstein-Barr Virus. PLoS One 2013; 8:e54075. [PMID: 23326574 PMCID: PMC3542328 DOI: 10.1371/journal.pone.0054075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022] Open
Abstract
Epstein-Barr virus (EBV) expresses an immediate-early protein, Rta, to activate the transcription of EBV lytic genes. This protein usually binds to Rta-response elements or interacts with Sp1 or Zta via a mediator protein, MCAF1, to activate transcription. Rta is also known to interact with TBP and TFIIB to activate transcription. This study finds that Rta interacts with TAF4, a component of TFIID complex, in vitro and in vivo, and on the TATA sequence in the BcLF1 promoter. Rta also interacts with TAF4 and Sp1 on Sp1-binding sequences on TATA-less promoters, including those of BNLF1, BALF5, and the human androgen receptor. These interactions are important to the transcriptional activation of these genes by Rta since introducing TAF4 shRNA substantially reduces the ability of Rta to activate these promoters. This investigation reveals how Rta interacts with TFIID to stimulate transcription.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
30
|
Epstein-Barr virus and systemic lupus erythematosus. Clin Dev Immunol 2012; 2012:370516. [PMID: 22811739 PMCID: PMC3395176 DOI: 10.1155/2012/370516] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/23/2012] [Accepted: 04/14/2012] [Indexed: 11/18/2022]
Abstract
The etiology of SLE is not fully established. SLE is a disease with periods of waning disease activity and intermittent flares. This fits well in theory to a latent virus infection, which occasionally switches to lytic cycle, and EBV infection has for long been suspected to be involved. This paper reviews EBV immunobiology and how this is related to SLE pathogenesis by illustrating uncontrolled reactivation of EBV as a disease mechanism for SLE. Studies on EBV in SLE patients show enlarged viral load, abnormal expression of viral lytic genes, impaired EBV-specific T-cell response, and increased levels of EBV-directed antibodies. These results suggest a role for reactivation of EBV infection in SLE. The increased level of EBV antibodies especially comprises an elevated titre of IgA antibodies, and the total number of EBV-reacting antibody isotypes is also enlarged. As EBV is known to be controlled by cell-mediated immunity, the reduced EBV-specific T-cell response in SLE patients may result in defective control of EBV causing frequent reactivation and expression of lytic cycle antigens. This gives rise to enhanced apoptosis and amplified cellular waste load resulting in activation of an immune response and development of EBV-directed antibodies and autoantibodies to cellular antigens.
Collapse
|
31
|
Draborg AH, Jørgensen JM, Müller H, Nielsen CT, Jacobsen S, Iversen LV, Theander E, Nielsen LP, Houen G, Duus K. Epstein-Barr virus early antigen diffuse (EBV-EA/D)-directed immunoglobulin A antibodies in systemic lupus erythematosus patients. Scand J Rheumatol 2012; 41:280-9. [PMID: 22646970 DOI: 10.3109/03009742.2012.665944] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We sought to determine whether the serological response towards lytic cycle antigens of Epstein-Barr virus (EBV) is altered in systemic lupus erythematosus (SLE) patients. METHOD We used enzyme-linked immunosorbent assay (ELISA) to investigate the prevalence of EBV early antigen diffuse (EBV-EA/D) antibodies in sera from 60 patients with SLE, 40 with scleroderma (SSc), 20 with primary Sjögren's syndrome (pSS), 20 with rheumatoid arthritis (RA), 20 healthy controls, and also subjects with various circulating autoantibodies. Samples from patients were obtained from clinics specialized within the diseases in Denmark and Sweden and samples from healthy controls were obtained from volunteers. RESULTS A significant elevated titre of immunoglobulin (Ig)A, IgG, and IgM EBV-EA/D antibodies was found in SLE patients compared to healthy controls, a finding not explained by immunosuppressive treatment or disease activity. The largest difference was observed for IgA EBV-EA/D antibodies (p = 0.0013) with a seropositive rate of 58% in SLE patients and 0% in healthy controls. RA and SSc patients and individuals seropositive for anti-Scl-70 were additionally found to have elevated titres of IgA EBV-EA/D antibodies (40%, p = 0.014; 60%, p = 0.015; and 38.5%, p = 0.045, respectively). However, the titres were generally lower than in SLE patients. CONCLUSION Our findings support an association between EBV and SLE. The elevated titre of EBV-EA/D-directed IgA antibodies found in SLE patients could suggest reactivation of EBV in epithelial cells or reinfection of epithelial cells after reactivation in B cells, indicating lack of control of the latent infection.
Collapse
Affiliation(s)
- A H Draborg
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The Epstein-Barr virus (EBV) lytic transactivator Rta activates promoters through direct binding to cognate DNA sites termed Rta response elements (RREs). Rta also activates promoters that apparently lack Rta binding sites, notably Zp and Rp. Chromatin immunoprecipitation (ChIP) of endogenous Rta expressed during early replication in B95-8 cells was performed to identify Rta binding sites in the EBV genome. Quantitative PCR (qPCR) analysis showed strong enrichment for known RREs but little or no enrichment for Rp or Zp, suggesting that the Rta ChIP approach enriches for direct Rta binding sites. Rta ChIP combined with deep sequencing (ChIP-seq) identified most known RREs and several novel Rta binding sites. Rta ChIP-seq peaks were frequently upstream of Rta-responsive genes, indicating that these Rta binding sites are likely functioning as RREs. Unexpectedly, the BALF5 promoter contained an Rta binding peak. To assess whether BALF5 might be activated by an RRE-dependent mechanism, an Rta mutant (Rta K156A), deficient for DNA binding and RRE activation but competent for Zp/Rp activation, was used. Rta K156A failed to activate BALF5p, suggesting this promoter can be activated by an RRE-dependent mechanism. Rta binding to late gene promoters was not seen at early time points but was specifically detected at later times within the Rta-responsive BLRF2 and BFRF3 promoters, even when DNA replication was inhibited. Our results represent the first characterization of Rta binding to the EBV genome during replication, identify previously unknown RREs, such as one in BALF5p, and highlight the complexity of EBV late gene promoter activation by Rta.
Collapse
|
33
|
Abstract
Endoplasmic reticulum (ER) stress triggers a homeostatic cellular response in mammalian cells to ensure efficient folding, sorting, and processing of client proteins. In lytic-permissive lymphoblastoid cell lines (LCLs), pulse exposure to the chemical ER-stress inducer thapsigargin (TG) followed by recovery resulted in the activation of the EBV immediate-early (BRLF1, BZLF1), early (BMRF1), and late (gp350) genes, gp350 surface expression, and virus release. The protein phosphatase 1 a (PP1a)-specific phosphatase inhibitor Salubrinal (SAL) synergized with TG to induce EBV lytic genes; however, TG treatment alone was sufficient to activate EBV lytic replication. SAL showed ER-stress-dependent and -independent antiviral effects, preventing virus release in human LCLs and abrogating gp350 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated B95-8 cells. TG resulted in sustained BCL6 but not BLIMP1 or CD138 expression, which is consistent with maintenance of a germinal center B-cell, rather than plasma-cell, phenotype. Microarray analysis identified candidate genes governing lytic replication in LCLs undergoing ER stress.
Collapse
|
34
|
Chen CC, Yang YC, Wang WH, Chen CS, Chang LK. Enhancement of Zta-activated lytic transcription of Epstein-Barr virus by Ku80. J Gen Virol 2010; 92:661-8. [DOI: 10.1099/vir.0.026302-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
35
|
Huang XD, Zhao L, Zhang HQ, Xu XP, Jia XT, Chen YH, Wang PH, Weng SP, Yu XQ, Yin ZX, He JG. Shrimp NF-κB binds to the immediate-early gene ie1 promoter of white spot syndrome virus and upregulates its activity. Virology 2010; 406:176-80. [DOI: 10.1016/j.virol.2010.06.046] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/04/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|
36
|
Chang LK, Chuang JY, Nakao M, Liu ST. MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta. Nucleic Acids Res 2010; 38:4687-700. [PMID: 20385599 PMCID: PMC2919728 DOI: 10.1093/nar/gkq243] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Epstein–Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate-early stage of the lytic cycle. The two proteins often collaborate to activate the transcription of EBV lytic genes synergistically. This study demonstrates that Rta and Zta form a complex via an intermediary protein, MCAF1, on Zta response element (ZRE) in vitro. The interaction among these three proteins in P3HR1 cells is also verified via coimmunoprecipitation, CHIP analysis and confocal microscopy. The interaction between Rta and Zta in vitro depends on the region between amino acid 562 and 816 in MCAF1. In addition, overexpressing MCAF1 enhances and introducing MCAF1 siRNA into the cells markedly reduces the level of the synergistic activation in 293T cells. Moreover, the fact that the synergistic activation depends on ZRE but not on Rta response element (RRE) originates from the fact that Rta and Zta are capable of activating the BMRF1 promoter synergistically after an RRE but not ZREs in the promoter are mutated. The binding of Rta–MCAF1–Zta complex to ZRE but not RRE also explains why Rta and Zta do not use RRE to activate transcription synergistically. Importantly, this study elucidates the mechanism underlying synergistic activation, which is important to the lytic development of EBV.
Collapse
Affiliation(s)
- Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
37
|
Guo Q, Qian L, Guo L, Shi M, Chen C, Lv X, Yu M, Hu M, Jiang G, Guo N. Transactivators Zta and Rta of Epstein-Barr virus promote G0/G1 to S transition in Raji cells: a novel relationship between lytic virus and cell cycle. Mol Immunol 2010; 47:1783-92. [PMID: 20338640 DOI: 10.1016/j.molimm.2010.02.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/21/2010] [Indexed: 11/30/2022]
Abstract
In the present study, we show that the treatment of Epstein-Barr virus (EBV) latently infected Raji cells with TPA/SB caused the cell growth arrest. The Zta-positive cells were predominantly enriched in G0/G1 phase of cell cycle. When Zta expression reached a maximal level, a fraction of Zta expressing cell population reentered S phase. Analysis of the expression pattern of a key set of cell cycle regulators revealed that the expression of Zta and Rta substantially interfered with the cell cycle regulatory machinery in Raji cells, strongly inhibiting the expression of Rb and p53 and inducing the expression of E2F1. Down-regulation of Rb was further demonstrated to be mediated by proteasomal degradation, and p53 and p21 affected at transcription level. The data indicate that both Zta and Rta promote entry into S phase of Raji cells. The important roles of Zta and Rta in EBV lytic reactivation were also demonstrated. Our finding suggests that these two transcriptional activators may act synergistically to govern the expression of downstream early and late genes as well as cellular genes and initiation of lytic cycle and manipulation of cell cycle regulatory mechanisms require the joint and interactive contributions of Rta and Zta.
Collapse
Affiliation(s)
- Qingwei Guo
- Institute of Basic Medicine, Shandong Academy of Medical Science, Key Medical Laboratory for Tumor Immunology and Chinese Medicine Immunology of Shandong Province, Jinan 250062, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chang FR, Hsieh YC, Chang YF, Lee KH, Wu YC, Chang LK. Inhibition of the Epstein–Barr virus lytic cycle by moronic acid. Antiviral Res 2010; 85:490-5. [DOI: 10.1016/j.antiviral.2009.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
39
|
AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. Proc Natl Acad Sci U S A 2009; 107:850-5. [PMID: 20080764 DOI: 10.1073/pnas.0911948107] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
EBV, a member of the herpes virus family, is a paradigm for human tumor viruses and a model of viral latency amenable for study in vitro. It induces resting human B lymphocytes to proliferate indefinitely in vitro and initially establishes a strictly latent infection in these cells. BZLF1, related to the cellular activating protein 1 (AP-1) family of transcription factors, is the viral master gene essential and sufficient to mediate the switch to induce the EBV lytic phase in latently infected B cells. Enigmatically, after infection BZLF1 is expressed very early in the majority of primary B cells, but its early expression fails to induce the EBV lytic phase. We show that the early expression of BZLF1 has a critical role in driving the proliferation of quiescent naïve and memory B cells but not of activated germinal center B cells. BZLF1's initial failure to induce the EBV lytic phase relies on the viral DNA at first being unmethylated. We have found that the eventual and inevitable methylation of viral DNA is a prerequisite for productive infection in stably, latently infected B cells which then yield progeny virus lacking cytosine-phosphatidyl-guanosine (CpG) methylation. This progeny virus then can repeat EBV's epigenetically regulated, biphasic life cycle. Our data indicate that the viral BZLF1 protein is crucial both to establish latency and to escape from it. Our data also indicate that EBV has evolved to appropriate its host's mode of methylating DNA for its own epigenetic regulation.
Collapse
|
40
|
Li F, Li M, Ke W, Ji Y, Bian X, Yan X. Identification of the immediate-early genes of white spot syndrome virus. Virology 2009; 385:267-74. [DOI: 10.1016/j.virol.2008.12.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/19/2008] [Accepted: 12/05/2008] [Indexed: 01/04/2023]
|
41
|
Chen LW, Raghavan V, Chang PJ, Shedd D, Heston L, Delecluse HJ, Miller G. Two phenylalanines in the C-terminus of Epstein-Barr virus Rta protein reciprocally modulate its DNA binding and transactivation function. Virology 2009; 386:448-61. [PMID: 19232420 DOI: 10.1016/j.virol.2009.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 12/12/2022]
Abstract
The Rta (R transactivator) protein plays an essential role in the Epstein-Barr viral (EBV) lytic cascade. Rta activates viral gene expression by several mechanisms including direct and indirect binding to target viral promoters, synergy with EBV ZEBRA protein, and stimulation of cellular signaling pathways. We previously found that Rta proteins with C-terminal truncations of 30 aa were markedly enhanced in their capacity to bind DNA (Chen, L.W., Chang, P.J., Delecluse, H.J., and Miller, G., (2005). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J. Virol. 79(15), 9635-9650.). Here we show that two phenylalanines (F600 and F605) in the C-terminus of Rta play a crucial role in mediating this DNA binding inhibitory function. Amino acids 555 to 605 of Rta constitute a functional DNA binding inhibitory sequence (DBIS) that markedly decreased DNA binding when transferred to a minimal DNA binding domain of Rta (aa 1-350). Alanine substitution mutants, F600A/F605A, abolished activity of the DBIS. F600 and F605 are located in the transcriptional activation domain of Rta. Alanine substitutions, F600A/F605A, decreased transcriptional activation by Rta protein, whereas aromatic substitutions, such as F600Y/F605Y or F600W/F605W, partially restored transcriptional activation. Full-length Rta protein with F600A/F605A mutations were enhanced in DNA binding compared to wild-type, whereas Rta proteins with F600Y/F605Y or F600W/F605W substitutions were, like wild-type Rta, relatively poor DNA binders. GAL4 (1-147)/Rta (416-605) fusion proteins with F600A/F605A mutations were diminished in transcriptional activation, relative to GAL4/Rta chimeras without such mutations. The results suggest that, in the context of a larger DBIS, F600 and F605 play a role in the reciprocal regulation of DNA binding and transcriptional activation by Rta. Regulation of DNA binding by Rta is likely to be important in controlling its different modes of action.
Collapse
Affiliation(s)
- Lee-Wen Chen
- Department of Respiratory Care, Chang Gung Institute of Technology, Chaiyi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
Interaction of Epstein-Barr virus BZLF1 C-terminal tail structure and core zipper is required for DNA replication but not for promoter transactivation. J Virol 2009; 83:3397-401. [PMID: 19144704 DOI: 10.1128/jvi.02500-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Epstein-Barr virus (EBV) protein BZLF1 contains a bZIP DNA binding domain in which C-terminal tail residues fold back against a zipper region that forms a coiled coil and mediates dimerization. Point mutagenesis in the zipper region reveals the importance of individual residues within the (208)SSENDRLR(215) sequence that is conserved in C/EBP for transactivation and EBV DNA replication. The restoration of BZLF1 DNA replication activity by the complementation of two deleterious mutations (S208E and D236K) indicates that the interaction of the C-terminal tail and the core zipper is required for DNA replication, identifying a functional role for this structural feature unique to BZLF1.
Collapse
|
43
|
Malizia AP, Keating DT, Smith SM, Walls D, Doran PP, Egan JJ. Alveolar epithelial cell injury with Epstein-Barr virus upregulates TGFbeta1 expression. Am J Physiol Lung Cell Mol Physiol 2008; 295:L451-60. [PMID: 18621908 DOI: 10.1152/ajplung.00376.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation, and ECM protein deposition. Epstein-Barr virus (EBV) has previously been localized to alveolar epithelial cells of IPF patients and is associated with a poor prognosis. In this study, we utilized a microarray-based differential gene expression analysis strategy to identify molecular drivers of EBV-associated lung fibrosis. Two cell lines, primary human alveolar epithelial cells type 2 and A549 cells, were infected with EBV. EBV lytic phase induction increased active and total transforming growth factor-beta1 (TGFbeta1) transcript expression in association with reduced cell proliferation and increased caspase 3/7 activity. Exposing EBV-infected cells to ganciclovir resulted in TGFbeta1 deregulation and reduced expression of EBV early response genes, BRLF1 and BZLF1. We targeted the BRLF1 and BZLF1 gene products, Rta and Zta, by silencing RNA, and this resulted in the normalization of TGFbeta1 transcript and cell proliferation levels. Our study using a viral cell line model complements existing human and animal model data and further provides evidence to suggest that viral epithelial cell injury may play a role in IPF.
Collapse
Affiliation(s)
- Andrea P Malizia
- Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae Univ. Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
44
|
Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol 2008; 379:231-42. [PMID: 18455188 DOI: 10.1016/j.jmb.2008.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 12/16/2022]
Abstract
Epstein-Barr virus (EBV) expresses the immediate-early protein Rta to activate the transcription of EBV lytic genes and the lytic cycle. We show that RanBPM acts as a binding partner of Rta in yeast two-hybrid analysis. The binding was confirmed by glutathione-S-transferase pull-down assay. A coimmunoprecipitation experiment and confocal microscopy revealed that RanBPM and Rta interact in vivo and colocalize in the nucleus. The interaction appears to involve the SPRY domain in RanBPM and the region between amino acid residues 416 to 476 in Rta. The interaction promotes the transactivation activity of Rta in activating the transcription of BMLF1 and p21 in transient transfection assays. Additionally, RanBPM interacts with SUMO-E2 (Ubc9) to promote sumoylation of Rta by SUMO-1. This fact explains why the expression of RanBPM enhances the transactivation activity of Rta. Taken together, the present results indicate a new role of RanBPM in regulating a viral protein that is critical to EBV lytic activation.
Collapse
|
45
|
Jiang Y, Xu D, Zhao Y, Zhang L. Mutual inhibition between Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus lytic replication initiators in dually-infected primary effusion lymphoma. PLoS One 2008; 3:e1569. [PMID: 18253508 PMCID: PMC2215330 DOI: 10.1371/journal.pone.0001569] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/11/2008] [Indexed: 01/15/2023] Open
Abstract
Background Both Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are members of the human gamma herpesvirus family: each is associated with various human cancers. The majority of AIDS-associated primary effusion lymphoma (PEL) are co-infected with both KSHV and EBV. Dually-infected PELs selectively switch from latency to lytic replication of either KSHV or EBV in response to chemical stimuli. KSHV replication and transcription activator (K-RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication, while EBV BZLF1 gene product (EBV-Z) is a critical initiator for induction of EBV lytic replication. Methodology/Principal Findings We show K-RTA and EBV-Z are co-localized and physically interact with each other in dually-infected PELs. K-RTA inhibits the EBV lytic replication by nullifying EBV-Z-mediated EBV lytic gene activation. EBV-Z inhibits KSHV lytic gene expression by blocking K-RTA-mediated transactivations. The physical interaction between K-RTA and EBV-Z are required for the mutual inhibition of the two molecules. The leucine heptapeptide repeat (LR) region in K-RTA and leucine zipper region in EBV-Z are involved in the physical interactions of the two molecules. Finally, initiation of KSHV lytic gene expression is correlated with the reduction of EBV lytic gene expression in the same PEL cells. Conclusions/Significance In this report, how the two viruses interact with each other in dually infected PELs is addressed. Our data may provide a possible mechanism for maintaining viral latency and for selective lytic replication in dually infected PELs, i.e., through mutual inhibition of two critical lytic replication initiators. Our data about putative interactions between EBV and KSHV would be applicable to the majority of AIDS-associated PELs and may be relevant to the pathogenesis of PELs.
Collapse
Affiliation(s)
- Yanjun Jiang
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Dongsheng Xu
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Yong Zhao
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Luwen Zhang
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- *E-mail:
| |
Collapse
|
46
|
Epstein-Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J Virol 2008; 82:3679-88. [PMID: 18234802 DOI: 10.1128/jvi.02301-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated, undifferentiated type of nasopharyngeal carcinoma (NPC) is characterized by intensive leukocyte infiltration. Interaction between the infiltrating cells and the tumor cells has been considered crucial for NPC development. Recruitment of the infiltrates can be directed by certain chemokines present in the NPC tissues. It is unknown whether and how EBV lytic infection regulates expression of the chemokines. Using an antibody array, we first found that several chemokines secreted from EBV-infected NPC cells are increased upon EBV reactivation into the lytic cycle, and interleukin-8 (IL-8) is the chemokine upregulated most significantly and consistently. Further studies showed that the EBV lytic transactivator Zta is a potent inducer of IL-8 in NPC cells, augmenting secreted and intracellular IL-8 proteins, as well as IL-8 RNA. Zta upregulates Egr-1, a cellular transcription factor that has been involved in upregulation of IL-8, but the Zta-induced IL-8 expression is independent of Egr-1. The ability of Zta to transactivate the IL-8 promoter is important for the induction of IL-8, and we have identified two Zta-responsive elements in the promoter. Zta can bind to these two elements in vitro and can also be recruited to the IL-8 promoter in vivo. DNA-binding-defective Zta mutants can neither activate the IL-8 promoter nor induce IL-8 production. In addition, Zta-expressing NPC cells exert enhanced chemotactic activity that is mainly mediated by IL-8. Since IL-8 may contribute to not only leukocyte infiltration but also multiple oncogenic processes, the present study provides a potential link between EBV lytic infection and pathogenesis of NPC.
Collapse
|
47
|
Kutok JL, Wang F. Spectrum of Epstein-Barr virus-associated diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:375-404. [PMID: 18039120 DOI: 10.1146/annurev.pathol.1.110304.100209] [Citation(s) in RCA: 353] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The association between Epstein-Barr virus (EBV) and a large number of benign and malignant diseases is unique among DNA viruses. Within infected tissues, proteins that are expressed during the normal lytic and latent viral life cycle lead to cellular alterations that contribute to these EBV-associated diseases. Although the early events of EBV infection are poorly understood, increasing knowledge of the viral processes that govern viral latency has shed light upon the potential mechanisms by which EBV infection can lead to cellular transformation. Our current understanding of the role of EBV in the development of Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, and other EBV-associated diseases is discussed.
Collapse
Affiliation(s)
- J L Kutok
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
48
|
Terrin L, Dolcetti R, Corradini I, Indraccolo S, Dal Col J, Bertorelle R, Bonaldi L, Esposito G, De Rossi A. hTERT inhibits the Epstein-Barr virus lytic cycle and promotes the proliferation of primary B lymphocytes: implications for EBV-driven lymphomagenesis. Int J Cancer 2007; 121:576-87. [PMID: 17417773 DOI: 10.1002/ijc.22661] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transformation of primary B lymphocytes by Epstein-Barr Virus (EBV) requires the establishment of a latent infection, the expression of several latent viral proteins and a sustained telomerase activity. We investigated the interplay between the activation of human telomerase reverse transcriptase (hTERT), the catalytic rate-limiting component of the telomerase complex, and the expression of latent/lytic EBV genes during the establishment of a stably latent EBV infection of normal B lymphocytes. Cell cultures at early passages after EBV infection greatly differed in their timing of hTERT expression and telomerase activation. Induction of hTERT was dependent on the balance between latent and lytic EBV gene expression, being positively associated with a high ratio of latent/lytic isoforms of latent membrane protein 1, and negatively associated with the expression of BZLF1 gene, the main activator of the viral lytic cycle. In turn, hTERT expression was followed by a decrease in EBV lytic gene expression and virus production. Ectopic expression of hTERT in BZLF1-positive B cell cultures resulted in BZLF1 down-regulation, increased resistance to lytic cycle induction, and enhanced in vitro growth properties, whereas hTERT inhibition by siRNA triggered the activation of the EBV lytic cycle. These findings indicate that hTERT contributes by multiple mechanisms to the EBV-driven transformation of B lymphocytes and suggest that hTERT may constitute a therapeutic target for EBV-associated B cell lymphomas.
Collapse
Affiliation(s)
- Liliana Terrin
- Department of Oncology and Surgical Sciences, Section of Oncology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hislop AD, Ressing ME, van Leeuwen D, Pudney VA, Horst D, Koppers-Lalic D, Croft NP, Neefjes JJ, Rickinson AB, Wiertz EJHJ. A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates. ACTA ACUST UNITED AC 2007; 204:1863-73. [PMID: 17620360 PMCID: PMC2118677 DOI: 10.1084/jem.20070256] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
γ1-Herpesviruses such as Epstein-Barr virus (EBV) have a unique ability to amplify virus loads in vivo through latent growth-transforming infection. Whether they, like α- and β-herpesviruses, have been driven to actively evade immune detection of replicative (lytic) infection remains a moot point. We were prompted to readdress this question by recent work (Pudney, V.A., A.M. Leese, A.B. Rickinson, and A.D. Hislop. 2005. J. Exp. Med. 201:349–360; Ressing, M.E., S.E. Keating, D. van Leeuwen, D. Koppers-Lalic, I.Y. Pappworth, E.J.H.J. Wiertz, and M. Rowe. 2005. J. Immunol. 174:6829–6838) showing that, as EBV-infected cells move through the lytic cycle, their susceptibility to EBV-specific CD8+ T cell recognition falls dramatically, concomitant with a reductions in transporter associated with antigen processing (TAP) function and surface human histocompatibility leukocyte antigen (HLA) class I expression. Screening of genes that are unique to EBV and closely related γ1-herpesviruses of Old World primates identified an early EBV lytic cycle gene, BNLF2a, which efficiently blocks antigen-specific CD8+ T cell recognition through HLA-A–, HLA-B–, and HLA-C–restricting alleles when expressed in target cells in vitro. The small (60–amino acid) BNLF2a protein mediated its effects through interacting with the TAP complex and inhibiting both its peptide- and ATP-binding functions. Furthermore, this targeting of the major histocompatibility complex class I pathway appears to be conserved among the BNLF2a homologues of Old World primate γ1-herpesviruses. Thus, even the acquisition of latent cycle genes endowing unique growth-transforming ability has not liberated these agents from evolutionary pressure to evade CD8+ T cell control over virus replicative foci.
Collapse
Affiliation(s)
- Andrew D Hislop
- Cancer Research UK Institute for Cancer Studies and MRC Centre for Immune Regulation, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chua HH, Lee HH, Chang SS, Lu CC, Yeh TH, Hsu TY, Cheng TH, Cheng JT, Chen MR, Tsai CH. Role of the TSG101 gene in Epstein-Barr virus late gene transcription. J Virol 2006; 81:2459-71. [PMID: 17182691 PMCID: PMC1865947 DOI: 10.1128/jvi.02289-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rta, an Epstein-Barr virus (EBV)-encoded immediate-early protein, governs the reactivation of the viral lytic program by transactivating a cascade of lytic gene expression. Cellular transcription factors such as Sp1, ATF2, E2F, and Akt have been demonstrated to mediate Rta transactivation of lytic genes. We report herein that Rta associates with another potent transcription factor, tumor susceptibility gene 101 (TSG101), to promote the activation of EBV late genes. Results from an EBV cDNA array reveal that depletion of TSG101 by siRNA potently inhibits the transcription of five Rta-responsive EBV late genes, BcLF1, BDLF3, BILF2, BLLF1, and BLRF2. Depletion of TSG101 impairs the Rta transactivation of these late promoters severely. Moreover, a concordant augmentation of Rta transactivating activity is observed when TSG101 is overexpressed following ectopic transfection. Mechanistically, Rta interaction with TSG101 causes the latter to accumulate principally in the nuclei, wherein the proteins colocalize and are recruited to the viral promoters. Of note, TSG101 is crucial for the efficient binding of Rta to these late promoters. As a result, cells with defective TSG101 fail to express late viral proteins, leading to a decrease in the yield of virus particles. Thus, the contribution of TSG101 to Rta-mediated late gene activation is of great importance for completion of the EBV productive lytic cycle. These observations consolidate a role for TSG101 in the replication of EBV, a DNA virus, that differs from what is observed for RNA viruses, where TSG101 aids mainly in the endosomal sorting of enveloped late viral proteins for assembly at the plasma membrane.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/genetics
- Endosomal Sorting Complexes Required for Transport
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Epstein-Barr Virus Infections/virology
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Small Interfering/genetics
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription, Genetic
- Transcriptional Activation
- Ubiquitin-Conjugating Enzymes/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Huey-Huey Chua
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road 1st section, Taipei 10051, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|