1
|
Sacco MA, Lau J, Godinez-Vidal D, Kaloshian I. Non-canonical nematode endogenous retroviruses resulting from RNA virus glycoprotein gene capture by a metavirus. J Gen Virol 2022; 103. [PMID: 35550022 DOI: 10.1099/jgv.0.001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reverse-transcribing retroviruses exist as horizontally transmitted infectious agents or vertically transmitted endogenous retroviruses (ERVs) resident in eukaryotic genomes, and they are phylogenetically related to the long terminal repeat (LTR) class of retrotransposons. ERVs and retrotransposons are often distinguished only by the presence or absence of a gene encoding the envelope glycoprotein (env). Endogenous elements of the virus family Metaviridae include the insect-restricted Errantivirus genus of ERVs, for which some members possess env, and the pan-eukaryotic Metavirus genus that lacks an envelope glycoprotein gene. Here we report a novel Nematoda endogenous retrovirus (NERV) clade with core retroviral genes arranged uniquely as a continuous gag-env-pro-pol ORF. Reverse transcriptase sequences were phylogenetically related to metaviruses, but envelope glycoprotein sequences resembled those of the Nyamiviridae and Chrysoviridae RNA virus families, suggesting env gene capture during host cell infection by an RNA virus. NERVs were monophyletic, restricted to the nematode subclass Chromadoria, and included additional ORFs for a small hypothetical protein or a large Upf1-like RNA-dependent AAA-ATPase/helicase indicative of viral transduction of a host gene. Provirus LTR identity, low copy number, ORF integrity and segregation of three loci in Meloidogyne incognita, taken together with detection of NERV transcriptional activity, support potential infectivity of NERVs, along with their recent emergence and integration. Altogether, NERVs constitute a new and distinct Metaviridae lineage demonstrating retroviral evolution through sequential heterologous gene capture events.
Collapse
Affiliation(s)
- Melanie Ann Sacco
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Jonathan Lau
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA
| | - Damaris Godinez-Vidal
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Isgouhi Kaloshian
- Institute for Integrative Genome Biology, Department of Nematology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
2
|
Pley C, Lourenço J, McNaughton AL, Matthews PC. Spacer Domain in Hepatitis B Virus Polymerase: Plugging a Hole or Performing a Role? J Virol 2022; 96:e0005122. [PMID: 35412348 PMCID: PMC9093120 DOI: 10.1128/jvi.00051-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatitis B virus (HBV) polymerase is divided into terminal protein, spacer, reverse transcriptase, and RNase domains. Spacer has previously been considered dispensable, merely acting as a tether between other domains or providing plasticity to accommodate deletions and mutations. We explore evidence for the role of spacer sequence, structure, and function in HBV evolution and lineage, consider its associations with escape from drugs, vaccines, and immune responses, and review its potential impacts on disease outcomes.
Collapse
Affiliation(s)
- Caitlin Pley
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Biosystems and Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| | - Anna L. McNaughton
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
| | - Philippa C. Matthews
- Nuffield Department of Medicine, University of Oxford Medawar Building, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
3
|
Saadatmand J, Guo F, Cen S, Niu M, Kleiman L. Interactions of reverse transcriptase sequences in Pol with Gag and LysRS in the HIV-1 tRNALys3 packaging/annealing complex. Virology 2008; 380:109-17. [PMID: 18708237 DOI: 10.1016/j.virol.2008.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/11/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
During HIV-1 assembly, tRNA(Lys3), the primer for reverse transcriptase (RT) in HIV-1, is selectively packaged into the virus due to a specific interaction between Gag and lysyl-tRNA synthetase (LysRS). However, while Gag alone will incorporate LysRS, tRNA(Lys3) packaging also requires the presence of RT thumb domain sequences in GagPol. The formation of a tRNA(Lys3) packaging/annealing complex involves an interaction between Gag/GagPol/viral RNA and LysRS/tRNA(Lys), and herein, we have investigated whether the transfer of tRNA(Lys3) from LysRS to RT sequences in Pol by a currently unknown mechanism is facilitated by an interaction between LysRS and Pol. We demonstrate that, in addition to its interaction with Gag, LysRS also interacts with sequences within the connection/RNaseH domains in RT. However, cytoplasmic Gag/Pol interactions, detected by either coimmunoprecipitation or incorporation of Pol into Gag viral-like particles, were found to be insensitive to the overexpression or underexpression of LysRS, indicating that a Gag/LysRS/RT interaction is not essential for Gag/Pol interactions. Based on this and previous work, including the observation that the RT connection domain is not required for tRNA(Lys3) packaging, but is required for tRNA(Lys3) annealing, a model is proposed for a tRNA(Lys3) packaging/annealing complex in which the interaction of Gag with Pol sequences during early viral assembly facilitates the retention in budding viruses of both tRNA(Lys3) and early Pol processing intermediates, with tRNA(Lys3) annealing to viral RNA further facilitated by the LysRS/RT interaction.
Collapse
Affiliation(s)
- Jenan Saadatmand
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
4
|
Pettit SC, Lindquist JN, Kaplan AH, Swanstrom R. Processing sites in the human immunodeficiency virus type 1 (HIV-1) Gag-Pro-Pol precursor are cleaved by the viral protease at different rates. Retrovirology 2005; 2:66. [PMID: 16262906 PMCID: PMC1291402 DOI: 10.1186/1742-4690-2-66] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 11/01/2005] [Indexed: 11/18/2022] Open
Abstract
We have examined the kinetics of processing of the HIV-1 Gag-Pro-Pol precursor in an in vitro assay with mature protease added in trans. The processing sites were cleaved at different rates to produce distinct intermediates. The initial cleavage occurred at the p2/NC site. Intermediate cleavages occurred at similar rates at the MA/CA and RT/IN sites, and to a lesser extent at sites upstream of RT. Late cleavages occurred at the sites flanking the protease (PR) domain, suggesting sequestering of these sites. We observed paired intermediates indicative of half- cleavage of RT/RH site, suggesting that the RT domain in Gag-Pro-Pol was in a dimeric form under these assay conditions. These results clarify our understanding of the processing kinetics of the Gag-Pro-Pol precursor and suggest regulated cleavage. Our results further suggest that early dimerization of the PR and RT domains may serve as a regulatory element to influence the kinetics of processing within the Pol domain.
Collapse
Affiliation(s)
- Steve C Pettit
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- 3805-103 Chimney Ridge Pl., Durham, NC, 27713, USA
| | - Jeffrey N Lindquist
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology, Moores UCSD Cancer Center, 3855 Health Sciences Dr. #0803, La Jolla, CA 92093-0803, USA
| | - Andrew H Kaplan
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- CB7295, Rm 22-006 Lineberger Bldg, UNC Center For AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|
5
|
Sokolskaja E, Sayah DM, Luban J. Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J Virol 2004; 78:12800-8. [PMID: 15542632 PMCID: PMC524981 DOI: 10.1128/jvi.78.23.12800-12808.2004] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 07/22/2004] [Indexed: 11/20/2022] Open
Abstract
The peptidyl-prolyl isomerase cyclophilin A (CypA) increases the kinetics by which human immunodeficiency virus type 1 (HIV-1) spreads in tissue culture. This was conclusively demonstrated by gene targeting in human CD4(+) T cells, but the role of CypA in HIV-1 replication remains unknown. Though CypA binds to mature HIV-1 capsid protein (CA), it is also incorporated into nascent HIV-1 virions via interaction with the CA domain of the Gag polyprotein. These findings raised the possibility that CypA might act at multiple steps of the retroviral life cycle. Disruption of the CA-CypA interaction, either by the competitive inhibitor cyclosporine (CsA) or by mutation of CA residue G89 or P90, suggested that producer cell CypA was required for full virion infectivity. However, recent studies indicate that CypA within the target cell regulates HIV-1 infectivity by modulating Ref1- or Lv1-mediated restriction. To examine the relative contribution to HIV-1 replication of producer cell CypA and target cell CypA, we exploited multiple tools that disrupt the HIV-1 CA-CypA interaction. These tools included the drugs CsA, MeIle(4)-CsA, and Sanglifehrin; CA mutants exhibiting decreased affinity for CypA or altered CypA dependence; HeLa cells with CypA knockdown by RNA interference; and Jurkat T cells homozygous for a deletion of the gene encoding CypA. Our results clearly demonstrate that target cell CypA, and not producer cell CypA, is important for HIV-1 CA-mediated function. Inhibition of HIV-1 infectivity resulting from virion production in the presence of CsA occurs independently of the CA-CypA interaction or even of CypA.
Collapse
Affiliation(s)
- Elena Sokolskaja
- Department of Microbiology, Columbia University, 701 W. 168th St., New York, NY 10032, USA
| | | | | |
Collapse
|
6
|
Cen S, Niu M, Saadatmand J, Guo F, Huang Y, Nabel GJ, Kleiman L. Incorporation of pol into human immunodeficiency virus type 1 Gag virus-like particles occurs independently of the upstream Gag domain in Gag-pol. J Virol 2004; 78:1042-9. [PMID: 14694138 PMCID: PMC368740 DOI: 10.1128/jvi.78.2.1042-1049.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using particle-associated reverse transcriptase (RT) activity as an assay for Pol incorporation into human immunodeficiency virus type 1 (HIV-1) Gag virus-like particles (VLPs), it has been found that truncated, protease-negative, Gag-Pol missing cis Gag sequences is still incorporated into Gag VLPs, albeit at significantly reduced levels (10 to 20% of the level of wild-type Gag-Pol). In this work, we have directly measured the incorporation of truncated Gag-Pol species into Gag VLPs and have found that truncated Gag-Pol that is missing all sequences upstream of RT is still incorporated into Gag VLPs at levels approximating 70% of that achieved by wild-type Gag-Pol. Neither protease nor integrase regions in Pol are required for its incorporation, implying an interaction between Gag and RT sequences in the Pol protein. While the incorporation of Gag-Pol into Gag VLPs is reduced 12-fold by the replacement of the nucleocapsid within Gag with a leucine zipper motif, this mutation does not affect Pol incorporation. However, the deletion of p6 in Gag reduces Pol incorporation into Gag VLPs four- to fivefold. Pol shows the same ability as Gag-Pol to selectively package tRNA(Lys) into Gag VLPs, and primer tRNA(3)(Lys) is found annealed to the viral genomic RNA. These data suggest that after the initial separation of Gag from Pol during cleavage of Gag-Pol by viral protease, the Pol species still retains the capacity to bind to both Gag and tRNA(3)(Lys), which may be required for Pol and tRNA(3)(Lys) to be retained in the assembling virion until budding is completed.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
7
|
Krishna NK, Wills JW. Insertion of capsid proteins from nonenveloped viruses into the retroviral budding pathway. J Virol 2001; 75:6527-36. [PMID: 11413320 PMCID: PMC114376 DOI: 10.1128/jvi.75.14.6527-6536.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral Gag proteins direct the assembly and release of virus particles from the plasma membrane. The budding machinery consists of three small domains, the M (membrane-binding), I (interaction), and L (late or "pinching-off") domains. In addition, Gag proteins contain sequences that control particle size. For Rous sarcoma virus (RSV), the size determinant maps to the capsid (CA)-spacer peptide (SP) sequence, but it functions only when I domains are present to enable particles of normal density to be produced. Small deletions throughout the CA-SP sequence result in the release of particles that are very large and heterogeneous, even when I domains are present. In this report, we show that particles of relatively uniform size and normal density are released by budding when the size determinant and I domains in RSV Gag are replaced with capsid proteins from two unrelated, nonenveloped viruses: simian virus 40 and satellite tobacco mosaic virus. These results indicate that capsid proteins of nonenveloped viruses can interact among themselves within the context of Gag and be inserted into the retroviral budding pathway merely by attaching the M and L domains to their amino termini. Thus, the differences in the assembly pathways of enveloped and nonenveloped viruses may be far simpler than previously thought.
Collapse
Affiliation(s)
- N K Krishna
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
8
|
Cairns TM, Craven RC. Viral DNA synthesis defects in assembly-competent Rous sarcoma virus CA mutants. J Virol 2001; 75:242-50. [PMID: 11119594 PMCID: PMC113918 DOI: 10.1128/jvi.75.1.242-250.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2000] [Accepted: 09/27/2000] [Indexed: 12/28/2022] Open
Abstract
The major structural protein of the retroviral core (CA) contains a conserved sequence motif shared with the CA-like proteins of distantly related transposable elements. The function of this major region of homology (MHR) has not been defined, in part due to the baffling array of phenotypes in mutants of several viruses and the yeast TY3. This report describes new mutations in the CA protein of Rous sarcoma virus (RSV) that were designed to test whether these different phenotypes might indicate distinct functional subdomains in the MHR. A comparison of 25 substitutions at 10 positions in the RSV conserved motif argues against this possibility. Most of the replacements destroyed virus infectivity, although either of two lethal phenotypes was obtained depending on the residue introduced. At most of the positions, one or more replacements (generally the more conservative substitutions) caused a severe replication defect without having any obvious effects on virus assembly, budding, Gag-Pol and genome incorporation, or protein processing. The mutant particles exhibited a defect in endogenous viral DNA synthesis and showed increased sensitivity of the core proteins to detergent, indicating that the mutations interfere with the formation and/or activity of the virion core. The distribution of these mutations across the MHR, with no evidence of clustering, suggests that the entire region is important for a critical postbudding function. In contrast, a second class of lethal substitutions (those that destroyed virus assembly and release) consists of alterations that are expected to cause severe effects on protein structure by disruption either of the hydrophobic core of the CA carboxyl-terminal domain or of the hydrogen bond network that stabilizes the domain. We suggest that this duality of phenotypes is consistent with a role for the MHR in the maturation process that links the two parts of the life cycle.
Collapse
Affiliation(s)
- T M Cairns
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
9
|
Chang YY, Yu SL, Syu WJ. Organization of HIV-1 pol is critical for Pol polyprotein processing. J Biomed Sci 1999; 6:333-41. [PMID: 10494040 DOI: 10.1007/bf02253522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The HIV pol sequentially encodes protease (PR), reverse transcriptase (RT), and integrase (IN) from the 5'-3' direction. We explored the significance of this gene arrangement. All six possible gene dispositions were examined. In two situations where PR was removed from the leading place and no two genes were in their original location, viral polyprotein processing was abolished. Processing of the polyprotein did not occur when IN was translocated to the front of PR-RT. However, in the following two arrangements, the polyprotein was processed but only at specific sites. First, PR remained in the leading position while the locations of RT and IN were exchanged; viral polyprotein was processed at a site between the upstream transframe peptide (TF) and PR. Second, PR was placed after RT-IN and located at the distal end of Pol. Processing occurred only at the created junction between TF and RT. These results indicated that cleavage after TF occurred autocatalytically but did not proceed to a second site, which needed an extraneous PR for trans-action. Therefore, arranging Pol in the order of PR-RT-IN warrants the streamline processing of the polyprotein once the autocleavage is initiated.
Collapse
Affiliation(s)
- Y Y Chang
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
10
|
Baldwin DN, Linial ML. Proteolytic activity, the carboxy terminus of Gag, and the primer binding site are not required for Pol incorporation into foamy virus particles. J Virol 1999; 73:6387-93. [PMID: 10400731 PMCID: PMC112718 DOI: 10.1128/jvi.73.8.6387-6393.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human foamy virus (HFV) is the prototype member of the spumaviruses. While similar in genomic organization to other complex retroviruses, foamy viruses share several features with their more distant relatives, the hepadnaviruses such as human hepatitis B virus (HBV). Both HFV and HBV express their Pol proteins independently from the structural proteins. However unlike HBV, Pol is not required for assembly of HFV core particles or for packaging of viral RNA. These results suggest that the assembly of Pol into HFV particles must occur by a mechanism different from those used by retroviruses and hepadnaviruses. We have examined possible mechanisms for HFV Pol incorporation, including the role of proteolysis in assembly of Pol and the role of initiation of reverse transcription. We have found that proteolytic activity is not required for Pol incorporation. p4 Gag and the residues immediately upstream of the cleavage site in Gag are also not important. Deletion of the primer binding site had no effect on assembly, ruling out early steps of reverse transcription in the process of Pol incorporation.
Collapse
Affiliation(s)
- D N Baldwin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
11
|
Craven RC, Harty RN, Paragas J, Palese P, Wills JW. Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus-retrovirus chimeras. J Virol 1999; 73:3359-65. [PMID: 10074190 PMCID: PMC104100 DOI: 10.1128/jvi.73.4.3359-3365.1999] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1998] [Accepted: 11/11/1998] [Indexed: 01/07/2023] Open
Abstract
Little is known about the mechanisms used by enveloped viruses to separate themselves from the cell surface at the final step of budding. However, small sequences in the Gag proteins of several retroviruses (L domains) have been implicated in this process. A sequence has been identified in the M proteins of rhabdoviruses that closely resembles the PPPPY motif in the L domain of Rous sarcoma virus (RSV), an avian retrovirus. To evaluate whether the PPPY sequence in vesicular stomatitis virus (VSV) M protein has an activity analogous to that of the retroviral sequence, M-Gag chimeras were characterized. The N-terminal 74 amino acids of the VSV (Indiana) M protein, including the PPPY motif, was able to replace the L domain of RSV Gag and allow the assembly and release of virus-like particles. Alanine substitutions in the VSV PPPY motif severely compromised the budding activity of this hybrid protein but not that of another chimera which also contained the RSV PPPPY sequence. We conclude that this VSV sequence is functionally homologous to the RSV L domain in promoting virus particle release, making this the first example of such an activity in a virus other than a retrovirus. Both the RSV and VSV motifs have been shown to interact in vitro with certain cellular proteins that contain a WW interaction module, suggesting that the L domains are sites of interaction with unknown host machinery involved in virus release.
Collapse
Affiliation(s)
- R C Craven
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
12
|
Garnier L, Parent LJ, Rovinski B, Cao SX, Wills JW. Identification of retroviral late domains as determinants of particle size. J Virol 1999; 73:2309-20. [PMID: 9971814 PMCID: PMC104476 DOI: 10.1128/jvi.73.3.2309-2320.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Retroviral Gag proteins, in the absence of any other viral products, induce budding and release of spherical, virus-like particles from the plasma membrane. Gag-produced particles, like those of authentic retrovirions, are not uniform in diameter but nevertheless fall within a fairly narrow distribution of sizes. For the human immunodeficiency virus type 1 (HIV-1) Gag protein, we recently reported that elements important for controlling particle size are contained within the C-terminal region of Gag, especially within the p6 sequence (L. Garnier, L. Ratner, B. Rovinski, S.-X. Cao, and J. W. Wills, J. Virol. 72:4667-4677, 1998). Deletions and substitutions throughout this sequence result in the release of very large particles. Because the size determinant could not be mapped to any one of the previously defined functions within p6, it seemed likely that its activity requires the overall proper folding of this region of Gag. This left open the possibility of the size determinant residing in a subdomain of p6, and in this study, we examined whether the late domain (the region of Gag that is critical for the virus-cell separation step) is involved in controlling particle size. We found that particles of normal size are produced when p6 is replaced with the totally unrelated late domain sequences from Rous sarcoma virus (contained in its p2b sequence) or equine infectious anemia virus (contained in p9). In addition, we found that the large particles released in the absence of p6 require the entire CA and adjacent spacer peptide sequences, whereas these internal sequences of HIV-1 Gag are not needed for budding (or proper size) when a late domain is present. Thus, it appears the requirements for budding are very different in the presence and absence of p6.
Collapse
Affiliation(s)
- L Garnier
- Departments of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
13
|
Bennett RP, Wills JW. Conditions for copackaging rous sarcoma virus and murine leukemia virus Gag proteins during retroviral budding. J Virol 1999; 73:2045-51. [PMID: 9971785 PMCID: PMC104447 DOI: 10.1128/jvi.73.3.2045-2051.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rous sarcoma virus (RSV) and murine leukemia virus (MLV) are examples of distantly related retroviruses that normally do not encounter one another in nature. Their Gag proteins direct particle assembly at the plasma membrane but possess very little sequence similarity. As expected, coexpression of these two Gag proteins did not result in particles that contain both. However, when the N-terminal membrane-binding domain of each molecule was replaced with that of the Src oncoprotein, which is also targeted to the cytoplasmic face of the plasma membrane, efficient copackaging was observed in genetic complementation and coimmunoprecipitation assays. We hypothesize that the RSV and MLV Gag proteins normally use distinct locations on the plasma membrane for particle assembly but otherwise have assembly domains that are sufficiently similar in function (but not sequence) to allow heterologous interactions when these proteins are redirected to a common membrane location.
Collapse
Affiliation(s)
- R P Bennett
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
14
|
Bowzard JB, Bennett RP, Krishna NK, Ernst SM, Rein A, Wills JW. Importance of basic residues in the nucleocapsid sequence for retrovirus Gag assembly and complementation rescue. J Virol 1998; 72:9034-44. [PMID: 9765448 PMCID: PMC110320 DOI: 10.1128/jvi.72.11.9034-9044.1998] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV) contain small interaction (I) domains within their nucleocapsid (NC) sequences. These overlap the zinc finger motifs and function to provide the proper density to viral particles. There are two zinc fingers and at least two I domains within these Gag proteins. To more thoroughly characterize the important sequence features and properties of I domains, we analyzed Gag proteins that contain one or no zinc finger motifs. Chimeric proteins containing the amino-terminal half of RSV Gag and various portions of the carboxy terminus of murine leukemia virus (MLV) (containing one zinc finger) Gag had only one I domain, whereas similar chimeras with human foamy virus (HFV) (containing no zinc fingers) Gag had at least two. Mutational analysis of the MLV NC sequence and inspection of I domain sequences within the zinc-fingerless C terminus of HFV Gag suggested that clusters of basic residues, but not the zinc finger motif residues themselves, are required for the formation of particles of proper density. In support of this, a simple string of strongly basic residues was found to be able to substitute for the RSV I domains. We also explored the possibility that differences in I domains (e.g., their number) account for differences in the ability of Gag proteins to be rescued into particles when they are unable to bind to membranes. Previously published experiments have shown that such membrane-binding mutants of RSV and HIV (two I domains) can be rescued but that those of MLV (one I domain) cannot. Complementation rescue experiments with RSV-MLV chimeras now map this difference to the NC sequence of MLV. Importantly, the same RSV-MLV chimeras could be rescued by complementation when the block to budding was after, rather than before, transport to the membrane. These results suggest that MLV Gag molecules begin to interact at a much later time after synthesis than those of RSV and HIV.
Collapse
Affiliation(s)
- J B Bowzard
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
15
|
Garnier L, Ratner L, Rovinski B, Cao SX, Wills JW. Particle size determinants in the human immunodeficiency virus type 1 Gag protein. J Virol 1998; 72:4667-77. [PMID: 9573230 PMCID: PMC109988 DOI: 10.1128/jvi.72.6.4667-4677.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1997] [Accepted: 02/10/1998] [Indexed: 02/07/2023] Open
Abstract
The retroviral Gag protein plays the central role in the assembly process and can form membrane-enclosed, virus-like particles in the absence of any other viral products. These particles are similar to authentic virions in density and size. Three small domains of the human immunodeficiency virus type 1 (HIV-1) Gag protein have been previously identified as being important for budding. Regions that lie outside these domains can be deleted without any effect on particle release or density. However, the regions of Gag that control the size of HIV-1 particles are less well understood. In the case of Rous sarcoma virus (RSV), the size determinant maps to the CA (capsid) and adjacent spacer sequences within Gag, but systematic mapping of the HIV Gag protein has not been reported. To locate the size determinants of HIV-1, we analyzed a large collection of Gag mutants. To our surprise, all mutants with defects in the MA (matrix), CA, and the N-terminal part of NC (nucleocapsid) sequences produced dense particles of normal size, suggesting that oncoviruses (RSV) and lentiviruses (HIV-1) have different size-controlling elements. The most important region found to be critical for determining HIV-1 particle size is the p6 sequence. Particles lacking all or small parts of p6 were uniform in size distribution but very large as measured by rate zonal gradients. Further evidence for this novel function of p6 was obtained by placing this sequence at the C terminus of RSV CA mutants that produce heterogeneously sized particles. We found that the RSV-p6 chimeras produced normally sized particles. Thus, we present evidence that the entire p6 sequence plays a role in determining the size of a retroviral particle.
Collapse
Affiliation(s)
- L Garnier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
16
|
Lum R, Linial ML. Retrotransposition of nonviral RNAs in an avian packaging cell line. J Virol 1998; 72:4057-64. [PMID: 9557694 PMCID: PMC109634 DOI: 10.1128/jvi.72.5.4057-4064.1998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1997] [Accepted: 01/20/1998] [Indexed: 02/07/2023] Open
Abstract
Retroviruses produced from the quail packaging cell line SE21Q1b predominantly contain cellular RNAs instead of viral RNAs. These RNAs can be reverse transcribed and integrated into the genomes of newly infected cells and are thereafter referred to as newly formed retrogenes. We investigated whether retrogene formation can occur within SE21Q1b cells themselves and whether this occurs intracellularly or via extracellular reinfection. By using packaging cell line mutants derived from the SE21Q1b provirus and selectable reporter constructs, we found that the process requires envelope glycoproteins and a retroviral packaging signal. Our results suggest that extracellular reinfection is the primary route of retrotransposition of nonviral RNAs.
Collapse
Affiliation(s)
- R Lum
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA
| | | |
Collapse
|
17
|
Nelle TD, Verderame MF, Leis J, Wills JW. The major site of phosphorylation within the Rous sarcoma virus MA protein is not required for replication. J Virol 1998; 72:1103-7. [PMID: 9445005 PMCID: PMC124583 DOI: 10.1128/jvi.72.2.1103-1107.1998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
About one-third of the MA protein in Rous sarcoma virus (RSV) is phosphorylated. Previous analyses of this fraction have suggested that serine residues 68 and 106 are the major sites of phosphorylation. As a follow-up to that study, we have characterized mutants which have these putative phosphorylation sites changed to alanine, either separately or together. None of the substitutions (S68A, S106A, or S68/106A) had an effect on the budding efficiency or infectivity of the virus. Upon examination of the 32P-labeled viral proteins, we found that the S68A substitution did not affect phosphorylation in vivo at all. In contrast, the S106A substitution prevented all detectable phosphorylation of MA, suggesting that there is only one major site of phosphorylation in MA. We also found that the RSV MA protein is phosphorylated on tyrosine, but the amount was low and detectable only with large numbers of virions and an antibody specific for phosphotyrosine.
Collapse
Affiliation(s)
- T D Nelle
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
18
|
Abstract
The Gag proteins of retroviruses are the only viral products required for the release of membrane-enclosed particles by budding from the host cell. Particles released when these proteins are expressed alone are identical to authentic virions in their rates of budding, proteolytic processing, and core morphology, as well as density and size. We have previously mapped three very small, modular regions of the Rous sarcoma virus (RSV) Gag protein that are necessary for budding. These assembly domains constitute only 20% of RSV Gag, and alterations within them block or severely impair particle formation. Regions outside of these domains can be deleted without any effect on the density of the particles that are released. However, since density and size are independent parameters for retroviral particles, we employed rate-zonal gradients and electron microscopy in an exhaustive study of mutants lacking the various dispensable segments of Gag to determine which regions would be required to constrain or define the particle dimensions. The only sequence found to be absolutely critical for determining particle size was that of the initial capsid cleavage product, CA-SP, which contains all of the CA sequence plus the spacer peptides located between CA and NC. Some regions of CA-SP appear to be more important than others. In particular, the major homology region does not contribute to defining particle size. Further evidence for interactions among CA-SP domains was obtained from genetic complementation experiments using mutant deltaNC, which lacks the RNA interaction domains in the NC sequence but retains a complete CA-SP sequence. This mutant produces low-density particles heterogeneous in size. It was rescued into particles of normal size and density, but only when the complementing Gag molecules contained the complete CA-SP sequence. We conclude that CA-SP functions during budding in a manner that is independent of the other assembly domains.
Collapse
Affiliation(s)
- N K Krishna
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
19
|
Puffer BA, Parent LJ, Wills JW, Montelaro RC. Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J Virol 1997; 71:6541-6. [PMID: 9261374 PMCID: PMC191930 DOI: 10.1128/jvi.71.9.6541-6546.1997] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously demonstrated that the Gag p9 protein of equine infectious anemia virus (EIAV) is functionally homologous with Rous sarcoma virus (RSV) p2b and human immunodeficiency virus type 1 (HIV-1) p6 in providing a critical late assembly function in RSV Gag-mediated budding from transfected COS-1 cells (L. J. Parent et al., J. Virol. 69:5455-5460, 1995). In light of the absence of amino acid sequence homology between EIAV p9 and the functional homologs of RSV and HIV-1, we have now designed an EIAV Gag-mediated budding assay to define the late assembly (L) domain peptide sequences contained in the EIAV p9 protein. The results of these particle budding assays revealed that expression of EIAV Gag polyprotein in COS-1 cells yielded extracellular Gag particles with a characteristic density of 1.18 g/ml, while expression of EIAV Gag polyprotein lacking p9 resulted in a severe reduction in the release of extracellular Gag particles. The defect in EIAV Gag polyprotein particle assembly could be corrected by substituting either the RSV p2b or HIV-1 p6 protein for EIAV p9. These observations demonstrated that the L domains of EIAV, HIV-1, and RSV were interchangeable in mediating assembly of EIAV Gag particles in the COS-1 cell budding assay. To localize the L domain of EIAV p9, we next assayed the effects of deletions and site-specific mutations in the p9 protein on its ability to mediate budding of EIAV Gag particles. Analyses of EIAV Gag constructs with progressive N-terminal or C-terminal deletions of the p9 protein identified a minimum sequence of 11 amino acids (Q20N21L22Y23P24D25L26S27E28I29K30) capable of providing the late assembly function. Alanine scanning studies of this L-domain sequence demonstrated that mutations of residues Y23, P24, and L26 abrogated the p9 late budding function; mutations of other residues in the p9 L domain did not substantially affect the level of EIAV Gag particle assembly. These data indicate that the L domain in EIAV p9 utilizes a YXXL motif which we hypothesize may interact with cellular proteins to facilitate virus particle budding from infected cells.
Collapse
Affiliation(s)
- B A Puffer
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
20
|
Xiang Y, Cameron CE, Wills JW, Leis J. Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain. J Virol 1996; 70:5695-700. [PMID: 8764091 PMCID: PMC190537 DOI: 10.1128/jvi.70.8.5695-5700.1996] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The p2 region of the Rous sarcoma virus (RSV) Gag polyprotein contains an assembly domain, which is required late in replication for efficient budding of virus-like particles from cells (J. W. Wills, C. E. Cameron, C. B. Wilson, Y. Xiang, R. P. Bennett, and J. Leis, J. Virol. 68:6605-6618, 1994). This domain, referred to as the L domain, was previously mapped to the 11 amino acids of p2b. Through the analysis of a series of deletion and substitution mutations, the L domain has now been fine mapped to a highly conserved amino acid sequence, PPPPYV of p2b. Sequences flanking PPPPYV motif can be deleted without any effect on budding. Defects caused by L-domain deletions can be rescued by placing a wild-type copy of the sequence at several other positions in RSV Gag. A proline-rich P(S/T)APP motif is found in many retroviral Gag polyproteins; the motif found in the p6 region of human immunodeficiency virus type 1 has been implicated in late functions of the virus. Substitution of the RSV L domain with this motif in a 10-amino-acid sequence derived from visna leukemia virus results in wild-type release of virus particles from cells. In contrast, the slightly different sequences from Gibbon ape leukemia virus, Moloney leukemia virus, PSAPP alone, or a proline-rich SH3 binding sequence do not efficiently rescue RSV L-domain mutations.
Collapse
Affiliation(s)
- Y Xiang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
21
|
Nelle TD, Wills JW. A large region within the Rous sarcoma virus matrix protein is dispensable for budding and infectivity. J Virol 1996; 70:2269-76. [PMID: 8642653 PMCID: PMC190068 DOI: 10.1128/jvi.70.4.2269-2276.1996] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
All retroviruses have a layer of matrix protein (MA) situated directly beneath the lipid of their envelope. This protein is initially expressed as the amino-terminal sequence of the Gag polyprotein, where it plays an important role in binding Gag to the plasma membrane during the early steps of the budding process. Others have suggested that MA may provide additional functions during virion assembly, including the selective incorporation of viral glycoproteins and the RNA genome into the emerging virion. To further study the role of the Rous sarcoma virus MA sequence in the viral replication cycle, we have pursued an extensive deletion analysis. Surprisingly, the entire second half of MA (residues 87 to 155) and part of the neighboring p2 sequence were found to be dispensable not only for budding but also for infectivity in avian cells. Thus, all of the functions associated with the Rous sarcoma virus MA sequence must be contained within its first half.
Collapse
Affiliation(s)
- T D Nelle
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
22
|
Krishna NK, Weldon RA, Wills JW. Transport and processing of the Rous sarcoma virus Gag protein in the endoplasmic reticulum. J Virol 1996; 70:1570-9. [PMID: 8627676 PMCID: PMC189979 DOI: 10.1128/jvi.70.3.1570-1579.1996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Gag proteins of replication-competent retroviruses direct budding at the plasma membrane and are cleaved by the viral protease (PR) just before or very soon after particle release. In contrast, defective retroviruses that bud into the endoplasmic reticulum (ER) have been found, and morphologically these appear to contain uncleaved Gag proteins. From this, it has been proposed that activation of PR may depend upon a host factor found only at the plasma membrane. However, if Gag proteins were cleaved by PR before the particle could pinch off the ER membrane, then the only particles that would remain visible are those that packaged smaller-than-normal amounts of PR, and these would have an immature morphology. To distinguish between these two hypotheses, we made use of the Rous sarcoma virus (RSV) Gag protein, the PR of RSV IS included on each Gag molecule. To target Gag to the ER, a signal peptide was installed at its amino terminus in place of the plasma membrane-binding domain. An intervening, hydrophobic, transmembrane anchor was included to keep Gag extended into the cytoplasm. We found that PR-mediated processing occurred, although the cleavage products were rapidly degraded. When the anchor was removed, allowing the entire protein to be inserted into the lumen of the ER, Gag processing occurred with a high level of efficiency, and the cleavage products were quite stable. Thus, PR activation does not require targeting of Gag molecules to the plasma membrane. Unexpectedly, molecules lacking the transmembrane anchor were rapidly secreted from the cell in a nonmembrane-enclosed form and in a manner that was very sensitive to brefeldin A and monensin. In contrast, the wild-type RSV and Moloney murine leukemia virus Gag proteins were completely insensitive to these inhibitors, suggesting that the normal mechanism of transport to the plasma membrane does not require interactions with the secretory pathway.
Collapse
Affiliation(s)
- N K Krishna
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
23
|
Parent LJ, Wilson CB, Resh MD, Wills JW. Evidence for a second function of the MA sequence in the Rous sarcoma virus Gag protein. J Virol 1996; 70:1016-26. [PMID: 8551559 PMCID: PMC189907 DOI: 10.1128/jvi.70.2.1016-1026.1996] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During retrovirus assembly, Gag proteins bind to the inner leaflet of the plasma membrane to initiate the budding process. The molecular basis of this protein-lipid interaction is poorly understood. For the human, immunodeficiency virus type 1 Gag protein, we recently reported that the membrane-binding domain resides within the N-terminal 31 amino acids and consists of two components: myristate and a cluster of basic residues, which together promote membrane binding in vitro and budding in vivo (W. Zhou, L. J. Parent, J. W. Wills, and M. D. Resh, J. Virol. 68:2556-2569, 1994). The positively charged residues associate electrostatically with acidic phospholipids to stabilize membrane binding, while myristate provides membrane-binding energy via hydrophobic interactions. Here we demonstrate that the human immunodeficiency virus type 1 Gag membrane-binding domain can fully replace the membrane-targeting function of the N-terminal 100 residues of the non-myristylated Rous sarcoma virus (RSV) Gag protein. To further explore the importance of myristate and basic residues in membrane binding, we developed a gain-of-function assay whereby budding was restored to defective mutants of RSV Gag. Detailed mutational analysis revealed that the position, number, and context of charged residues are crucial to budding. Myristate provides additional membrane-binding energy, which is critical when a Gag protein is near the threshold of stable membrane association. Finally, viruses with altered matrix (MA) proteins that are noninfectious, even though they produce particles with high efficiency, were identified. Thus, we present the first evidence that the RSV MA sequence plays two distinct roles, membrane binding during particle assembly and a second, as yet undefined function required for viral infectivity.
Collapse
Affiliation(s)
- L J Parent
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
24
|
Arts EJ, Wainberg MA. Human immunodeficiency virus type 1 reverse transcriptase and early events in reverse transcription. Adv Virus Res 1996; 46:97-163. [PMID: 8824699 DOI: 10.1016/s0065-3527(08)60071-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- E J Arts
- McGill University AIDS Centre, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada
| | | |
Collapse
|
25
|
Affiliation(s)
- V M Vogt
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
26
|
Parent LJ, Bennett RP, Craven RC, Nelle TD, Krishna NK, Bowzard JB, Wilson CB, Puffer BA, Montelaro RC, Wills JW. Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J Virol 1995; 69:5455-60. [PMID: 7636991 PMCID: PMC189393 DOI: 10.1128/jvi.69.9.5455-5460.1995] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Gag proteins of Rous sarcoma virus and human immunodeficiency virus (HIV) each contain a function involved in a late step in budding, defects in which result in the accumulation of these molecules at the plasma membrane. In the Rous sarcoma virus Gag protein (Pr76gag), this assembly domain is associated with a PPPY motif, which is located at an internal position between the MA and CA sequences. This motif is not contained anywhere within the HIV Gag protein (Pr55gag), and the MA sequence is linked directly to CA. Instead, a late assembly function of HIV has been associated with the p6 sequence situated at the C terminus of Gag. Here we demonstrate the remarkable finding that the late assembly domains from these two unrelated Gag proteins are exchangeable between retroviruses and can function in a positionally independent manner.
Collapse
Affiliation(s)
- L J Parent
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Craven RC, Leure-duPree AE, Weldon RA, Wills JW. Genetic analysis of the major homology region of the Rous sarcoma virus Gag protein. J Virol 1995; 69:4213-27. [PMID: 7769681 PMCID: PMC189159 DOI: 10.1128/jvi.69.7.4213-4227.1995] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mature cores of all retroviruses contain a major structural protein known as the CA (capsid) protein. Although it appears to form a shell around the ribonucleoprotein complex that contains the viral RNA, its function in viral replication is largely unknown. Little sequence similarity exists between the CA proteins of different retroviruses, except for a region of about 20 amino acids termed the major homology region (MHR). To examine the role of the CA protein in particle assembly and release, mutants of Rous sarcoma virus were created in which segments of CA were deleted or single conserved residues in the MHR were altered. The ability of the deletion mutants to release particles at rates similar to the wild-type protein demonstrated that the CA domain of Gag is not an essential component of the minimal budding machinery. Certain point mutations in the MHR region did block assembly and release in certain cell types, presumably by perturbing the global structure of the Gag precursor. Another group of MHR substitutions produced noninfectious or poorly infectious particles that were normal in their content of gag and pol gene products and viral RNA. The mutants were capable of initiating reverse transcription in vitro; however, the association of CA protein with the core was compromised, as indicated by its sensitivity to extraction with nonionic detergent. Prominent blebs on the virion envelope also indicated a disturbance at the membrane. Finally, an anti-peptide serum directed against MHR was found to react with the uncleaved Gag protein but not with mature CA, suggesting that MHR undergoes a dynamic rearrangement upon liberation from the polyprotein. We conclude that the MHR is involved in the very late steps in maturation of the virion (i.e., ones that occur after budding is initiated) and is essential for proper function of the core upon entry into a new host cell.
Collapse
Affiliation(s)
- R C Craven
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
28
|
Arad G, Bar-Meir R, Kotler M. Ribosomal frameshifting at the Gag-Pol junction in avian leukemia sarcoma virus forms a novel cleavage site. FEBS Lett 1995; 364:1-4. [PMID: 7750533 DOI: 10.1016/0014-5793(95)00302-p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Gag and Gag-Pol precursors of avian sarcoma leukemia virus (ASLV) are translated from viral genomic-size mRNA at a molar ratio of about 20:1. Translation of Gag is terminated at the stop codon UAG located at the carboxyl-terminus of the viral protease (PR), whereas a ribosomal frameshift occurring at the carboxyl-terminus of Gag allows translation of the Gag-Pol precursor. To determine how PR is released from the Gag-Pol precursor, a single base (A or T) was inserted at the Gag-Pol junction in order to adjust the translation into a single reading frame. These mutations allow processing of the viral precursor when expressed in bacterial cells, but cause cessation of viral production after transfection of avian cells. The viral PR released from the large precursor is one amino acid longer than PR cleaved from the Gag polyprotein and is terminated by an Ile instead of a Leu residue.
Collapse
Affiliation(s)
- G Arad
- Department of Molecular Genetics, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
29
|
Konvalinka J, Heuser AM, Hruskova-Heidingsfeldova O, Vogt VM, Sedlacek J, Strop P, Kräusslich HG. Proteolytic processing of particle-associated retroviral polyproteins by homologous and heterologous viral proteinases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:191-8. [PMID: 7883003 DOI: 10.1111/j.1432-1033.1995.tb20249.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Retroviral proteinase(PR)-catalyzed cleavage of the viral Gag and Gag-Pol polyproteins within the nascent virus particle is required for productive viral infection. Kinetic characterization and specificity analyses have been reported for several retroviral PR using oligopeptide substrates. In this study, we performed a comparative analysis of PR from avian, bovine, simian and human retroviruses using polyproteins of human immunodeficiency virus (HIV) type 1 or avian leukosis virus as substrates. Polyproteins were derived from immature virus-like particles purified from culture medium of transfected or recombinant baculovirus-infected cells. Specific cleavage to the correct size intermediate and end products occurred in the presence of detergent and homologous PR. HIV-1 PR cleaved its Gag precursor to completion at a concentration of approximately 25 nM but cleaved the Gag-Pol precursor incompletely even at fourfold higher PR concentration. In contrast to the requirement for high ionic strength for peptide cleavage reported previously, we found that Gag protein cleavage by HIV-1 PR proceeded best at low ionic strength, for both of the protein substrates tested. HIV-2 PR was approximately sixfold less active than HIV-1 PR. PR from avian myeloblastosis-associated virus (MAV) yielded efficient cleavage of the HIV-1 polyprotein only at concentrations above 1 microM. Both enzymes were stimulated by high salt and their cleavage products were identical or very similar to those of HIV-1 PR. A mutant of MAV PR engineered to cleave HIV-1 peptide substrates did not cleave the HIV-1 polyprotein at a concentration of 0.4 microM. The PR of Mason Pfizer monkey virus cleaved this polyprotein very poorly, whereas PR of bovine leukemia virus cleaved it, albeit at different sites.
Collapse
Affiliation(s)
- J Konvalinka
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Lin CG, Yang SJ, Hwang WL, Su TS, Lo SJ. Demonstration of the presence of protease-cutting site in the spacer of hepatitis B viral Pol protein. J Virol Methods 1995; 51:61-73. [PMID: 7730438 DOI: 10.1016/0166-0934(94)00118-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Molecular genetic studies have revealed that the human hepatitis B viral (HBV) Pol protein, a polypeptide of about 94 kDa, contains four domains. These are the 5'-terminal protein, spacer, RNA reverse transcriptase/DNA polymerase, and RNase H, respectively, from the amino (N) to carboxy (C) terminus. No evidence indicates as yet the involvement of a specific protease in cleaving the Pol protein or the presence of protease-cutting sites in the Pol protein. An in vitro-translated Pol protein was shown to be cleaved by purified thrombin but not in the presence of its inhibitor, hirudin. Two thrombin-cutting sites, spanning 194 amino acids, were then deduced by thrombin digestion of Pol protein with various lengths of C-terminal deletion. These two putative cutting sites, one located in the spacer region and the other in the beginning of the polymerase region, were found to be conserved at similar positions in the Pol protein of all hepadnaviruses. By using a novel method called the LacZ localization assay (LLA), it was demonstrated that a tripartite fusion protein containing the nucleus localization sequence (NLS) of SV40 large T Ag, the putative thrombin cutting sequence (Ile-Arg-Ile-Pro-Arg320-Thr) of HBV Pol protein and the full length beta-galactosidase of E. coli, exhibited a lower percentage (approximately 53%) of targeting into the nucleus of transfected hepatoma cells when compared with a similar tripartite protein containing a single mutation (Arg320 residue into Trp320) of HBV Pol protein (approximately 78%) or with a bipartite protein of SV40 NLS-beta-galactosidase (approximately 90%). These results indicate that the putative thrombin-cutting site in the spacer region of HBV Pol protein could be cleaved by a cellular protease resulting in the separation of NLS sequence from the beta-galactosidase and rendering a lower frequency of X-gal staining in the nucleus.
Collapse
Affiliation(s)
- C G Lin
- Graduate Institute of Microbiology and Immunology, National Yang-Ming Medical College, Taipei, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
31
|
Wills JW, Cameron CE, Wilson CB, Xiang Y, Bennett RP, Leis J. An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J Virol 1994; 68:6605-18. [PMID: 8083996 PMCID: PMC237081 DOI: 10.1128/jvi.68.10.6605-6618.1994] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Gag protein of Rous sarcoma virus has the ability to direct particle assembly at the plasma membrane in the absence of all the other virus-encoded components. An extensive deletion analysis has revealed that very large regions of this protein can be deleted without impairing budding and has suggested that the essential functions map to three discrete regions. In the studies reported here, we establish the location of assembly domain 2 (AD2) within the proline-rich p2b sequence of this Gag protein. AD2 mutants lacking the p2b sequence were completely defective for particle release even though their Gag proteins were tightly associated with the membrane fraction and exhibited high levels of protease activity. Mutations that inactivate the viral protease did not restore budding to wild-type levels for these mutants, indicating that the defect is not due simply to a loss of protease regulation. AD2 mutants could be rescued into dense particles in genetic complementation assays, indicating that their defect is not due to a gross alteration of the overall conformation of the protein and that the assembly function is not needed on every Gag molecule in the population. Several mutants with amino acid substitutions in the p2b sequence were found to have an intermediate capacity for budding. Inactivation of the protease of these mutants stabilized the Gag polyprotein within the cells and allowed an increase in particle release; however, the rate of budding remained slow. We favor the idea that AD2 is a dynamic region of movement, perhaps serving as a molecular hinge to allow the particle to emerge from the surface of the cell during budding.
Collapse
Affiliation(s)
- J W Wills
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033
| | | | | | | | | | | |
Collapse
|
32
|
Stewart L, Vogt VM. Reverse transcriptase and protease activities of avian leukosis virus Gag-Pol fusion proteins expressed in insect cells. J Virol 1993; 67:7582-96. [PMID: 7693975 PMCID: PMC238225 DOI: 10.1128/jvi.67.12.7582-7596.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protease (PR)-defective avian leukosis virus particles display 300-fold-reduced levels of reverse transcriptase (RT) activity relative to wild-type particles. This observation suggests that during virion assembly RT is activated by proteolytic maturation of the Gag-Pol polyprotein precursor. To study the relationship between proteolytic cleavage and RT activation, we subjected PR-defective virion cores to digestion with purified viral PR and analyzed the structure of the major polypeptides produced as well as RT activity. Under conditions in which Gag precursors were fully matured, the RT domain was only incompletely released from the Gag-Pol precursor, remaining tethered to the upstream Gag domains PR or NC-PR. In the same reaction, RT activity was stimulated only three-fold, or 100-fold less than expected for a fully active RT. The poor activation suggested that the NC or PR domains could repress RT activity. To test this idea, we constructed recombinant baculoviruses expressing 19 different fusion proteins with upstream Gag or downstream Pol sequences attached to RT. Each protein was partially purified and assayed for its inherent RT activity. The results are consistent with the idea that Gag sequences can inhibit RT activity but indicate that the size of the Pol domain as well as the status of the PR domain (wild-type or mutant) also can profoundly influence activity. Several of the constructed Gag-Pol fusion proteins contained a wild-type PR domain. Some of these underwent intracellular PR-mediated processing, while others did not. All proteins in which the PR domain was preceded by upstream Gag sequences showed specific proteolysis. By contrast, all proteins initiated with a methionine placed one residue upstream of the natural N terminus of PR failed to show specific proteolysis. Amino-terminal sequencing of one such protein yielded the correct amino acid sequence and showed that the initiating methionine was not removed. One interpretation of these findings is that activation of PR requires the generation of the precise N terminus of the mature PR.
Collapse
Affiliation(s)
- L Stewart
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
33
|
Bennett RP, Nelle TD, Wills JW. Functional chimeras of the Rous sarcoma virus and human immunodeficiency virus gag proteins. J Virol 1993; 67:6487-98. [PMID: 8411352 PMCID: PMC238085 DOI: 10.1128/jvi.67.11.6487-6498.1993] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Gag protein encoded by Rous sarcoma virus (RSV) is the only viral product required for the process of budding whereby virus particles are formed at the plasma membrane. Deletion analysis of this Gag molecule has revealed several regions (assembly domains) that are important for budding. One of these domains is located at the amino terminus and is needed for membrane binding. Another is located within the carboxy-terminal third of the protein. Though there is little sequence homology among the Gag proteins of unrelated retroviruses, it seemed possible that their assembly domains might be functionally conserved, and to explore this idea, numerous Gag chimeras were made. The results indicate that the first 10 amino acids of the human immunodeficiency virus (HIV) Gag protein can suppress the block to budding caused by deletions in the RSV MA sequence, much as described previously for the first 10 residues from the Src oncoprotein (J.W. Wills, R.C. Craven, R. A. Weldon, Jr., T. D. Nelle, and C.R. Erdie, J. Virol. 65:3804-3812, 1991). In addition, the carboxy-terminal half of the HIV Gag protein was fused to a truncated RSV Gag molecule, mutant Bg-Bs, which is unable to direct core assembly. This chimera was able to produce particles at a rate identical to that of RSV and of a density similar to that of authentic virions. Deletion analysis of the carboxy-terminal chimera revealed two small regions within the HIV NC protein that were sufficient for endowing mutant Bg-Bs with these properties. Chimeras lacking both regions produced particles of a low density, suggesting that these sequences may be involved in the tight packing of Gag molecules during assembly. In a related set of experiments, replacement of the RSV protease with that of HIV resulted in premature processing within the RSV sequence and a block to budding. Particle assembly was restored when the HIV PR activity was inactivated by mutagenesis. Collectively, the data presented here illustrate the functional similarities of Gag proteins from unrelated retroviruses.
Collapse
Affiliation(s)
- R P Bennett
- Department of Microbiology and Immunology, Pennsylvania State University School of Medicine, Milton S. Hershey Medical Center, Hershey 17033
| | | | | |
Collapse
|
34
|
Craven RC, Leure-duPree AE, Erdie CR, Wilson CB, Wills JW. Necessity of the spacer peptide between CA and NC in the Rous sarcoma virus gag protein. J Virol 1993; 67:6246-52. [PMID: 8396679 PMCID: PMC238047 DOI: 10.1128/jvi.67.10.6246-6252.1993] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A mutant of Rous sarcoma virus was constructed in which the nine amino acids that separate the CA and NC sequences in the Gag protein were deleted. The spacer peptide deletion mutant produced particles containing the normal complement of viral RNA and all of the viral proteins, including reverse transcriptase. Though electron microscopy revealed particles of normal morphology, the particles were noninfectious. The normally slow maturation of the CA protein, which involves cleavage of the spacer peptide from the carboxy terminus, was bypassed in this mutant, and the association between CA and the internal components of the core appears to have been disrupted. The results suggest that the spacer peptide has an essential role in directing folding and/or oligomerization of the CA subunits within the capsid structure.
Collapse
Affiliation(s)
- R C Craven
- Department of Microbiology and Immunology, Hershey Medical Center, Pennsylvania State University College of Medicine 17033
| | | | | | | | | |
Collapse
|
35
|
Weldon RA, Wills JW. Characterization of a small (25-kilodalton) derivative of the Rous sarcoma virus Gag protein competent for particle release. J Virol 1993; 67:5550-61. [PMID: 8394460 PMCID: PMC237958 DOI: 10.1128/jvi.67.9.5550-5561.1993] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Retroviral Gag proteins have the ability to induce budding and particle release from the plasma membrane when expressed in the absence of all of the other virus-encoded components; however, the locations of the functional domains within the Gag protein that are important for this process are poorly understood. It was shown previously that the protease sequence of the Rous sarcoma virus (RSV) Gag protein can be replaced with a foreign polypeptide, iso-1-cytochrome c from a yeast, without disrupting particle assembly (R. A. Weldon, Jr., C. R. Erdie, M. G. Oliver, and J. W. Wills, J. Virol. 64:4169-4179, 1990). An unexpected product of the chimeric gag gene is a small, Gag-related protein named p25C. This product was of interest because of its high efficiency of packaging into particles. The goal of the experiments described here was to determine the mechanism by which p25C is synthesized and packaged into particles. The results demonstrate that it is not the product of proteolytic processing of the Gag-cytochrome precursor but is derived from an unusual spliced mRNA. cDNA clones of the spliced mRNA were obtained, and each expressed a product of approximately 25 kDa, designated p25M1, which was released into the growth medium in membrane-enclosed particles that were much lighter than authentic retrovirions as measured in sucrose density gradients. DNA sequencing revealed that the clones encode the first 180 of the 701 amino acids of the RSV Gag protein and no residues from iso-1-cytochrome c. This suggested that a domain in the carboxy-terminal half of Gag is important for the packaging of Gag proteins into dense arrays within the particles. In support of this hypothesis, particles of the correct density were obtained when a small segment from the carboxy terminus of the RSV Gag protein (residues 417 to 584) was included on the end of p25.
Collapse
Affiliation(s)
- R A Weldon
- Department of Microbiology and Immunology, Pennsylvania State University School of Medicine, Milton S. Hershey Medical Center, Hershey 17033
| | | |
Collapse
|
36
|
Abstract
Ty3 is a retroviruslike element found in Saccharomyces cerevisiae. It encodes GAG3 and GAG3-POL3 polyproteins which are processed into mature proteins found in the Ty3 viruslike particle. In this study, the region encoding a protease that is homologous to retroviral aspartyl proteases was identified and shown to be required for production of mature Ty3 proteins and transposition. The Ty3 protease has the Asp-Ser-Gly consensus sequence found in copia, Ty1, and Rous sarcoma virus proteases, rather than the Asp-Thr-Gly found in most retroviral proteases. The Asp-Ser-Gly consensus is flanked by residues similar to those which flank the active sites of cellular aspartyl proteases. Mutations were made in the Ty3 active-site sequence to examine the role of the protease in Ty3 particle maturation and to test the functional significance of the Ser active-site variant in the consensus sequence. Mutation of the active-site Asp blocked processing of Gag3 and Gag3-Pol3 and allowed identification of a GAG3-POL3 polyprotein. This protein was turned over rapidly in cells expressing the mutant Ty3. Changing the active-site Ser to Thr caused only a modest reduction in the levels of certain Ty3 proteins. Five putative cleavage sites of this protease in Ty3 GAG3 and GAG3-POL3 polyproteins were defined by amino-terminal sequence analysis. The existence of an additional protein(s) of unknown function, encoded downstream of the protease-coding region, was deduced from the positions of these amino termini and the sizes of known Ty3 proteins. Although Ty3 protease cleavage sites do not correspond exactly to known retroviral protease cleavage sites, there are similarities. Residues P3 through P2' in the regions encompassing each of the five sites are uncharged, and no P1 position is occupied by an amino acid with a branched beta carbon.
Collapse
Affiliation(s)
- J Kirchner
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92717-4025
| | | |
Collapse
|
37
|
Park J, Morrow CD. The nonmyristylated Pr160gag-pol polyprotein of human immunodeficiency virus type 1 interacts with Pr55gag and is incorporated into viruslike particles. J Virol 1992; 66:6304-13. [PMID: 1383561 PMCID: PMC240122 DOI: 10.1128/jvi.66.11.6304-6313.1992] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The expression of the pol gene of human immunodeficiency virus type 1 occurs via a ribosomal frameshift between the gag and pol genes. The resulting protein, a Gag-Pol polyprotein, is produced at a level 5 to 10% of that of the Gag protein. The Gag-Pol polyprotein is incorporated into virions and provides viral protease, reverse transcriptase, and integrase, which are essential for infectivity. It is generally believed that the Gag-Pol polyprotein is incorporated into virions via interaction with the Gag protein, although the details of the mechanism are unknown. To further study this problem, we have constructed a human immunodeficiency virus type 1 proviral genome which overexpresses the Gag-Pol polyprotein (Pr160gag-pol). Transfection of this proviral genome (pGPpr-) into COS-1 cells resulted in the expression of full-length Pr160gag-pol polyprotein. Although the majority of the Pr160gag-pol was confined to the cells, low levels of reverse transcriptase activity were detectable in the cell supernatants. The cotransfection of pGPpr- with a second plasmid which expresses only the Pr55gag precursor (pGAG) resulted in a significantly higher level of Pr160gag-pol in the medium of transfected cells. Sedimentation analysis using sucrose density gradients demonstrated that most Pr160gag-pol was found in fractions corresponding to the density of virion particles, indicating that the Pr160gag-pol polyprotein was released in association with a Pr55gag viruslike particle. To further characterize the requirements for the release, a mutation was constructed to express an unmyristylated Pr160gag-pol polyprotein. Coexpression with Pr55gag demonstrated that the unmyristylated Pr160gag-pol was also incorporated into virion particles. Subcellular fractionation experiments revealed that the distributions of the Pr160gag-polmyr- and Pr160gag-pol in the membrane and cytosol were similar under low- or high-ionic-strength conditions. Taken together, these results suggest that myristylation of the Pr160gag-pol polyprotein is not required for the interaction with the Pr55gag necessary for packaging into a viruslike particle.
Collapse
Affiliation(s)
- J Park
- Department of Microbiology, University of Alabama, Birmingham 35294-0007
| | | |
Collapse
|
38
|
Kirchner J, Sandmeyer SB, Forrest DB. Transposition of a Ty3 GAG3-POL3 fusion mutant is limited by availability of capsid protein. J Virol 1992; 66:6081-92. [PMID: 1326658 PMCID: PMC241485 DOI: 10.1128/jvi.66.10.6081-6092.1992] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ty3 encodes structural proteins in its upstream open reading frame (GAG3) and catalytic proteins in an overlapping open reading frame (POL3). As is the case for retroviruses, high levels of structural protein versus catalytic proteins are synthesized and we show here that catalytic proteins are derived from a GAG3-POL3 fusion polyprotein. To evaluate the relative contributions of structural and catalytic components of the Ty3 particle, we perturbed the balance of these proteins by fusing the GAG3 and POL3 frames. This fusion Ty3 was capable of complementing low levels of transposition of a donor Ty3 which contained only cis-acting sequences required for transposition. Examination of extracts of cells expressing the GAG3-POL3 fusion mutant showed that particle formation differed qualitatively and quantitatively from viruslike particle formation by wild-type Ty3. Suprisingly, expression of 238 codons of GAG3, encoding only capsid protein, complemented transposition and particle formation defects of the fusion mutant, showing that the limiting deficiency was in capsid, and not in nucleocapsid, function. In addition, protein containing the capsid domain expressed alone accumulated in the same particulate fraction as viruslike particles, showing that it was sufficient for particle formation. The activity of the Ty3 fusion mutant contrasts with the inviability of mutant retroviruses in which gag and pol frames were fused and argues that retrotransposons tolerate considerable variation in the nucleoprotein complexes that permit replication and integration.
Collapse
Affiliation(s)
- J Kirchner
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine 92717-4025
| | | | | |
Collapse
|
39
|
Oertle S, Bowles N, Spahr PF. Complementation studies with Rous sarcoma virus gag and gag-pol polyprotein mutants. J Virol 1992; 66:3873-8. [PMID: 1316486 PMCID: PMC241173 DOI: 10.1128/jvi.66.6.3873-3878.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Avian retroviruses (with the notable exception of spleen necrosis virus) express their protease (PR) both in their gag and their gag-pol polyprotein precursors, in contrast to other retroviruses, notably, the mammalian retroviruses, in which PR is encoded in the gag-pol polyprotein or in a separate reading frame as a gag-pro product. The consequence is that the avian PR is expressed in stoichiometric rather than catalytic amounts. To investigate the significance of the particular genome organization of the avian retrovirus prototype Rous sarcoma virus, we developed an assay that measures complementation between the gag and the gag-pol polyproteins by expressing them from two different plasmids in transfected cells. By using this assay, we showed that the protease PR from the gag-pol polyprotein is capable of autocatalytic self-cleavage and -activation when coexpressed with a protease-deficient gag protein and that the PR domain has a role in viral particle assembly. Furthermore, this complementation assay can be used to investigate the role of the gag domain in the gag-pol polyprotein by determining whether it can rescue a defect in the gag polyprotein. We report here the results of such an experiment, which studied a mutation in the N terminus of the gag gene.
Collapse
Affiliation(s)
- S Oertle
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
40
|
Grinde B, Cameron C, Leis J, Weber I, Wlodawer A, Burstein H, Bizub D, Skalka A. Mutations that alter the activity of the Rous sarcoma virus protease. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50116-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Burstein H, Bizub D, Kotler M, Schatz G, Vogt VM, Skalka AM. Processing of avian retroviral gag polyprotein precursors is blocked by a mutation at the NC-PR cleavage site. J Virol 1992; 66:1781-5. [PMID: 1310781 PMCID: PMC240938 DOI: 10.1128/jvi.66.3.1781-1785.1992] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The avian sarcoma and leukosis viruses (ASLV) encode a protease (PR) at the C terminus of gag which in vivo catalyzes the processing of both gag and gag-pol precursors. The studies reported here were undertaken to determine whether PR is able to cleave these polyproteins while it is still part of the gag precursor or whether the release of its N terminus to form free PR is necessary for full proteolytic activity. To address this question, we created a mutation that disrupts the PR cleavage site between the NC and PR coding regions of the gag gene. This mutation was introduced into a eukaryotic vector that expresses only the gag precursor and into an otherwise infectious clone of ASLV that carries the neo gene as a selectable marker. These constructs were expressed in monkey COS cells or in quail QT35 cells, respectively. Processing was impaired in both systems. Mutant particles were formed, but they contained no mature processed gag proteins. We observed only the uncleaved gag precursor polypeptide Pr76 in one case or Pr76 and a cleaved product of about 60 kDa in the other. Processing of the mutant gag precursor could be complemented in trans by from a wild-type construct, suggesting that the mutation did not induce gross structural alterations in its precursor. Our results suggest that the PR first must be released from its precursor before it can attack other sites in the gag and gag-pol polyproteins and that cleavage at the NC-PR boundary is a prerequisite for the initiation of the PR-directed processing.
Collapse
Affiliation(s)
- H Burstein
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | | | | | | | | | | |
Collapse
|
42
|
Stewart L, Vogt VM. trans-acting viral protease is necessary and sufficient for activation of avian leukosis virus reverse transcriptase. J Virol 1991; 65:6218-31. [PMID: 1717719 PMCID: PMC250316 DOI: 10.1128/jvi.65.11.6218-6231.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The structural and enzymatic components of retroviral cores are formed by proteolytic cleavage of precursor polypeptides, mediated by the viral protease (PR). We described previously the construction of PR-defective avian leukosis viruses. These mutant viruses are noninfectious, and their major internal components are the uncleaved gag and gag-pol polyproteins (Pr76gag and Pr180gag-pol). The reverse transcriptase (RT) activity associated with the PR-defective virions is approximately 500-fold reduced relative to that of wild-type virions, suggesting that specific cleavages activate RT activity. To gain a better understanding of the role that PR plays in the processing and activation of RT, we performed complementation experiments wherein wild-type or PR mutant gag precursors were separately coexpressed with frame-corrected wild-type or PR mutant gag-pol precursors. The results demonstrate that, as in other retrovirus systems, gag-pol precursors can be assembled into virions only when they are rescued by a gag precursor. If the gag precursor is wild type, then the rescued Pr180gag-pol is completely and properly matured, irrespective of whether its embedded PR domain is wild type or mutant. In both cases, the virions produced are fully and equally infectious. This indicates that an active-site mutation in the PR domain of the gag-pol precursor has no effect on avian leukosis virus infectivity when particles are assembled from wild-type gag precursors. In contrast, if the gag precursor has an active-site mutation in PR or is deleted for PR, then the virions are noninfectious and the gag and gag-pol precursors remain unprocessed, even if the embedded PR domain of Pr180gag-pol is wild type. Thus, in this system, virion-associated Pr180gag-pol displays no detectable cis- or trans-acting PR activity. As assayed with an exogenous template, virions with processed gag-pol polyprotein display high levels of RT activity while those with unprocessed Pr180gag-pol display greatly reduced RT activity. These results demonstrate that during virion assembly, the PR supplied by a gag precursor is both necessary and sufficient for trans-activation of RT through proteolytic maturation of copackaged gag-pol polyprotein.
Collapse
Affiliation(s)
- L Stewart
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|