1
|
Inan C, Muratoglu H, Arif BM, Demirbag Z. Transcriptional analysis of the putative glycosyltransferase gene (amv248) of the Amsacta moorei entomopoxvirus. Virus Res 2017; 243:25-30. [PMID: 29020603 DOI: 10.1016/j.virusres.2017.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 11/17/2022]
Abstract
Amsacta moorei entomopoxvirus (AMEV), the most studied member of the genus Betaentomopoxvirus, was initially isolated from Red Hairy caterpillar larvae, Amsacta moorei. According to genome sequence and previous studies it was shown that amv248 encodes a putative glycosyltransferase that is the only conserved attachment protein in betaentomopoxviruses. Transcriptional analysis of the amv248 gene by RT-PCR and qPCR showed that transcription starts at 6h post infection (hpi). Also, transcription was not affected by a DNA replication inhibitor but was severely curtailed by a protein synthesis inhibitor. These results indicate that amv248 belongs to the intermediate class of gene expression. 5' and 3' untranslated regions analysis revealed that transcription initiates at position -126 relative to the translational start site, and ends between 50 and 83 bases after the stop codon. To narrow down the size and location of the gene's promoter, the upstream region as well as several different sized deletions thereof were generated and cloned upstream of a luciferase reporter gene. The constructs were used to measure the Firefly and Renilla luciferase activities in dual assays. The results showed that luciferase activity decreased when bases -198 to -235 of amv248 upstream region were missing. Sequence analysis among the intermediate gene promoters of AMEV showed that TTTAT(T/A)TT(T/A)2TTA is possibly a common motif, however, further investigations are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Cihan Inan
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey; Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Hacer Muratoglu
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Basil M Arif
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Zihni Demirbag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
2
|
Diversity of large DNA viruses of invertebrates. J Invertebr Pathol 2017; 147:4-22. [DOI: 10.1016/j.jip.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022]
|
3
|
Muratoglu H, Nalcacioglu R, Arif BM, Demirbag Z. Genome-wide analysis of differential mRNA expression of Amsacta moorei entomopoxvirus, mediated by the gene encoding a viral protein kinase (AMV197). Virus Res 2016; 215:25-36. [PMID: 26820433 DOI: 10.1016/j.virusres.2016.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 11/16/2022]
Abstract
Insect-born entomopoxviruses (Fam: Poxviridae) are potentially important bio-pesticide against insect pests and expression vectors as well as vectors for transient human gene therapies including recombinant viral vaccines. For these reasons, it is necessary to understand the regulatory genes functions to improve its biotechnological potential. Here, we focused on the characterization of serine/threonine (Ser/Thr; ORF AMV197) protein kinase gene from the Amsacta moorei entomopoxvirus (AMEV), the type species of the genus Betaentomopoxvirus. Transcription of the parental and an amv197-null recombinant AMEV was compared by whole-genome gene expression microarray analysis. Blast2GO analysis reflected a broad diversity of upregulated and downregulated genes. Results showed that expression levels of 102 genes (45%) out of 226 tested genes changed significantly in the recombinant AMEV infected cells. Of these transcripts, 72 (70.58%) were upregulated and 30 (29.41%) were downregulated throughout the infection period. Genes involved in DNA repair, replication and nucleotide metabolism, transcription and RNA modification, and protein modification were mostly upregulated at different times in cells infected with the recombinant virus. Furthermore, transcription of all studied cellular genes including metabolism of apoptosis (Nedd2-like caspase, hemolin and elongation factor-1 alpha (ef1a) gene) was downregulated in the absence of amv197. Quantitative real time reverse transcription-PCR confirmed viral transcriptional changes obtained by microarray. The results of this study indicated that the product of amv197 appears to affect the transcriptional regulation of most viral and many cellular genes. Further investigations are, however, needed to narrow down the role of AMV197 throughout the infection process.
Collapse
Affiliation(s)
- Hacer Muratoglu
- Karadeniz Technical University, Faculty of Sciences, Department of Molecular Biology and Genetic, 61080 Trabzon, Turkey
| | - Remziye Nalcacioglu
- Karadeniz Technical University, Faculty of Sciences, Department of Biology, 61080 Trabzon, Turkey
| | - Basil M Arif
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Zihni Demirbag
- Karadeniz Technical University, Faculty of Sciences, Department of Biology, 61080 Trabzon, Turkey.
| |
Collapse
|
4
|
Ozsahin E, Sezen K, Demirbag Z. Transcriptional analysis of ORF amv133 of Amsacta moorei entomopoxvirus. Arch Virol 2014; 159:2541-7. [DOI: 10.1007/s00705-014-2096-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
|
5
|
Perera S, Krell P, Demirbag Z, Nalçacioğlu R, Arif B. Induction of apoptosis by the Amsacta moorei entomopoxvirus. J Gen Virol 2013; 94:1876-1887. [DOI: 10.1099/vir.0.051888-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CF-70-B2 cells derived from the spruce budworm (Choristoneura fumiferana) undergo apoptosis when infected with Amsacta moorei entomopoxvirus (AMEV), as characterized by membrane blebbing, formation of apoptotic bodies, TdT-mediated dUTP nick-end labelling (TUNEL) staining, condensed chromatin and induction of caspase-3/7 activity. The apoptotic response was reduced when cells were infected with UV-inactivated AMEV, but not when infected in the presence of the DNA synthesis inhibitor, cytosine β-d-arabinofuranoside. Hence, only pre-DNA replication events were involved in inducing the antiviral response in CF-70-B2 cells. The virus eventually overcame the host’s antiviral response and replicated to high progeny virus titres accompanied by high levels of caspase-3/7 activity. The CF-70-B2 cells were less productive of progeny virus in comparison to LD-652, a Lymantria dispar cell line routinely used for propagation of AMEV. At late stages of infection, LD-652 cells also showed characteristics of apoptosis such as oligosomal DNA fragmentation, TUNEL staining, condensed chromatin and increased caspase-3/7 activity. Induction of apoptosis in LD-652 cells was dependent on viral DNA replication and/or late gene expression. A significantly reduced rate of infection was observed in the presence of general caspase inhibitors Q-VD-OPH and Z-VAD-FMK, indicating caspases may be involved in productive virus infection.
Collapse
Affiliation(s)
- Srini Perera
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Peter Krell
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - Zihni Demirbag
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | | | - Basil Arif
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| |
Collapse
|
6
|
Erlandson M, Streett D. ENTOMOPOXVIRUSES ASSOCIATED WITH GRASSHOPPERS AND LOCUSTS: BIOCHEMICAL CHARACTERIZATION. ACTA ACUST UNITED AC 2012. [DOI: 10.4039/entm129171131-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
AbstractEntomopoxviruses (EPVs) are large DNA viruses with structural similarities to vertebrate poxviruses. EPV virions are occluded in large (3–15 μm in diameter) proteinaceous occlusion bodies (OBs). To date, EPVs are reported from 15 species of grasshoppers and locusts. The current information on the biochemical characterization of these EPVs is summarized in our review. The DNA genomes of grasshopper and locust EPVs analysed to date have a G+C ratio of approximately 18.5% and genome size estimates generated by various methods range from 180 to 194 kilobase pairs (kbp). Restriction endonuclease enzyme analysis of a number of grasshopper and locust EPV DNAs shows the virus isolates to be distinct and the technique will be useful in identifying virus isolates. The structural proteins of certain grasshopper EPVs have also been analysed. Forty to 50 polypeptides ranging in molecular weight from 12 to 200 kilodaltons (kDa) have been detected by SDS-PAGE analysis of virions released from OBs and the polypeptide profiles are distinct for many of the virus isolates. The proteinaceous matrix of the OB of EPVs contains one predominant protein referred to as spheroidin. The spheroidin protein from most grasshopper EPVs is approximately the same molecular weight, 107 kDa, when analysed by SDS-PAGE. As with other groups of occluded insect viruses, grasshopper EPVs have a protease activity associated with OBs derived from infected insects. The possible role of this protease activity in the infection cycle is discussed. Finally, the role of various molecular techniques for the detection and identification of EPV infections in laboratory and field populations of grasshoppers and locusts is discussed. The development of EPV-specific monoclonal antibodies and DNA hybridization probes for the detection of virus infections is reviewed. As well, the possible use of polymerase chain reaction and randomly amplified polymorphic DNA fingerprinting techniques for the detection and identification of EPV infections is discussed.
Collapse
|
7
|
Perera SC, Wong P, Krell PJ, Arif BM. Expression of heterologous genes in the Amsacta moorei entomopoxvirus. J Virol Methods 2010; 165:1-8. [DOI: 10.1016/j.jviromet.2009.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 11/26/2022]
|
8
|
Lawrence PO, Dillard BE. A homolog of the vaccinia virus D13L rifampicin resistance gene is in the entomopoxvirus of the parasitic wasp, Diachasmimorpha longicaudata. JOURNAL OF INSECT SCIENCE (ONLINE) 2008; 8:8. [PMID: 20345294 PMCID: PMC3061580 DOI: 10.1673/031.008.0801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 05/27/2007] [Indexed: 05/29/2023]
Abstract
The parasitic wasp, Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae), introduces an entomopoxvirus (DlEPV) into its Caribbean fruit fly host, Anastrepha suspensa. (Loew) (Diptera: Tephritidae), during oviposition. DlEPV has a 250-300 kb unipartite dsDNA genome, that replicates in the cytoplasm of the host's hemocytes, and inhibits the host's encapsulation response. The putative proteins encoded by several DlEPV genes are highly homologous with those of poxviruses, while others appear to be DlEPV specific. Here, a 2.34 kb sequence containing a 1.64 kb DlEPV open reading frame within a cloned 4.5 kb EcoR1 fragment (designated R1-1) is described from a DlEPV EcoRI genomic library. This open reading frame is a homolog of the vaccinia virus rifampicin resistance (rif) gene, D13L, and encodes a putative 546 amino acid protein. The DlEPV rif contains two EcoRV, two HindIII, one XbaI, and one DraII restriction sites, and upstream of the open reading frame the fragment also contains EcoRV, HindII, SpEI, and BsP106 sites. Early poxvirus transcription termination signals (TTTTTnT) occur 236 and 315 nucleotides upstream of the consensus poxvirus late translational start codon (TAAATG) and at 169 nucleotides downstream of the translational stop codon of the rif open reading frame. Southern blot hybridization of HindIII-, EcoRI-, and BamH1-restricted DlEPV genomic DNA probed with the labeled 4.5 kb insert confirmed the fidelity of the DNA and the expected number of fragments appropriate to the restriction endonucleases used. Pairwise comparisons between DlEPV amino acids and those of the Amsacta moorei, Heliothis armigera, and Melanoplus sanguinipes entomopoxviruses, revealed 46, 46, and 45 % similarity (identity + substitutions), respectively. Similar values (41-45%) were observed in comparisons with the chordopoxviruses. The mid portion of the DlEPV sequence contained two regions of highest conserved residues similar to those reported for H. armigera entomopoxvirus rifampicin resistance protein. Phylogenetic analysis of the amino acid sequences suggested that DlEPV arose from the same ancestral node as other entomopoxviruses but belongs to a separate clade from those of the grasshopper-infecting M. sanguinipes entomopoxvirus and from the Lepidoptera-infecting (Genus B or Betaentomopoxvirus) A. moorei entomopoxvirus and H. armigera entomopoxvirus. Interestingly, the DlEPV putative protein had only 3-26.4% similarity with RIF-like homologs/orthologs found in other large DNA non-poxviruses, demonstrating its closer relationship to the Poxviridae. DlEPV remains an unassigned member of the Entomopoxvirinae (http://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/index.htm) until its relationship to other diptera-infecting (Gammaentomopoxvirus or Genus C) entomopoxviruses can be verified. The GenBank accession number for the nucleotide sequence data reported in this paper is EF541029.
Collapse
Affiliation(s)
- Pauline O. Lawrence
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611
| | - Barney E. Dillard
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
9
|
Hashimoto Y, Lawrence P. Comparative analysis of selected genes from Diachasmimorpha longicaudata entomopoxvirus and other poxviruses. JOURNAL OF INSECT PHYSIOLOGY 2005; 51:207-20. [PMID: 15749105 PMCID: PMC7094658 DOI: 10.1016/j.jinsphys.2004.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 10/22/2004] [Indexed: 05/16/2023]
Abstract
The Diachasmimorpha longicaudata entomopoxvirus (DlEPV) is the first symbiotic EPV described from a parasitic wasp. The DlEPV is introduced into the tephritid fruit fly larval host along with the wasp egg at oviposition. We sequenced a shotgun genomic library of the DlEPV DNA and analyzed and compared the predicted protein sequences of eight ORFs with those of selected poxviruses and other organisms. BlastP searches showed that five of these are homologous to poxvirus putative proteins such as metalloprotease, a putative membrane protein, late transcription factor-3, virion surface protein, and poly (A) polymerase (PAP) regulatory small subunit. Three of these are similar to those of other organisms such as the gamma-glutamyltransferase (GGT) of Arabidopsis thaliana, eukaryotic initiation factor 4A (eIF4A) of Caenorhabditis briggsae and lambda phage integrase (lambda-Int) of Enterococcus faecium. Transcription motifs for early (TGA,A/T,XXXXA) or late (TAAATG, TAAT, or TAAAT) gene expression conserved in poxviruses were identified with those ORFs. Phylogenetic analysis of multiple alignments of five ORFs and 20 poxvirus homologous sequences and of a concatenate of multiple alignments suggested that DlEPV probably diverged from the ancestral node between the fowlpox virus and the genus B, lepidopteran and orthopteran EPVs, to which Amsacta moorei and Melanoplus sanguinipes EPV, respectively, belong. The DlEPV putative GGT, eIF4A, and lambda-Int contained many conserved domains that typified these proteins. These homologues may be involved in either viral pathogenicity or enhancing parasitism via the gamma-glutamyl cycle and compensation of eIF4A levels in the parasitized fly, or via the integration of a portion of the viral genome into the wasp and/or parasitized fly.
Collapse
Affiliation(s)
| | - P.O. Lawrence
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611-0620, USA
| |
Collapse
|
10
|
Li Q, Liston P, Moyer RW. Functional analysis of the inhibitor of apoptosis (iap) gene carried by the entomopoxvirus of Amsacta moorei. J Virol 2005; 79:2335-45. [PMID: 15681434 PMCID: PMC546542 DOI: 10.1128/jvi.79.4.2335-2345.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Accepted: 09/13/2004] [Indexed: 02/02/2023] Open
Abstract
The entomopoxvirus from Amsacta moorei (AmEPV) contains none of the commonly recognized vertebrate poxvirus apoptotic suppressor genes. However, AmEPV carries a single inhibitor of apoptosis (iap) gene (AMViap) not present in vertebrate poxviruses. The AMViap gene was active when coexpressed with the Drosophila proapoptotic gene hid in Ld652 cells and can rescue cells from apoptosis as shown by increased number of surviving cells and reduced levels of caspase-3-like activity. We also showed that expression of the AMViap gene rescued polyhedron production in Autographa californica M nucleopolyhedrovirus (AcMNPV)Deltap35-infected Sf9 cells during an otherwise abortive infection induced by apoptosis. Surprisingly, deletion of the AMViap gene from the AmEPV genome led to only a modest (10-fold) loss of virion production in infected Ld652 cells, indicating that the AMViap gene is nonessential for virus replication under these conditions. However, infection of Ld652 cells by AmEPV lacking a functional iap gene led to a more rapid induction of cytotoxicity and increased levels of caspase-3-like activity. Similar results were observed and were more pronounced in infected Sf9 and S2 cells. The purified AMVIAP protein also inhibits the enzymatic activities of human caspase-9 and caspase-3 in vitro. Our results indicate that while the AMViap gene was active in controlling apoptosis through the intrinsic pathway, the virus likely encodes additional proteins that also regulate apoptosis.
Collapse
Affiliation(s)
- Qianjun Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610-0266, USA
| | | | | |
Collapse
|
11
|
Becker MN, Greenleaf WB, Ostrov DA, Moyer RW. Amsacta moorei entomopoxvirus expresses an active superoxide dismutase. J Virol 2004; 78:10265-75. [PMID: 15367592 PMCID: PMC516379 DOI: 10.1128/jvi.78.19.10265-10275.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The entomopoxvirus from Amsacta moorei serves as the prototype of the group B entomopoxviruses. One of the interesting genes found in Amsacta moorei entomopoxvirus (AmEPV) is a superoxide dismutase (sod) (open reading frame AMV255). Superoxide dismutases (SODs) catalyze the conversion of superoxide radicals to hydrogen peroxide and oxygen. Many vertebrate poxviruses contain a sod gene, but to date, none have been demonstrated to be active. There are three families of SODs, characterized by their metal ion-binding partners, Fe, Mn, or Cu and Zn. Poxvirus enzymes belong to the Cu-Zn SOD family. Unlike inactive vertebrate poxvirus SODs, AMVSOD contains all the amino acids necessary for function. We expressed and purified a 6X-His-tagged version of the AMVSOD in Escherichia coli. The recombinant AMVSOD demonstrates superoxide dismutase activity both in an in situ gel assay and by stopped flow spectrophotometry. The k(cat)/K(m) for AMVSOD is 4 x 10(7) M(-1)s(-1). In infected cells, the AMVSOD protein behaves as a dimer and is catalytically active; however, disruption of the gene in AMEPV has little or no effect on growth of the virus in cell culture. An analysis of mRNA expression indicates that AMVsod is expressed late during infection of Lymantria dispar (Ld652) cells and produces a discrete nonpolydisperse transcript. Characterization of protein expression with a monoclonal antibody generated against AMVSOD confirms that the AMVSOD protein can be classified as a late, postreplicative gene. Therefore, AMVSOD is the first example of an active poxvirus SOD.
Collapse
Affiliation(s)
- M N Becker
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
12
|
Nakai M, Shiotsuki T, Kunimi Y. An entomopoxvirus and a granulovirus use different mechanisms to prevent pupation of Adoxophyes honmai. Virus Res 2004; 101:185-91. [PMID: 15041186 DOI: 10.1016/j.virusres.2004.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/12/2004] [Accepted: 01/12/2004] [Indexed: 11/17/2022]
Abstract
Adoxophyes honmai larvae inoculated with 10x the 95% lethal concentration of an entomopoxvirus (AdhoEPV) did not pupate, underwent a prolonged larval stage, and died during their final instar, unlike non-infected larvae which pupated after five larval instars. In previous work we showed that a granulovirus (AdhoGV) also retarded host development and prevented pupation of A. honmai larvae. In this study, endocrinological alterations in AdhoEPV-infected larvae were compared to those in AdhoGV-infected larvae. AdhoEPV-infected larvae had no peak of juvenile hormone (JH) esterase activity during the final instar, suggesting that JH titers in virus-infected larvae remained high during this period. In AdhoEPV-infected larvae the ecdysteroid titer remained low during the final instar, whereas in AdhoGV-infected larvae it peaked during the final instar and remained high towards the later stages of this instar. Ecdysteroid UDP-glucosyltransferase (EGT) activity was detected in the hemolymph of AdhoGV-infected A. honmai larvae, suggesting that the ecdysteroid would be inactivated in these insects. No EGT activity was detected in the hemolymph of either AdhoEPV-infected or non-infected A. honmai larvae. Thus, while AdhoEPV and AdhoGV both prevent pupation of A. honmai larvae, the mechanisms by which they do so appear to be different.
Collapse
Affiliation(s)
- Madoka Nakai
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwai, Fuchu, Tokyo 183-8509, Japan.
| | | | | |
Collapse
|
13
|
Bawden AL, Glassberg KJ, Diggans J, Shaw R, Farmerie W, Moyer RW. Complete genomic sequence of the Amsacta moorei entomopoxvirus: analysis and comparison with other poxviruses. Virology 2000; 274:120-39. [PMID: 10936094 DOI: 10.1006/viro.2000.0449] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of the genus B entomopoxvirus from Amsacta moorei (AmEPV) was sequenced and found to contain 232,392 bases with 279 unique open reading frames (ORFs) of greater than 60 amino acids. The central core of the viral chromosome is flanked by 9.4-kb inverted terminal repeats (ITRs), each of which contains 13 ORFs, raising the total number of ORFs within the viral chromosome to 292. ORFs with no known homology to other poxvirus genes were shown to constitute 33.6% of the viral genome. Approximately 28.6% of the AmEPV genome encodes homologs of the mammalian poxvirus colinear core genes, which are found dispersed throughout the AmEPV chromosome. There is also no significant gene order conservation between AmEPV and the orthopteran genus B poxvirus of Melanoplus sanguinipes (MsEPV). Novel AmEPV genes include those encoding a putative ABC transporter and a Kunitz-motif protease inhibitor. The most unusual feature of the AmEPV genome relates to the viral encoded poly(A) polymerase. In all other poxviruses this heterodimeric enzyme consists of a single large and a single small subunit. However, AmEPV appears to encode one large and two distinct small poly(A) polymerase subunits. AmEPV is one of the few entomopoxviruses which can be grown and manipulated in cell culture. The complete genomic sequence of AmEPV paves the way for an understanding and comparison of the molecular properties and pathogenesis between the entomopoxviruses of insects and the more intensively studied vertebrate poxviruses.
Collapse
Affiliation(s)
- A L Bawden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lai-Fook J, Dall DJ. Spindle bodies of Heliothis armigera entomopoxvirus develop in structures associated with host cell endoplasmic reticulum. J Invertebr Pathol 2000; 75:183-92. [PMID: 10753594 DOI: 10.1006/jipa.1999.4905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunoelectron microscopy has shown that morphogenesis of spindle bodies (SB) of Heliothis armigera entomopoxvirus involves an iterative process of condensation, aggregation, and crystallization of the major constituent protein (fusolin) within the perinuclear space and endoplasmic reticulum (ER) of infected cells and in vesicles derived from ER constituents. The ER-specific chaperone BiP has been observed to be associated with developing SBs at all stages of this process, and it is postulated that its sequestration within these bodies may have consequences for host cell metabolism.
Collapse
Affiliation(s)
- J Lai-Fook
- Division of Entomology, CSIRO, ACT, Canberra, 2601, Australia
| | | |
Collapse
|
15
|
Hernández-Crespo P, Veyrunes JC, Cousserans F, Bergoin M. The spheroidin of an entomopoxvirus isolated from the grasshopper Anacridium aegyptium (AaEPV) shares low homology with spheroidins from lepidopteran or coleopteran EPVs. Virus Res 2000; 67:203-13. [PMID: 10867199 DOI: 10.1016/s0168-1702(00)00144-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Based on virion morphology, the current virus taxonomy groups entomopoxviruses (EPVs) (Poxvirus: Entomopoxvirinae) from coleopteran and dipteran hosts in separated genera, wilts it keeps viruses infecting either lepidopteran or orthopteran hosts in the same genus. In contrast to the morphological criteria, the few data available from recent studies at the genetic level have suggested that EPVs infecting different insect orders are phylogenetically distant. In order to elucidate EPVs phylogeny we have cloned and sequence the highly conserved/highly expressed spheroidin gene of Anacridium aegyptium entomopoxvirus (AaEPV). This gene and its promoter is of interest for the development of genetic engineering on EPVs. The spheroidin gene was located in the AaEPV genome by Southern blot and hybridisation with specific degenerated oligonucleotides probes synthesised after partial sequencing of the purified spheroidin protein. A total of 3489 bp were sequenced. This sequence included the coding and promoter region of 969 residues 108. 8 kDa protein identified as spheroidin. AaEPV spheroidin contains 21 cysteine residues (2.2%) and 14 N-glycosylation putative sites distributed along the sequence. The cysteine residues are particularly abundant at the C-terminal end of the protein, with 11 residues in the last 118 aa. Our results confirm that the spheroidin is highly conserved only between EPVs isolated from the same insect order. Polyclonal antibodies raised against AaEPV spherules specifically revealed spheroidin in Western Blots failing to cross-react with MmEPV or AmEPV spheroidins or MmEPV fusolin. Comparison of spheroidins at the aa level demonstrate that AaEPV spheroidin shares only 22.2 and 21.9% identity with the lepidopteran AmEPV and the coleopteran MmEPV spheroidins, respectively, but 82.8% identity with the orthopteran MsEPV spheroidin. Only two highly conserved domains containing the sequence (V/Y)NADTG(C/L) and LFAR(I/A) have been identified in all known spheroidins. The phylogenetic tree constructed according to the CLUSTALX analysis program revealed that EPVs are clearly separated in three groups - lepidopteran, coleopteran and orthopteran - according to the insect order of the virus hosts. In base to our results, the split of the genus Entomopoxvirus B dissociating lepidopteran and orthopteran EPVs into two different genera is suggested.
Collapse
Affiliation(s)
- P Hernández-Crespo
- Unité de Virologie Moléculaire, Laboratoire de Pathologie Comparée, UMR INRA-CNRS 5087, Université Montpellier II, France.
| | | | | | | |
Collapse
|
16
|
Abstract
The cockroach entomopoxvirus caused a chronic infection in cultures of the German cockroach Blattella germanica. Heavily infected specimens showed a reduced mobility. Ellipsoid virus occlusion bodies (8 x 5 to 19 x 12 microm) were found intracellularly in tracheole cells, in the hypodermis, in fat body cells, and in muscles. Several hundred virus particles were integrated in a single occlusion body (OB), their long axis being oriented axially. Ovoid viroids measured 320 x 190 nm and possessed a unilateral, concave core and one lateral body. Starting occlusion, small granules attached to the virus particles which later transformed to a beaded, wavy envelope. An initial halo around the occluded virions disappeared in more central regions of the OB. Virus particles were formed either in a dense cytoplasmic area containing electron-dense viroids, or in a loosely aggregated viroplasm. In the latter, developmental stages were mainly represented by spheres with double membranes enclosing granular material. Spindles and larger crystal-like virus-free inclusion bodies occurred in the cytoplasm. The cytoplasm of infected cells appeared degenerated and the chromatin of the nuclei condensed at the periphery or disintegrated. Taxonomically, the described virus exhibits features of both EPV genus A and EPV genus B. Provisory it is named Blattella germanica EPV (BgEPV). A possible use of the cockroach EPV as a biological control agent is discussed.
Collapse
Affiliation(s)
- R Radek
- Institute of Zoology, University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany.
| | | |
Collapse
|
17
|
Crnov R, Dall DJ. Virions of Heliothis armigera entomopoxvirus contain a homologue of the vaccinia VP8 major core protein. Virus Genes 1999; 19:23-31. [PMID: 10499447 DOI: 10.1023/a:1008132505315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An antigenic 30 K virion protein of Heliothis armigera entomopoxvirus (HaEPV) has been identified as a homologue of the chordopoxvirus (ChPV) VP8 major virion core protein. Like its homologue in vaccinia virus, the mature HaEPV 30 K protein is derived by post-translational cleavage of a precursor at a conserved AGA motif. The HaEPV 30 K protein is the first EPV structural virion protein to be described, and elucidation of its characteristics provides evidence for the assumption that morphological similarities observed between virions of the sub-families Entomopoxvirinae and Chordopoxvirinae by microscopy reflect corresponding similarities at a molecular level. Sequencing of the HaEPV genome adjacent to the 30K locus identified an ORF encoding a homologue of the regulatory sub-unit of the ChPV poly(A) polymerase enzyme; the conceptual product of this ORF showed 25-31% aa sequence identity to those of various ChPVs. The presence of this gene in the HaEPV genome supports the hypothesis that there is a substantial correspondence in basic metabolic processes of members of the two poxvirus sub-families, despite their utilization of divergent host groups. In contrast, the relative positions of the 30 K and poly(A) polymerase loci in the HaEPV genome provide further evidence of substantial genomic re-arrangement subsequent to divergence of these viral taxa.
Collapse
Affiliation(s)
- R Crnov
- Department of Plant Pathology, University of California, Davis 95616, USA.
| | | |
Collapse
|
18
|
Afonso CL, Tulman ER, Lu Z, Oma E, Kutish GF, Rock DL. The genome of Melanoplus sanguinipes entomopoxvirus. J Virol 1999; 73:533-52. [PMID: 9847359 PMCID: PMC103860 DOI: 10.1128/jvi.73.1.533-552.1999] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The family Poxviridae contains two subfamilies: the Entomopoxvirinae (poxviruses of insects) and the Chordopoxvirinae (poxviruses of vertebrates). Here we present the first characterization of the genome of an entomopoxvirus (EPV) which infects the North American migratory grasshopper Melanoplus sanguinipes and other important orthopteran pests. The 236-kbp M. sanguinipes EPV (MsEPV) genome consists of a central coding region bounded by 7-kbp inverted terminal repeats and contains 267 open reading frames (ORFs), of which 107 exhibit similarity to previously described genes. The presence of genes not previously described in poxviruses, and in some cases in any other known virus, suggests significant viral adaptation to the arthropod host and the external environment. Genes predicting interactions with host cellular mechanisms include homologues of the inhibitor of apoptosis protein, stress response protein phosphatase 2C, extracellular matrixin metalloproteases, ubiquitin, calcium binding EF-hand protein, glycosyltransferase, and a triacylglyceride lipase. MsEPV genes with putative functions in prevention and repair of DNA damage include a complete base excision repair pathway (uracil DNA glycosylase, AP endonuclease, DNA polymerase beta, and an NAD+-dependent DNA ligase), a photoreactivation repair pathway (cyclobutane pyrimidine dimer photolyase), a LINE-type reverse transcriptase, and a mutT homologue. The presence of these specific repair pathways may represent viral adaptation for repair of environmentally induced DNA damage. The absence of previously described poxvirus enzymes involved in nucleotide metabolism and the presence of a novel thymidylate synthase homologue suggest that MsEPV is heavily reliant on host cell nucleotide pools and the de novo nucleotide biosynthesis pathway. MsEPV and lepidopteran genus B EPVs lack genome colinearity and exhibit a low level of amino acid identity among homologous genes (20 to 59%), perhaps reflecting a significant evolutionary distance between lepidopteran and orthopteran viruses. Divergence between MsEPV and the Chordopoxvirinae is indicated by the presence of only 49 identifiable chordopoxvirus homologues, low-level amino acid identity among these genes (20 to 48%), and the presence in MsEPV of 43 novel ORFs in five gene families. Genes common to both poxvirus subfamilies, which include those encoding enzymes involved in RNA transcription and modification, DNA replication, protein processing, virion assembly, and virion structural proteins, define the genetic core of the Poxviridae.
Collapse
Affiliation(s)
- C L Afonso
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | |
Collapse
|
19
|
Li Y, Yuan S, Moyer RW. The non-permissive infection of insect (gypsy moth) LD-652 cells by Vaccinia virus. Virology 1998; 248:74-82. [PMID: 9705257 DOI: 10.1006/viro.1998.9241] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The members of Poxviridae family are among the most complex of animal viruses and subfamily members infect both vertebrate (Chordopoxvirinae) and invertebrate (Entomopoxvirinae) hosts, respectively. Vaccinia virus (VV) is the most commonly studied vertebrate virus and the entomopoxvirus of Amsacta moorei (AmEPV) is the prototypic insect virus. AmEPV, while not able to productively infect vertebrate cells, does enter vertebrate cells and expresses early genes after which the infection aborts although the cells survive (Y. Li, R. L. Hall, and R. W. Moyer. J.Virol. 71(12), 95579562, 1997). We show here that a recombinant VV, containing the lacZ gene regulated by the cowpox virus A-type inclusion (ATI) late promoter, likewise does not productively infect insect cells. Our results suggest that the recombinant VV enters insect cells, host protein synthesis is inhibited, early gene expression is normal, and viral DNA replication occurs as does late protein synthesis. However, little if any proteolytic processing of late viral proteins, typical of morphogenesis, is observed. Electron micrographs of infected cells suggest that while cytoplasmic virosomes (factories) are formed, there is little indication of further morphogenesis or any formation of mature virions. Therefore, while both orthopoxviruses and entomopoxviruses fail to replicate in heterologous hosts, the nature of abortive infections is quite different.
Collapse
Affiliation(s)
- Y Li
- College of Medicine, University of Florida, Gainesville, Florida, 32010-0266, USA
| | | | | |
Collapse
|
20
|
Li X, Wallis JL, Barrett JW, Krell PJ, Arif BM. Characterization of the nucleoside triphosphate phosphohydrolase I gene from the Choristoneura fumiferana entomopoxvirus. Virus Res 1998; 56:93-105. [PMID: 9784068 DOI: 10.1016/s0168-1702(98)00061-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poxviruses carry the enzyme, nucleoside triphosphate phosphohydrolase I (NPH I), required for early viral transcription in the cytoplasm of infected cells. The gene (nph I) encoding this enzyme from Choristoneura fumiferana entomopoxvirus (CfEPV) has been located in the viral genome, cloned and characterized. It has an open reading frame of 1941 nucleotides, potentially encoding a protein with a predicted molecular mass of 76.04 kDa and a pI of 8.83. It has a TAAATG motif where the trinucleotide ATG represents the translational start signal an AT-rich (88%) sequence and an early transcription termination signal (TTTTTAT) upstream of the ATG codon. Northern blot analysis of mRNA from infected larvae showed that a single 4.0 kb transcript which appeared late at day 20 post infection (p.i.) and its transcription continued till day 37 p.i.. Primer extension experiments suggested that the main transcripts started at 15 bases upstream of AUG codon. NPH I homologues have been found in the genomes of other entomopoxviruses and vertebrate poxviruses. Alignment of their amino acid sequences suggested three conserved domains, two of which are considered as ATP binding domains. The most similar homologue is from the closely related entomopoxvirus. Choristoneura biennis EPV (CbEPV) where 98.2% of nucleotide and 97.2% of amino acid identities are observed, respectively. A single nucleotide difference in CfEPV nph I was sufficient to distinguish it from CbEPV by PCR amplification and digestion with a restriction enzyme.
Collapse
Affiliation(s)
- X Li
- Great Lakes Forestry Centre, Laboratory for Molecular Virology, Sault Ste. Marie, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Antoine G, Scheiflinger F, Dorner F, Falkner FG. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 1998; 244:365-96. [PMID: 9601507 DOI: 10.1006/viro.1998.9123] [Citation(s) in RCA: 397] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete genomic DNA sequence of the highly attenuated vaccinia strain modified vaccinia Ankara (MVA) was determined. The genome of MVA is 178 kb in length, significantly smaller than that of the vaccinia Copenhagen genome, which is 192 kb. The 193 open reading frames (ORFs) mapped in the MVA genome probably correspond to 177 genes, 25 of which are split and/or have suffered mutations resulting in truncated proteins. The left terminal genomic region of MVA contains four large deletions and one large insertion relative to the Copenhagen strain. In addition, many ORFs in this region are fragmented, leaving only eight genes structurally intact and therefore presumably functional. The inserted DNA codes for a cluster of genes that is also found in the vaccinia WR strain and in cowpox virus and includes a highly fragmented gene homologous to the cowpox virus host range gene, providing further evidence that a cowpox-like virus was the ancestor of vaccinia. Surprisingly, the central conserved region of the genome also contains some fragmented genes, including ORF F5L, encoding a major membrane protein, and ORFs F11L and O1L, encoding proteins of 39.7 and 77.6 kDa, respectively. The right terminal genomic region carries three large deletions all classical poxviral immune evasion genes and all ankyrin-like genes located in this region are fragmented except for those encoding the interleukin-1 beta receptor and the 68-kDa ankyrin-like protein B18R. Thus, the attenuated phenotype of MVA is the result of numerous mutations, particularly affecting the host interactive proteins, including the ankyrin-like genes, but also involving some structural proteins.
Collapse
Affiliation(s)
- G Antoine
- Biomedical Research Center, Hyland-Immuno, Orth/Donau, Austria
| | | | | | | |
Collapse
|
22
|
Mitsuhashi W, Saito H, Sato M, Nakashima N, Noda H. Complete nucleotide sequence of spheroidin gene of Anomala cuprea entomopoxvirus. Virus Res 1998; 55:61-9. [PMID: 9712512 DOI: 10.1016/s0168-1702(98)00034-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complete nucleotide sequence of the spheroidin gene of Anomala cuprea entomopoxvirus (AcEPV) was determined. The sequence was compared with those of spheroidin genes of EPVs such as Melolontha melolontha EPV (MmEPV, Genus A), Choristoneura fumiferana EPV (CfEPV, Genus B) and Amsacta moorei EPV (AmEPV, Genus B). The gene harbored an open reading frame (ORF) of 2826 nt, with the same size as that of MmEPV belonging to the same genus, capable of coding for a polypeptide of 109.0 kDa. The predicted amino acid (aa) sequence showed a greater or moderate similarity to the corresponding sequence of the other EPVs, showing a 94, 40 and 41% aa identity with MmEPV, CfEPV and AmEPV, respectively; the identity was 89, 53 and 54% at the nucleotide level. The hydropathy plots also showed a greater similarity in organization to MmEPV and moderate similarity to the viruses of Genus B. In the polypeptide, 44 cysteine residues, which are likely to be involved in paracrystal formation and seven potential N-glycosylation sites were detected. The number of cysteine residues and N-glycosylation sites also depended on the difference in genera (A or B). Thus, the spheroidin gene of EPVs was well conserved within the same genus.
Collapse
Affiliation(s)
- W Mitsuhashi
- National Institute of Sericultural and Entomological Science, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
23
|
Alaoui-Ismaili MH, Richardson CD. Insect virus proteins (FALPE and p10) self-associate to form filaments in infected cells. J Virol 1998; 72:2213-23. [PMID: 9499079 PMCID: PMC109518 DOI: 10.1128/jvi.72.3.2213-2223.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Entomopoxviruses and baculoviruses are pathogens of insects which replicate in the cytoplasm and nuclei of their host cells, respectively. During the late stages of infection, both groups of viruses produce occlusion bodies which serve to protect virions from the external environment. Immunofluorescence and electron microscopy studies have shown that large bundles of filaments are associated with these occlusion bodies. Entomopoxviruses produce cytoplasmic fibrils which appear to be composed of the filament-associated late protein of entomopoxviruses (FALPE). Baculoviruses, on the other hand, yield filaments in the nuclei and cytoplasm of the infected cell which are composed of a protein called p10. Despite significant differences in their sequences, FALPE and p10 have similar hydrophilicity profiles, and each has a proline-rich stretch of amino acids at its carboxyl terminus. Evidence that FALPE and p10 could produce filaments in the absence of other viral proteins is presented. When FALPE was expressed in insect cells from a recombinant baculovirus, filaments similar to those produced by the wild-type Amsacta moorei entomopoxvirus were observed. In addition, when expression plasmids containing FALPE or p10 genes were transfected into Vero monkey kidney cells, filament structures similar to those found in infected insect cells were produced. The manner in which FALPE and p10 subunits interact to form polymers was investigated through deletion and site-specific mutagenesis in conjunction with immunofluorescence microscopy, yeast two-hybrid protein interaction analysis, and chemical cross-linking of adjacent molecules. These studies indicated that the amino termini of FALPE and p10 were essential for subunit interaction. Although deletion of the carboxy termini did not affect this interaction, it did inhibit filament formation. In addition, modification of several potential sites for phosphorylation also abolished filament assembly. We concluded that although the sequences of FALPE and p10 were different, the structural and functional properties of the two polypeptides appeared to be similar.
Collapse
|
24
|
Li Y, Hall RL, Moyer RW. Transient, nonlethal expression of genes in vertebrate cells by recombinant entomopoxviruses. J Virol 1997; 71:9557-62. [PMID: 9371619 PMCID: PMC230263 DOI: 10.1128/jvi.71.12.9557-9562.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The group B entomopoxvirus (EPV) from Amsacta moorei (AmEPV) productively infects only insect cells. A series of AmEPV-lacZ recombinants was constructed in which the lacZ gene was regulated by either late (the AmEPV spheroidin or the cowpox virus A-type inclusion [ATI]) or early (the AmEPV esp [early strong promoter; derived from a 42-kDa AmEPV protein] or the Melolontha melolontha EPV fusolin, fus) virus promoters. When the AmEPV recombinants were used to infect vertebrate cells, beta-galactosidase expression occurred (in >30% of the cells) when lacZ was regulated by either the fus or esp early promoters but not when lacZ was regulated by the late promoters (spheroidin or ATI). Therefore, AmEPV enters vertebrate cells and undergoes at least a partial uncoating and early, but not late, viral genes are expressed. Neither viral DNA synthesis nor cytopathic effects were observed under any infection conditions. When an AmEPV recombinant virus containing the Aequorea victoria green fluorescent protein gene (gfp) under the control of the esp promoter was used to infect vertebrate cells at a low multiplicity of infection, single fluorescent cells resulted, which continued to divide over a period of several days, ultimately forming fluorescent cell clusters, suggesting that vertebrate cells survive the infection and continue to grow. Therefore, AmEPV may prove to be a highly efficient, nontoxic method of gene delivery into vertebrate cells for transient gene expression.
Collapse
Affiliation(s)
- Y Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville 32610-0266, USA
| | | | | |
Collapse
|
25
|
Mitsuhashi W, Saito H, Sato M. Complete nucleotide sequence of the fusolin gene of an entomopoxvirus in the cupreous chafer, Anomala cuprea Hope (Coleoptera: Scarabaeidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1997; 27:869-876. [PMID: 9474783 DOI: 10.1016/s0965-1748(97)00069-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The fusolin gene of Anomala cuprea entomopoxvirus (AcEPV) was cloned and sequenced. The sequence was compared with that of fusolin genes of EPVs from other insects such as Melolontha melolontha (MmEPV), Choristoneura biennis (CbEPV) and Heliothis armigera (HaEPV) previously reported. The gene harbored a single open reading frame (ORF) of 1119 nt capable of coding for a protein of 43.3 kDa. The microsequencing of the protein showed the cleavage of a signal peptide of 16 amino acid (aa) residues. The predicted aa sequence revealed significant homologies with the corresponding sequence in other EPVs, showing a 53, 51 and 52% aa-identity with MmEPV, CbEPV and HaEPV, respectively. In the ORF, five 'conserved regions' described by Vialard et al. (1990, Journal of Virology 64, 5804-5811) like other EPVs were detected. Eleven cysteine residues, presumably involved in paracrystal formation, were also detected. On the other hand, AcEPV, belonging to Genus A, harbored a potential N-glycosylation site in the ORF like CbEPV and HaEPV belonging to Genus B which was not, however, detected in MmEPV belonging to the same Genus as AcEPV. Furthermore, the last 330 bp region of the ORF revealed a low homology with that of MmEPV.
Collapse
Affiliation(s)
- W Mitsuhashi
- National Institute of Sericultural and Entomological Science, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
26
|
Petersen BO, Hall RL, Moyer RW, Shuman S. Characterization of a DNA topoisomerase encoded by Amsacta moore entomopoxvirus. Virology 1997; 230:197-206. [PMID: 9143275 DOI: 10.1006/viro.1997.8495] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have identified an Amsacta moorei entomopoxvirus (AmEPV) gene encoding a DNA topoisomerase. The 333-amino acid AmEPV topoisomerase displays instructive sequence similarities to the previously identified topoisomerases encoded by five genera of vertebrate poxviruses. One hundred nine amino acids are identical or conserved among the six proteins. The gene encoding AmEPV topoisomerase was expressed in bacteria and the recombinant enzyme was partially purified. AmEPV topoisomerase is a monomeric enzyme that catalyzes the relaxation of supercoiled DNA. Like the vaccinia, Shope fibroma virus, and Orf virus enzymes, the AmEPV topoisomerase forms a covalent adduct with duplex DNA at the target sequence CCCTT decreases. The kinetic and equilibrium parameters of the DNA cleavage reaction of AmEPV topoisomerase (Kobs = 0.08 sec-1; Kcl = 0.22) are similar to those of the vaccinia virus enzyme.
Collapse
Affiliation(s)
- B O Petersen
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | | | |
Collapse
|
27
|
Li X, Barrett JW, Yuen L, Arif BM. Cloning, sequencing and transcriptional analysis of the Choristoneura fumiferana entomopoxvirus spheroidin gene. Virus Res 1997; 47:143-54. [PMID: 9085546 DOI: 10.1016/s0168-1702(96)01409-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Choristoneura fumiferana entomopoxvirus (CfEPV) spheroidin gene was identified and localized on three XbaI restriction fragments (total size 4.73 kb). The fragments were cloned and sequenced. The spheroidin gene had an open reading frame of 2997 nucleotides encoding a putative protein with a predicted size of 115 kDa. Sequence analysis indicated that the putative protein contained 14 potential N-glycosylation sites (Asn-X-Thr; Asn-X-Ser), that are probably not used since the protein migrates on SDS-PAGE as a 115 kDa band. The protein is rich in cysteine residues (34), which explains the need for reducing agents when dissolving the occlusion bodies with alkali. The spheroidin gene sequence contains motifs characteristic of the late genes of poxviruses. These include the typical TAAATG sequence at the beginning of the coding region and two early gene termination signals (TTTTTNT) in the untranslated region of the gene. The promoter region has three TAA termination signals immediately upstream of the ATG start site. Spheroidin (SPH) appears to be conserved among different EPVs. There was 82.2% identity and 97.2% similarity at the amino acid level between the SPHs of CfEPV and Amsacta moorei EPV. Less conservation was seen with the SPH from Melolontha melolontha EPV (39.8% identity and 73.4% similarity). Transcriptional analyses of the spheroidin gene by Northern blots showed that the transcript had a size of approximately 3 kb, which is in agreement with the length of the ORF. Primer extension results, anchor PCR and sequencing confirmed that there was a poly (A)17 tract at the 5' end of the spheroidin gene transcript, a structure typical of late gene transcripts of poxviruses.
Collapse
Affiliation(s)
- X Li
- Canadian Forest Service, Sault Ste. Marie, Ontario, Canada
| | | | | | | |
Collapse
|
28
|
Zsak L, Lu Z, Kutish GF, Neilan JG, Rock DL. An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene. J Virol 1996; 70:8865-71. [PMID: 8971015 PMCID: PMC190983 DOI: 10.1128/jvi.70.12.8865-8871.1996] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We described previously an African swine fever virus (ASFV) open reading frame, 23-NL, in the African isolate Malawi Lil 20/1 whose product shared significant similarity in a carboxyl-terminal domain with those of a mouse myeloid differentiation primary response gene, MyD116, and the herpes simplex virus neurovirulence-associated gene, ICP34.5 (M. D. Sussman, Z. Lu, G. Kutish, C. L. Afonso, P. Roberts, and D. L. Rock, J. Virol. 66:5586-5589, 1992). The similarity of 23-NL to these genes suggested that this gene may function in some aspect of ASFV virulence and/or host range. Sequence analysis of additional pathogenic viral isolates demonstrates that this gene is highly conserved among diverse ASFV isolates and that the gene product exists in either a long (184 amino acids as in 23-NL) or a short form (70 to 72 amino acids in other examined ASFV isolates). The short form of the gene, NL-S, encodes the complete highly conserved, hydrophilic, carboxyl-terminal domain of 56 amino acids common to 23-NL, MyD116, and ICP34.5. Recombinant NL-S gene deletion mutants and their revertants were constructed from the pathogenic ASFV isolate E70 and an E70 monkey cell culture-adapted virus, MS44, to study gene function. Although deletion of NL-S did not affect viral growth in primary swine macrophages or Vero cell cultures in vitro, the null mutant, E70/43, exhibited a marked reduction in pig virulence. In contrast to revertant or parental E70 where mortality was 100%, all E70/43-infected animals survived infection. With the exception of a transient fever response, E70/43-infected animals remained clinically normal and exhibited a 1,000-fold reduction in both mean and maximum viremia titers. All convalescent E70/43-infected animals survived infection when challenged with parental E70 at 30 days postinfection. These data indicate that the highly conserved NL-S gene of ASFV, while nonessential for growth in swine macrophages in vitro, is a significant viral virulence factor and may function as a host range gene.
Collapse
Affiliation(s)
- L Zsak
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944-0848, USA
| | | | | | | | | |
Collapse
|
29
|
Alaoui-Ismaili MH, Richardson CD. Identification and characterization of a filament-associated protein encoded by Amsacta moorei entomopoxvirus. J Virol 1996; 70:2697-705. [PMID: 8627743 PMCID: PMC190126 DOI: 10.1128/jvi.70.5.2697-2705.1996] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A novel protein which is expressed at high levels in insect cells infected with Amsacta moorei entomopoxvirus was identified by our laboratory. This viral gene product migrates as a 25/27-kDa doublet when subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. It is expressed at late times of infection and is present in infected cells but is absent in purified extracellular virions and occlusion bodies. The gene encoding this polypeptide was mapped on the viral genome, and cDNA clones were generated and sequenced. The predicted protein was shown to be phosphorylated and contained an unusual 10-unit proline-glutamic acid repeat element. A polyclonal antiserum was produced against a recombinant form of the protein expressed in Escherichia coli, and a monoclonal antibody which reacted with the proline-glutamic acid motif was also identified. Immunofluorescence and immunoelectron microscopy techniques revealed that this protein is associated with large cytoplasmic fibrils which accumulate in the cytoplasm between 96 and 120 h postinfection. We subsequently called this viral polypeptide filament-associated late protein of entomopoxvirus. The fibrils containing this polypeptide are closely associated with occlusion bodies and may play a role in their morphogenesis and maturation.
Collapse
Affiliation(s)
- M H Alaoui-Ismaili
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
30
|
Kane EM, Shuman S. Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the I7 gene that encodes a virion component. J Virol 1993; 67:2689-98. [PMID: 8386272 PMCID: PMC237591 DOI: 10.1128/jvi.67.5.2689-2698.1993] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ts16 mutation of vaccinia virus WR (R. C. Condit, A. Motyczka, and G. Spizz, Virology 128:429-443, 1983) has been mapped by marker rescue to the I7L open reading frame located within the genomic HindIII I DNA fragment. The I7 gene encodes a 423-amino-acid polypeptide. Thermolabile growth was attributed to an amino acid substitution, Pro-344-->Leu, in the predicted I7 protein. A normal temporal pattern of viral protein synthesis was elicited in cells infected with ts16 at the nonpermissive temperature (40 degrees C). Electron microscopy revealed a defect in virion assembly at 40 degrees C. Morphogenesis was arrested at a stage subsequent to formation of spherical immature particles. Western immunoblot analysis with antiserum directed against the I7 polypeptide demonstrated an immunoreactive 47-kDa polypeptide accumulating during the late phase of synchronous vaccinia virus infection. Immunoblotting of extracts of wild-type virions showed that the I7 protein is encapsidated within the virus core. The I7 polypeptide displays amino acid sequence similarity to the type II DNA topoisomerase of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- E M Kane
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021
| | | |
Collapse
|
31
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:935-58. [PMID: 1542609 PMCID: PMC312073 DOI: 10.1093/nar/20.4.935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|