1
|
Pérez-Lázaro S, Barrio T, Bravo SB, Sevilla E, Otero A, Chantada-Vázquez MDP, Martín-Burriel I, Requena JR, Badiola JJ, Bolea R. New preclinical biomarkers for prion diseases in the cerebrospinal fluid proteome revealed by mass spectrometry. Vet Q 2024; 44:1-15. [PMID: 39520708 PMCID: PMC11552261 DOI: 10.1080/01652176.2024.2424837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/16/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Current diagnostic methods for prion diseases only work in late stages of the disease when neurodegeneration is irreversible. Therefore, biomarkers that can detect the disease before the onset of clinical symptoms are necessary. High-throughput discovery proteomics is of great interest in the search for such molecules. Here we used mass spectrometry to analyse the cerebrospinal fluid proteome in an animal prion disease: preclinical and clinical sheep affected with natural scrapie, and healthy sheep. Interestingly, we found 46 proteins in the preclinical stage that were significantly altered (p < 0.01) compared to healthy sheep, mainly associated with biological processes such as stress and inflammatory responses. Five of them were selected for validation by enzyme-like immunosorbent assay: synaptotagmin binding, cytoplasmic RNA interacting protein (SYNCRIP), involved in nucleic acid metabolism; phospholipase D3 (PLD3) and cathepsin D (CTSD), both related to lysosomal apoptosis; complement component 4 (C4), an element of the classical immune response; and osteopontin (SPP1), a proinflammatory cytokine. These proteins significantly increased in the preclinical stage and maintained their levels in the clinical phase, except for CTSD, whose concentration returned to basal levels in the clinical group. Further research is ongoing to explore their potential as preclinical biomarkers of prion diseases.
Collapse
Affiliation(s)
- Sonia Pérez-Lázaro
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Tomás Barrio
- UMR Institut National de La Recherche Pour L’Agriculture, L’Alimentation Et L’Environment (INRAE), École Nationale Vétérinaire de Toulouse (ENVT) 1225 IHAP (Interactions Hôtes-Agents Pathogènes), Toulouse, France
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Eloisa Sevilla
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Alicia Otero
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - María del Pilar Chantada-Vázquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Inmaculada Martín-Burriel
- Laboratory of Genetics and Biochemistry (LAGENBIO), Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Juan J. Badiola
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| | - Rosa Bolea
- Centre for Encephalopathies and Emerging Transmissible Diseases, Faculty of Veterinary Sciences, University of Zaragoza – Agri-Food Institute of Aragon (IA2), Zaragoza, Spain
| |
Collapse
|
2
|
Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, Leone M, Solfrizzi V, Greco A, Daniele A, Watling M, Panza F, Seripa D. Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease? Ther Adv Chronic Dis 2022; 13:20406223221081605. [PMID: 35321401 PMCID: PMC8935560 DOI: 10.1177/20406223221081605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Human apolipoprotein E (ApoE) is a 299-amino acid secreted glycoprotein that binds cholesterol and phospholipids. ApoE exists as three common isoforms (ApoE2, ApoE3, and ApoE4) and heterozygous carriers of the ε4 allele of the gene encoding ApoE (APOE) have a fourfold greater risk of developing Alzheimer’s disease (AD). The enzymes thrombin, cathepsin D, α-chymotrypsin-like serine protease, and high-temperature requirement serine protease A1 are responsible for ApoE proteolytic processing resulting in bioactive C-terminal-truncated fragments that vary depending on ApoE isoforms, brain region, aging, and neural injury. The objectives of the present narrative review were to describe ApoE processing, discussing current hypotheses about the potential role of various ApoE fragments in AD pathophysiology, and reviewing the current development status of different anti-ApoE drugs. The exact mechanism by which APOE gene variants increase/decrease AD risk and the role of ApoE fragments in the deposition are not fully understood, but APOE is known to directly affect tau-mediated neurodegeneration. ApoE fragments co-localize with neurofibrillary tangles and amyloid β (Aβ) plaques, and may cause neurodegeneration. Among anti-ApoE approaches, a fascinating strategy may be to therapeutically overexpress ApoE2 in APOE ε4/ε4 carriers through vector administration or liposomal delivery systems. Another approach involves reducing ApoE4 expression by intracerebroventricular antisense oligonucleotides that significantly decreased Aβ pathology in transgenic mice. Differences in the proteolytic processing of distinct ApoE isoforms and the use of ApoE fragments as mimetic peptides in AD treatment are also under investigation. Treatment with peptides that mimic the structural and biological properties of native ApoE may reduce Aβ deposition, tau hyperphosphorylation, and glial activation in mouse models of Aβ pathology. Alternative strategies involve the use of ApoE4 structure correctors, passive immunization to target a certain form of ApoE, conversion of the ApoE4 aminoacid sequence into that of ApoE3 or ApoE2, and inhibition of the ApoE-Aβ interaction.
Collapse
Affiliation(s)
- Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia 71013, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuela Resta
- Translational Medicine and Management of Health Systems, University of Foggia, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Solfrizzi
- ‘Cesare Frugoni’ Internal and Geriatric Medicine and Memory Unit, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Antonio Greco
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy; Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Francesco Panza
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Population Health Unit, Healthy Aging Phenotypes Research Unit, ‘Salus in Apulia Study’, National Institute of Gastroenterology ‘Saverio de Bellis’, Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Hematology and Stem Cell Transplant Unit, ‘Vito Fazzi’ Hospital, Lecce, Italy
| |
Collapse
|
3
|
Gal J, Katsumata Y, Zhu H, Srinivasan S, Chen J, Johnson LA, Wang WX, Golden LR, Wilcock DM, Jicha GA, Cykowski MD, Nelson PT. Apolipoprotein E Proteinopathy Is a Major Dementia-Associated Pathologic Biomarker in Individuals with or without the APOE Epsilon 4 Allele. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:564-578. [PMID: 34954207 PMCID: PMC8895423 DOI: 10.1016/j.ajpath.2021.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
The amygdala is vulnerable to multiple or "mixed" mis-aggregated proteins associated with neurodegenerative conditions that can manifest clinically with amnestic dementia; the amygdala region is often affected even at earliest disease stages. With the original intent of identifying novel dementia-associated proteins, the detergent-insoluble proteome was characterized from the amygdalae of 40 participants from the University of Kentucky Alzheimer's Disease Center autopsy cohort. These individuals encompassed a spectrum of clinical conditions (cognitively normal to severe amnestic dementia). Polypeptides from the detergent-insoluble fraction were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. As anticipated, portions of peptides previously associated with neurologic diseases were enriched from subjects with dementia. Among all detected peptides, Apolipoprotein E (ApoE) stood out: even more than the expected Tau, APP/Aβ, and α-Synuclein peptides, ApoE peptides were strongly enriched in dementia cases, including from individuals lacking the APOE ε4 genotype. The amount of ApoE protein detected in detergent-insoluble fractions was robustly associated with levels of complement proteins C3 and C4. Immunohistochemical staining of APOE ε3/ε3 subjects' amygdalae confirmed ApoE co-localization with C4 in amyloid plaques. Thus, analyses of human amygdala proteomics indicate that rather than being only an "upstream" genetic risk factor, ApoE is an aberrantly aggregated protein in its own right, and show that the ApoE protein may play active disease-driving mechanistic roles in persons lacking the APOE ε4 allele.
Collapse
Affiliation(s)
- Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky,Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky,Research & Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Sukanya Srinivasan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Lance Allen Johnson
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Pathology, University of Kentucky, Lexington, Kentucky
| | | | - Donna M. Wilcock
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Neurology, University of Kentucky, Lexington, Kentucky
| | | | - Peter Tobias Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky; Department of Pathology, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
4
|
Horta-López PH, Mendoza-Franco G, Rodríguez-Cruz F, Torres-Cruz FM, Hernández-Echeagaray E, Jarero-Basulto JJ, Rícny J, Garduño BF, Garcia-Sierra F. Association of α-1-Antichymotrypsin Expression with the Development of Conformational Changes of Tau Protein in Alzheimer's Disease Brain. Neuroscience 2022; 518:83-100. [PMID: 35007692 DOI: 10.1016/j.neuroscience.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
In Alzheimer's disease (AD), two mutually exclusive amino-terminal-dependent conformations have been reported to occur during the aggregation of Tau protein into neurofibrillary tangles (NFTs). An early conformation of full-length Tau, involving the bending of the amino terminus over the third repeated domain, is recognized by the Alz-50 antibody, followed by a second conformation recognized by Tau-66 antibody that depends on the folding of the proline-rich region over the third repeated domain in a molecule partially truncated at the amino- and carboxyl-termini. α-1-antichymotrypsin (ACT) is an acute phase serum glycoprotein that accumulates abnormally in the brain of AD patients, and since it is considered to promote the in vitro and in vivo aggregation of amyloid-β, we here seek further evidence that ACT may also contribute to the abnormal aggregation of Tau in AD. By analyzing brain samples from a population of AD cases under immunofluorescence and high-resolution confocal microscopy, we demonstrate here the abundant expression of ACT in hippocampal neurons, visualized as a granular diffuse accumulation, frequently reaching the nuclear compartment. In a significant number of these neurons, intracellular NFTs composed of abnormally phosphorylated and truncated Tau at Asp421 were also observed to coexist in separated regions of the cytoplasm. However, we found strong colocalization between ACT and diffuse aggregates of Tau-66-positive granules, which was not observed with Alz-50 antibody. These results suggest that ACT may play a role during the development of Tau conformational changes facilitating its aggregation during the formation of the neurofibrillary pathology in AD.
Collapse
Affiliation(s)
- Perla H Horta-López
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Graciela Mendoza-Franco
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Fanny Rodríguez-Cruz
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Francisco M Torres-Cruz
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elizabeth Hernández-Echeagaray
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jose J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan, Mexico
| | - Jan Rícny
- National Institute of Mental Health, Klecany, Czech Republic
| | - Benjamín Florán Garduño
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| | - Francisco Garcia-Sierra
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|
5
|
Pedrini S, Hone E, Gupta VB, James I, Teimouri E, Bush AI, Rowe CC, Villemagne VL, Ames D, Masters CL, Rainey-Smith S, Verdile G, Sohrabi HR, Raida MR, Wenk MR, Taddei K, Chatterjee P, Martins I, Laws SM, Martins RN. Plasma High Density Lipoprotein Small Subclass is Reduced in Alzheimer's Disease Patients and Correlates with Cognitive Performance. J Alzheimers Dis 2021; 77:733-744. [PMID: 32741823 PMCID: PMC7592676 DOI: 10.3233/jad-200291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: The link between cholesterol and Alzheimer’s disease (AD) has received much attention, as evidence suggests high levels of cholesterol might be an AD risk factor. The carriage of cholesterol and lipids through the body is mediated via lipoproteins, some of which, particularly apolipoprotein E (ApoE), are intimately linked with AD. In humans, high density lipoprotein (HDL) is regarded as a “good” lipid complex due to its ability to enable clearance of excess cholesterol via ‘cholesterol reverse transport’, although its activities in the pathogenesis of AD are poorly understood. There are several subclasses of HDL; these range from the newly formed small HDL, to much larger HDL. Objective: We examined the major subclasses of HDL in healthy controls, mild cognitively impaired, and AD patients who were not taking statins to determine whether there were HDL profile differences between the groups, and whether HDL subclass levels correlated with plasma amyloid-β (Aβ) levels or brain Aβ deposition. Methods: Samples from AIBL cohort were used in this study. HDL subclass levels were assessed by Lipoprint while Aβ1–42 levels were assessed by ELISA. Brain Aβ deposition was assessed by PET scan. Statistical analysis was performed using parametric and non-parametric tests. Results: We found that small HDL subclass is reduced in AD patients and it correlates with cognitive performance while plasma Aβ concentrations do not correlate with lipid profile or HDL subfraction levels. Conclusion: Our data indicate that AD patients exhibit altered plasma HDL profile and that HDL subclasses correlate with cognitive performances.
Collapse
Affiliation(s)
- Steve Pedrini
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Eugene Hone
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Veer B Gupta
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elham Teimouri
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ashley I Bush
- CRC for Mental Health, Carlton South, Victoria, Australia.,The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - David Ames
- National Ageing Research Institute, Parkville, Victoria, Australia.,University of Melbourne Academic unit for Psychiatry of Old Age, St George's Hospital, Kew, Victoria, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Giuseppe Verdile
- School of Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Hamid R Sohrabi
- Centre for Healthy Ageing, School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia
| | - Manfred R Raida
- Life Science Institute, Singapore Lipidomics Incubator, National University of Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kevin Taddei
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Pratishtha Chatterjee
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Simon M Laws
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia
| | - Ralph N Martins
- School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia.,CRC for Mental Health, Carlton South, Victoria, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
6
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
7
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
8
|
C/EBPβ is a key transcription factor for APOE and preferentially mediates ApoE4 expression in Alzheimer's disease. Mol Psychiatry 2021; 26:6002-6022. [PMID: 33339957 PMCID: PMC8758498 DOI: 10.1038/s41380-020-00956-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The apolipoprotein E ε4 (APOE4) allele is a major genetic risk factor for Alzheimer's disease (AD), and its protein product, ApoE4, exerts its deleterious effects mainly by influencing amyloid-β (Aβ) and Tau (neurofibrillary tangles, NFTs) deposition in the brain. However, the molecular mechanism dictating its expression during ageing and in AD remains incompletely clear. Here we show that C/EBPβ acts as a pivotal transcription factor for APOE and mediates its mRNA levels in an age-dependent manner. C/EBPβ binds the promoter of APOE and escalates its expression in the brain. Knockout of C/EBPβ in AD mouse models diminishes ApoE expression and Aβ pathologies, whereas overexpression of C/EBPβ accelerates AD pathologies, which can be attenuated by anti-ApoE monoclonal antibody or deletion of ApoE via its specific shRNA. Remarkably, C/EBPβ selectively promotes more ApoE4 expression versus ApoE3 in human neurons, correlating with higher activation of C/EBPβ in human AD brains with ApoE4/4 compared to ApoE3/3. Therefore, our data support that C/EBPβ is a crucial transcription factor for temporally regulating APOE gene expression, modulating ApoE4's role in AD pathogenesis.
Collapse
|
9
|
Tsiolaki PL, Katsafana AD, Baltoumas FA, Louros NN, Iconomidou VA. Hidden Aggregation Hot-Spots on Human Apolipoprotein E: A Structural Study. Int J Mol Sci 2019; 20:ijms20092274. [PMID: 31071995 PMCID: PMC6539603 DOI: 10.3390/ijms20092274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/13/2023] Open
Abstract
Human apolipoprotein E (apoE) is a major component of lipoprotein particles, and under physiological conditions, is involved in plasma cholesterol transport. Human apolipoprotein E found in three isoforms (E2; E3; E4) is a member of a family of apolipoproteins that under pathological conditions are detected in extracellular amyloid depositions in several amyloidoses. Interestingly, the lipid-free apoE form has been shown to be co-localized with the amyloidogenic Aβ peptide in amyloid plaques in Alzheimer’s disease, whereas in particular, the apoE4 isoform is a crucial risk factor for late-onset Alzheimer’s disease. Evidence at the experimental level proves that apoE self-assembles into amyloid fibrilsin vitro, although the misfolding mechanism has not been clarified yet. Here, we explored the mechanistic insights of apoE misfolding by testing short apoE stretches predicted as amyloidogenic determinants by AMYLPRED, and we computationally investigated the dynamics of apoE and an apoE–Αβ complex. Our in vitro biophysical results prove that apoE peptide–analogues may act as the driving force needed to trigger apoE aggregation and are supported by the computational apoE outcome. Additional computational work concerning the apoE–Αβ complex also designates apoE amyloidogenic regions as important binding sites for oligomeric Αβ; taking an important step forward in the field of Alzheimer’s anti-aggregation drug development.
Collapse
Affiliation(s)
- Paraskevi L Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | - Aikaterini D Katsafana
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | - Fotis A Baltoumas
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | - Nikolaos N Louros
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| |
Collapse
|
10
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Cheng S, Wani WY, Hottman DA, Jeong A, Cao D, LeBlanc KJ, Saftig P, Zhang J, Li L. Haplodeficiency of Cathepsin D does not affect cerebral amyloidosis and autophagy in APP/PS1 transgenic mice. J Neurochem 2017; 142:297-304. [PMID: 28429406 DOI: 10.1111/jnc.14048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 01/05/2023]
Abstract
Autophagy and lysosomal function are important for protein homeostasis and their dysfunction have been associated with Alzheimer's disease (AD). Increased immunoreactivities of an important lysosomal protease, cathepsin D (Cat D), are evident in amyloid plaques and neurons in patients with AD. This study tests the hypothesis that deleting one allele of the cathepsin D gene (Ctsd) impacts cerebral β-amyloidosis in amyloid-β precursor protein (APP)sw/PS1dE9 (APP/PS1) double transgenic mice. Despite a significant 38% decrease in Cat D level in APP/PS1/Ctsd+/- compared with APP/PS1/Ctsd+/+ mice, no changes in steady state levels and deposition of Aβ were found in the brain. There were also no differences in APP processing, the levels of two other Aβ-degrading proteases, the levels of autophagy related protein, such as LAMP2, P62, LC3-I, LC3-II, and Beclin-1, or the markers of neuroinflammation, observed between the APP/PS1/Ctsd+/+ and APP/PS1/Ctsd+/- mice. Our findings demonstrate that in wild-type mice, Cat D protein levels are either in excess or redundant with other factors in the brain, and at least one allele of Ctsd is dispensable for cerebral β-amyloidosis and autophagy in APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA.,Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Disease, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Willayat Y Wani
- Department of Pathology, Center for Free Radical Research and Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David A Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dongfeng Cao
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kyle J LeBlanc
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paul Saftig
- Biochemisches Institut, CAU Kiel, Kiel, Germany
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Research and Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
Ginsenoside Rg1-induced antidepressant effects involve the protection of astrocyte gap junctions within the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:183-191. [PMID: 27876669 DOI: 10.1016/j.pnpbp.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/18/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022]
Abstract
Ginsenoside Rg1 (Rg1) exhibits antidepressant-like activity by increasing neurogenesis and dendritic spine density without discernible side effects. However, the molecular mechanisms underlying Rg1 antidepressant activity remain poorly understood. As the dysfunction of gap junctions between astrocytes in the prefrontal cortex (PFC) is implicated in major depression disorder, the aim of this study was to investigate the effects of Rg1 on astrocyte gap junctions in the PFC. Rats exposed to chronic unpredictable stress (CUS) were administered Rg1 (5, 10, and 20mg/kg) for 28days and analyzed for depressive symptoms using the sucrose preference and forced swimming tests. Functional and morphological changes of gap junction channels in the PFC were evaluated using dye transfer and electron microscopy, respectively. The expression of connexin 43 (Cx43) was analyzed by western blotting. Rg1 markedly alleviated depression-like behavior in rats. Long-term Rg1 treatment of CUS-exposed rats also significantly prevented the decrease in dye diffusion and improved the ultrastructure of astrocyte gap junctions in the PFC, indicating beneficial effects on the functional activity of gap junction channels in the brain. In addition, Rg1 upregulated Cx43 expression in the PFC reduced by CUS exposure, which significantly correlated with its antidepressant-like effects. The results demonstrate that Rg1-induced antidepressant effects are might be mediated, in part, by protecting astrocyte gap junctions within the prefrontal cortex.
Collapse
|
13
|
Nuvolone M, Schmid N, Miele G, Sorce S, Moos R, Schori C, Beerli RR, Bauer M, Saudan P, Dietmeier K, Lachmann I, Linnebank M, Martin R, Kallweit U, Kana V, Rushing EJ, Budka H, Aguzzi A. Cystatin F is a biomarker of prion pathogenesis in mice. PLoS One 2017; 12:e0171923. [PMID: 28178353 PMCID: PMC5298286 DOI: 10.1371/journal.pone.0171923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/29/2017] [Indexed: 01/21/2023] Open
Abstract
Misfolding of the cellular prion protein (PrPC) into the scrapie prion protein (PrPSc) results in progressive, fatal, transmissible neurodegenerative conditions termed prion diseases. Experimental and epidemiological evidence point toward a protracted, clinically silent phase in prion diseases, yet there is no diagnostic test capable of identifying asymptomatic individuals incubating prions. In an effort to identify early biomarkers of prion diseases, we have compared global transcriptional profiles in brains from pre-symptomatic prion-infected mice and controls. We identified Cst7, which encodes cystatin F, as the most strongly upregulated transcript in this model. Early and robust upregulation of Cst7 mRNA levels and of its cognate protein was validated in additional mouse models of prion disease. Surprisingly, we found no significant increase in cystatin F levels in both cerebrospinal fluid or brain parenchyma of patients with Creutzfeldt-Jakob disease compared to Alzheimer’s disease or non-demented controls. Our results validate cystatin F as a useful biomarker of early pathogenesis in experimental models of prion disease, and point to unexpected species-specific differences in the transcriptional responses to prion infections.
Collapse
Affiliation(s)
- Mario Nuvolone
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Nicolas Schmid
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Gino Miele
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Silvia Sorce
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | - Monika Bauer
- Cytos Biotechnology AG, Zurich-Schlieren, Switzerland
| | | | | | | | - Michael Linnebank
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Ulf Kallweit
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology; Bern University Hospital and University of Bern, Bern, Switzerland
| | - Veronika Kana
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Herbert Budka
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Strittmatter WJ, Roses AD. Apolipoprotein E: Emerging Story in the Pathogenesis of Alzheimer's Disease. Neuroscientist 2016. [DOI: 10.1177/107385849500100507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apolipoprotein E (apoE) is implicated in the pathogenesis of Alzheimer's disease. One of the three com mon apoE alleles, apoE4, behaves as an autosomal codominant trait in the majority of late-onset and sporadic Alzheimer's disease, with homozygosity for this allele virtually sufficient to cause disease by the age of 80. In contrast, the apoE2 and apoE3 alleles decrease the probability of disease and increase the age of onset, with the protective effect of apoE2 greater than apoE3. Thus, the inherited alleles of apoE determine, in part, the risk of developing Alzheimer's disease and determine the rate of disease progres sion. Isoform-specific interactions of apoE with other molecules are therefore critical in this disease. ApoE is found in populations of neurons, some of which contain abnormal neurofibrillary tangles assembled from the protein tau. In healthy neurons, tau helps assemble and stabilize microtubules, but in Alzheimer's disease, it forms paired helical filaments of the neurofibrillary tangle. ApoE3 avidly binds tau in vitro, whereas apoE4 does not. Isoform-specific interactions of apoE with tau and other microtubule-associated proteins could contribute to the mechanism of Alzheimer's disease. Uncovering the roles of apoE in the brain, both in health and in disease, will be an exciting area for neuroscience. The Neuroscientist 1:298- 306, 1995
Collapse
Affiliation(s)
- Warren J. Strittmatter
- Departments of Medicine (Neurology) and Neurobiology
Joseph and Kathleen Bryan Alzheimer's Disease Research Center Duke University
Medical Center Durham, North Carolina
| | - Allen D. Roses
- Departments of Medicine (Neurology) and Neurobiology
Joseph and Kathleen Bryan Alzheimer's Disease Research Center Duke University
Medical Center Durham, North Carolina
| |
Collapse
|
15
|
Navarro A, Del Valle E, Tolivia J. Differential Expression of Apolipoprotein D in Human Astroglial and Oligodendroglial Cells. J Histochem Cytochem 2016; 52:1031-6. [PMID: 15258178 DOI: 10.1369/jhc.3a6213.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apolipoprotein D (Apo D) is a secreted lipocalin in the nervous system that may be related to processes of reinnervation and regeneration. Under normal conditions, Apo D is present in the central nervous system in oligodendrocytes, astrocytes, and some scattered neurons. To elucidate the regional and cellular distribution of Apo D in normal human brain, we performed double immunohistochemistry for glial fibrillary acidic protein (GFAP) and Apo D in samples of postmortem human cerebral and cerebellar cortices. Most of the GFAP-positive cells in the gray matter had features of protoplasmic astrocytes and were mainly Apo D-positive. Apo D staining was mostly confined to the cell soma and proximal processes, whereas GFAP extended to a rich and extensive array of processes. The fibrous astrocytes in the white matter were immunoreactive for GFAP but not for Apo D. In the white matter, Apo D was mainly detected in oligodendrocytes and extracellularly in the neuropil. The results of the present study support a specific behavior for each astrocyte type. These findings suggest that Apo D expression may be cell-specific, depending on the particular tissue physiology at the time of examination.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo 33006, Spain
| | | | | |
Collapse
|
16
|
Guitart K, Loers G, Buck F, Bork U, Schachner M, Kleene R. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia 2016; 64:896-910. [PMID: 26992135 DOI: 10.1002/glia.22963] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023]
Abstract
Prion protein (PrP) protects neural cells against oxidative stress, hypoxia, ischemia, and hypoglycemia. In the present study we confirm that cultured PrP-deficient neurons are more sensitive to oxidative stress than wild-type neurons and present the novel findings that wild-type, but not PrP-deficient astrocytes protect wild-type cerebellar neurons against oxidative stress and that exosomes released from stressed wild-type, but not from stressed PrP-deficient astrocytes reduce neuronal cell death induced by oxidative stress. We show that neuroprotection by exosomes of stressed astrocytes depends on exosomal PrP but not on neuronal PrP and that astrocyte-derived exosomal PrP enters into neurons, suggesting neuronal uptake of astrocyte-derived exosomes. Upon exposure of wild-type astrocytes to hypoxic or ischemic conditions PrP levels in exosomes were increased. By mass spectrometry and Western blot analysis, we detected increased levels of 37/67 kDa laminin receptor, apolipoprotein E and the ribosomal proteins S3 and P0, and decreased levels of clusterin/apolipoprotein J in exosomes from wild-type astrocytes exposed to oxygen/glucose deprivation relative to exosomes from astrocytes maintained under normoxic conditions. The levels of these proteins were not altered in exosomes from stressed PrP-deficient astrocytes relative to unstressed PrP-deficient astrocytes. These results indicate that PrP in astrocytes is a sensor for oxidative stress and mediates beneficial cellular responses, e.g. release of exosomes carrying PrP and other molecules, resulting in improved survival of neurons under hypoxic and ischemic conditions.
Collapse
Affiliation(s)
- Kathrin Guitart
- Zentrum Für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Zentrum Für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Institut Für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Bork
- Zentrum Für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, China
| | - Ralf Kleene
- Zentrum Für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Wilhelm CJ, Guizzetti M. Fetal Alcohol Spectrum Disorders: An Overview from the Glia Perspective. Front Integr Neurosci 2016; 9:65. [PMID: 26793073 PMCID: PMC4707276 DOI: 10.3389/fnint.2015.00065] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
Alcohol consumption during pregnancy can produce a variety of central nervous system (CNS) abnormalities in the offspring resulting in a broad spectrum of cognitive and behavioral impairments that constitute the most severe and long-lasting effects observed in fetal alcohol spectrum disorders (FASD). Alcohol-induced abnormalities in glial cells have been suspected of contributing to the adverse effects of alcohol on the developing brain for several years, although much research still needs to be done to causally link the effects of alcohol on specific brain structures and behavior to alterations in glial cell development and function. Damage to radial glia due to prenatal alcohol exposure may underlie observations of abnormal neuronal and glial migration in humans with Fetal Alcohol Syndrome (FAS), as well as primate and rodent models of FAS. A reduction in cell number and altered development has been reported for several glial cell types in animal models of FAS. In utero alcohol exposure can cause microencephaly when alcohol exposure occurs during the brain growth spurt a period characterized by rapid astrocyte proliferation and maturation; since astrocytes are the most abundant cells in the brain, microenchephaly may be caused by reduced astrocyte proliferation or survival, as observed in in vitro and in vivo studies. Delayed oligodendrocyte development and increased oligodendrocyte precursor apoptosis has also been reported in experimental models of FASD, which may be linked to altered myelination/white matter integrity found in FASD children. Children with FAS exhibit hypoplasia of the corpus callosum and anterior commissure, two areas requiring guidance from glial cells and proper maturation of oligodendrocytes. Finally, developmental alcohol exposure disrupts microglial function and induces microglial apoptosis; given the role of microglia in synaptic pruning during brain development, the effects of alcohol on microglia may be involved in the abnormal brain plasticity reported in FASD. The consequences of prenatal alcohol exposure on glial cells, including radial glia and other transient glial structures present in the developing brain, astrocytes, oligodendrocytes and their precursors, and microglia contributes to abnormal neuronal development, reduced neuron survival and disrupted brain architecture and connectivity. This review highlights the CNS structural abnormalities caused by in utero alcohol exposure and outlines which abnormalities are likely mediated by alcohol effects on glial cell development and function.
Collapse
Affiliation(s)
- Clare J Wilhelm
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Psychiatry, Oregon Health and Science UniversityPortland, OR, USA
| | - Marina Guizzetti
- Research Service, VA Portland Health Care SystemPortland, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
18
|
Abstract
Alzheimer's disease (AD) represents the main form of dementia, and is a major public health problem. Despite intensive research efforts, current treatments have only marginal symptomatic benefits and there are no effective disease-modifying or preventive interventions. AD has a strong genetic component, so much research in AD has focused on identifying genetic causes and risk factors. This chapter will cover genetic discoveries in AD and their consequences in terms of improved knowledge regarding the disease and the identification of biomarkers and drug targets. First, we will discuss the study of the rare early-onset, autosomal dominant forms of AD that led to the discovery of mutations in three major genes, APP, PSEN1, and PSEN2. These discoveries have shaped our current understanding of the pathophysiology and natural history of AD as well as the development of therapeutic targets and the design of clinical trials. Then, we will explore linkage analysis and candidate gene approaches, which identified variants in Apolipoprotein E (APOE) as the major genetic risk factor for late-onset, "sporadic" forms of AD (LOAD), but failed to robustly identify other genetic risk factors, with the exception of variants in SORL1. The main focus of this chapter will be on recent genome-wide association studies that have successfully identified common genetic variations at over 20 loci associated with LOAD outside of the APOE locus. These loci are in or near-novel AD genes including BIN1, CR1, CLU, phosphatidylinositol-binding clathrin assembly protein (PICALM), CD33, EPHA1, MS4A4/MS4A6, ABCA7, CD2AP, SORL1, HLA-DRB5/DRB1, PTK2B, SLC24A4-RIN3, INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2, CASS4, and TRIP4 and each has small effects on risk of AD (relative risks of 1.1-1.3). Finally, we will touch upon the ongoing effort to identify less frequent and rare variants through whole exome and whole genome sequencing. This effort has identified two novel genes, TREM2 and PLD3, and shown a role for APP in LOAD. The identification of these recently identified genes has implicated previously unsuspected biological pathways in the pathophysiology of AD.
Collapse
Affiliation(s)
- Vincent Chouraki
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Framingham Heart Study, Framingham, MA, USA
| |
Collapse
|
19
|
Sims-Robinson C, Bakeman A, Rosko A, Glasser R, Feldman EL. The Role of Oxidized Cholesterol in Diabetes-Induced Lysosomal Dysfunction in the Brain. Mol Neurobiol 2015; 53:2287-96. [PMID: 25976368 PMCID: PMC4644712 DOI: 10.1007/s12035-015-9207-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/03/2015] [Indexed: 12/01/2022]
Abstract
Abnormalities in lysosomal function have been reported in diabetes, aging, and age-related degenerative diseases. These lysosomal abnormalities are an early manifestation of neurodegenerative diseases and often precede the onset of clinical symptoms such as learning and memory deficits; however, the mechanism underlying lysosomal dysfunction is not known. In the current study, we investigated the mechanism underlying lysosomal dysfunction in the cortex and hippocampi, key structures involved in learning and memory, of a type 2 diabetes (T2D) mouse model, the leptin receptor deficient db/db mouse. We demonstrate for the first time that diabetes leads to destabilization of lysosomes as well as alterations in the protein expression, activity, and/or trafficking of two lysosomal enzymes, hexosaminidase A and cathepsin D, in the hippocampus of db/db mice. Pioglitazone, a thiazolidinedione (TZD) commonly used in the treatment of diabetes due to its ability to improve insulin sensitivity and reverse hyperglycemia, was ineffective in reversing the diabetes-induced changes on lysosomal enzymes. Our previous work revealed that pioglitazone does not reverse hypercholesterolemia; thus, we investigated whether cholesterol plays a role in diabetes-induced lysosomal changes. In vitro, cholesterol promoted the destabilization of lysosomes, suggesting that lysosomal-related changes associated with diabetes are due to elevated levels of cholesterol. Since lysosome dysfunction precedes neurodegeneration, cognitive deficits, and Alzheimer’s disease neuropathology, our results may provide a potential mechanism that links diabetes with complications of the central nervous system.
Collapse
Affiliation(s)
- Catrina Sims-Robinson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Department of Neurology and Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, 309D2 Clinical Sciences Building, MSC 606, Charleston, SC, 29425, USA.
| | - Anna Bakeman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Rosko
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rebecca Glasser
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
20
|
Abdel-Haq H. Factors intrinsic and extrinsic to blood hamper the development of a routine blood test for human prion diseases. J Gen Virol 2015; 96:479-493. [DOI: 10.1099/vir.0.070979-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hanin Abdel-Haq
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161-Rome, Italy
| |
Collapse
|
21
|
Hoos MD, Richardson BM, Foster MW, Everhart A, Thompson JW, Moseley MA, Colton CA. Longitudinal study of differential protein expression in an Alzheimer's mouse model lacking inducible nitric oxide synthase. J Proteome Res 2013; 12:4462-77. [PMID: 24006891 DOI: 10.1021/pr4005103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative process that involves altered brain immune, neuronal and metabolic functions. Understanding the underlying mechanisms has relied on mouse models that mimic components of AD pathology. We used gel-free, label-free LC-MS/MS to quantify protein and phosphopeptide levels in brains of APPSwDI/NOS2-/- (CVN-AD) mice. CVN-AD mice show a full spectrum of AD-like pathology, including amyloid deposition, hyperphosphorylated and aggregated tau, and neuronal loss that worsens with age. Tryptic digests, with or without phosphopeptide enrichment on an automated titanium dioxide LC system, were separated by online two-dimensional LC and analyzed on a Waters Synapt G2 HDMS, yielding relative expression for >950 proteins and >1100 phosphopeptides. Among differentially expressed proteins were known markers found in humans with AD, including GFAP and C1Q. Phosphorylation of connexin 43, not previously described in AD, was increased at 42 weeks, consistent with dysregulation of gap junctions and activation of astrocytes. Additional alterations in phosphoproteins suggests dysregulation of mitochondria, synaptic transmission, vesicle trafficking, and innate immune pathways. These data validate the CVN-AD mouse model of AD, identify novel disease and age-related changes in the brain during disease progression, and demonstrate the utility of integrating unbiased and phosphoproteomics for understanding disease processes in AD.
Collapse
Affiliation(s)
- Michael D Hoos
- Department of Medicine/Neurology, ‡Institute for Genome Sciences & Policy, School of Medicine, and §Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Duke University , Durham, North Carolina 27710, United States
| | | | | | | | | | | | | |
Collapse
|
22
|
Navarro A, Astudillo A, Valle ED, Rey CGD, Tolivia J. Immunohistochemical Presence of Apolipoprotein D in Senile Plaques. J Histotechnol 2013. [DOI: 10.1179/his.2001.24.1.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Campisi E, Cardone F, Graziano S, Galeno R, Pocchiari M. Role of proteomics in understanding prion infection. Expert Rev Proteomics 2013; 9:649-66. [PMID: 23256675 DOI: 10.1586/epr.12.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transmissible spongiform encephalopathies or prion diseases are fatal neurodegenerative pathologies characterized by the autocatalytic misfolding and polymerization of a cellular glycoprotein (cellular prion protein [PrP(C)]) that accumulates in the CNS and leads to neurodegeneration. The detailed mechanics of PrP(C) conversion to its pathological isoform (PrP(TSE)) are unclear but one or more exogenous factors are likely involved in the process of PrP misfolding. In the last 20 years, proteomic investigations have identified several endogenous proteins that interact with PrP(C), PrP(TSE) or both, which are possibly involved in the prion pathogenetic process. However, current approaches have not yet produced convincing conclusions on the biological value of such PrP interactors. Future advancements in the comprehension of the molecular pathogenesis of prion diseases, in experimental techniques and in data analysis procedures, together with a boost in more productive international collaborations, are therefore needed to improve the understanding on the role of PrP interactors. Finally, the advancement of 'omics' techniques in prion diseases will contribute to the development of novel diagnostic tests and effective drugs.
Collapse
Affiliation(s)
- Edmondo Campisi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
24
|
Niranjan R. Molecular Basis of Etiological Implications in Alzheimer’s Disease: Focus on Neuroinflammation. Mol Neurobiol 2013; 48:412-28. [DOI: 10.1007/s12035-013-8428-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022]
|
25
|
Maurer A, Zeyher C, Amin B, Kalbacher H. A Periodate-Cleavable Linker for Functional Proteomics under Slightly Acidic Conditions: Application for the Analysis of Intracellular Aspartic Proteases. J Proteome Res 2012; 12:199-207. [DOI: 10.1021/pr300758c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Andreas Maurer
- Interfaculty Institute of Biochemistry, University of Tuebingen, Ob dem Himmelreich 7, 72074
Tuebingen, Germany
| | - Claus Zeyher
- Interfaculty Institute of Biochemistry, University of Tuebingen, Ob dem Himmelreich 7, 72074
Tuebingen, Germany
| | - Bushra Amin
- Interfaculty Institute of Biochemistry, University of Tuebingen, Ob dem Himmelreich 7, 72074
Tuebingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, Ob dem Himmelreich 7, 72074
Tuebingen, Germany
| |
Collapse
|
26
|
Wagner W, Reuter A, Hüller P, Löwer J, Wessler S. Peroxiredoxin 6 promotes upregulation of the prion protein (PrP) in neuronal cells of prion-infected mice. Cell Commun Signal 2012; 10:38. [PMID: 23210548 PMCID: PMC3519792 DOI: 10.1186/1478-811x-10-38] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 11/29/2012] [Indexed: 01/05/2023] Open
Abstract
Background It has been widely established that the conversion of the cellular prion protein (PrPC) into its abnormal isoform (PrPSc) is responsible for the development of transmissible spongiform encephalopathies (TSEs). However, the knowledge of the detailed molecular mechanisms and direct functional consequences within the cell is rare. In this study, we aimed at the identification of deregulated proteins which might be involved in prion pathogenesis. Findings Apolipoprotein E and peroxiredoxin 6 (PRDX6) were identified as upregulated proteins in brains of scrapie-infected mice and cultured neuronal cell lines. Downregulation of PrP gene expression using specific siRNA did not result in a decrease of PRDX6 amounts. Interestingly, selective siRNA targeting PRDX6 or overexpression of PRDX6 controlled PrPC and PrPSc protein amounts in neuronal cells. Conclusions Besides its possible function as a novel marker protein in the diagnosis of TSEs, PDRX6 represents an attractive target molecule in putative pharmacological intervention strategies in the future.
Collapse
Affiliation(s)
- Wibke Wagner
- Division of Microbiology, University of Salzburg, Billrothstrasse 11, Salzburg, A-5020, Austria.
| | | | | | | | | |
Collapse
|
27
|
Expression analysis, single nucleotide polymorphisms and combined genotypes in candidate genes and their associations with growth and carcass traits in Qinchuan cattle. Mol Biol Rep 2012. [PMID: 23196708 DOI: 10.1007/s11033-012-2315-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The apolipoprotein E (ApoE) gene is an important component of plasma lipoprotein, and Fas apoptosis inhibitory molecule (FAIM) is a novel anti-apoptotic gene. In this study, we researched and discussed seven genes in eight different tissues in Qinchuan cattle by quantitative Real-time PCR. The result of analysis showed that ApoE and FAIM 2 genes had a correlation with muscle and fat. PCR-RFLP was applied to analyze the genetic variations of the ApoE and FAIM 2 genes and verify the effect on growth and carcass traits in a total of 365 Qinchuan cattles. The result of haplotype analysis showed that nine different haplotypes were identified among the four SNPs in ApoE and FAIM 2 genes. The statistical analyses indicated that the four SNPs were significant association with growth and carcass traits (P < 0.05, N = 365); and the four SNPs were significant association between nine combined genotypes of candidate genes and growth and carcass traits. Taken together, our results provide the evidence that polymorphisms in candidate genes are associated with growth and carcass traits in Qinchuan cattle, and may be used as a possible candidate for marker-assisted selection and management in beef cattle breeding program.
Collapse
|
28
|
Schellenberg GD, Montine TJ. The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol 2012; 124:305-23. [PMID: 22618995 DOI: 10.1007/s00401-012-0996-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 02/07/2023]
Abstract
Here we review the genetic causes and risks for Alzheimer's disease (AD). Early work identified mutations in three genes that cause AD: APP, PSEN1 and PSEN2. Although mutations in these genes are rare causes of AD, their discovery had a major impact on our understanding of molecular mechanisms of AD. Early work also revealed the ε4 allele of the APOE as a strong risk factor for AD. Subsequently, SORL1 also was identified as an AD risk gene. More recently, advances in our knowledge of the human genome, made possible by technological advances and methods to analyze genomic data, permit systematic identification of genes that contribute to AD risk. This work, so far accomplished through single nucleotide polymorphism arrays, has revealed nine new genes implicated in AD risk (ABCA7, BIN1, CD33, CD2AP, CLU, CR1, EPHA1, MS4A4E/MS4A6A, and PICALM). We review the relationship between these mutations and genetic variants and the neuropathologic features of AD and related disorders. Together, these discoveries point toward a new era in neurodegenerative disease research that impacts not only AD but also related illnesses that produce cognitive and behavioral deficits.
Collapse
Affiliation(s)
- Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6100, USA.
| | | |
Collapse
|
29
|
Su C, Rybalchenko N, Schreihofer DA, Singh M, Abbassi B, Cunningham RL. Cell Models for the Study of Sex Steroid Hormone Neurobiology. ACTA ACUST UNITED AC 2012; S2. [PMID: 22860237 DOI: 10.4172/2157-7536.s2-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To date many aspects of neurons and glia biology remain elusive, due in part to the cellular and molecular complexity of the brain. In recent decades, cell models from different brain areas have been established and proven invaluable toward understanding this complexity. In the field of steroid hormone neurobiology, an important question is: what is the profile of steroid hormone receptor expression in these specific cell lines? Currently, a clear summary of such receptor profiling is lacking. For this reason, we summarized in this review the expression of estrogen, progesterone, and androgen receptors in several widely used cell lines (glial and neuronal) derived from the forebrain and midbrain, based on our own data and that from the literature. Such information will aid in the selection of specific cell lines used to test hypotheses related to the biology of estrogens, progestins, and/or androgens.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107 USA
| | | | | | | | | | | |
Collapse
|
30
|
Tortosa R, Castells X, Vidal E, Costa C, Ruiz de Villa MDC, Sánchez A, Barceló A, Torres JM, Pumarola M, Ariño J. Central nervous system gene expression changes in a transgenic mouse model for bovine spongiform encephalopathy. Vet Res 2011; 42:109. [PMID: 22035425 PMCID: PMC3225326 DOI: 10.1186/1297-9716-42-109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 10/28/2011] [Indexed: 12/04/2022] Open
Abstract
Gene expression analysis has proven to be a very useful tool to gain knowledge of the factors involved in the pathogenesis of diseases, particularly in the initial or preclinical stages. With the aim of finding new data on the events occurring in the Central Nervous System in animals affected with Bovine Spongiform Encephalopathy, a comprehensive genome wide gene expression study was conducted at different time points of the disease on mice genetically modified to model the bovine species brain in terms of cellular prion protein. An accurate analysis of the information generated by microarray technique was the key point to assess the biological relevance of the data obtained in terms of Transmissible Spongiform Encephalopathy pathogenesis. Validation of the microarray technique was achieved by RT-PCR confirming the RNA change and immunohistochemistry techniques that verified that expression changes were translated into variable levels of protein for selected genes. Our study reveals changes in the expression of genes, some of them not previously associated with prion diseases, at early stages of the disease previous to the detection of the pathological prion protein, that might have a role in neuronal degeneration and several transcriptional changes showing an important imbalance in the Central Nervous System homeostasis in advanced stages of the disease. Genes whose expression is altered at early stages of the disease should be considered as possible therapeutic targets and potential disease markers in preclinical diagnostic tool development. Genes non-previously related to prion diseases should be taken into consideration for further investigations.
Collapse
Affiliation(s)
- Raül Tortosa
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sherwood KR, Head MW, Walker R, Smith C, Ironside JW, Fazakerley JK. RNA integrity in post mortem human variant Creutzfeldt-Jakob disease (vCJD) and control brain tissue. Neuropathol Appl Neurobiol 2011; 37:633-42. [DOI: 10.1111/j.1365-2990.2011.01162.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Roles of apolipoprotein E4 (ApoE4) in the pathogenesis of Alzheimer's disease: lessons from ApoE mouse models. Biochem Soc Trans 2011; 39:924-32. [DOI: 10.1042/bst0390924] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ApoE4 (apolipoprotein E4) is the major known genetic risk factor for AD (Alzheimer's disease). In most clinical studies, apoE4 carriers account for 65–80% of all AD cases, highlighting the importance of apoE4 in AD pathogenesis. Emerging data suggest that apoE4, with its multiple cellular origins and multiple structural and biophysical properties, contributes to AD in multiple ways either independently or in combination with other factors, such as Aβ (amyloid β-peptide) and tau. Many apoE mouse models have been established to study the mechanisms underlying the pathogenic actions of apoE4. These include transgenic mice expressing different apoE isoforms in neurons or astrocytes, those expressing neurotoxic apoE4 fragments in neurons and human apoE isoform knock-in mice. Since apoE is expressed in different types of cells, including astrocytes and neurons, and in brains under diverse physiological and/or pathophysiological conditions, these apoE mouse models provide unique tools to study the cellular source-dependent roles of apoE isoforms in neurobiology and in the pathogenesis of AD. They also provide useful tools for discovery and development of drugs targeting apoE4's detrimental effects.
Collapse
|
33
|
Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011; 50:357-71. [PMID: 21741992 DOI: 10.1016/j.plipres.2011.06.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
Abstract
Cells in the mammalian body must accurately maintain their content of cholesterol, which is an essential membrane component and precursor for vital signalling molecules. Outside the brain, cholesterol homeostasis is guaranteed by a lipoprotein shuttle between the liver, intestine and other organs via the blood circulation. Cells inside the brain are cut off from this circuit by the blood-brain barrier and must regulate their cholesterol content in a different manner. Here, we review how this is accomplished by neurons and astrocytes, two cell types of the central nervous system, whose cooperation is essential for normal brain development and function. The key observation is a remarkable cell-specific distribution of proteins that mediate different steps of cholesterol metabolism. This form of metabolic compartmentalization identifies astrocytes as net producers of cholesterol and neurons as consumers with unique means to prevent cholesterol overload. The idea that cholesterol turnover in neurons depends on close cooperation with astrocytes raises new questions that need to be addressed by new experimental approaches to monitor and manipulate cholesterol homeostasis in a cell-specific manner. We conclude that an understanding of cholesterol metabolism in the brain and its role in disease requires a close look at individual cell types.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg Cedex, France.
| | | |
Collapse
|
34
|
Wei X, Herbst A, Ma D, Aiken J, Li L. A quantitative proteomic approach to prion disease biomarker research: delving into the glycoproteome. J Proteome Res 2011; 10:2687-702. [PMID: 21469646 DOI: 10.1021/pr2000495] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry (MS) -- based proteomic approaches have evolved as powerful tools for the discovery of biomarkers. However, the identification of potential protein biomarkers from biofluid samples is challenging because of the limited dynamic range of detection. Currently there is a lack of sensitive and reliable premortem diagnostic test for prion diseases. Here, we describe the use of a combined MS-based approach for biomarker discovery in prion diseases from mouse plasma samples. To overcome the limited dynamic range of detection and sample complexity of plasma samples, we used lectin affinity chromatography and multidimensional separations to enrich and isolate glycoproteins at low abundance. Relative quantitation of a panel of proteins was obtained by a combination of isotopic labeling and validated by spectral counting. Overall 708 proteins were identified, 53 of which showed more than 2-fold increase in concentration whereas 58 exhibited more than 2-fold decrease. A few of the potential candidate markers were previously associated with prion or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Wei
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
35
|
Leduc V, Domenger D, De Beaumont L, Lalonde D, Bélanger-Jasmin S, Poirier J. Function and comorbidities of apolipoprotein e in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:974361. [PMID: 21559182 PMCID: PMC3089878 DOI: 10.4061/2011/974361] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/09/2011] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD)—the most common type of dementia among the elderly—represents one of the most challenging and urgent medical mysteries affecting our aging population. Although dominant inherited mutation in genes involved in the amyloid metabolism can elicit familial AD, the overwhelming majority of AD cases, dubbed sporadic AD, do not display this Mendelian inheritance pattern. Apolipoprotein E (APOE), the main lipid carrier protein in the central nervous system, is the only gene that has been robustly and consistently associated with AD risk. The purpose of the current paper is thus to highlight the pleiotropic roles and the structure-function relationship of APOE to stimulate both the functional characterization and the identification of novel lipid homeostasis-related molecular targets involved in AD.
Collapse
Affiliation(s)
- Valérie Leduc
- Department of Psychiatry, Douglas Mental Health University Institute, Perry Pavilion, E-3207.1, 6875 Lasalle Boulevard, Verdun, QC, Canada H4H1R3
| | | | | | | | | | | |
Collapse
|
36
|
Cathepsin D plays a crucial role in the trimethyltin-induced hippocampal neurodegeneration process. Neuroscience 2011; 174:160-70. [DOI: 10.1016/j.neuroscience.2010.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/21/2010] [Accepted: 11/11/2010] [Indexed: 11/20/2022]
|
37
|
Almeida LM, Basu U, Khaniya B, Taniguchi M, Williams JL, Moore SS, Guan LL. Gene expression in the medulla following oral infection of cattle with bovine spongiform encephalopathy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:110-126. [PMID: 21218340 DOI: 10.1080/15287394.2011.529061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The identification of variations in gene expression in response to bovine spongiform encephalopathy (BSE) may help to elucidate the mechanisms of neuropathology and prion replication and discover biomarkers for disease. In this study, genes that are differentially expressed in the caudal medulla tissues of animals infected with different doses of PrP(BSE) at 12 and 45 mo post infection were compared using array containing 24,000 oligonucleotide probes. Data analysis identified 966 differentially expressed (DE) genes between control and infected animals. Genes identified in at least two of four experiments (control versus 1-g infected animals at 12 and 45-mo; control versus 100-g infected animals at 12 and 45 mo) were considered to be the genes that may be associated with BSE disease. From the 176 DE genes associated with BSE, 84 had functions described in the Gene Ontology (GO) database. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of 14 genes revealed that prion infection may cause dysfunction of several different networks, including extracellular matrix (ECM), cell adhesion, neuroactive ligand-receptor interaction, complement and coagulation cascades, MAPK signaling, neurodegenerative disorder, SNARE interactions in vesicular transport, and the transforming growth factor (TGF) beta signaling pathways. The identification of DE genes will contribute to a better understanding of the molecular mechanisms of neuropathology in bovine species. Additional studies on larger number of animals are in progress in our laboratory to investigate the roles of these DE genes in pathogenesis of BSE.
Collapse
Affiliation(s)
- Luciane M Almeida
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Moody LR, Herbst AJ, Aiken JM. Upregulation of interferon-gamma-induced genes during prion infection. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:146-153. [PMID: 21218343 PMCID: PMC4621959 DOI: 10.1080/15287394.2011.529064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Global gene expression analysis allows for the identification of transcripts that are differentially regulated during a disease state. Many groups, including our own, have identified hundreds of genes differentially regulated in response to prion infection. Eleven transcripts, upregulated in the brains of prion-infected animals, which were classified in the literature as stimulated by the cytokine interferon-gamma (IFN-γ), were identified. This is intriguing, as IFN-γ has recently been detected in the brains of prion-infected animals. Quantitation of several genes, categorized as IFN-γ inducible, by quantitative real-time polymerase chain reaction (qRT-PCR) confirms that these transcripts are upregulated. Future approaches for delineating the role of IFN-γ-induced transcripts and their function in prion infection are described.
Collapse
Affiliation(s)
- Laura R. Moody
- Cellular and Molecular Biology Graduate Program; Department of Comparative Biosciences; University of Wisconsin, Madison, Wisconsin, USA
| | - Allen J. Herbst
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Judd M. Aiken
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Tayebi M, David M, Bate C, Jones D, Taylor W, Morton R, Pollard J, Hawke S. Epitope-specific anti-prion antibodies upregulate apolipoprotein E and disrupt membrane cholesterol homeostasis. J Gen Virol 2010; 91:3105-15. [DOI: 10.1099/vir.0.023838-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
40
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide insights into recent advances in mechanisms linking apolipoprotein (apo) E isoforms to cardiovascular and neurological diseases. RECENT FINDINGS Human apoE has three common isoforms (apoE2, apoE3, and apoE4) with different structural and biophysical properties and different effects on lipid and neuronal homeostasis. ApoE is a protein constituent of different plasma lipoproteins and serves as a high-affinity ligand for several receptors. By interacting with its receptors, apoE mediates the clearance of different lipoproteins from the circulation. Absence or structural mutations of apoE cause significant disorders in lipid metabolism and cardiovascular disease. ApoE also has significant roles in neurobiology. ApoE4 is the major known genetic risk factor for Alzheimer's disease. It increases the occurrence and lowers the age of onset of Alzheimer's disease. ApoE4 carriers account for 65-80% of all Alzheimer's disease cases, highlighting the importance of apoE4 in Alzheimer's disease pathogenesis. ApoE4 has both amyloid beta-dependent and amyloid beta-independent roles in Alzheimer's disease pathogenesis. SUMMARY Emerging data suggest that apoE isoforms, with their multiple cellular origins and multiple structural and biophysical properties, contribute to cardiovascular and neurological diseases by interacting with different factors through various pathways.
Collapse
Affiliation(s)
- Yadong Huang
- Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA.
| |
Collapse
|
41
|
Elliott DA, Weickert CS, Garner B. Apolipoproteins in the brain: implications for neurological and psychiatric disorders. ACTA ACUST UNITED AC 2010; 51:555-573. [PMID: 21423873 DOI: 10.2217/clp.10.37] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The brain is the most lipid-rich organ in the body and, owing to the impermeable nature of the blood-brain barrier, lipid and lipoprotein metabolism within this organ is distinct from the rest of the body. Apolipoproteins play a well-established role in the transport and metabolism of lipids within the CNS; however, evidence is emerging that they also fulfill a number of functions that extend beyond lipid transport and are critical for healthy brain function. The importance of apolipoproteins in brain physiology is highlighted by genetic studies, where apolipoprotein gene polymorphisms have been identified as risk factors for several neurological diseases. Furthermore, the expression of brain apolipoproteins is significantly altered in several brain disorders. The purpose of this article is to provide an up-to-date assessment of the major apolipoproteins found in the brain (ApoE, ApoJ, ApoD and ApoA-I), covering their proposed roles and the factors influencing their level of expression. Particular emphasis is placed on associations with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- David A Elliott
- Prince of Wales Medical Research Institute, Randwick, Sydney, NSW 2031, Australia
| | | | | |
Collapse
|
42
|
Conductier G, Blondeau N, Guyon A, Nahon JL, Rovère C. The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol 2010; 224:93-100. [DOI: 10.1016/j.jneuroim.2010.05.010] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Abeta-independent roles of apolipoprotein E4 in the pathogenesis of Alzheimer's disease. Trends Mol Med 2010; 16:287-94. [PMID: 20537952 DOI: 10.1016/j.molmed.2010.04.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/11/2010] [Accepted: 04/13/2010] [Indexed: 11/24/2022]
Abstract
Human apolipoprotein (APO) E has three common isoforms that differentially affect lipid and neuronal homeostasis. APOE4, the major known genetic risk factor for Alzheimer's disease (AD), increases the occurrence and lowers the age of onset of AD. APOE4 carriers account for 65-80% of all AD cases, highlighting the importance of APOE4 in AD pathogenesis. Emerging data suggest that APOE4 contributes to AD through various pathways, some of which are dependent on amyloid-beta (Abeta). Although these Abeta-dependent roles of APOE4 have been widely studied, APOE4 has detrimental effects on neurons independent of Abeta: aberrant proteolysis of APOE4 generates neurotoxic fragments, stimulates Tau phosphorylation, which disrupts the cytoskeleton, and impairs mitochondrial function.
Collapse
|
44
|
Kuesap J, Na-Bangchang K. Possible role of heme oxygenase-1 and prostaglandins in the pathogenesis of cerebral malaria: heme oxygenase-1 induction by prostaglandin D(2) and metabolite by a human astrocyte cell line. THE KOREAN JOURNAL OF PARASITOLOGY 2010; 48:15-21. [PMID: 20333281 DOI: 10.3347/kjp.2010.48.1.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 11/23/2022]
Abstract
Astrocytes are the most abundant cells in the central nervous system that play roles in maintaining the blood-brain-barrier and in neural injury, including cerebral malaria, a severe complication of Plasmodium falciparum infection. Prostaglandin (PG) D(2) is abundantly produced in the brain and regulates the sleep response. Moreover, PGD(2) is a potential factor derived from P. falciparum within erythrocytes. Heme oxygenase-1 (HO-1) is catalyzing enzyme in heme breakdown process to release iron, carbon monoxide, and biliverdin/bilirubin, and may influence iron supply to the P. falciparum parasites. Here, we showed that treatment of a human astrocyte cell line, CCF-STTG1, with PGD(2) significantly increased the expression levels of HO-1 mRNA by RT-PCR. Western blot analysis showed that PGD(2) treatment increased the level of HO-1 protein, in a dose- and time-dependent manner. Thus, PGD(2) may be involved in the pathogenesis of cerebral malaria by inducing HO-1 expression in malaria patients.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Graduate Porgram in Biomedical Sciences, Clinical Coordination and Training Center, Thammasat University, Pathumtanee, Thailand
| | | |
Collapse
|
45
|
Benetti F, Gasperini L, Zampieri M, Legname G. Gene expression profiling to identify druggable targets in prion diseases. Expert Opin Drug Discov 2010; 5:177-202. [PMID: 22822917 DOI: 10.1517/17460440903544449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
IMPORTANCE OF THE FIELD Despite many recent advances in prion research, the molecular mechanisms by which prions cause neurodegeneration have not been established. In fact, the complexity and the novelty characterizing this class of disorders pose a huge challenge to drug discovery. Pharmacogenomics has recently adopted high-throughput transcriptome analyses to predict potential drug target candidates, with promising results in various fields of medicine. AREAS COVERED IN THIS REVIEW The present work offers an overview of the transcriptional alterations induced by prion infection in different biological systems. Hereafter, therapeutic approaches are discussed in light of the identified altered processes. WHAT THE READER WILL GAIN This review offers readers a detailed overview on microarray analyses, taking into account their advantages and limitations. Our work can help readers, from many research areas, to design a suitable microarray experiment. TAKE HOME MESSAGE So far, drugs acting on the pathways identified by microarray analysis have not been found to be effective in prion diseases therapy. An integration of gene expression profiling, proteomics and physiology should be applied to pursue this aim.
Collapse
Affiliation(s)
- Federico Benetti
- Laboratory of Prion Biology, Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati-International School of Advanced Studies (SISSA-ISAS), Edificio Q1, Basovizza, Trieste, Italy
| | | | | | | |
Collapse
|
46
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
47
|
Giorgi A, Di Francesco L, Principe S, Mignogna G, Sennels L, Mancone C, Alonzi T, Sbriccoli M, De Pascalis A, Rappsilber J, Cardone F, Pocchiari M, Maras B, Schininà ME. Proteomic profiling of PrP27-30-enriched preparations extracted from the brain of hamsters with experimental scrapie. Proteomics 2009; 9:3802-14. [DOI: 10.1002/pmic.200900085] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
48
|
Moody LR, Herbst AJ, Yoo HS, Vanderloo JP, Aiken JM. Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone. Prion 2009; 3:99-109. [PMID: 19535908 DOI: 10.4161/pri.3.2.9059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection.
Collapse
Affiliation(s)
- Laura R Moody
- Program in Cellular and Molecular Biology and Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
49
|
Miele G, Seeger H, Marino D, Eberhard R, Heikenwalder M, Stoeck K, Basagni M, Knight R, Green A, Chianini F, Wüthrich RP, Hock C, Zerr I, Aguzzi A. Urinary alpha1-antichymotrypsin: a biomarker of prion infection. PLoS One 2008; 3:e3870. [PMID: 19057641 PMCID: PMC2586086 DOI: 10.1371/journal.pone.0003870] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/12/2008] [Indexed: 11/18/2022] Open
Abstract
The occurrence of blood-borne prion transmission incidents calls for identification of potential prion carriers. However, current methods for intravital diagnosis of prion disease rely on invasive tissue biopsies and are unsuitable for large-scale screening. Sensitive biomarkers may help meeting this need. Here we scanned the genome for transcripts elevated upon prion infection and encoding secreted proteins. We found that alpha(1)-antichymotrypsin (alpha(1)-ACT) was highly upregulated in brains of scrapie-infected mice. Furthermore, alpha(1)-ACT levels were dramatically increased in urine of patients suffering from sporadic Creutzfeldt-Jakob disease, and increased progressively throughout the disease. Increased alpha(1)-ACT excretion was also found in cases of natural prion disease of animals. Therefore measurement of urinary alpha(1)-ACT levels may be useful for monitoring the efficacy of therapeutic regimens for prion disease, and possibly also for deferring blood and organ donors that may be at risk of transmitting prion infections.
Collapse
Affiliation(s)
- Gino Miele
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
- * E-mail: (GM); (AA)
| | - Harald Seeger
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
| | - Denis Marino
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
| | - Ralf Eberhard
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
| | - Mathias Heikenwalder
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
| | - Katharina Stoeck
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
| | | | - Richard Knight
- The National Creutzfeldt-Jakob Disease Surveillance Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Alison Green
- The National Creutzfeldt-Jakob Disease Surveillance Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Edinburgh, United Kingdom
| | | | - Christoph Hock
- Division of Psychiatry Research, University of Zürich, Zürich, Switzerland
| | - Inga Zerr
- National TSE Reference Center, Department of Neurology, Medical Faculty, Georg-August University, Göttingen, Germany
| | - Adriano Aguzzi
- Department of Pathology, UniversitätsSpital Zürich, Institute of Neuropathology, Zürich, Switzerland
- * E-mail: (GM); (AA)
| |
Collapse
|
50
|
Jang B, Kim E, Choi JK, Jin JK, Kim JI, Ishigami A, Maruyama N, Carp RI, Kim YS, Choi EK. Accumulation of citrullinated proteins by up-regulated peptidylarginine deiminase 2 in brains of scrapie-infected mice: a possible role in pathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1129-42. [PMID: 18787103 DOI: 10.2353/ajpath.2008.080388] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peptidylarginine deiminases (PADs), which are a group of posttranslational modification enzymes, are involved in protein citrullination (deimination) by the conversion of peptidylarginine to peptidylcitrulline in a calcium concentration-dependent manner. Among the PADs, PAD2 is widely distributed in various tissues and is the only type that is expressed in brain. To elucidate the involvement of protein citrullination by PAD2 in the pathogenesis of brain-specific prion diseases, we examined the profiles of citrullinated proteins using the brains of scrapie-infected mice as a prion disease model. We found that, compared with controls, increased levels of citrullinated proteins of various molecular weights were detected in different brain sections of scrapie-infected mice. In support of this data, expression levels of PAD2 protein as well as its enzyme activity were significantly increased in brain sections of scrapie-infected mice, including hippocampus, brain stem, and striatum. Additionally, the expression levels of PAD2 mRNA were increased during scrapie infection. Moreover, PAD2 immunoreactivity was increased in scrapie-infected brains, with staining detected primarily in reactive astrocytes. Using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry, various citrullinated proteins were identified in the brains of scrapie-infected mice, including glial fibrillary acidic protein, myelin basic protein, enolases, and aldolases. This study suggests that accumulated citrullinated proteins and abnormal activation of PAD2 may function in the pathogenesis of prion diseases and serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Byungki Jang
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|