1
|
Lee H, Assaraf R, Subramanian S, Goetschius D, Bieri J, DiNunno NM, Leisi R, Bator CM, Hafenstein SL, Ros C. Infectious parvovirus B19 circulates in the blood coated with active host protease inhibitors. Nat Commun 2024; 15:9543. [PMID: 39500886 PMCID: PMC11538491 DOI: 10.1038/s41467-024-53794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
The lack of a permissive cell culture system has limited high-resolution structures of parvovirus B19 (B19V) to virus-like particles (VLPs). In this study, we present the atomic resolution structure (2.2 Å) of authentic B19V purified from a patient blood sample. There are significant differences compared to non-infectious VLPs. Most strikingly, two host protease inhibitors (PIs), inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) and serpinA3, were identified in complex with the capsids in all patient samples tested. The ITIH4 binds specifically to the icosahedral fivefold axis and serpinA3 occupies the twofold axis. The protein-coated virions remain infectious, and the capsid-associated PIs retain activity; however, upon virion interaction with target cells, the PIs dissociate from the capsid prior to viral entry. Our finding of an infectious virion shielded by bound host serum proteins suggests an evolutionarily favored phenomenon to evade immune surveillance and escape host protease activity.
Collapse
Affiliation(s)
- Hyunwook Lee
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ruben Assaraf
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, Bern, Switzerland
| | | | - Dan Goetschius
- The Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Jan Bieri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Nadia M DiNunno
- The Pennsylvania State College of Medicine, Hershey, PA, USA
| | - Remo Leisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Carol M Bator
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Susan L Hafenstein
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota, Minneapolis, MN, USA.
- Department of Infectious Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Carlos Ros
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Emmanuel SN, Mietzsch M, Tseng YS, Smith JK, Agbandje-McKenna M. Parvovirus Capsid-Antibody Complex Structures Reveal Conservation of Antigenic Epitopes Across the Family. Viral Immunol 2020; 34:3-17. [PMID: 32315582 DOI: 10.1089/vim.2020.0022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The parvoviruses are small nonenveloped single stranded DNA viruses that constitute members that range from apathogenic to pathogenic in humans and animals. The infection with a parvovirus results in the generation of antibodies against the viral capsid by the host immune system to eliminate the virus and to prevent re-infection. For members currently either being developed as delivery vectors for gene therapy applications or as oncolytic biologics for tumor therapy, efforts are aimed at combating the detrimental effects of pre-existing or post-treatment antibodies that can eliminate therapeutic benefits. Therefore, understanding antigenic epitopes of parvoviruses can provide crucial information for the development of vaccination applications and engineering novel capsids able to escape antibody recognition. This review aims to capture the information for the binding regions of ∼30 capsid-antibody complex structures of different parvovirus capsids determined to date by cryo-electron microscopy and three-dimensional image reconstruction. The comparison of all complex structures revealed the conservation of antigenic regions among parvoviruses from different genera despite low sequence identity and indicates that the available data can be used across the family for vaccine development and capsid engineering.
Collapse
Affiliation(s)
- Shanan N Emmanuel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yu Shan Tseng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - James Kennon Smith
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
|
4
|
Abstract
Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Kaufmann B, López-Bueno A, Mateu MG, Chipman PR, Nelson CDS, Parrish CR, Almendral JM, Rossmann MG. Minute virus of mice, a parvovirus, in complex with the Fab fragment of a neutralizing monoclonal antibody. J Virol 2007; 81:9851-8. [PMID: 17626084 PMCID: PMC2045413 DOI: 10.1128/jvi.00775-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of virus-like particles of the lymphotropic, immunosuppressive strain of minute virus of mice (MVMi) in complex with the neutralizing Fab fragment of the mouse monoclonal antibody (MAb) B7 was determined by cryo-electron microscopy to 7-A resolution. The Fab molecule recognizes a conformational epitope at the vertex of a three-fold protrusion on the viral surface, thereby simultaneously engaging three symmetry-related viral proteins in binding. The location of the epitope close to the three-fold axis is consistent with the previous analysis of MVMi mutants able to escape from the B7 antibody. The binding site close to the symmetry axes sterically forbids the binding of more than one Fab molecule per spike. MAb as well as the Fab molecules inhibits the binding of the minute virus of mice (MVM) to permissive cells but can also neutralize MVM postattachment. This finding suggests that the interaction of B7 with three symmetry-related viral subunits at each spike hinders structural transitions in the viral capsid essential during viral entry.
Collapse
Affiliation(s)
- Bärbel Kaufmann
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Blümel J, Eis-Hübinger AM, Stühler A, Bönsch C, Gessner M, Löwer J. Characterization of Parvovirus B19 genotype 2 in KU812Ep6 cells. J Virol 2005; 79:14197-206. [PMID: 16254355 PMCID: PMC1280213 DOI: 10.1128/jvi.79.22.14197-14206.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 08/11/2005] [Indexed: 11/20/2022] Open
Abstract
An infectious parvovirus B19 (B19V) genotype 2 variant was identified as a high-titer contaminant in a human plasma donation. Genome analysis revealed a 138-bp insertion within the p6 promoter. The inserted sequence was represented by an additional 30 bp from the end of the inverted terminal repeat adjacent to a 108-bp element found also, in inverted orientation, at the extreme right end of the unique sequence of the genome. However, despite the profound variations in the promoter region, the pattern of gene expression and DNA replication did not differ between genotype 1 and genotype 2 in permissive erythroid KU812Ep6 cells. Capsid proteins of both genotypes differ in their amino acid sequences. However, equivalent kinetics of virus inactivation at 56 degrees C or pH 4 indicated a comparable physicochemical stability of virus capsids. Sera from six individuals infected by B19V genotype 1 were investigated on cross-neutralization of B19V genotype 2 in vitro. Similar neutralization of both B19V genotypes was observed in sera from three individuals, while the sera from three other individuals showed weaker cross-neutralization for genotype 2. In conclusion, the in vitro replication characteristics and physical stability of B19V capsids are very similar between human parvovirus B19 genotypes 1 and 2, and cross-neutralization indicates a close antigenic relation of genotypes 1 and 2.
Collapse
|
7
|
Munakata Y, Saito-Ito T, Kumura-Ishii K, Huang J, Kodera T, Ishii T, Hirabayashi Y, Koyanagi Y, Sasaki T. Ku80 autoantigen as a cellular coreceptor for human parvovirus B19 infection. Blood 2005; 106:3449-56. [PMID: 16076874 DOI: 10.1182/blood-2005-02-0536] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human parvovirus B19 (B19) infects human erythroid cells expressing P antigen. However, some cell lines that were positive for P antigen failed to bind B19, whereas some cell lines had an ability to bind B19 despite undetectable expression of P antigen. We here demonstrate that B19 specifically binds with Ku80 autoantigen on the cell surface. Furthermore, transfection of HeLa cells with the gene of Ku80 enabled the binding of B19 and allowed its entry into cells. Moreover, reduction of cell-surface expression of Ku80 in KU812Ep6 cells, which was a high-sensitive cell line for B19 infection, by short interfering RNA for Ku80 resulted in the marked inhibition of B19 binding in KU812Ep6 cells. Although Ku80 originally has been described as a nuclear protein, human bone marrow erythroid cells with glycophorin A or CD36, B cells with CD20, or T cells with CD3 were all positive for cell-surface expression of Ku80. B19 infection of KU812Ep6 cells and bone marrow cells was inhibited in the presence of anti-Ku80 antibody. Our data suggest that Ku80 functions as a novel coreceptor for B19 infection, and this finding may provide an explanation for the pathologic immunity associated with B19 infection.
Collapse
Affiliation(s)
- Yasuhiko Munakata
- Department of Rheumatology and Hematology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Human parvovirus B19 is the only parvovirus known to be a human pathogen. The structure of recombinant B19-like particles has been determined to approximately 3.5-A resolution by x-ray crystallography and, to our knowledge, represents the first near-atomic structure of an Erythrovirus. The polypeptide fold of the major capsid protein VP2 is a "jelly roll" with a beta-barrel motif similar to that found in many icosahedral viruses. The large loops connecting the strands of the beta-barrel form surface features that differentiate B19 from other parvoviruses. Although B19 VP2 has only 26% sequence identity to VP3 of adeno-associated virus, 72% of the C(alpha) atoms can be aligned structurally with a rms deviation of 1.8 A. Both viruses require an integrin as a coreceptor, and conserved surface features suggest a common receptor-binding region.
Collapse
Affiliation(s)
- Bärbel Kaufmann
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | | | | |
Collapse
|
9
|
Abstract
Parvovirus B19 (B19) was discovered in 1974 and is the only member of the family Parvoviridae known to be pathogenic in humans. Despite the inability to propagate the virus in cell cultures, much has been learned about the pathophysiology of this virus, including the identification of the cellular receptor (P antigen), and the control of the virus by the immune system. B19 is widespread, and manifestations of infection vary with the immunologic and hematologic status of the host. In healthy immunocompetent individuals B19 is the cause of erythema infectiosum and, particularly in adults, acute symmetric polyarthropathy. Due to the tropism of B19 to erythroid progenitor cells, infection in individuals with an underlying hemolytic disorder causes transient aplastic crisis. In the immunocompromised host persistent B19 infection is manifested as pure red cell aplasia and chronic anemia. Likewise, the immature immune response of the fetus may render it susceptible to infection, leading to fetal death in utero, hydrops fetalis, or development of congenital anemia. B19 has also been suggested as the causative agent in a variety of clinical syndromes, but given the common nature, causality is often difficult to infer. Diagnosis is primarily based on detection of specific antibodies by enzyme-linked immunosorbent assay or detection of viral DNA by dot blot hybridization or PCR. Treatment of persistent infection with immunoglobulin reduces the viral load and results in a marked resolution of anemia. Vaccine phase I trials show promising results.
Collapse
Affiliation(s)
- Erik D Heegaard
- Department of Clinical Microbiology, University State Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
10
|
Heegaard ED, Rasksen CJ, Christensen J. Detection of parvovirus B19 NS1-specific antibodies by ELISA and western blotting employing recombinant NS1 protein as antigen. J Med Virol 2002; 67:375-83. [PMID: 12116031 DOI: 10.1002/jmv.10079] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human parvovirus B19 (B19) encodes a number of nonstructural proteins, including the major protein, NS1, and two structural proteins, VP1 and VP2. The use of denatured NS1 in enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) assay has provided an opportunity to study some of the immunologic properties of NS1, but the results have been equivocal and the diagnostic sensitivity poor, probably because of the absence of conformational epitopes. Various viral isolates and baculovirus vectors were employed to produce recombinant B19 NS1 under nondenaturing conditions for the first time. To assess the antigenicity of purified B19 NS1, the reaction patterns of 252 samples were compared by B19 NS1 and VP2 ELISA. In sera from individuals with past infection (VP2 IgG-positive), the use of this new antigen increased significantly the sensitivity of ELISA compared with WB (78% vs. 33%, P = 0.001), contradicting perpetuated claims that B19 NS1 IgG is detected primarily in patients with arthralgia or chronic infection. Previous reports of the absence of NS1 IgG during the initial phase of infection (< 6 weeks) were proved incorrect by the detection of NS1 IgG in 60% of samples from patients recently infected by B19. Including conformational epitopes in the ELISA increases the diagnostic sensitivity, although immunologically, a temporal (years) attenuation of NS1 antibodies appears to take place. This novel diagnostic tool may be useful as a supplement in case of borderline results by VP2 ELISA and for monitoring the efficacy of future capsid-based B19 vaccines.
Collapse
Affiliation(s)
- Erik D Heegaard
- Department of Clinical Microbiology, University State Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | | |
Collapse
|
11
|
Abstract
Parvovirus B19 is the causative agent of erythema infectiosum. In addition, the infection may be associated with other disease manifestations: anemia and aplastic crisis, thrombo- or granulocytopenies; spontaneous abortion or hydrops fetalis in pregnant women; acute and chronic arthritis in adults and children, myocarditis and hepatitis. Both acute and persistent courses of B19-infections have been reported. All patients develop IgG against the capsid proteins VP1 and VP2, the majority of virus neutralizing antibodies that offer life-long protection against reinfections are directed against the VP1-unique region. IgM is mainly directed against VP2-specific epitopes. These antibodies may be present for only a rather short period of two to ten weeks after acute infection. IgG-antibodies against the nonstructural protein NS1 are preferentially found in patients which are unable to eliminate the virus and develop persisting viremia or virus persistence in distinct organs, e.g. synovial fluid, liver, bone marrow.
Collapse
Affiliation(s)
- Susanne Modrow
- Institut für Medizinische Mikrobiologie, Unversität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | | |
Collapse
|
12
|
Tolfvenstam T, Lundqvist A, Levi M, Wahren B, Broliden K. Mapping of B-cell epitopes on human parvovirus B19 non-structural and structural proteins. Vaccine 2000; 19:758-63. [PMID: 11115697 DOI: 10.1016/s0264-410x(00)00258-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the present study, the immune reactivity to Parvovirus B19 (B19) proteins and variations in antigenic reactivity in different clinical manifestations were investigated. Sera from healthy B19 IgG positive individuals were evaluated for antibody reactivity against linear peptides. Three antigenic regions (amino acid number 191-206, 271-286, 371-386) on the B19 non-structural (NS) protein 1 were identified. The highest seroreactivity against these peptides was found against amino acid number 271-286. Seroreactivity in this group of individuals was also investigated against peptides representing selected neutralising regions of the B19 capsid proteins viral protein (VP) 1/VP2. The antigenic NS1 and VP1/VP2 regions, thus defined, were further mapped by seroreactivity against peptides containing specific deletions. The frequencies of seroreactivity against the NS1 and VP1/VP2 peptides in healthy B19 IgG positive individuals were similar to those in HIV-seropositive and persistently B19 infected patients, except that the latter group showed a lower reactivity to the C-terminal end of VP1/VP2. The identification of antigenic regions and corresponding seroreactivity in asymptomatic and persistently B19-infected patients is important for the understanding of B19-pathogenesis and for the development of B19 vaccine candidates.
Collapse
Affiliation(s)
- T Tolfvenstam
- Department of Clinical Virology, F68, Karolinska Institutet, Huddinge University Hospital, SE-14186, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
13
|
Yuan W, Parrish CR. Comparison of two single-chain antibodies that neutralize canine parvovirus: analysis of an antibody-combining site and mechanisms of neutralization. Virology 2000; 269:471-80. [PMID: 10753725 DOI: 10.1006/viro.2000.0230] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned the heavy- and light-chain variable domains of two monoclonal antibodies that recognize each of the two major neutralizing antigenic sites of the canine parvovirus (CPV) capsid. After expression in Escherichia coli as single-chain variable domains (scFv) with glycine-serine linker sequences, both scFv bound CPV capsids with the same specificity as the intact IgG, but with 10- to 20-fold lower avidity. Both scFvs neutralized CPV infectivity with efficiency similar to that of the IgG. Although both IgGs inhibited hemagglutination by CPV, only one scFv was inhibiting. The binding of one of the antibodies has previously been analyzed by cryoelectron microscopic reconstruction and the epitope-binding residues predicted. Mutagenesis of predicted contact residues in three heavy-chain complementarity-determining regions (CDR) showed that mutants of CDR1 or CDR3 reduced the binding of the scFv by about 10-fold compared with the wild-type scFv, while no effect was seen for one mutant of CDR2. The levels of neutralization of CPV and of hemagglutination inhibition by the scFv mutants were proportional to their reduction in binding affinity compared with the wild type. Neither scFv blocked virus binding to host cells, but they both caused aggregation of the capsids and appeared to affect the process of infection after virus uptake into the cells.
Collapse
Affiliation(s)
- W Yuan
- James A. Baker Institute for Animal Health, Cornell University, Ithaca, New York, 14853, USA
| | | |
Collapse
|
14
|
Kaikkonen L, Lankinen H, Harjunpää I, Hokynar K, Söderlund-Venermo M, Oker-Blom C, Hedman L, Hedman K. Acute-Phase-Specific Heptapeptide Epitope for Diagnosis of Parvovirus B19 Infection. J Clin Microbiol 1999; 37:3952-6. [PMID: 10565913 PMCID: PMC85853 DOI: 10.1128/jcm.37.12.3952-3956.1999] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
The major capsid protein VP2 of human parvovirus B19, when studied in a denatured form exhibiting linear epitopes, is recognized exclusively by immunoglobulin G (IgG) antibodies of patients with acute or recent B19 infection. By contrast, conformational epitopes of VP2 are recognized both by IgG of the acute phase and by IgG of past immunity. In order to localize the VP2 linear epitope(s) specific for acute-phase IgG, the entire B19 capsid protein sequence was mapped by peptide scanning using well-characterized acute-phase and control sera. A unique heptapeptide epitope showing strong and selective reactivity with the acute-phase IgG was detected and characterized. By using this linear epitope (VP2 amino acids 344 to 350) and virus-like particles exhibiting conformational VP2 epitopes, an innovative approach, second-generation epitope-typing enzyme immunoassay, was set up for improved diagnosis of primary infections by human parvovirus B19.
Collapse
Affiliation(s)
- L Kaikkonen
- Department of Virology, Haartman Institute and HUCH Diagnostic, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gigler A, Dorsch S, Hemauer A, Williams C, Kim S, Young NS, Zolla-Pazner S, Wolf H, Gorny MK, Modrow S. Generation of neutralizing human monoclonal antibodies against parvovirus B19 proteins. J Virol 1999; 73:1974-9. [PMID: 9971777 PMCID: PMC104439 DOI: 10.1128/jvi.73.3.1974-1979.1999] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections caused by human parvovirus B19 are known to be controlled mainly by neutralizing antibodies. To analyze the immune reaction against parvovirus B19 proteins, four cell lines secreting human immunoglobulin G monoclonal antibodies (MAbs) were generated from two healthy donors and one human immunodeficiency virus type 1-seropositive individual with high serum titers against parvovirus. One MAb is specific for nonstructural protein NS1 (MAb 1424), two MAbs are specific for the unique region of minor capsid protein VP1 (MAbs 1418-1 and 1418-16), and one MAb is directed to major capsid protein VP2 (MAb 860-55D). Two MAbs, 1418-1 and 1418-16, which were generated from the same individual have identity in the cDNA sequences encoding the variable domains, with the exception of four base pairs resulting in only one amino acid change in the light chain. The NS1- and VP1-specific MAbs interact with linear epitopes, whereas the recognized epitope in VP2 is conformational. The MAbs specific for the structural proteins display strong virus-neutralizing activity. The VP1- and VP2-specific MAbs have the capacity to neutralize 50% of infectious parvovirus B19 in vitro at 0.08 and 0.73 microgram/ml, respectively, demonstrating the importance of such antibodies in the clearance of B19 viremia. The NS1-specific MAb mediated weak neutralizing activity and required 47.7 micrograms/ml for 50% neutralization. The human MAbs with potent neutralizing activity could be used for immunotherapy of chronically B19 virus-infected individuals and acutely infected pregnant women. Furthermore, the knowledge gained regarding epitopes which induce strongly neutralizing antibodies may be important for vaccine development.
Collapse
Affiliation(s)
- A Gigler
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kamstrup S, Langeveld J, Bøtner A, Nielsen J, Schaaper WM, Boshuizen RS, Casal JI, Højrup P, Vela C, Meloen R, Dalsgaard K. Mapping the antigenic structure of porcine parvovirus at the level of peptides. Virus Res 1998; 53:163-73. [PMID: 9620208 DOI: 10.1016/s0168-1702(97)00145-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antigenic structure of the capsid proteins of porcine parvovirus (PPV) was investigated. A total of nine linear epitopes were identified by Pepscan using porcine or rabbit anti-PPV antisera. No sites were identified with a panel of neutralising monoclonal antibodies (MAbs). All epitopes were located in the region corresponding to the major capsid protein VP2. Based on this information, and on analogy to other autonomous parvoviruses, 24 different peptides were synthesised, coupled to keyhole limpet haemocyanin (KLH) and used to immunise rabbits. Most antisera were able to bind viral protein. Only peptides from the N-terminal part of VP2 were able to induce virus-neutralising antibodies, although at low levels. A similar neutralising activity could be obtained in pigs. The exposure of the N-terminus was shown in full virions, both by immunoelectron microscopy and absorption experiments. It is concluded that in PPV, the VP2 N-terminus is involved in virus neutralisation (VN) and peptides from this region are therefore primary targets for developing peptide-based vaccines against this virus.
Collapse
Affiliation(s)
- S Kamstrup
- Danish Veterinary Institute for Virus Research, Kalvehave.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pickering JW, Forghani B, Shell GR, Wu L. Comparative evaluation of three recombinant antigen-based enzyme immunoassays for detection of IgM and IgG antibodies to human parvovirus B19. CLINICAL AND DIAGNOSTIC VIROLOGY 1998; 9:57-63. [PMID: 9562859 DOI: 10.1016/s0928-0197(97)10004-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diagnosis of acute and past infection with parvovirus B19 is based on detection of IgM and IgG antibodies. OBJECTIVES To evaluate two commercial recombinant antigen-based enzyme immunoassay (EIA) test kits for detection of IgM and IgG antibodies to parvovirus B19 and to compare the commercial EIAs to in-house EIA test procedures. STUDY DESIGN A panel of 121 sera was used to compare the three IgM EIAs. The panel included 84 sera submitted for parvovirus B19 testing and 37 sera that were IgM positive for other viral pathogens. The same serum panel plus an additional 14 sera submitted for B19 testing was used to compare the three IgG EIAs. The commercial EIAs were performed according to manufacturers' instructions. Using the in-house EIA test procedures as the reference, sensitivity and specificity for each of the commercial EIAs was determined. RESULTS The commercial B19 IgM EIAs showed agreements of 95.0 and 93.4% to the in-house IgM EIA. Compared to the in-house B19 IgM EIA, the commercial B19 IgM EIAs were 97.4 and 97.5% sensitive, respectively. Specificities were 93.5 and 91.4%, respectively. Sensitivities for the commercial IgG EIAs, compared to in-house IgG EIA, were 88.0 and 85.2%, respectively, and specificities were 94.1 and 98.0%. CONCLUSION We found that the commercial parvovirus B19 IgM and IgG EIAs are comparable to standard in-house EIAs and are suitable for testing for B19 antibodies in human sera.
Collapse
|
18
|
Bloom ME, Martin DA, Oie KL, Huhtanen ME, Costello F, Wolfinbarger JB, Hayes SF, Agbandje-McKenna M. Expression of Aleutian mink disease parvovirus capsid proteins in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions. J Virol 1997; 71:705-14. [PMID: 8985402 PMCID: PMC191103 DOI: 10.1128/jvi.71.1.705-714.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The capsid proteins of the ADV-G isolate of Aleutian mink disease parvovirus (ADV) were expressed in 10 nonoverlapping segments as fusions with maltose-binding protein in pMAL-C2 (pVP1, pVP2a through pVP2i). The constructs were designed to capture the VP1 unique sequence and the portions analogous to the four variable surface loops of canine parvovirus (CPV) in individual fragments (pVP2b, pVP2d, pVP2e, and pVP2g, respectively). The panel of fusion proteins was immunoblotted with sera from mink infected with ADV. Seropositive mink infected with either ADV-TR, ADV-Utah, or ADV-Pullman reacted preferentially against certain segments, regardless of mink genotype or virus inoculum. The most consistently immunoreactive regions were pVP2g, pVP2e, and pVP2f, the segments that encompassed the analogs of CPV surface loops 3 and 4. The VP1 unique region was also consistently immunoreactive. These findings indicated that infected mink recognize linear epitopes that localized to certain regions of the capsid protein sequence. The segment containing the hypervariable region (pVP2d), corresponding to CPV loop 2, was also expressed from ADV-Utah. An anti-ADV-G monoclonal antibody and a rabbit anti-ADV-G capsid antibody reacted exclusively with the ADV-G pVP2d segment but not with the corresponding segment from ADV-Utah. Mink infected with ADV-TR or ADV-Utah also preferentially reacted with the pVP2d sequence characteristic of that virus. These results suggested that the loop 2 region may contain a type-specific linear epitope and that the epitope may also be specifically recognized by infected mink. Heterologous antisera were prepared against the VP1 unique region and the four segments capturing the variable surface loops of CPV. The antisera against the proteins containing loop 3 or loop 4, as well as the anticapsid antibody, neutralized ADV-G infectivity in vitro and bound to capsids in immune electron microscopy. These results suggested that regions of the ADV capsid proteins corresponding to surface loops 3 and 4 of CPV contain linear epitopes that are located on the external surface of the ADV capsid. Furthermore, these linear epitopes contain neutralizing determinants. Computer comparisons with the CPV crystal structure suggest that these sequences may be adjacent to the threefold axis of symmetry of the viral particle.
Collapse
Affiliation(s)
- M E Bloom
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Disease, Hamilton, Montana 59840, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Human parvovirus B19, discovered in 1974, is a single-stranded DNA virus which causes erythema infectiosum, arthralgia, aplastic crisis in patients with red cell defects, chronic anaemia in immunocompromised patients, and fetal hydrops. Seroprevalence in developed countries is 2-10% in children less than 5 years, 40-60% in adults more than 20 years, and 85% or more in those over 70 years. The virus may be transmitted by the respiratory route and by transfusion of infected blood and blood products. After an incubation period of six to eight days, viraemia occurs, during which reticulocyte numbers fall dramatically resulting in a temporary drop in haemoglobin of 1 g/dl in a normal person. Clearance of viraemia is dependent on development of specific antibody to the B19 structural proteins, VP1 and VP2. The red cell receptor for the virus is blood group P antigen. Diagnosis in immunocompetent persons depends on detection of specific IgM in serum. Diagnosis in immunocompromised persons depends on detection of B19 antigen or DNA in serum. There is no specific treatment for B19 infection; however, human normal immunoglobulin may be used as a source of specific antibody in chronically infected persons. A recombinant parvovirus B19 vaccine is under development.
Collapse
Affiliation(s)
- J R Kerr
- Department of Bacteriology, Belfast City Hospital, UK
| |
Collapse
|
20
|
Casal JI. Parvovirus diagnostics and vaccine production in insect cells. Cytotechnology 1996; 20:261-70. [DOI: 10.1007/bf00350405] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Abstract
The rational design of effective oral vaccines based on synthetic peptides is a very ambitious undertaking, and involves the solution of huge problems related to protection of the antigens against degradation in the alimentary tract, efficient uptake of the antigens by the relevant cells, and efficient induction of long lasting systemic immunity, local immunity, or both. This paper summarises the steps, necessary to develop such synthetic oral vaccines. These steps involve: (1) the definition of B-cell epitopes; (2) the definition of T-cell epitopes; (3) definition of the carrier or backbone molecule; (4) definition of an immunomodulating element; (5) definition of an adjuvant element; and (6) definition of a targeting element. Good progress is being made with respect to the first three steps, the other steps still provide major challenges, notably the definition of targeting elements. Nevertheless, the first synthetic oral vaccines may become reality in the near future, depending on the speed by which new technology in the area of molecular recognition will develop, i.e. the appropriate chemistry, organic chemistry, molecular modelling, resolution of the molecular interaction of key molecules in microbiology and immunology.
Collapse
|
22
|
|
23
|
Brown KE, Young NS, Liu JM. Molecular, cellular and clinical aspects of parvovirus B19 infection. Crit Rev Oncol Hematol 1994; 16:1-31. [PMID: 8074799 DOI: 10.1016/1040-8428(94)90040-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- K E Brown
- Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD
| | | | | |
Collapse
|