1
|
Tombak EM, Männik A, Burk RD, Le Grand R, Ustav E, Ustav M. The molecular biology and HPV drug responsiveness of cynomolgus macaque papillomaviruses support their use in the development of a relevant in vivo model for antiviral drug testing. PLoS One 2019; 14:e0211235. [PMID: 30682126 PMCID: PMC6347367 DOI: 10.1371/journal.pone.0211235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 01/29/2023] Open
Abstract
Due to the extreme tissue and species restriction of the papillomaviruses (PVs), there is a great need for animal models that accurately mimic PV infection in humans for testing therapeutic strategies against human papillomaviruses (HPVs). In this study, we present data that demonstrate that in terms of gene expression during initial viral DNA amplification, Macaca fascicularis PV (MfPV) types 5 and 8 appear to be similar to mucosal oncogenic HPVs, while MfPV1 (isolated from skin) resembles most high-risk cutaneous beta HPVs (HPV5). Similarities were also observed in replication properties during the initial amplification phase of the MfPV genomes. We demonstrate that high-risk mucosal HPV-specific inhibitors target the transient replication of the MfPV8 genomes, which indicates that similar pathways are used by the high-risk HPVs and MfPVs during their genome replication. Taking all into account, we propose that Macaca fascicularis may serve as a highly relevant model for preclinical tests designed to evaluate therapeutic strategies against HPV-associated lesions.
Collapse
Affiliation(s)
- Eva-Maria Tombak
- University of Tartu, Institute of Technology, Tartu, Estonia
- Icosagen Cell Factory Ltd., Eerika tee 1, Õssu, Kambja, Tartumaa, Estonia
| | - Andres Männik
- University of Tartu, Institute of Technology, Tartu, Estonia
- Icosagen Cell Factory Ltd., Eerika tee 1, Õssu, Kambja, Tartumaa, Estonia
| | - Robert D. Burk
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Roger Le Grand
- CEA, Université Paris Sud, INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department / IBFJ, Fontenay-aux-Roses, France
| | - Ene Ustav
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Mart Ustav
- University of Tartu, Institute of Technology, Tartu, Estonia
- Icosagen Cell Factory Ltd., Eerika tee 1, Õssu, Kambja, Tartumaa, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
2
|
Wilson VG. Viral Interplay with the Host Sumoylation System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:359-388. [PMID: 28197923 PMCID: PMC7121812 DOI: 10.1007/978-3-319-50044-7_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses have evolved elaborate means to regulate diverse cellular pathways in order to create a cellular environment that facilitates viral survival and reproduction. This includes enhancing viral macromolecular synthesis and assembly, as well as preventing antiviral responses, including intrinsic, innate, and adaptive immunity. There are numerous mechanisms by which viruses mediate their effects on the host cell, and this includes targeting various cellular post-translational modification systems, including sumoylation. The wide-ranging impact of sumoylation on cellular processes such as transcriptional regulation, apoptosis, stress response, and cell cycle control makes it an attractive target for viral dysregulation. To date, proteins from both RNA and DNA virus families have been shown to be modified by SUMO conjugation, and this modification appears critical for viral protein function. More interestingly, members of the several viral families have been shown to modulate sumoylation, including papillomaviruses, adenoviruses, herpesviruses, orthomyxoviruses, filoviruses, and picornaviruses. This chapter will focus on mechanisms by which sumoylation both impacts human viruses and is used by viruses to promote viral infection and disease.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX, 77807-1359, USA.
| |
Collapse
|
3
|
Xiao Y, Wang J, Ma L, Ren J, Yang M. Nucleotide and phylogenetic analysis of human papillomavirus type 11 isolated from juvenile-onset recurrent respiratory papillomatosis in China. J Med Virol 2015; 88:686-94. [PMID: 26369639 DOI: 10.1002/jmv.24381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Yang Xiao
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China); Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Jun Wang
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China); Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Lijing Ma
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China); Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Jiaming Ren
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China); Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Molei Yang
- Key Laboratory of Otolaryngology Head and Neck Surgery (Ministry of Education of China); Department of Otolaryngology Head and Neck Surgery; Beijing Tongren Hospital; Capital Medical University; Beijing China
| |
Collapse
|
4
|
Mapping of betapapillomavirus human papillomavirus 5 transcription and characterization of viral-genome replication function. J Virol 2013; 88:961-73. [PMID: 24198410 DOI: 10.1128/jvi.01841-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Betapapillomavirus replication and transcription have not been studied in detail because of a lack of suitable cellular systems supporting human papillomavirus (HPV) genome replication. We have recently shown that the human osteosarcoma cell line U2OS provides a useful environment for the genome replication of many different HPVs, including the betapapillomaviruses HPV5 and HPV8. Using mutational analysis and complementation assay, we demonstrated herein that the viral early proteins E1 and E2 are viral transfactors that are necessary and sufficient for HPV5 genome replication. We also identified four HPV5 early promoter regions with transcription start sites (TSSs) at nucleotides (nt) 184/191, 460, 840, and 1254, respectively, and the HPV late promoter with a TSS at nt 7640. In addition, we mapped the HPV5 early polyadenylation cleavage sites via 3' rapid amplification of cDNA ends (3'RACE) to nt 4457 and 4475. In total, 14 different viral mRNA species, originating from the HPV5 genome, were mapped in U2OS cells during transient and stable replication. The main splicing donor and acceptor sites identified herein are consistent with the data previously obtained in HPV5-positive skin lesions. In addition, we identified novel E8 open reading frame (ORF)-containing transcripts (E8^E1C and E8^E2C) expressed from the HPV5 genome. Similar to several other papillomaviruses, the product of the E8^E2C mRNA acts as a repressor of viral genome replication.
Collapse
|
5
|
A structural basis for BRD2/4-mediated host chromatin interaction and oligomer assembly of Kaposi sarcoma-associated herpesvirus and murine gammaherpesvirus LANA proteins. PLoS Pathog 2013; 9:e1003640. [PMID: 24146614 PMCID: PMC3798688 DOI: 10.1371/journal.ppat.1003640] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) establishes a lifelong latent infection and causes several malignancies in humans. Murine herpesvirus 68 (MHV-68) is a related γ2-herpesvirus frequently used as a model to study the biology of γ-herpesviruses in vivo. The KSHV latency-associated nuclear antigen (kLANA) and the MHV68 mLANA (orf73) protein are required for latent viral replication and persistence. Latent episomal KSHV genomes and kLANA form nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin proteins, including BRD2 and BRD4, members of the BRD/BET family of chromatin modulators. We solved the X-ray crystal structure of the C-terminal DNA binding domains (CTD) of kLANA and MHV-68 mLANA. While these structures share the overall fold with the EBNA1 protein of Epstein-Barr virus, they differ substantially in their surface characteristics. Opposite to the DNA binding site, both kLANA and mLANA CTD contain a characteristic lysine-rich positively charged surface patch, which appears to be a unique feature of γ2-herpesviral LANA proteins. Importantly, kLANA and mLANA CTD dimers undergo higher order oligomerization. Using NMR spectroscopy we identified a specific binding site for the ET domains of BRD2/4 on kLANA. Functional studies employing multiple kLANA mutants indicate that the oligomerization of native kLANA CTD dimers, the characteristic basic patch and the ET binding site on the kLANA surface are required for the formation of kLANA ‘nuclear speckles’ and latent replication. Similarly, the basic patch on mLANA contributes to the establishment of MHV-68 latency in spleen cells in vivo. In summary, our data provide a structural basis for the formation of higher order LANA oligomers, which is required for nuclear speckle formation, latent replication and viral persistence. Kaposi sarcoma-associated herpesvirus (KSHV) causes Kaposi Sarcoma, Primary Effusion lymphoma and the plasma cell variant of Multicentric Castleman's Disease. Its oncogenic effect is linked to its ability to persist in a latent form for the life time of infected individuals. During latency viral genomes are replicated and passed to daughter cells in synchrony with the infected cell without the formation of new virions. A key viral protein in this process is the latency-associated nuclear antigen, LANA. In latently infected cells, viral genomes and LANA form characteristic nuclear microdomains, termed ‘LANA speckles’, which also contain cellular chromatin components. We have solved the crystal structure of the c-terminal, DNA-binding, domain (CTD) of KSHV LANA (kLANA) and its homologue mLANA of a related murine γ2-herpesvirus, which is frequently used as a model to study latent persistence in vivo. We also identified the binding site for two chromatin proteins, BRD2/4, by NMR spectroscopy. We demonstrate the functional importance of these structural features, and their contribution to latent replication and ‘LANA speckle’ formation, in cell culture and in vivo experiments. Our results provide a structural basis for the assembly of LANA-containing nuclear structures that are required for latent viral replication and persistence.
Collapse
|
6
|
Chow LT, Broker TR. Human papillomavirus infections: warts or cancer? Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012997. [PMID: 23685995 DOI: 10.1101/cshperspect.a012997] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human papillomaviruses (HPVs) are prevalent pathogens of mucosal and cutaneous epithelia. Productive infections of squamous epithelia lead to benign hyperproliferative warts, condylomata, or papillomas. Persistent infections of the anogenital mucosa by high-risk HPV genotypes 16 and 18 and closely related types can infrequently progress to high-grade intraepithelial neoplasias, carcinomas-in-situ, and invasive cancers in women and men. HPV-16 is also associated with a fraction of head and neck cancers. We discuss the interactions of the mucosotropic HPVs with the host regulatory proteins and pathways that lead to benign coexistence and enable HPV DNA amplification or, alternatively, to cancers that no longer support viral production.
Collapse
Affiliation(s)
- Louise T Chow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | |
Collapse
|
7
|
Kajitani N, Satsuka A, Kawate A, Sakai H. Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation. Front Microbiol 2012; 3:152. [PMID: 22536200 PMCID: PMC3334820 DOI: 10.3389/fmicb.2012.00152] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 04/02/2012] [Indexed: 12/26/2022] Open
Abstract
Human papillomaviruses (HPVs) target the stratified epidermis, and can causes diseases ranging from benign condylomas to malignant tumors. Infections of HPVs in the genital tract are among the most common sexually transmitted diseases, and a major risk factor for cervical cancer. The virus targets epithelial cells in the basal layer of the epithelium, while progeny virions egress from terminally differentiated cells in the cornified layer, the surface layer of the epithelium. In infected basal cells, the virus maintains its genomic DNA at low-copy numbers, at which the viral productive lifecycle cannot proceed. Progression of the productive lifecycle requires differentiation of the host cell, indicating that there is tight crosstalk between viral replication and host differentiation programs. In this review, we discuss the regulation of the HPV lifecycle controlled by the differentiation program of the host cells.
Collapse
Affiliation(s)
- Naoko Kajitani
- Laboratory of Mammalian Molecular Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | | | | | | |
Collapse
|
8
|
Identification and analysis of papillomavirus E2 protein binding sites in the human genome. J Virol 2011; 86:348-57. [PMID: 22031941 DOI: 10.1128/jvi.05606-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Papillomavirus E2 protein is required for the replication and maintenance of viral genomes and transcriptional regulation of viral genes. E2 functions through sequence-specific binding to 12-bp DNA motifs-E2 binding sites (E2BS)-in the virus genome. Papillomaviruses are able to establish persistent infection in their host and have developed a long-term relationship with the host cell in order to guarantee the propagation of the virus. In this study, we have analyzed the occurrence and functionality of E2BSs in the human genome. Our computational analysis indicates that most E2BSs in the human genome are found in repetitive DNA regions and have G/C-rich spacer sequences. Using a chromatin immunoprecipitation approach, we show that human papillomavirus type 11 (HPV11) E2 interacts with a subset of cellular E2BSs located in active chromatin regions. Two E2 activities, sequence-specific DNA binding and interaction with cellular Brd4 protein, are important for E2 binding to consensus sites. E2 binding to cellular E2BSs has a moderate or no effect on cellular transcription. We suggest that the preference of HPV E2 proteins for E2BSs with A/T-rich spacers, which are present in the viral genomes and underrepresented in the human genome, ensures E2 binding to specific binding sites in the virus genome and may help to prevent extensive and possibly detrimental changes in cellular transcription in response to the viral protein.
Collapse
|
9
|
Bellanger S, Tan CL, Xue YZ, Teissier S, Thierry F. Tumor suppressor or oncogene? A critical role of the human papillomavirus (HPV) E2 protein in cervical cancer progression. Am J Cancer Res 2011; 1:373-389. [PMID: 21968515 PMCID: PMC3180061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/23/2011] [Indexed: 05/31/2023] Open
Abstract
The papillomavirus (PV) E2 proteins have been shown to exert many functions in the viral cycle including pivotal roles in transcriptional regulation and in viral DNA replication. Besides these historical roles, which rely on their aptitude to bind to specific DNA sequences, E2 has also been shown to modulate the host cells through direct protein interactions mainly through its amino terminal transactivation domain. We will describe here some of these new functions of E2 and their potential implication in the HPV-induced carcinogenesis. More particularly we will focus on E2-mediated modulation of the host cell cycle and consequences to cell transformation. In all, the HPV E2 proteins exhibit complex functions independent of transcription that can modulate the host cells in concert with the viral vegetative cycle and which could be involved in early carcinogenesis.
Collapse
Affiliation(s)
- Sophie Bellanger
- Institute of Medical Biology 8A Biochemical Grove, #06-06 Immunos, 138648, Singapore
| | | | | | | | | |
Collapse
|
10
|
Development of a cellular assay system to study the genome replication of high- and low-risk mucosal and cutaneous human papillomaviruses. J Virol 2011; 85:3315-29. [PMID: 21248030 DOI: 10.1128/jvi.01985-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We found that recircularized high-risk (type 16 and 18) and low-risk mucosal (type 6b and 11) and cutaneous (type 5 and 8) human papillomavirus (HPV) genomes replicate readily when delivered into U2OS cells by electroporation. The replication efficiency is dependent on the amount of input HPV DNA and can be followed for more than 3 weeks in proliferating cell culture without selection. Cotransfection of recircularized HPV genomes with a linear G418 resistance marker plasmid has allowed subcloning of cell lines, which, in a majority of cases, carry multicopy episomal HPV DNA. Analysis of the HPV DNA status in these established cell lines showed that HPV genomes exist in these cells as stable extrachromosomal oligomers. When the cell lines were cultivated as confluent cultures, a 3- to 10-fold amplification of the HPV genomes per cell was induced. Two-dimensional (2D) agarose gel electrophoresis confirmed amplification of mono- and oligomeric HPV genomes in these confluent cell cultures. Amplification occurred as a result of the initiation of semiconservative two-dimensional replication from one active origin in the HPV oligomer. Our data suggest that the system described here might be a valuable, cost-effective, and efficient tool for use in HPV DNA replication studies, as well as for the design of cell-based assays to identify potential inhibitors of all stages of HPV genome replication.
Collapse
|
11
|
Abstract
Papillomaviruses establish persistent infection in the dividing, basal epithelial cells of the host. The viral genome is maintained as a circular, double-stranded DNA, extrachromosomal element within these cells. Viral genome amplification occurs only when the epithelial cells differentiate and viral particles are shed in squames that are sloughed from the surface of the epithelium. There are three modes of replication in the papillomavirus life cycle. Upon entry, in the establishment phase, the viral genome is amplified to a low copy number. In the second maintenance phase, the genome replicates in dividing cells at a constant copy number, in synchrony with the cellular DNA. And finally, in the vegetative or productive phase, the viral DNA is amplified to a high copy number in differentiated cells and is destined to be packaged in viral capsids. This review discusses the cis elements and protein factors required for each stage of papillomavirus replication.
Collapse
Affiliation(s)
- Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Wu YC, Roark AA, Bian XL, Wilson VG. Modification of papillomavirus E2 proteins by the small ubiquitin-like modifier family members (SUMOs). Virology 2008; 378:329-38. [PMID: 18619639 DOI: 10.1016/j.virol.2008.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/20/2008] [Accepted: 06/06/2008] [Indexed: 11/26/2022]
Abstract
Papillomavirus E2 proteins are critical regulatory proteins that function in replication, genome segregation, and viral transcription, including control of expression of the viral oncogenes, E6 and E7. Sumoylation is a post-translational modification that has been shown to target and modulate the function of many transcription factors, and we now demonstrate that E2 proteins are sumoylated. Both bovine and human papillomavirus E2 proteins bind to the SUMO conjugation enzyme, Ubc9, and using in vitro and E. coli sumoylation systems, these E2 proteins were readily modified by SUMO proteins. In vivo experiments further confirmed that E2 can be sumoylated by SUMO1, SUMO2, or SUMO3. Mapping studies identified lysine 292 as the principal residue for covalent conjugation of SUMO to HPV16 E2, and a lysine 292 to arginine mutant showed defects for both transcriptional activation and repression. The expression levels, intracellular localization, and the DNA-binding activity of HPV16 E2 were unchanged by this K292R mutation, suggesting that the transcriptional defect reflects a functional contribution by sumoylation at this residue. This study provides evidence that sumoylation has a role in the regulation of papillomavirus E2, and identifies a new mechanism for the modulation of E2 function at the post-translational level.
Collapse
Affiliation(s)
- Yu-Chieh Wu
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
13
|
Sánchez IE, Dellarole M, Gaston K, de Prat Gay G. Comprehensive comparison of the interaction of the E2 master regulator with its cognate target DNA sites in 73 human papillomavirus types by sequence statistics. Nucleic Acids Res 2007; 36:756-69. [PMID: 18084026 PMCID: PMC2241901 DOI: 10.1093/nar/gkm1104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mucosal human papillomaviruses (HPVs) are etiological agents of oral, anal and genital cancer. Properties of high- and low-risk HPV types cannot be reduced to discrete molecular traits. The E2 protein regulates viral replication and transcription through a finely tuned interaction with four sites at the upstream regulatory region of the genome. A computational study of the E2–DNA interaction in all 73 types within the alpha papillomavirus genus, including all known mucosal types, indicates that E2 proteins have similar DNA discrimination properties. Differences in E2–DNA interaction among HPV types lie mostly in the target DNA sequence, as opposed to the amino acid sequence of the conserved DNA-binding alpha helix of E2. Sequence logos of natural and in vitro selected sites show an asymmetric pattern of conservation arising from indirect readout, and reveal evolutionary pressure for a putative methylation site. Based on DNA sequences only, we could predict differences in binding energies with a standard deviation of 0.64 kcal/mol. These energies cluster into six discrete affinity hierarchies and uncovered a fifth E2-binding site in the genome of six HPV types. Finally, certain distances between sites, affinity hierarchies and their eventual changes upon methylation, are statistically associated with high-risk types.
Collapse
Affiliation(s)
- Ignacio E Sánchez
- Fundación Instituto Leloir and IIBBA-Conicet, Patricias Argentinas 435 (1405), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
14
|
Sénéchal H, Poirier GG, Coulombe B, Laimins LA, Archambault J. Amino acid substitutions that specifically impair the transcriptional activity of papillomavirus E2 affect binding to the long isoform of Brd4. Virology 2006; 358:10-7. [PMID: 17023018 DOI: 10.1016/j.virol.2006.08.035] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 07/18/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
The E2 protein of papillomaviruses binds to specific sites in the viral genome to regulate its transcription, replication and segregation in mitosis. Amino acid substitutions in the transactivation domain (TAD) of E2, of Arg37 and Ile73, have been shown previously to impair the transcriptional activity of the protein but not its ability to support viral DNA replication. To understand the biochemical basis of this defect, we have used the TADs of a low-risk (HPV11) and a high-risk (HPV31) human papillomavirus (HPV) as affinity ligands to capture proteins from whole cell extracts that can associate with these domains. The major TAD-binding protein was identified by mass spectrometry and western blotting as the long isoform of Brd4. Binding to Brd4 was also demonstrated for the E2 TADs of other papillomaviruses including cutaneous and animal types. For HPV11, HPV31 and CRPV E2, we found that binding to Brd4 is significantly reduced by substitutions of Arg37 and Ile73. Since these amino acids are located near each other in the 3-dimensional structure of the TAD, we suggest that they define a conserved surface involved in binding Brd4 to regulate viral gene transcription.
Collapse
Affiliation(s)
- Hélène Sénéchal
- Laboratory of Molecular Virology, Institut de recherches cliniques de Montréal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | |
Collapse
|
15
|
Wu SY, Lee AY, Hou SY, Kemper JK, Erdjument-Bromage H, Tempst P, Chiang CM. Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev 2006; 20:2383-96. [PMID: 16921027 PMCID: PMC1560413 DOI: 10.1101/gad.1448206] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 06/28/2006] [Indexed: 12/30/2022]
Abstract
The E2 protein encoded by human papillomaviruses (HPVs) inhibits expression of the viral E6 oncoprotein, which, in turn, regulates p53 target gene transcription. To identify cellular proteins involved in E2-mediated transcriptional repression, we isolated an E2 complex from human cells conditionally expressing HPV-11 E2. Surprisingly, the double bromodomain-containing protein Brd4, which is implicated in cell cycle control and viral genome segregation, was found associated with E2 and conferred on E2 the ability to inhibit AP-1-dependent HPV chromatin transcription in an E2-binding site-specific manner as illustrated by in vitro reconstituted chromatin transcription experiments. Knockdown of Brd4 in human cells alleviates E2-mediated repression of HPV transcription. The E2-interacting domain at the extreme C terminus and the chromatin targeting activity of a bromodomain-containing region are both essential for the corepressor activity of Brd4. Interestingly, E2-Brd4 blocks the recruitment of TFIID and RNA polymerase II to the HPV E6 promoter region without inhibiting acetylation of nucleosomal histones H3 and H4, indicating an acetylation-dependent role of Brd4 in the recruitment of E2 for transcriptional silencing of HPV gene activity. Our finding that Brd4 is a component of the virus-assembled transcriptional silencing complex uncovers a novel function of Brd4 as a cellular cofactor modulating viral gene expression.
Collapse
Affiliation(s)
- Shwu-Yuan Wu
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Dao LD, Duffy A, Van Tine BA, Wu SY, Chiang CM, Broker TR, Chow LT. Dynamic localization of the human papillomavirus type 11 origin binding protein E2 through mitosis while in association with the spindle apparatus. J Virol 2006; 80:4792-800. [PMID: 16641272 PMCID: PMC1472045 DOI: 10.1128/jvi.80.10.4792-4800.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Papillomaviral DNA replicates as extrachromosomal plasmids in squamous epithelium. Viral DNA must segregate equitably into daughter cells to persist in dividing basal/parabasal cells. We have previously reported that the viral origin binding protein E2 of human papillomavirus types 11 (HPV-11), 16, and 18 colocalized with the mitotic spindles. In this study, we show the localization of the HPV-11 E2 protein to be dynamic. It colocalized with the mitotic spindles during prophase and metaphase. At anaphase, it began to migrate to the central spindle microtubules, where it remained through telophase and cytokinesis. It was additionally observed in the midbody at cytokinesis. A peptide spanning residues 285 to 308 in the carboxyl-terminal domain of HPV-11 E2 (E2C) is necessary and sufficient to confer localization on the mitotic spindles. This region is conserved in HPV-11, -16, and -18 and bovine papillomavirus type 4 (BPV-4) E2 and is also required for the respective E2C to colocalize with the mitotic spindles. The E2 protein of bovine papillomavirus type 1 is tethered to the mitotic chromosomes via the cellular protein Brd4. However, the HPV-11 E2 protein did not associate with Brd4 during mitosis. Lastly, a chimeric BPV-1 E2C containing the spindle localization domain from HPV-11 E2C gained the ability to localize to the mitotic spindles, whereas the reciprocal chimera lost the ability. We conclude that this region of HPV E2C is critical for localization with the mitotic apparatus, enabling the HPV DNA to sustain persistent infections.
Collapse
Affiliation(s)
- Luan D Dao
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cervical cancer is a progressive disease with an onset of one to two decades on average. During the productive replication stage, the Human papillomavirus (HPV) genome is maintained episomally in the infected cervical epithelium and early gene products, including E5, are expressed. Therefore, E5 has a potential to contribute to the HPV-associated carcinogenic process. In invasive malignancies, the HPV genomes are commonly integrated into the host genome, and E6 and E7 genes remain intact. However, the E5 is lost or, if present, under-expressed as compared with the E6 and E7 proteins. This suggests that E5 may play a critical role in the genesis of cervical cancer but less of a role in its persistence or progression. In the initiation of neoplasia and the premalignant stage, there are fewer malignant cells than in the invasive malignancies. Moreover, cells in the invasive malignant stage are found to have a very low level of MHC class I and II, which could hamper the presentation of the antigen and lead to a decreased immune response. Since the E5 protein is likely to play a role during the early tumorigenesis stage, a therapeutic vaccine to target and eliminate the E5-expressing cells may be a good strategy to prevent premalignant lesions from progressing toward invasive cervical cancers. This paper provides an overview of HPV-induced cervical carcinogenesis and strategies for designing prophylactic and therapeutic vaccines to prevent and cure the cervical cancer. In particular, focus will be on the rationale of targeting the E5 protein to develop therapeutic vaccines.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Department of Genetic Engineering, Faculty of Life Science and Technology, Sungkyunkwan University, Suwon, Korea
| | - Joo-Sung Yang
- Department of Genetic Engineering, Faculty of Life Science and Technology, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
18
|
Hubert WG. Variant upstream regulatory region sequences differentially regulate human papillomavirus type 16 DNA replication throughout the viral life cycle. J Virol 2005; 79:5914-22. [PMID: 15857977 PMCID: PMC1091712 DOI: 10.1128/jvi.79.10.5914-5922.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the central role of the viral upstream regulatory region (URR) in the human papillomavirus (HPV) life cycle has been well established, its effects on viral replication factor expression and plasmid replication of HPV type 16 (HPV16) remain unclear. Some nonprototypic variants of HPV16 contain altered URR sequences and are considered to increase the oncogenic risk of infections. To determine the relationship between viral replication and variant URRs, hybrid viral genomes were constructed with the replication-competent HPV16 prototype W12 and analyzed in assays which recapitulate the different phases of normal viral replication. The establishment efficiencies of hybrid HPV16 genomes differed about 20-fold among European prototypes and variants from Africa and America. Generally, European and African genomes exhibited the lowest replication efficiencies. The high replication levels observed with American variants were primarily attributable to their efficient expression of the replication factors E1 and E2. The maintenance levels of these viral genomes varied about fivefold, which correlated with their respective establishment phenotypes and published P(97) activities. Vegetative DNA amplification could also be observed with replicating HPV16 genomes. These results indicate that efficient E1/E2 expression and elevated plasmid replication levels during the persistent stage of infection may comprise a risk factor in HPV16-mediated oncogenesis.
Collapse
Affiliation(s)
- Walter G Hubert
- Department of Dermatology, MS576, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA.
| |
Collapse
|
19
|
Deng W, Lin BY, Jin G, Wheeler CG, Ma T, Harper JW, Broker TR, Chow LT. Cyclin/CDK regulates the nucleocytoplasmic localization of the human papillomavirus E1 DNA helicase. J Virol 2004; 78:13954-65. [PMID: 15564503 PMCID: PMC533924 DOI: 10.1128/jvi.78.24.13954-13965.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 08/03/2004] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play key roles in eukaryotic DNA replication and cell cycle progression. Phosphorylation of components of the preinitiation complex activates replication and prevents reinitiation. One mechanism is mediated by nuclear export of critical proteins. Human papillomavirus (HPV) DNA replication requires cellular machinery in addition to the viral replicative DNA helicase E1 and origin recognition protein E2. E1 phosphorylation by cyclin/CDK is critical for efficient viral DNA replication. We now show that E1 is phosphorylated by CDKs in vivo and that phosphorylation regulates its nucleocytoplasmic localization. We identified a conserved regulatory region for localization which contains a dominant leucine-rich nuclear export sequence (NES), the previously defined cyclin binding motif, three serine residues that are CDK substrates, and a putative bipartite nuclear localization sequence. We show that E1 is exported from the nucleus by a CRM1-dependent mechanism unless the NES is inactivated by CDK phosphorylation. Replication activities of E1 phosphorylation site mutations are reduced and correlate inversely with their increased cytoplasmic localization. Nuclear localization and replication activities of most of these mutations are enhanced or restored by mutations in the NES. Collectively, our data demonstrate that CDK phosphorylation controls E1 nuclear localization to support viral DNA amplification. Thus, HPV adopts and adapts the cellular regulatory mechanism to complete its reproductive program.
Collapse
Affiliation(s)
- Wentao Deng
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 510 McCallum Basic Health Sciences Building, 1918 University Blvd., Birmingham, AL 35294-0005, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Münger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, Grace M, Huh K. Mechanisms of human papillomavirus-induced oncogenesis. J Virol 2004; 78:11451-60. [PMID: 15479788 PMCID: PMC523272 DOI: 10.1128/jvi.78.21.11451-11460.2004] [Citation(s) in RCA: 671] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Karl Münger
- Department of Pathology, Harvard Medical School, 77 Ave. Louis Pasteur, NRB 0958C, Boston, MA 02115-5727, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
DePamphili ML. How transcription factors regulate origins of DNA replication in eukaryotic cells. Trends Cell Biol 2004; 3:161-7. [PMID: 14731611 DOI: 10.1016/0962-8924(93)90137-p] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic chromosomes contain a few thousand origins of DNA replication, which are activated in a temporal and spatial order during S phase. One parameter that is strongly implicated in determining the order of replication is transcription. This review focuses on the role of transcription factors in activating origins of replication in eukaryotic cells. Studies of viral and mitochondrial replication origins have revealed several mechanisms by which transcription factors activate origins, but it remains to be seen whether any of these are used to regulate cellular chromosome replication.
Collapse
Affiliation(s)
- M L DePamphili
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110, USA
| |
Collapse
|
22
|
Deng W, Jin G, Lin BY, Van Tine BA, Broker TR, Chow LT. mRNA splicing regulates human papillomavirus type 11 E1 protein production and DNA replication. J Virol 2003; 77:10213-26. [PMID: 12970406 PMCID: PMC228435 DOI: 10.1128/jvi.77.19.10213-10226.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus replicative helicase E1 and the origin recognition protein E2 are required for efficient viral DNA replication. We fused the green fluorescent protein (GFP) to the human papillomavirus type 11 E1 protein either in a plasmid with the E1 coding region alone (nucleotides [nt] 832 to 2781) (pGFP-11E1) or in a plasmid containing both the E1 and E2 regions (nt 2723 to 3826) and the viral origin of replication (ori) (p11Rc). The former supported transient replication of an ori plasmid, whereas the latter was a self-contained replicon. Unexpectedly, these plasmids produced predominantly a cytoplasmic variant GFP or a GFP-E1 E4 protein, respectively. The majority of the mRNAs had an intragenic or intergenic splice from nt 847 to nt 2622 or from nt 847 to nt 3325, corresponding to the E2 or E1 E4 messages. pGFP-11E1dm and p11Rc-E1dm, mutated at the splice donor site, abolished these splices and increased GFP-E1 protein expression. Three novel, alternatively spliced, putative E2 mRNAs were generated in higher abundance from the mutated replicon than from the wild type. Relative to pGFP-11E1, low levels of pGFP-11E1dm supported more efficient replication, but high levels had a negative effect. In contrast, elevated E2 levels always increased replication. Despite abundant GFP-E1 protein, p11Rc-E1dm replicated less efficiently than the wild type. Collectively, these observations show that the E1/E2 ratio is as important as the E1 and E2 concentrations in determining the replication efficiency. These findings suggest that alternative mRNA splicing could provide a mechanism to regulate E1 and E2 protein expression and DNA replication during different stages of the virus life cycle.
Collapse
Affiliation(s)
- Wentao Deng
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | |
Collapse
|
23
|
Jeckel S, Loetzsch E, Huber E, Stubenrauch F, Iftner T. Identification of the E9/E2C cDNA and functional characterization of the gene product reveal a new repressor of transcription and replication in cottontail rabbit papillomavirus. J Virol 2003; 77:8736-44. [PMID: 12885893 PMCID: PMC167252 DOI: 10.1128/jvi.77.16.8736-8744.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cottontail rabbit papillomavirus (CRPV) genomes mutated in the trans-activation domain of the E2 protein, which stimulates both viral DNA replication and transcription, are severely impaired in their ability to induce tumors in New Zealand White rabbits. A number of papillomaviruses encode, in addition to full-length E2, a shortened E2 protein or an E2 protein fused to a short stretch of amino acids derived from the small E8 open reading frame that counteract the activities of E2. We identified and cloned the novel cDNA E9/E2C of CRPV from papillomas of New Zealand White and cottontail rabbits and characterized the functions of the encoded gene product. E9/E2C was shown to be a bona fide repressor of minimal viral promoters, with the E9 domain being essential for this activity, and to repress E1/E2-dependent replication of a CRPV origin construct. In addition, E9/E2C counteracted the transactivation effect of the full-length E2 on minimal promoters containing several E2 binding sites. To investigate the role of E9/E2C in tumorigenesis, we constructed two CRPV genomes mutated in E9/E2C. One, designated CRPV-E9atgmut-pLAII, contained a mutation in the unique start codon in the E9 open reading frame, and the second E9/E2C mutant was constructed by the introduction of a stop codon close to the splice donor site at nucleotide 3714 that additionally prevented the correct splicing of the transcript. When we infected New Zealand White rabbits with these constructs, we surprisingly noted no differences in tumor induction efficiency, viral genome copy number, and viral transcription in comparison to wild-type CRPV.
Collapse
Affiliation(s)
- Sonja Jeckel
- Sektion Experimentelle Virologie, Universitaetsklinikum Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | |
Collapse
|
24
|
Sheikh S, Van Horn G, Naqvi A, Sheahan L, Khan SA. Purification and biochemical characterization of the E1 replication initiation protein of the cutaneous human papillomavirus type 1. J Gen Virol 2003; 84:277-285. [PMID: 12560558 DOI: 10.1099/vir.0.18527-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The E1 and E2 proteins encoded by papillomaviruses are required for viral DNA replication. Although E1 is the replication initiator protein, previous studies have shown that the full-length E1 protein binds to the origin weakly and with low sequence specificity. The E2 protein facilitates binding of the E1 protein to the origin, triggering the initiation of replication. The E1 protein contains ATPase, helicase and DNA unwinding activities. In vivo studies with mucosal human papillomavirus (HPV) types 11 and 18 have shown that while E1 is absolutely essential for replication, the E1 binding site is dispensable. However, both the E2 protein and E2 binding sites are required for their replication. In contrast to these HPVs, transient replication of HPV type 1, which infects cutaneous tissue, requires only the viral E1 protein and E1 binding site. To understand the basis for these differences, we have overexpressed and purified the HPV-1 E1 and E2 proteins and studied their biochemical properties. The purified E1 protein was shown to have an ATPase activity with a very low K(m) value, similar to that of the SV40 large T antigen. The E1 protein bound to the HPV-1 origin in the absence of the E2 protein and without the use of any cross-linking agents. Our results suggest that the ability of the HPV-1 E1 protein to initiate DNA replication in vivo in the absence of the E2 protein may be due to its stable interaction with the HPV-1 origin.
Collapse
Affiliation(s)
- Saifuddin Sheikh
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gerald Van Horn
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Asma Naqvi
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Laura Sheahan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Saleem A Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
25
|
Lin BY, Makhov AM, Griffith JD, Broker TR, Chow LT. Chaperone proteins abrogate inhibition of the human papillomavirus (HPV) E1 replicative helicase by the HPV E2 protein. Mol Cell Biol 2002; 22:6592-604. [PMID: 12192057 PMCID: PMC135630 DOI: 10.1128/mcb.22.18.6592-6604.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human papillomavirus (HPV) DNA replication requires the viral origin recognition protein E2 and the presumptive viral replicative helicase E1. We now report for the first time efficient DNA unwinding by a purified HPV E1 protein. Unwinding depends on a supercoiled DNA substrate, topoisomerase I, single-stranded-DNA-binding protein, and ATP, but not an origin. Electron microscopy revealed completely unwound molecules. Intermediates contained two single-stranded loops emanating from a single protein complex, suggesting a bidirectional E1 helicase which translocated the flanking DNA in an inward direction. We showed that E2 protein partially inhibited DNA unwinding and that Hsp70 or Hsp40, which we reported previously to stimulate HPV-11 E1 binding to the origin and promote dihexameric E1 formation, apparently displaced E2 and abolished inhibition. Neither E2 nor chaperone proteins were detected in unwinding complexes. These results suggest that chaperones play important roles in the assembly and activation of a replicative helicase in higher eukaryotes. An E1 mutation in the ATP binding site caused deficient binding and unwinding of origin DNA, indicating the importance of ATP binding in efficient helicase assembly on the origin.
Collapse
Affiliation(s)
- Biing Yuan Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294-0005, USA
| | | | | | | | | |
Collapse
|
26
|
Hartley KA, Alexander KA. Human TATA binding protein inhibits human papillomavirus type 11 DNA replication by antagonizing E1-E2 protein complex formation on the viral origin of replication. J Virol 2002; 76:5014-23. [PMID: 11967317 PMCID: PMC136168 DOI: 10.1128/jvi.76.10.5014-5023.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human papillomavirus (HPV) protein E2 possesses dual roles in the viral life cycle. By interacting directly with host transcription factors in basal keratinocytes, E2 promotes viral transcription. As keratinocyte differentiation progresses, E2 associates with the viral helicase, E1, to activate vegetative viral DNA replication. How E2's major role switches from transcription to replication during keratinocyte differentiation is not understood, but the presence of a TATA site near the viral origin of replication led us to hypothesize that TATA-binding protein (TBP) could affect HPV replication. Here we show that the C-terminal domain of TBP (TBPc) is a potent inhibitor of E2-stimulated HPV DNA replication in vitro (50% inhibitory concentration = 0.56 nM). Increasing the E1 concentration could not overcome TBPc inhibition in replication assays, indicating that TBPc is a noncompetitive inhibitor of E1 binding. While direct E2-TBPc association could be demonstrated, this interaction could not fully account for the mechanism of TBPc-mediated inhibition of viral replication. Because E2 supports sequence-specific binding of E1 to the viral ori, we proposed that TBPc antagonizes E1-ori association indirectly through inhibition of E2-DNA binding. Indeed, TBPc potently antagonized E2 binding to DNA in the absence (K(i) = 0.5 +/- 0.1 nM) and presence (K(i) = 0.6 +/- 0.3 nM) of E1. Since E2 and TBPc cannot be coadjacent on viral sequences, direct DNA-binding competition between TBPc and E2 was responsible for replication inhibition. Given the ability of TBPc to inhibit HPV DNA replication in vitro and data indicating that TBPc antagonized E2-ori association, we propose that transcription factors regulate HPV DNA replication as well as viral transcription.
Collapse
Affiliation(s)
- Kelly A Hartley
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
27
|
Hubert WG, Laimins LA. Human papillomavirus type 31 replication modes during the early phases of the viral life cycle depend on transcriptional and posttranscriptional regulation of E1 and E2 expression. J Virol 2002; 76:2263-73. [PMID: 11836404 PMCID: PMC153800 DOI: 10.1128/jvi.76.5.2263-2273.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1 and E2 proteins are both required for papillomavirus DNA replication, and replication efficiency is controlled by the abundance of these factors. In human papillomaviruses (HPVs), the regulation of E1 and E2 expression and its effect on viral replication are not well understood. In particular, it is not known if E1 and E2 modulate their own expression and how posttranscriptional mechanisms may affect the levels of the replication proteins. Previous studies have implicated splicing within the E6 open reading frame (ORF) as being important for modulating replication of HPV type 31 (HPV31) through altered expression of E1 and E2. To analyze the function of the E6 intron in viral replication more specifically, we examined the effects of E6 splicing mutations in the context of entire viral genomes in transient assays. HPV31 genomes which had mutations in the splice donor site (E6SD) or the splice acceptor site (E6SA), a deletion of the intron (E6ID), or substituted heterologous intron sequences (E6IS) were constructed. Compared to wild-type (wt) HPV31, pHPV31-E6SD, -E6SA, and -E6IS replicated inefficiently while pHPV31-E6ID replicated at an intermediate level. Cotransfection of the E6 mutant genomes with an E1 expression vector strongly activated their replication levels, indicating that efficient expression of E1 requires E6 internal splicing. In contrast, replication was activated only moderately with an E2 expression vector. Replacing the wt E6 intron in HPV31 with a heterologous intron from simian virus 40 (E6SR2) resulted in replication levels similar to that of the wt in the absence of expression vectors, suggesting that mRNA splicing upstream of the E1 ORF is important for high-level replication. To examine the effects of E6 intron splicing on E1 and E2 expression directly, we constructed reporter DNAs in which the luciferase coding sequences were fused in frame to the E1 (E1Luc) or E2 (E2Luc) gene. Reporter activities were then analyzed in transient assays with cotransfected E1 or E2 expression vectors. Both reporters were moderately activated by E1 in a dose-dependent manner. In addition, E1Luc was activated by low doses of E2 but was repressed at high doses. In contrast, E2 had little effect on E2Luc activity. These data indicate that E1 expression and that of E2 are interdependent and regulated differentially. When the E6 splicing mutations were analyzed in both reporter backgrounds, only E1Luc activities correlated with splicing competence in the E6 ORF. These findings support the hypothesis that the E6 intron primarily regulates expression of E1. Finally, in long-term replication assays, none of the E6 mutant genomes could be stably maintained. However, cotransfection of the E6 splicing mutant genomes with pHPV31-E7NS, which contains a nonsense mutation in the E7 coding sequence, restored stable replication of some mutants. Our observations indicate that E1 expression and that of E2 are differentially regulated at multiple levels and that efficient expression of E1 is required for transient and stable viral replication. These regulatory mechanisms likely act to control HPV copy number during the various phases of the viral life cycle.
Collapse
Affiliation(s)
- Walter G Hubert
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
28
|
Van Horn G, Sheikh S, Khan SA. Regulation of human papillomavirus type 1 replication by the viral E2 protein. Virology 2001; 287:214-24. [PMID: 11504556 DOI: 10.1006/viro.2001.1037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The E1 and E2 proteins encoded by papillomaviruses are required for viral replication. Earlier studies have shown that the viral E2 protein plays an important role in replication by targeting the E1 helicase to the origin of replication (ori). We have previously shown that the E1 protein of human papillomavirus (HPV) type 1 is sufficient for the in vivo replication of ori plasmids, although the E2 protein stimulates replication. In this study, we have further analyzed the role of the E2 protein in HPV-1 replication. The optimal ori of HPV-1 contains one putative E1 binding site (E1BS) and two putative E2 binding sites, E2BS-3 and E2BS-4. Plasmid pori171, containing the optimal ori, replicates to much higher levels than plasmid pori312, which includes an additional upstream E2 binding site, E2BS-2, located 75 nucleotides upstream of E2BS-3. To study the possible role of E2BS-2 and other upstream sequences in E2-dependent downregulation of replication, transient replication analysis was done in the presence of increasing levels of the E2 protein. Interestingly, inhibition of pori312 replication was more severe at higher levels of E2, suggesting that this protein may also negatively regulate HPV-1 replication. Deletion of sequences from pori312 containing an additional putative E2BS, E2BS-2A, relieved the repression of replication to a significant extent, while replacement of E2BS-2 with a different sequence of the same length had a modest effect. These results suggest that E2BS-2A plays a major and E2BS-2 a minor role in the negative regulation of HPV-1 replication at high E2 levels. Electrophoretic mobility-shift assays showed that the purified E2 protein bound with high affinity to E2BS-3 and weakly to the other putative E2BSs located within the viral long control region. EMSA using various ori fragments showed the formation of multiple E2-DNA complexes which likely represent binding of E2 to multiple E2BSs present within the HPV-1 ori. Our data are consistent with the assembly of ori-protein complexes at high E2 levels that are impaired for replication and further suggest that E2 may regulate HPV-1 replication by a mechanism involving interaction between the E2 protein bound to E2BSs at a distance.
Collapse
Affiliation(s)
- G Van Horn
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
29
|
Stubenrauch F, Zobel T, Iftner T. The E8 domain confers a novel long-distance transcriptional repression activity on the E8E2C protein of high-risk human papillomavirus type 31. J Virol 2001; 75:4139-49. [PMID: 11287563 PMCID: PMC114159 DOI: 10.1128/jvi.75.9.4139-4149.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with high-risk human papillomaviruses (HPVs) are the major risk factor for the development of anogenital cancers. Viral E2 proteins are involved in viral DNA replication and regulation of transcription. Repression of the viral P97 promoter by E2 proteins has been implicated in the modulation of the immortalization capacity and DNA replication properties of high-risk HPVs. Analysis of the cis and trans requirements for repression of the HPV type 31 (HPV31) P97 promoter, however, revealed striking differences between the full-length E2 and the E8E2C fusion protein which were due to conserved residues W6 and K7 of the E8 domain. In contrast to E2, E8E2C completely inhibited the P97 promoter from a single promoter-distal E2 binding site. This novel long-distance repression activity of the E8 domain also enabled E8E2C to inhibit the HPV6a P2 promoter and minimal-promoter constructs containing E2 binding sites. Thus, E8E2C may represent the master repressor of viral gene expression during a high-risk HPV infection, and changes in the activity of E8E2C might contribute to the progression of high-risk HPV-induced lesions.
Collapse
Affiliation(s)
- F Stubenrauch
- Sektion Experimentelle Virologie, Institut für Medizinische Virologie und Epidemiologie der Viruskrankheiten, Universitätsklinikum Tübingen, D-72076 Tübingen, Germany.
| | | | | |
Collapse
|
30
|
Newhouse CD, Silverstein SJ. Orientation of a novel DNA binding site affects human papillomavirus-mediated transcription and replication. J Virol 2001; 75:1722-35. [PMID: 11160670 PMCID: PMC114081 DOI: 10.1128/jvi.75.4.1722-1735.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A consensus binding site for the human papillomavirus (HPV) E2 protein was determined from an unbiased set of degenerate oligonucleotides using cyclic amplification and selection of targets (CASTing). Detectable DNA-protein complexes were formed after six to nine cycles of CASTing. A population of selected binding sites was cloned, and a consensus was determined by statistical analysis of the DNA sequences of individual isolates. Starting from a pool with 20 random bases, a consensus binding site of ACAC-N(5)-GGT was derived. CASTing and electrophoretic mobility shift analyses demonstrate that human but not bovine papillomavirus E2 proteins recognize this sequence. The presence of this sequence in papillomavirus genomes suggests a role for its function. We demonstrate that this site functionally substitutes for the canonical E2 binding site (ACCG-N(4)-CGGT) in both transient-transcription and DNA replication assays. This sequence, in most instances, is interchangeable with the resident E2 binding sites in the context of the HPV type 16 long control region. Where the novel sequence does not support E2-mediated effects on gene expression or DNA replication, we demonstrate that changing the orientation of the novel sequence restores this effect.
Collapse
Affiliation(s)
- C D Newhouse
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
31
|
Zhao KN, Hengst K, Liu WJ, Liu YH, Liu XS, McMillan NA, Frazer IH. BPV1 E2 protein enhances packaging of full-length plasmid DNA in BPV1 pseudovirions. Virology 2000; 272:382-93. [PMID: 10873782 DOI: 10.1006/viro.2000.0348] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied determinants of efficient encapsidation of circular DNA, incorporating a PV early region DNA sequence (nt 584-1978) previously shown to enhance packaging of DNA within papillomavirus (PV)-like particles (VLPs). Insect coelomic cells (Sf-9) and cultured monkey kidney cells (Cos-1) were transfected with an 8-kb reporter plasmid incorporating the putative BPV packaging sequence and infected with BPV1 L1 and L2 recombinant baculovirus or vaccinia virus. Heavy (1.34 g/ml) and light (1.30 g/ml) VLPs were produced, and each packaged some of the input plasmid. In light VLPs, truncated plasmids, which nevertheless incorporated the PV-derived DNA packaging sequence, were more common than full-length plasmids. Packaging efficiency of the plasmid was estimated at 1 plasmid per 10(4) VLPs in both Cos-1 and Sf-9 cells. In each cell type, expression of the BPV1 early region protein E2 in trans doubled the quantity of heavy but not light VLPs and also increased the packaging efficiency of full-length circular plasmids by threefold in heavy VLPs. The resultant pseudovirions incorporated significant amounts of E2 protein. Pseudovirions, comprising plasmids packaged within heavy VLPs, mediated the delivery of packaged plasmid into Cos-1 cells, whereby "infectivity" was blocked by antisera to BPV1 L1, but not antisera to BPV1 E4. We conclude that (a) packaging of DNA within PV L1+L2 pseudovirions is enhanced by BPV1 E2 acting in trans, (b) E2 may be packaged with the pseudovirion, and (c) E2-mediated enhancement of packaging favors 8-kb plasmid incorporation over incorporation of shorter DNA sequences.
Collapse
Affiliation(s)
- K N Zhao
- Centre for Immunology and Cancer Research, University of Queensland, Woolloongabba, Queensland, 4102, Australia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Parker LM, Harris S, Gossen M, Botchan MR. The bovine papillomavirus E2 transactivator is stimulated by the E1 initiator through the E2 activation domain. Virology 2000; 270:430-43. [PMID: 10793002 DOI: 10.1006/viro.2000.0257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine papillomavirus type 1 (BPV-1) encodes two regulatory proteins, E1 and E2, that are essential for viral replication and transcription. E1, an ATP-dependent helicase, binds to the viral ori and is essential for viral replication, while the viral transcriptional activator, E2, plays cis-dominant roles in both viral replication and transcription. At low reporter concentrations, E1 stimulates E2 enhancer function, while at high reporter concentrations, repression results. An analysis of cis requirements revealed that neither replication nor specific E1-binding sites are required for the initiators' effect on E2 transactivator function. Though no dependence on E1-binding sites was found, analysis of E1 DNA binding and ATPase mutants revealed that both domains are required for E1 modulation of E2. Through the use of E2 fusion-gene constructs we showed that a heterologous DNA-binding domain could be substituted for the E2 DNA-binding domain and this recombinant protein remained responsive to E1. Furthermore, E1 could rescue activation domain mutants of E2 defective for transactivation. These data suggest that E1 stimulation of E2 involves interactions between E1 and the E2 activation domain on DNA. We speculate that E1 may allosterically interact with the E2 activation domain, perhaps stabilizing a particular structure, which increases the enhancer function of E2.
Collapse
Affiliation(s)
- L M Parker
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | | | |
Collapse
|
33
|
Dixon EP, Pahel GL, Rocque WJ, Barnes JA, Lobe DC, Hanlon MH, Alexander KA, Chao SF, Lindley K, Phelps WC. The E1 helicase of human papillomavirus type 11 binds to the origin of replication with low sequence specificity. Virology 2000; 270:345-57. [PMID: 10792994 DOI: 10.1006/viro.2000.0204] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expression of the human papillomavirus type 11 E1 and E2 genes is necessary and sufficient to support viral DNA replication. The full-length E2 protein is a transcriptional modulator that also interacts with the E1 helicase to form an E1/E2 complex at the viral origin of replication. Previous studies indicated that efficient binding of this complex to the replication origin is site-specific and that the E2 homodimer was required for efficient E1 binding. Human papillomavirus type 11 E2 and E1 proteins have been purified and their cooperative binding to the HPV type 11 viral replication origin has been characterized. Low-affinity E1 binding to the HPV type 11 replication origin was demonstrated and found to be largely nonspecific. DNA binding by E1 does not require complex formation with E2 and appears to be independent of ATP binding or hydrolysis. E1 binding quantitatively increased with the addition of increasing amounts of E2 and mutations in the E2 binding site demonstrated that the E2BS site is required for E1 and E2 to specifically bind as a high-affinity complex at the replication origin. Analysis of the A/T-rich E1 binding site via mutation showed that it was nonessential for high-affinity E1/E2 complex formation. Thus, although the replication functions between the animal and the human papillomaviruses are well conserved, there are subtle differences in the DNA binding requirements for E1, which may portend mechanistic differences among the DNA replication systems of various papillomavirus types.
Collapse
Affiliation(s)
- E P Dixon
- GlaxoWellcome Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nishimura A, Ono T, Ishimoto A, Dowhanick JJ, Frizzell MA, Howley PM, Sakai H. Mechanisms of human papillomavirus E2-mediated repression of viral oncogene expression and cervical cancer cell growth inhibition. J Virol 2000; 74:3752-60. [PMID: 10729150 PMCID: PMC111884 DOI: 10.1128/jvi.74.8.3752-3760.2000] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E2 gene product plays a pivotal role in viral replication. E2 has multiple functions, including (i) transcriptional activation and repression of viral promoters and (ii) the enhancement of viral DNA replication. It was previously reported that E2 suppressed the growth of papillomavirus-positive cervical carcinoma cell lines. In the present study, we investigated the mechanisms of E2 growth inhibition. We found that the transcriptional activation function of E2 is required for inhibition of the growth of HeLa cells as well as for transcriptional repression of the viral E6/E7 promoter. It had been previously postulated that transcriptional repression of the E6/E7 promoter results from E2 binding its cognate sites proximal to the E6/E7 promoter and displacing other cellular transcriptional factors. In this study, we report a requirement for the transcription activation function for the binding of E2 to transcriptionally active templates.
Collapse
Affiliation(s)
- A Nishimura
- Laboratory of Gene Analysis, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Zou N, Lin BY, Duan F, Lee KY, Jin G, Guan R, Yao G, Lefkowitz EJ, Broker TR, Chow LT. The hinge of the human papillomavirus type 11 E2 protein contains major determinants for nuclear localization and nuclear matrix association. J Virol 2000; 74:3761-70. [PMID: 10729151 PMCID: PMC111885 DOI: 10.1128/jvi.74.8.3761-3770.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E2 protein of papillomaviruses is a site-specific DNA binding nuclear protein. It functions as the primary replication origin recognition protein and assists in the assembly of the preinitiation complex. It also helps regulate transcription from the native viral promoter. The E2 protein consists of an amino-terminal (N) trans-acting domain, a central hinge (H) domain, and a carboxyl-terminal (C) protein dimerization and DNA binding domain. The hinge is highly divergent among papillomaviruses, and little is known about its functions. We fused the enhanced green fluorescent protein (GFP) with the full-length human papillomavirus type 11 (HPV-11) E2 protein and showed that the resultant fusion, called gfpE2, maintained transcription and replication functions of the wild-type protein and formed similar subnuclear foci. Using a series of GFP fusion proteins, we showed that the hinge conferred strong nuclear localization, whereas the N or C domain was present in both cytoplasm and nucleus. Biochemical fractionation demonstrated that the N domain and hinge, but not the C domain, independently associated with the nuclear matrix. Mutational analyses showed that a cluster of basic amino acid residues, which is conserved among many mucosotropic papillomaviruses, was required for efficient nuclear localization and nuclear matrix association. This mutation no longer repressed the HPV-11 upstream regulatory region-controlled reporter expression. However, a very small fraction of this mutant colocalized with E1 in the nucleus, perhaps by a piggyback mechanism, and was able to support transient replication. We propose that the hinge is critical for the diverse regulatory functions of the HPV-11 E2 protein during mRNA transcription and viral DNA replication.
Collapse
Affiliation(s)
- N Zou
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lin BY, Ma T, Liu JS, Kuo SR, Jin G, Broker TR, Harper JW, Chow LT. HeLa cells are phenotypically limiting in cyclin E/CDK2 for efficient human papillomavirus DNA replication. J Biol Chem 2000; 275:6167-74. [PMID: 10692408 DOI: 10.1074/jbc.275.9.6167] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human papillomaviral (HPV) origin-containing plasmids replicate efficiently in human 293 cells or cell extracts in the presence of HPV origin-recognition protein E2 and replication initiation protein E1, whereas cervical carcinoma-derived, HPV-18-positive HeLa cells or cell extracts support HPV DNA replication poorly. We recently showed that HPV-11 E1 interacts with cyclin/cyclin-dependent kinase (cdk) complexes through an RXL motif and is a substrate for these kinases. E1 mutations in this motif or in candidate cdk phosphorylation sites are impaired in replication, suggesting a role for cdks in HPV replication. We now demonstrate that one limiting activity in HeLa cells is cyclin E/CDK2. Purified cyclin E/CDK2 or cyclin E/CDK3 complex, but not other cdks, partially complemented HeLa cell extracts. Cyclin E/CDK2 expression vectors also enhanced transient HPV replication in HeLa cells. HeLa cell-derived HPV-18 E1 protein is truncated at the carboxyl terminus but can associate with cyclin E/CDK2. This truncated E1 was replication-incompetent and inhibited cell-free HPV replication. These results indicate that HeLa cells are phenotypically limiting in cyclin E/CDK2 for efficient HPV replication, most likely due to sequestration by the endogenous, defective HPV-18 E1 protein. Further analyses of the regulation of HPV E1 and HPV replication by cyclin E may shed light on the roles of cyclin E/CDK2 in cellular DNA replication.
Collapse
Affiliation(s)
- B Y Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Stubenrauch F, Hummel M, Iftner T, Laimins LA. The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J Virol 2000; 74:1178-86. [PMID: 10627528 PMCID: PMC111452 DOI: 10.1128/jvi.74.3.1178-1186.2000] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viral E2 protein is a major regulator of papillomavirus DNA replication. An important way to influence viral replication is through modulation of the activity of the E2 protein. This could occur through the action of truncated E2 proteins, called E2 repressors, whose role in the replication cycle of human papillomaviruses (HPVs) has not been determined. In this study, using cell lines that contain episomal copies of the "high-risk" HPV type 31 (HPV31), we have identified viral transcripts with a splice from nucleotide (nt) 1296 to 3295. These transcripts are similar to RNAs from other animal and human papillomaviruses and have the potential to fuse a small open reading frame (E8) to the C terminus of E2, resulting in an E8E2C fusion protein. E8E2C transcripts were present throughout the complete replication cycle of HPV31. A genetic analysis of E8E2C in the context of the HPV31 genome revealed that mutation of the single ATG of the E8 gene, introduction of a stop codon downstream of the ATG, or disruption of the splice donor site at nt 1296 led to a dramatic 30- to 40-fold increase in the transient DNA replication levels in both normal and immortalized human keratinocytes. High-level expression of E8E2C from heterologous vectors was found to inhibit E1-E2-dependent DNA replication of an HPV31 origin of replication construct as well as to interfere with E2's ability to transactivate reporter gene constructs. In addition, HPV31 E8E2C strongly repressed the basal activity of the major viral early promoter P97 independent of E2. E8E2C may therefore exert its negative effect on viral DNA replication through modulating E2's ability to enhance E1-dependent DNA replication as well as by regulating viral gene expression. Surprisingly, HPV31 genomes that were unable to express E8E2C could not be maintained extrachromosomally in human keratinocytes in long-term assays despite high transient DNA replication levels. This suggests that the E8E2C protein may play a role in copy number control as well as in the stable maintenance of HPV episomes.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Cells, Cultured
- DNA Replication
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Viral
- Genome, Viral
- Humans
- Keratinocytes/virology
- Molecular Sequence Data
- Mutation
- Papillomaviridae/genetics
- Papillomaviridae/physiology
- Plasmids
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Ribonucleases/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- F Stubenrauch
- Sektion Experimentelle Virologie, Abteilung Medizinische Virologie, Universitätsklinikum Tuebingen, D-72076 Tuebingen, Germany.
| | | | | | | |
Collapse
|
38
|
Hou SY, Wu SY, Zhou T, Thomas MC, Chiang CM. Alleviation of human papillomavirus E2-mediated transcriptional repression via formation of a TATA binding protein (or TFIID)-TFIIB-RNA polymerase II-TFIIF preinitiation complex. Mol Cell Biol 2000; 20:113-25. [PMID: 10594014 PMCID: PMC85067 DOI: 10.1128/mcb.20.1.113-125.2000] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription in human papillomaviruses (HPVs) is mainly regulated by cellular transcription factors and virus-encoded E2 proteins that act as sequence-specific DNA-binding proteins. Although the functions of E2 as a transcriptional activator and a repressor have been well documented, the role of cellular factors involved in E2-mediated regulation of the HPV promoters and the mechanism by which E2 modulates viral gene expression remain unclear. Using reconstituted cell-free transcription systems, we found that cellular enhancer-binding factors and general cofactors, such as TAF(II)s, TFIIA, Mediator, and PC4, are not required for E2-mediated repression. Unlike other transcriptional repressors that function through recruitment of histone deacetylase or corepressor complexes, HPV E2 is able to directly target components of the general transcription machinery to exert its repressor activity on the natural HPV E6 promoter. Interestingly, preincubation of TATA binding protein (TBP) or TFIID with HPV template is not sufficient to overcome E2-mediated repression, which can be alleviated only via formation of a minimal TBP (or TFIID)-TFIIB-RNA polymerase II-TFIIF preinitiation complex. Our data therefore indicate that E2 does not simply work by displacing TBP or TFIID from binding to the adjacent TATA box. Instead, E2 appears to function as an active repressor that directly inhibits HPV transcription at steps after TATA recognition by TBP or TFIID.
Collapse
Affiliation(s)
- S Y Hou
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
39
|
Thomas JT, Hubert WG, Ruesch MN, Laimins LA. Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc Natl Acad Sci U S A 1999; 96:8449-54. [PMID: 10411895 PMCID: PMC17536 DOI: 10.1073/pnas.96.15.8449] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The E6 and E7 oncoproteins of the high-risk human papillomavirus (HPV) types are able to immortalize human keratinocytes in vitro and likely contribute to the development of anogenital malignancies in vivo. The role of these oncoproteins in the productive viral life cycle, however, is not known. To begin to examine these possible roles, mutations in E6 were introduced in the context of the complete HPV 31 genome. Although transfected wild-type HPV 31 genomes, as well as genomes containing an E6 translation termination linker, an E6 frameshift mutation, and a point mutation in the p53 interacting domain were able to replicate in transient assays, only the wild-type genome was stably maintained as an episome. Interestingly, mutant genomes in either the E6 splice-donor site or splice-acceptor site were reduced in replication ability in transient assays; however, cotransfection of E1 and E2 expression vectors restored this function. In a similar fashion, genomes containing mutant HPV 31 E7 genes, including a translation termination mutant, two Rb-binding site mutants, a casein kinase II phosphorylation site mutant, and a transformation deficient mutant, were constructed. Although transient replication was similar to wild type in all of the E7 mutants, only the casein kinase II mutant had the ability to maintain high copies of episomal genomes. These findings suggest a role for E6 and E7 in the viral life cycle beyond their ability to extend the life span of infected cells.
Collapse
Affiliation(s)
- J T Thomas
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
40
|
Gopalakrishnan V, Sheahan L, Khan SA. DNA replication specificity and functional E2 interaction of the E1 proteins of human papillomavirus types 1a and 18 are determined by their carboxyl-terminal halves. Virology 1999; 256:330-9. [PMID: 10191198 DOI: 10.1006/viro.1999.9665] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replication of most papillomaviruses (PVs) requires the viral-encoded E1 and E2 proteins that bind to the origin of replication (ori) containing the E1- and E2-binding sites and help recruit host replication factors during the initiation of DNA replication. We studied the ability of heterologous E1 and E2 proteins to interact in vivo and support replication, using the human papillomavirus (HPV) types 1a and 18 as model systems. The E1 protein of HPV-1a in combination with HPV-18 E2 supported high-level replication of various ori plasmids. In contrast, the HPV-18 E1 protein interacted weakly with HPV-1a E2 during the replication of ori plasmids. We have previously shown that the E1 protein of HPV-1a alone is sufficient for replication of HPV-1a ori plasmids, whereas HPV-18 replication requires both the E1 and E2 proteins. However, in the latter case, E2-binding sites alone in the absence of the E1-binding site can function as the minimal ori. Based on the above observations, we generated hybrids between HPV-1a and HPV-18 E1 proteins in an effort to identify their "replication specificity" domains using a transient replication assay. These hybrids were also used to localize the domains in the E1 proteins that are involved in their functional interaction with the E2 protein during replication. Our results suggest that the "replication specificity" and functional E2 interaction domains of the HPV-1a and HPV-18 E1 proteins are located in their carboxyl-terminal halves.
Collapse
Affiliation(s)
- V Gopalakrishnan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, 15261, Pennsylvania
| | | | | |
Collapse
|
41
|
Swindle CS, Zou N, Van Tine BA, Shaw GM, Engler JA, Chow LT. Human papillomavirus DNA replication compartments in a transient DNA replication system. J Virol 1999; 73:1001-9. [PMID: 9882301 PMCID: PMC103920 DOI: 10.1128/jvi.73.2.1001-1009.1999] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 10/28/1998] [Indexed: 01/12/2023] Open
Abstract
Many DNA viruses replicate their genomes at nuclear foci in infected cells. Using indirect immunofluorescence in combination with fluorescence in situ hybridization, we colocalized the human papillomavirus (HPV) replicating proteins E1 and E2 and the replicating origin-containing plasmid to nuclear foci in transiently transfected cells. The host replication protein A (RP-A) was also colocalized to these foci. These nuclear structures were identified as active sites of viral DNA synthesis by bromodeoxyuridine (BrdU) pulse-labeling. Unexpectedly, the great majority of RP-A and BrdU incorporation was found in these HPV replication domains. Furthermore, E1, E2, and RP-A were also colocalized to nuclear foci in the absence of an origin-containing plasmid. These observations suggest a spatial reorganization of the host DNA replication machinery upon HPV DNA replication or E1 and E2 expression. Alternatively, viral DNA replication might be targeted to host nuclear domains that are active during the late S phase, when such domains are limited in number. In a fraction of cells expressing E1 and E2, the promyelocytic leukemia protein, a component of nuclear domain 10 (ND10), was either partially or completely colocalized with E1 and E2. Since ND10 structures were recently hypothesized to be sites of bovine papillomavirus virion assembly, our observation suggests that HPV DNA amplification might be partially coupled to virion assembly.
Collapse
Affiliation(s)
- C S Swindle
- Departments of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
42
|
Conger KL, Liu JS, Kuo SR, Chow LT, Wang TS. Human papillomavirus DNA replication. Interactions between the viral E1 protein and two subunits of human dna polymerase alpha/primase. J Biol Chem 1999; 274:2696-705. [PMID: 9915800 DOI: 10.1074/jbc.274.5.2696] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Papovaviruses are valuable models for the study of DNA replication in higher eukaryotic organisms, as they depend on host factors for replication of their DNA. In this study we investigate the interactions between the human papillomavirus type 11 (HPV-11) origin recognition and initiator protein E1 and human polymerase alpha/primase (pol alpha/primase) subunits. By using a variety of physical assays, we show that both 180- (p180) and 70-kDa (p70) subunits of pol alpha/primase interact with HPV-11 E1. The interactions of E1 with p180 and p70 are functionally different in cell-free replication of an HPV-11 origin-containing plasmid. Exogenously added p180 inhibits both E2-dependent and E2-independent cell-free replication of HPV-11, whereas p70 inhibits E2-dependent but stimulates E2-independent replication. Our experiments indicate that p70 does not physically interact with E2 and suggest that it may compete with E2 for binding to E1. A model of how E2 and p70 sequentially interact with E1 during initiation of viral DNA replication is proposed.
Collapse
Affiliation(s)
- K L Conger
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | | | | | | | |
Collapse
|
43
|
Lee KY, Broker TR, Chow LT. Transcription factor YY1 represses cell-free replication from human papillomavirus origins. J Virol 1998; 72:4911-7. [PMID: 9573258 PMCID: PMC110050 DOI: 10.1128/jvi.72.6.4911-4917.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/1997] [Accepted: 03/05/1998] [Indexed: 02/07/2023] Open
Abstract
We have established cell-free replication for the human papillomavirus type 18 (HPV-18) origin of replication (ori)-containing DNA by using purified HPV-18 E1 and E2 gene products expressed as fusion proteins in Escherichia coli. The transcription factor YY1 has been shown to regulate RNA transcription by binding to a sequence overlapping the putative E1 protein binding site in the HPV-18 ori. We show that exogenously added YY1 fusion protein inhibited HPV-18 ori replication. Cotransfection of YY1 expression vectors also inhibited transient replication in 293 cells. However, inhibition did not appear to be mediated by binding to its cognate site in the ori as YY1 also inhibited the replication of the HPV-11 ori, which does not have a known or suspected YY1 binding site. Moreover, inhibition was not alleviated by the inclusion of YY1 binding oligonucleotides in the replication reaction mixtures. Rather, we demonstrated a direct interaction between purified fusion E2 protein and fusion YY1 protein by the pull-down assay and a partial restoration of replication activity by an elevated E2 protein concentration. These results suggest that YY1 can inhibit HPV ori replication by interfering with E2 protein functions.
Collapse
Affiliation(s)
- K Y Lee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
44
|
Zou N, Liu JS, Kuo SR, Broker TR, Chow LT. The carboxyl-terminal region of the human papillomavirus type 16 E1 protein determines E2 protein specificity during DNA replication. J Virol 1998; 72:3436-41. [PMID: 9525677 PMCID: PMC109845 DOI: 10.1128/jvi.72.4.3436-3441.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1997] [Accepted: 12/17/1997] [Indexed: 02/06/2023] Open
Abstract
The mechanism of DNA replication is conserved among papillomaviruses. The virus-encoded E1 and E2 proteins collaborate to target the origin and recruit host DNA replication proteins. Expression vectors of E1 and E2 proteins support homologous and heterologous papillomaviral origin replication in transiently transfected cells. Viral proteins from different genotypes can also collaborate, albeit with different efficiencies, indicating a certain degree of specificity in E1-E2 interactions. We report that, in the assays of our study, the human papillomavirus type 11 (HPV-11) E1 protein functioned with the HPV-16 E2 protein, whereas the HPV-16 E1 protein exhibited no detectable activity with the HPV-11 E2 protein. Taking advantage of this distinction, we used chimeric E1 proteins to delineate the E1 protein domains responsible for this specificity. Hybrids containing HPV-16 E1 amino-terminal residues up to residue 365 efficiently replicated either viral origin in the presence of either E2 protein. The reciprocal hybrids containing amino-terminal HPV-11 sequences exhibited a high activity with HPV-16 E2 but no activity with HPV-11 E2. Reciprocal hybrid proteins with the carboxyl-terminal 44 residues from either E1 had an intermediate property, but both collaborated more efficiently with HPV-16 E2 than with HPV-11 E2. In contrast, chimeras with a junction in the putative ATPase domain showed little or no activity with either E2 protein. We conclude that the E1 protein consists of distinct structural and functional domains, with the carboxyl-terminal 284 residues of the HPV-16 E1 protein being the primary determinant for E2 specificity during replication, and that chimeric exchanges in or bordering the ATPase domain inactivate the protein.
Collapse
Affiliation(s)
- N Zou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294-0005, USA
| | | | | | | | | |
Collapse
|
45
|
Matheos DD, Ruiz MT, Price GB, Zannis-Hadjopoulos M. Oct-1 enhances the in vitro replication of a mammalian autonomously replicating DNA sequence. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980301)68:3<309::aid-jcb3>3.0.co;2-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Lim DA, Gossen M, Lehman CW, Botchan MR. Competition for DNA binding sites between the short and long forms of E2 dimers underlies repression in bovine papillomavirus type 1 DNA replication control. J Virol 1998; 72:1931-40. [PMID: 9499046 PMCID: PMC109485 DOI: 10.1128/jvi.72.3.1931-1940.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses establish a long-term latency in vivo by maintaining their genomes as nuclear plasmids in proliferating cells. Bovine papillomavirus type 1 encodes two proteins required for viral DNA replication: the helicase E1 and the positive regulator E2. The homodimeric E2 is known to cooperatively bind to DNA with E1 to form a preinitiation complex at the origin of DNA replication. The virus also codes for two short forms of E2 that can repress viral functions when overexpressed, and at least one copy of the repressor is required for stable plasmid maintenance in transformed cells. Employing a tetracycline-regulated system to control E1 and E2 production from integrated loci, we show that the short form of E2 negatively regulates DNA replication. We also found that the short form could repress replication in a cell-free replication system and that the repression requires the DNA binding domain of the protein. In contrast, heterodimers of the short and long forms were activators and, by footprint analysis, were shown to be as potent as homodimeric E2 in loading E1 to its cognate site. DNA binding studies show that when E1 levels are low and are dependent upon E2 for occupancy of the origin site, the repressor can block E1-DNA interactions. We conclude that DNA replication modulation results from competition between the different forms of E2 for DNA binding. Given that heterodimers are active and that the repressor form of E2 shows little cooperativity with E1 for DNA binding, this protein is a weak repressor.
Collapse
Affiliation(s)
- D A Lim
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | | | |
Collapse
|
47
|
Cooper CS, Upmeyer SN, Winokur PL. Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions. Virology 1998; 241:312-22. [PMID: 9499806 DOI: 10.1006/viro.1997.8941] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The papillomavirus E2 protein is required for viral transcriptional regulation and replication. The E2 protein has a modular structure with two highly conserved domains, a sequence-specific DNA-binding and dimerization domain and a conserved N-terminus which is important for transcriptional transactivation, replication, and interaction with the E1 protein to determine which specific amino acids or regions in the N-terminus were important for the replication or transactivation functions. Single amino acid substitutions were created at highly conserved, highly charged amino acids in the HPV 11 E2 N-terminus. Each amino acid was mutated to a nonpolar alanine residue or a similarly charged amino acid. The mutated E2 proteins were analyzed for their abilities to support transcriptional transactivation and transient DNA replication and to enhance binding of E1 to the origin of replication. Single amino acid substitutions were identified which were defective for either the replication or transactivation functions, which demonstrated that the replication and transactivation functions within the N-terminus are separable. In several cases different amino acid substitutions at the same site had variable effects on transcription or replication, highlighting the importance of hydrophobic interactions or side chain structure at each site. The replication function appeared to correlate with the ability of E2 to enhance binding of E1 to the origin of replication though these studies also suggest that other functions performed by the E2 protein may be important for replication.
Collapse
Affiliation(s)
- C S Cooper
- Department of Internal Medicine, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
48
|
Clark PR, Roberts ML, Cowsert LM. A novel drug screening assay for papillomavirus specific antiviral activity. Antiviral Res 1998; 37:97-106. [PMID: 9588842 DOI: 10.1016/s0166-3542(97)00066-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovery and development of human papillomavirus (HPV) specific antiviral agents have been hampered by the lack of an in vitro assay permissive to HPV replication. An experimental assay system for monitoring HPV-11 DNA replication has been optimized for use as a papillomavirus antiviral drug screening tool. Cloned HPV DNA was introduced into SCC-4 cells by electroporation and viral DNA replication monitored by Southern blot. Kinetic studies demonstrated an increased HPV genome copy number with time. Viral DNA replicated as episomal, unit length genome and remained episomal after multiple passages. These data suggested the basis for an in vitro replication assay for evaluating the antiviral activity of potential chemotherapeutic agents directly on HPV. This model was used to investigate antiviral activities of current anti-HPV therapies such as 5-fluorouracil (5-FU) and alpha-interferon (alpha-IFN) and potential therapies such as sodium butyrate, 5-bromo-20-deoxyuridine (BrdU) and antisense oligonucleotides. HPV- 11 replication is significantly inhibited by BrdU and sodium butyrate; however 5-FU and alpha-IFN did not give consistent dose response results. Finally, ISIS 2105, a 20-mer phosphorothioate antisense oligonucleotide, which targets HPV-11 E2 gene product, showed potent antiviral activity in this assay with an IC50 of approximately 70 nM.
Collapse
Affiliation(s)
- P R Clark
- Department of Infectious Diseases, Isis Pharmaceuticals Inc., Carlsbad, CA 92008, USA
| | | | | |
Collapse
|
49
|
Stubenrauch F, Lim HB, Laimins LA. Differential requirements for conserved E2 binding sites in the life cycle of oncogenic human papillomavirus type 31. J Virol 1998; 72:1071-7. [PMID: 9445001 PMCID: PMC124579 DOI: 10.1128/jvi.72.2.1071-1077.1998] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human papillomavirus (HPV) E2 proteins regulate viral replication by binding to sites in the upstream regulatory region (URR) and by complex formation with the E1 origin recognition protein. In the genital HPV types, the distribution and location of four E2 binding sites (BS1 to BS4) which flank a single E1 binding site are highly conserved. We have examined the roles of these four E2 sites in the viral life cycle of HPV type 31 (HPV31) by using recently developed methods for the biosynthesis of papillomaviruses from transfected DNA templates (M. G. Frattini et al., Proc. Natl. Acad. Sci. USA 93:3062-3067, 1996). In transient assays, no single site was found to be necessary for replication, and mutation of the early promoter-proximal site (BS4) led to a fourfold increase in replication. Cotransfection of the HPV31 wild-type (HPV-wt) and mutant genomes with expression vectors revealed that E1 stimulated replication of HPV31-wt as well as the HPV31-BS1, -BS2, and -BS3 mutants. In contrast, increased expression of E2 decreased replication of these genomes. Replication of the HPV31-BS4 mutant genome was not further increased by cotransfection of E1 expression vectors but was stimulated by E2 coexpression. In stably transfected normal human keratinocytes, mutation of either BS1, BS3, or BS4 resulted in integration of viral genomes into host chromosomes. In contrast, mutation of BS2 had no effect on stable maintenance of episomes or copy number. Following growth of stably transfected lines in organotypic raft cultures, the differentiation-dependent induction of late gene expression and amplification of viral DNA of the BS2 mutant was found to be similar to that of HPV31-wt. We were unable to find a role for BS2 in our assays for viral functions. We conclude that at least three of the four E2 binding sites in the URRs of HPVs are essential for the productive viral life cycle. The specific arrangement of E2 binding sites within the URR appears to be more important for viral replication than merely the number of sites.
Collapse
Affiliation(s)
- F Stubenrauch
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
50
|
Sverdrup F, Schaffhausen BS, Androphy EJ. Polyomavirus large T can support DNA replication in human cells. Virology 1998; 240:50-6. [PMID: 9448688 DOI: 10.1006/viro.1997.8865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human cells are generally thought to be nonpermissive for polyomavirus (Py) DNA replication. Using transient transfection, we show that Py large T-antigen (LT) was able to support replication of a Py origin-containing plasmid in two human cell lines. Replication supported by LT in human cells was specific for the Py origin and required its enhancer sequences, as well as the previously reported critical phosphorylation sites within LT. Py replication efficiency was comparable to that of papillomavirus E1 and E2 activated DNA replication in transient assays performed in human 293 and C-33A cells. Previous analysis of DNA replication in vitro has pointed to polymerase alpha-primase as a specificity determinant for polyomavirus. The data presented here imply that in certain cellular environments, Py LT must functionally interact with human polymerase alpha-primase to permit DNA replication.
Collapse
Affiliation(s)
- F Sverdrup
- Department of Dermatology, New England Medical Center, Boston, MA 02111, USA
| | | | | |
Collapse
|