1
|
Ponnuraj N, Akbar H, Arrington JV, Spatz SJ, Nagarajan B, Desai UR, Jarosinski KW. The alphaherpesvirus conserved pUS10 is important for natural infection and its expression is regulated by the conserved Herpesviridae protein kinase (CHPK). PLoS Pathog 2023; 19:e1010959. [PMID: 36749787 PMCID: PMC9946255 DOI: 10.1371/journal.ppat.1010959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/22/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Conserved Herpesviridae protein kinases (CHPK) are conserved among all members of the Herpesviridae. Herpesviruses lacking CHPK propagate in cell culture at varying degrees, depending on the virus and cell culture system. CHPK is dispensable for Marek's disease herpesvirus (MDV) replication in cell culture and experimental infection in chickens; however, CHPK-particularly its kinase activity-is essential for horizontal transmission in chickens, also known as natural infection. To address the importance of CHPK during natural infection in chickens, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics of samples collected from live chickens. Comparing modification of viral proteins in feather follicle epithelial (FFE) cells infected with wildtype or a CHPK-null virus, we identified the US10 protein (pUS10) as a potential target for CHPK in vivo. When expression of pUS10 was evaluated in cell culture and in FFE skin cells during in vivo infection, pUS10 was severely reduced or abrogated in cells infected with CHPK mutant or CHPK-null viruses, respectively, indicating a potential role for pUS10 in transmission. To test this hypothesis, US10 was deleted from the MDV genome, and the reconstituted virus was tested for replication, horizontal transmission, and disease induction. Our results showed that removal of US10 had no effect on the ability of MDV to transmit in experimentally infected chickens, but disease induction in naturally infected chickens was significantly reduced. These results show CHPK is necessary for pUS10 expression both in cell culture and in the host, and pUS10 is important for disease induction during natural infection.
Collapse
Affiliation(s)
- Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Justine V. Arrington
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Stephen J. Spatz
- US National Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
2
|
Latest Insights into Unique Open Reading Frames Encoded by Unique Long (UL) and Short (US) Regions of Marek's Disease Virus. Viruses 2021; 13:v13060974. [PMID: 34070255 PMCID: PMC8225041 DOI: 10.3390/v13060974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Marek’s disease virus (MDV) is an oncogenic avian alphaherpesvirus whose genome consists of unique long (UL) and short (US) regions that are flanked by inverted repeat regions. More than 100 open reading frames (ORFs) have been annotated in the MDV genome, and are involved in various aspects of MDV biology and pathogenesis. Within UL and US regions of MDV, there are several unique ORFs, some of which have recently been shown to be important for MDV replication and pathogenesis. In this review, we will summarize the current knowledge on these ORFs and compare their location in different MDV strains.
Collapse
|
3
|
Su S, Cui N, Li Y, Yu MX, Zhang T, Cheng Z, Chai J, Cui Z, Chen R. Increased Horizontal Transmission of Recombinant Marek's Disease Virus Due to Reticuloendotheliosis Virus Long Terminal Repeat Is the Major Competitive Advantage of the Virus Being a Prevalent Strain. Front Microbiol 2019; 10:2842. [PMID: 31921027 PMCID: PMC6923665 DOI: 10.3389/fmicb.2019.02842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
GX0101 is the first field Marek's disease virus (MDV) recombinant with an REV LTR insert isolated in China. We speculated that there was a selective advantage of GX0101 becoming the more prevalent field strain from a very low percentage of recombinant virus. In the study, dual fluorescence quantitative real-time PCR (DF-qPCR) that detects GX0101 and GX0101ΔLTR simultaneously was established based on the genomic difference of GX0101 and its LTR deletion strain GX0101ΔLTR. MDV natural transmission was simulated in specific-pathogen-free (SPF) chicks, and continuous tracking of GX0101 and GX0101ΔLTR in chicks was carried out. The results showed that GX0101 possessed high horizontal transmission capacity, which could infect SPF chicks by contact in a short time and became the predominant strain following contact infections in chicken flocks. GX0101 still had a more significant advantage of horizontal transmission than GX0101ΔLTR after continuous passage even if the initially infectious dose was significantly lower. There were 72 differentially expressed MDV genes between GX0101 and GX0101ΔLTR, with the genes and gene products mainly involved in virus replication, tegument protein, glycoprotein, nucleocapsid protein, immune evasion, tumor development and/or pathogenesis, and hypothetical protein. Sixteen genes related to virus replication and transmission were significantly up-regulated. This is the first study to illuminate that increased horizontal transmission of recombinant MDV due to REV LTR was the competitive advantage of the virus being a prevalent strain and define the differential transcription profile of viral genes between GX0101 and GX0101ΔLTR. This will be helpful for in-depth study on the molecular mechanism of increased horizontal transmission of MDV by REV LTR.
Collapse
Affiliation(s)
- Shuai Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ning Cui
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanpeng Li
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China
| | - Meng Xin Yu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ting Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jiaqian Chai
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Kamel M, El-Sayed A. Utilization of herpesviridae as recombinant viral vectors in vaccine development against animal pathogens. Virus Res 2019; 270:197648. [PMID: 31279828 DOI: 10.1016/j.virusres.2019.197648] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Throughout the past few decades, numerous viral species have been generated as vaccine vectors. Every viral vector has its own distinct characteristics. For example, the family herpesviridae encompasses several viruses that have medical and veterinary importance. Attenuated herpesviruses are developed as vectors to convey heterologous immunogens targeting several serious and crucial pathogens. Some of these vectors have already been licensed for use in the veterinary field. One of their prominent features is their capability to accommodate large amount of foreign DNA, and to stimulate both cell-mediated and humoral immune responses. A better understanding of vector-host interaction builds up a robust foundation for the future development of herpesviruses-based vectors. At the time, many molecular tools are applied to enable the generation of herpesvirus-based recombinant vaccine vectors such as BAC technology, homologous and two-step en passant mutagenesis, codon optimization, and the CRISPR/Cas9 system. This review article highlights the most important techniques applied in constructing recombinant herpesviruses vectors, advantages and disadvantages of each recombinant herpesvirus vector, and the most recent research regarding their use to control major animal diseases.
Collapse
Affiliation(s)
- Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| | - Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Boumart I, Figueroa T, Dambrine G, Muylkens B, Pejakovic S, Rasschaert D, Dupuy C. GaHV-2 ICP22 protein is expressed from a bicistronic transcript regulated by three GaHV-2 microRNAs. J Gen Virol 2018; 99:1286-1300. [PMID: 30067174 DOI: 10.1099/jgv.0.001124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herpesviruses have a lifecycle consisting of successive lytic, latent and reactivation phases. Only three infected cell proteins (ICPs) have been described for the oncogenic Marek's disease virus (or Gallid herpes virus 2, GaHV-2): ICP4, ICP22 and ICP27. We focus here on ICP22, confirming its cytoplasmic location and showing that ICP22 is expressed during productive phases of the lifecycle, via a bicistronic transcript encompassing the US10 gene. We also identified the unique promoter controlling ICP22 expression, and its core promoter, containing functional responsive elements including E-box, ETS-1 and GATA elements involved in ICP22 transactivation. ICP22 gene expression was weakly regulated by DNA methylation and activated by ICP4 or ICP27 proteins. We also investigated the function of GaHV-2 ICP22. We found that this protein repressed transcription from its own promoter and from those of IE ICP4 and ICP27, and the late gK promoter. Finally, we investigated posttranscriptional ICP22 regulation by GaHV-2 microRNAs. We found that mdv1-miR-M5-3p and -M1-5p downregulated ICP22 mRNA expression during latency, whereas, unexpectedly, mdv1-miR-M4-5p upregulated the expression of the protein ICP22, indicating a tight regulation of ICP22 expression by microRNAs.
Collapse
Affiliation(s)
- Imane Boumart
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Thomas Figueroa
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France.,†Present address: Interactions Hôtes Agents Pathogènes, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Ginette Dambrine
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Benoit Muylkens
- 2Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Srdan Pejakovic
- 2Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Denis Rasschaert
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Catherine Dupuy
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
6
|
Neerukonda SN, Katneni UK, Golovan S, Parcells MS. Evaluation and validation of reference gene stability during Marek’s disease virus (MDV) infection. J Virol Methods 2016; 236:111-116. [DOI: 10.1016/j.jviromet.2016.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
7
|
Spatz SJ, Volkening JD, Ross TA. Molecular characterization of the complete genome of falconid herpesvirus strain S-18. Virus Res 2014; 188:109-21. [PMID: 24685675 DOI: 10.1016/j.virusres.2014.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Falconid herpesvirus type 1 (FaHV-1) is the causative agent of falcon inclusion body disease, an acute, highly contagious disease of raptors. The complete nucleotide sequence of the genome of FaHV-1 has been determined using Illumina MiSeq sequencing. The genome is 204,054 nucleotides in length and has a class E organization. The genome encodes approximately 130 putative protein-coding genes, of which 70 are orthologs of conserved alphaherpesvirus and Mardivirus proteins. Three FaHV-1 genes (UL3.5, UL44.5 and CIRC) were identified that encode protein homologues unique to Mardivirus and Varicellovirus. The genome also encodes homologues to the Mardivirus genes LORF2, LORF3, LORF4, LORF5, SORF3 and SORF4. An opal mutation resulting in premature termination was identified in the FaHV-1 UL43 gene. Phylogenetically, FaHV-1 resides in a monophyletic group with the other Mardiviruses but, along with anatid herpesvirus 1, represents a more distant divergence from the rest of the Mardivirus genus.
Collapse
Affiliation(s)
- Stephen J Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| | | | - Teresa A Ross
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
8
|
Recombinant duck enteritis virus expressing the HA gene from goose H5 subtype avian influenza virus. Vaccine 2013; 31:5953-9. [PMID: 24144474 DOI: 10.1016/j.vaccine.2013.10.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/25/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
Abstract
The duck enteritis virus (DEV) may be a promising candidate viral vector for an aquatic poultry vaccination that can protect against multiple pathogens because it has a very large genome and a narrow host range. Recently, we described two DEV recombinants that contained deletions of the viral US2 or gIgE genes. The hemagglutinin (HA) gene of an H5N1-type highly pathogenic avian influenza virus (HPAIV) of goose origin was inserted into the deletion sites to construct two rDEVs expressing the AIV HA antigen. The resulting rDEV-ΔgIgE-HA or rDEV-ΔUS2-HA recombinant DEV viruses were used to infect duck embryo fibroblasts. Reverse transcription PCR, immunofluorescence and western blot analysis results indicated that rDEV-ΔgIgE-HA and rDEV-ΔUS2-HA were successfully expressed in duck embryo fibroblasts (DEFs). To investigate whether the HA gene could be stably maintained in the recombinant viruses, the viruses were passaged in DEFs 18 times. The HA gene in both recombinants could be detected by PCR amplification. The immunized four-week-old ducks induced specific antibodies against DEV and AIV HA and were protected against challenge infections with DEV AV1221 viruses.
Collapse
|
9
|
Shaikh SAR, Katneni UK, Dong H, Gaddamanugu S, Tavlarides-Hontz P, Jarosinski KW, Osterrieder N, Parcells MS. A deletion in the glycoprotein L (gL) gene of U.S. Marek's disease virus (MDV) field strains is insufficient to confer increased pathogenicity to the bacterial artificial chromosome (BAC)-based strain, RB-1B. Avian Dis 2013; 57:509-18. [PMID: 23901769 DOI: 10.1637/10450-112012-reg.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Marek's disease (MD) is a highly transmissible, herpesvirus-associated malignancy of chickens and turkeys caused by Marek's disease virus (MDV). MD is currently controlled through the use of nonsterilizing vaccines composed of antigenically related, apathogenic herpesviruses Mardivirus 2 (MDV-2), Meleagrid herpesvirus 1 (herpesvirus of turkeys, HVT), or attenuated MDV-1 strain CVI988 (Rispens). Since the mid-1960s, field strains of MDV have increased in virulence, due, in part, to the widespread use of vaccines since the early 1970s. One mutation that we have identified common to very virulent field strains (vv and vv+MDVs) since the 1990s has been a mutation in the UL1 gene, encoding glycoprotein L (gL). This mutation, a 12-nucleotide (nt) deletion in the signal peptide of gL, has been associated with increased virulence and decreased vaccine protection in the context of challenge with a vv+MDV, strain TK. To determine whether this mutation alone was sufficient to confer increased virulence, we introduced this mutation into the transmission-competent pRB-1B bacterial artificial chromosome (BAC) using two-step, Red-mediated recombination. The resulting mutant, pRB-1BgLdelta, was tested for changes in replication in cell culture using multistep growth curves, plaque size analysis, viral burst analysis, and the ability to compete with the parental virus when co-transfected at different ratios and sequentially passaged. In addition, we examined this mutant for changes in pathogenicity in inoculated and contact-exposed unvaccinated and vaccinated chickens. Our data show minor differences in plaque sizes in cell culture, but no discernible changes in the infection of specific-pathogen-free (SPF) leghorn chickens. We therefore conclude that although this mutation is indeed common to MDV field strains isolated in the eastern United States, it is insufficient to confer increased virulence or loss of vaccine protection previously observed for a vv+MDV strain having this mutation.
Collapse
Affiliation(s)
- Shireen A R Shaikh
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wei S, Liu X, Ma B, Wu Y, Liu Y, Gao M, Fu P, Wang J. The US2 protein is involved in the penetration and cell-to-cell spreading of DEVin vitro. J Basic Microbiol 2013; 54:1005-11. [DOI: 10.1002/jobm.201300068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/28/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Shuangshi Wei
- Department of Preventive Veterinary Science; Northeast Agricultural University; Harbin P. R. China
| | - Xiaomei Liu
- Department of Preventive Veterinary Science; Northeast Agricultural University; Harbin P. R. China
| | - Bo Ma
- Department of Preventive Veterinary Science; Northeast Agricultural University; Harbin P. R. China
| | - Yihan Wu
- Department of Preventive Veterinary Science; Northeast Agricultural University; Harbin P. R. China
| | - Yan Liu
- Department of Preventive Veterinary Science; Northeast Agricultural University; Harbin P. R. China
| | - Mingchun Gao
- Department of Preventive Veterinary Science; Northeast Agricultural University; Harbin P. R. China
| | - Peifen Fu
- Department of Preventive Veterinary Science; Northeast Agricultural University; Harbin P. R. China
| | - Junwei Wang
- Department of Preventive Veterinary Science; Northeast Agricultural University; Harbin P. R. China
| |
Collapse
|
11
|
Lee J, Foster DN, Bottje WG, Jang HM, Chandra YG, Gentles LE, Kong BW. Establishment of an immortal chicken embryo liver-derived cell line. Poult Sci 2013; 92:1604-12. [DOI: 10.3382/ps.2012-02582] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
12
|
Mao W, Kim T, Cheng HH. Visualization of Marek’s disease virus in vitro using enhanced green fluorescent protein fused with US10. Virus Genes 2013; 47:181-3. [DOI: 10.1007/s11262-013-0920-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/11/2013] [Indexed: 12/20/2022]
|
13
|
Analysis of viral and cellular factors influencing herpesvirus-induced nuclear envelope breakdown. J Virol 2012; 86:6512-21. [PMID: 22491460 DOI: 10.1128/jvi.00068-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Herpesvirus nucleocapsids are translocated from their assembly site in the nucleus to the cytosol by acquisition of a primary envelope at the inner nuclear membrane which subsequently fuses with the outer nuclear membrane. This transport through the nuclear envelope requires homologs of the conserved herpesviral pUL31 and pUL34 proteins which form the nuclear egress complex (NEC). In its absence, 1,000-fold less virus progeny is produced. We isolated a UL34-negative mutant of the alphaherpesvirus pseudorabies virus (PrV), PrV-ΔUL34Pass, which regained replication competence after serial passages in cell culture by inducing nuclear envelope breakdown (NEBD) (B. G. Klupp, H. Granzow, and T. C. Mettenleiter, J. Virol. 85:8285-8292, 2011). To test whether this phenotype is unique, passaging experiments were repeated with a UL31 deletion mutant. After 60 passages, the resulting PrV-ΔUL31Pass replicated similarly to wild-type PrV. Ultrastructural analyses confirmed escape from the nucleus via NEBD, indicating an inherent genetic disposition in herpesviruses. To identify the mutated viral genes responsible for this phenotype, the genome of PrV-ΔUL34Pass was sequenced and compared to the genomes of parental PrV-Ka and PrV-ΔUL34. Targeted sequencing of PrV-ΔUL31Pass disclosed congruent mutations comprising genes encoding tegument proteins (pUL49, pUL46, pUL21, pUS2), envelope proteins (gI, pUS9), and protease pUL26. To investigate involvement of cellular pathways, different inhibitors of cellular kinases were tested. While induction of apoptosis or inhibition of caspases had no specific effect on the passaged mutants, roscovitine, a cyclin-dependent kinase inhibitor, and U0126, an inhibitor of MEK1/2, specifically impaired replication of the passaged mutants, indicating involvement of mitosis-related processes in herpesvirus-induced NEBD.
Collapse
|
14
|
A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks. J Virol 2011; 85:10989-98. [PMID: 21865383 DOI: 10.1128/jvi.05420-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 10(6) PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks.
Collapse
|
15
|
Gao H, Cui H, Cui X, Shi X, Zhao Y, Zhao X, Quan Y, Yan S, Zeng W, Wang Y. Expression of HA of HPAI H5N1 virus at US2 gene insertion site of turkey herpesvirus induced better protection than that at US10 gene insertion site. PLoS One 2011; 6:e22549. [PMID: 21818336 PMCID: PMC3144902 DOI: 10.1371/journal.pone.0022549] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/29/2011] [Indexed: 11/18/2022] Open
Abstract
Herpesvirus of turkey (HVT) is being widely used as a vector for development of recombinant vaccines and US2 and US10 genes are often chosen as insertion sites for targeted gene expression. However, the different effects of the two genes for generation of recombinant HVT vaccines were unknown. In order to compare the effects of inserted genes in the two sites on the efficacy of the recombinant vaccines, host-protective haemagglutinin (HA) gene of the highly pathogenic avian influenza virus (HPAIV) H5N1 was inserted into either US2 or US10 gene locus of the HVT. The resulting US2 (rHVT-US2-HA) or US10 (rHVT-US10-HA) recombinant HVT viruses were used to infect chicken embryo fibroblasts. Plaques and the growth kinetics of rHVT-US2-HA-infected chicken embryo fibroblasts were similar to those of parental HVT whereas rHVT-US10-HA infected chicken embryo fibroblasts had different growth kinetics and plaque formation. The viremia levels in rHVT-US10-HA virus-infected chickens were significantly lower than those of rHVT-US2-HA group on 28 days post infection. The vaccine efficacy of the two recombinant viruses against H5N1 HPAIV and virulent Marek's disease virus was also evaluated in 1-day-old vaccinated chickens. rHVT-US2-HA-vaccinated chickens were better protected with reduced mortality than rHVT-US10-HA-vaccinated animals following HPAIV challenge. Furthermore, the overall hemaglutination inhibition antibody titers of rHVT-US2-HA-vaccinated chickens were higher than those of rHVT-US10-HA-vaccinated chickens. Protection levels against Marek's disease virus challenge following vaccination with either rHVT-US2-HA or rHVT-US10-HA, however, were similar to those of the parental HVT virus. These results, for the first time, indicate that US2 gene provides a favorable foreign gene insertion site for generation of recombinant HVT vaccines.
Collapse
Affiliation(s)
- Hongbo Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Animal Medicine, College of Animal Science and Veterinary Medicine, Hebei North University, Zhang-Jia-Kou, China
| | - Xianlan Cui
- Animal Health Laboratory, Department of Primary Industries, Parks, Water and Environment, Prospect, Australia
| | - Xingming Shi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanming Quan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuai Yan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weiwei Zeng
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfeng Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
16
|
Kim T, Mays J, Fadly A, Silva RF. Artificially inserting a reticuloendotheliosis virus long terminal repeat into a bacterial artificial chromosome clone of Marek’s disease virus (MDV) alters expression of nearby MDV genes. Virus Genes 2011; 42:369-76. [DOI: 10.1007/s11262-011-0585-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
17
|
Jarosinski KW, Osterrieder N. Further analysis of Marek's disease virus horizontal transmission confirms that U(L)44 (gC) and U(L)13 protein kinase activity are essential, while U(S)2 is nonessential. J Virol 2010; 84:7911-6. [PMID: 20484497 PMCID: PMC2897598 DOI: 10.1128/jvi.00433-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/13/2010] [Indexed: 11/20/2022] Open
Abstract
Marek's disease virus (MDV) causes a devastating disease in chickens characterized by the development of lymphoblastoid tumors in multiple organs and is transmitted from the skin of infected chickens. We have previously reported that the U(S)2, U(L)44 (glycoprotein C [gC]), and U(L)13 genes are essential for horizontal transmission of MDV in gain-of-function studies using an a priori spread-deficient virus that was based on an infectious clone from the highly virulent RB-1B virus (pRB-1B). To precisely determine the importance of each individual gene in the process of chicken-to-chicken transmission, we used the transmission-restored clone that readily transmits horizontally and mutated each individual gene in loss-of-function experiments. Two independent U(S)2-negative mutants transmitted horizontally, eliminating U(S)2 as being essential for the process. In contrast, the absence of gC expression or mutating the invariant lysine essential for U(L)13 kinase activity abolished horizontal spread of MDV between chickens.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
18
|
Chbab N, Egerer A, Veiga I, Jarosinski KW, Osterrieder N. Viral control of vTR expression is critical for efficient formation and dissemination of lymphoma induced by Marek's disease virus (MDV). Vet Res 2010; 41:56. [PMID: 20423696 PMCID: PMC2881417 DOI: 10.1051/vetres/2010026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/27/2010] [Indexed: 11/15/2022] Open
Abstract
Marek's disease virus (MDV) is an alphaherpesvirus that causes lethal T-cell lymphomas in chickens. MDV is unique in that it harbors two copies of a viral telomerase RNA subunit (vTR) in its genome exhibiting 88% sequence identity to the chicken orthologue, chTR. The minimal telomerase ribonucleoprotein complex consists of a protein subunit with reverse transcriptase activity (TERT) and TR. Physiologically, the complex compensates for the progressive telomere shortening that occurs during mitosis and is involved in the process of cellular immortalization. Previous studies showed that MDV vTR performes an auxiliary function during oncogenesis. Comparative in vitro analysis of the viral and chicken TR promoters revealed that the vTR promoter (PvTR) was up to 3-fold more efficient than the chTR promoter (PchTR) in avian cells and that the stronger transcriptional activity of PvTR resulted largely from an E-box located two nucleotides downstream of the transcriptional start site of the vTR gene. To test the hypothesis that PvTR is required for vTR expression and, hence, efficient tumor formation, we generated a recombinant virus, vPchTR+/+, in which the vTR promoter was replaced by that of chTR. In vivo, growth of vPchTR+/+ was indistinguishable from that of parental virus; however, tumor induction was reduced by >50% and lymphomas were smaller and less disseminated when compared to those induced by parental virus. We concluded that PvTR is not required for lytic replication in vivo but is essential for efficient transcription of vTR and thereby critical for efficient MDV lymphoma formation.
Collapse
Affiliation(s)
- Najat Chbab
- Institut für Virologie, Freie Universität Berlin, Philippstr. 13, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Jarosinski KW, Margulis NG, Kamil JP, Spatz SJ, Nair VK, Osterrieder N. Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC. J Virol 2007; 81:10575-87. [PMID: 17634222 PMCID: PMC2045466 DOI: 10.1128/jvi.01065-07] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
Marek's disease virus (MDV) causes a general malaise in chickens that is mostly characterized by the development of lymphoblastoid tumors in multiple organs. The use of bacterial artificial chromosomes (BACs) for cloning and manipulation of the MDV genome has facilitated characterization of specific genes and genomic regions. The development of most MDV BACs, including pRB-1B-5, derived from a very virulent MDV strain, involved replacement of the US2 gene with mini-F vector sequences. However, when reconstituted viruses based on pRB-1B were used in pathogenicity studies, it was discovered that contact chickens housed together with experimentally infected chickens did not contract Marek's disease (MD), indicating a lack of horizontal transmission. Staining of feather follicle epithelial cells in the skins of infected chickens showed that virus was present but was unable to be released and/or infect susceptible chickens. Restoration of US2 and removal of mini-F sequences within viral RB-1B did not alter this characteristic, although in vivo viremia levels were increased significantly. Sequence analyses of pRB-1B revealed that the UL13, UL44, and US6 genes encoding the UL13 serine/threonine protein kinase, glycoprotein C (gC), and gD, respectively, harbored frameshift mutations. These mutations were repaired individually, or in combination, using two-step Red mutagenesis. Reconstituted viruses were tested for replication, MD incidence, and their abilities to horizontally spread to contact chickens. The experiments clearly showed that US2, UL13, and gC in combination are essential for horizontal transmission of MDV and that none of the genes alone is able to restore this phenotype.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Denesvre C, Blondeau C, Lemesle M, Le Vern Y, Vautherot D, Roingeard P, Vautherot JF. Morphogenesis of a highly replicative EGFPVP22 recombinant Marek's disease virus in cell culture. J Virol 2007; 81:12348-59. [PMID: 17855520 PMCID: PMC2168996 DOI: 10.1128/jvi.01177-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marek's disease virus (MDV) is an alphaherpesvirus for which infection is strictly cell associated in permissive cell culture systems. In contrast to most other alphaherpesviruses, no comprehensive ultrastructural study has been published to date describing the different stages of MDV morphogenesis. To circumvent problems linked to nonsynchronized infection and low infectivity titers, we generated a recombinant MDV expressing an enhanced green fluorescent protein fused to VP22, a major tegument protein that is not implicated in virion morphogenesis. Growth of this recombinant virus in cell culture was decreased threefold compared to that of the parental Bac20 virus, but this mutant was still highly replicative. The recombinant virus allowed us to select infected cells by cell-sorting cytometry at late stages of infection for subsequent transmission electron microscopy analysis. Under these conditions, all of the stages of assembly and virion morphogenesis could be observed except extracellular enveloped virions, even at the cell surface. We observed 10-fold fewer naked cytoplasmic capsids than nuclear capsids, and intracellular enveloped virions were very rare. The partial envelopment of capsids in the cytoplasm supports the hypothesis of the acquisition of the final envelope in this cellular compartment. We demonstrate for the first time that, compared to other alphaherpesviruses, MDV seems deficient in three crucial steps of viral morphogenesis, i.e., release from the nucleus, secondary envelopment, and the exocytosis process. The discrepancy between the efficiency with which this MDV mutant spreads in cell culture and the relatively inefficient process of its envelopment and virion release raises the question of the MDV cell-to-cell spreading mechanism.
Collapse
Affiliation(s)
- C Denesvre
- Laboratoire Virologie Moléculaire, INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zelnik V. Marek's disease virus research in the post-sequencing era: new tools for the study of gene functions and virus-host interactions. Avian Pathol 2007; 32:323-33. [PMID: 17585455 DOI: 10.1080/0307945031000121068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite the fact that the causative agent of Marek's disease was described more than 30 years ago, and that subsequently many classical biological studies have been carried out on the Marek's disease virus (MDV), detailed analysis of its gene functions has been hampered by lack of suitable research tools. Information on the primary structure of MDV-1 and its serologically related viruses, MDV-2 and herpesvirus of turkeys, is now available. This review focuses on the introduction of the modern and highly efficient technology of bacterial artificial chromosome (BAC) cloning and mutagenesis for rapid manipulation of the MDV genome, with the aim of studying the functions of its genes and non-coding regions. Constructed MDV BACs carry the complete genome of MDV that can be multiplied in Escherichia coli and manipulated using the tools provided by bacterial genetics. The novel approach of MDV DNA mutagenesis using BAC technology will be explained by examples, and we will discuss gene functions in comparison with their counterparts in other herpesviruses. In addition, we have shown that MDV BAC DNA can be used as a polynucleotide vaccine to protect against Marek's disease, thus opening a new chapter in strategies for control of this disease.
Collapse
Affiliation(s)
- Vladimír Zelnik
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 842 45, Slovakia.
| |
Collapse
|
22
|
Jarosinski KW, Tischer BK, Trapp S, Osterrieder N. Marek's disease virus: lytic replication, oncogenesis and control. Expert Rev Vaccines 2007; 5:761-72. [PMID: 17184215 DOI: 10.1586/14760584.5.6.761] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Marek's disease (MD) is caused by a ubiquitous, lymphotropic alphaherpesvirus, MD virus (MDV). MD has been a major concern in the poultry industry owing to the emergence of increasingly virulent strains over the last few decades that were isolated in the face of comprehensive vaccination. The disease is characterized by a variety of clinical signs; among them are neurological symptoms, chronic wasting and, most notably, the development of multiple lymphomas that manifest as solid tumors in the viscera and musculature. Much work has been devoted to study MD-induced oncogenesis and the genes involved in this process. Among the many genes encoded by MDV, a number have been shown recently to affect the development of tumors in chickens, one protein directly causing transformation of cells (Meq) and another being involved in maintaining transformed cells (vTR). Other MDV gene products modulate and are involved in early lytic in vivo replication, thereby increasing the chance of transformation occurring. In this review, we will summarize specific genes encoded by MDV that are involved in the initiation and/or maintenance of transformation and will focus mostly on current vaccination and control strategies against MD, particularly how modern molecular biological methods may be used to improve strategies to combat the disease in the future.
Collapse
Affiliation(s)
- Keith W Jarosinski
- Cornell University, Department of Microbiology and Immunology, College of Veterinary Medicine, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
23
|
Chattoo JP, Stevens MP, Nair V. Rapid identification of non-essential genes for in vitro replication of Marek's disease virus by random transposon mutagenesis. J Virol Methods 2006; 135:288-91. [PMID: 16650486 DOI: 10.1016/j.jviromet.2006.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/10/2006] [Accepted: 03/20/2006] [Indexed: 11/26/2022]
Abstract
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that induces rapid-onset T-cell lymphomas in poultry. The MDV genome encodes more than 100 genes. However, the role of many of these genes in virus replication is not known. The construction of an infectious bacterial artificial chromosome (BAC) clone of the highly oncogenic RB-1B strain of MDV has been described previously. Virus reconstituted from the BAC clone induced rapid-onset lymphomas in chickens very similar to the wildtype viruses. In this paper, the construction of a high-density random transposon-insertion mutant library of the RB-1B BAC clone using a high throughput in vitro transposon mutagenesis technique is described. Furthermore a PCR screening method, using primers specific for the transposon sequence and the MDV gene(s) of interest, was developed for the rapid identification of specific insertion mutants. The application of the screening method to identify some of the non-essential genes for MDV replication in vitro is described.
Collapse
Affiliation(s)
- Jason P Chattoo
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | |
Collapse
|
24
|
Prigge JT, Majerciak V, Hunt HD, Dienglewicz RL, Parcells MS. Construction and characterization of Marek's disease viruses having green fluorescent protein expression tied directly or indirectly to phosphoprotein 38 expression. Avian Dis 2005; 48:471-87. [PMID: 15529969 DOI: 10.1637/7110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Marek's disease (MD) is caused by Marek's disease virus (MDV), a highly cell-associated alphaherpesvirus. MD is primarily characterized by lymphocyte infiltration of the nerves and the development of lymphomas in visceral organs, muscle, and skin. MDV encodes two phosphoproteins, pp24 and pp38, that are highly expressed during lytic infection. These proteins were initially identified in MDV-induced tumors but are now known to be linked primarily to MDV lytic infection. Despite the recent characterization of a pp38 deletion mutant MDV, the functions of these phosphoproteins remain unknown. The goal of this work was to construct recombinant MDVs having direct fusions of a marker gene, the green fluorescent protein (GFP), to pp38 in order to study the expression patterns and localization of this protein during stages of MDV infection. We report the construction of two recombinant viruses, one having the enhanced green fluorescent protein (eGFP) fused in-frame to the pp38 open reading frame (ORF) (RB1Bpp38/eGFP) and the other having soluble-modified GFP (smGFP) downstream but out-of-frame with pp38 (RB1Bpp38/smGFP). During construction of RB1Bpp38/eGFP, an ORF located downstream of pp38 (LORF12) was partially deleted. In RB1Bpp38/smGFP, however, LORF12 and its immediate 5' upstream sequence was left intact. This report describes the construction, cell culture, and in vivo characterization of RB1Bpp38/eGFP and RB1Bpp38/smGFP. Structural analysis showed that the virus stocks of RB1Bpp38/eGFP and RB1Bpp38/smGFP had incorporated the GFP cassette and were free of contaminating parent virus (RB1B). Moreover, RB1Bpp38/eGFP and RB1Bpp38/smGFP contained two and three and four and five copies of the 132-bp repeats, respectively. Expression analysis showed that the transcription of genes in RB1Bpp38/eGFP-and RB1Bpp38/smGFP-infected chicken embryo fibroblasts (CEFs) were similar to RB1B-infected CEFs, with the notable exception of deletion of a LORF12-specific transcript in RB1Bpp38/ eGFP-infected cells. In CEFs, RB1Bpp38/eGFP and RB1Bpp38/smGFP showed comparable one-step growth kinetics to parental virus (RB1B). RB1Bpp38/eGFP and RB1Bpp38/smGFP, however, showed quite distinct growth characteristics in vivo. Two independent clones of RB1Bpp38/eGFP were highly attenuated, whereas RB1Bpp38/smGFP exhibited pathogenesis similar to parent virus and retained oncogenicity. Our results suggest that the RB1Bpp38/eGFP phenotype could be due to an interference with an in vivo-specific pp38 function via GFP direct fusion, to the deletion of LORF12, or to a targeting of the immune response to eGFP. Because deletion of pp38 was recently found not to fully attenuate very virulent MDV strain MD-5, it is possible that deletion of LORF12 may be at least partially responsible for the attenuation of RB1Bpp38/eGFP. The construction of these viruses and the establishment of cell lines from RB1Bpp38/smGFP provide useful tools for the study of MDV lyric infection in cell culture and in vivo, in studies of the reactivation of MDV from latency, and in the functional analysis of LORF12.
Collapse
Affiliation(s)
- Jon T Prigge
- Center of Excellence for Poultry Science, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | |
Collapse
|
25
|
Dorange F, Tischer BK, Vautherot JF, Osterrieder N. Characterization of Marek's disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22, is indispensable for virus growth. J Virol 2002; 76:1959-70. [PMID: 11799190 PMCID: PMC135886 DOI: 10.1128/jvi.76.4.1959-1970.2002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experiments were conducted to investigate the roles of Marek's disease virus serotype 1 (MDV-1) major tegument proteins VP11/12, VP13/14, VP16, and VP22 in viral growth in cultured cells. Based on a bacterial artificial chromosome clone of MDV-1 (BAC20), mutant viruses were constructed in which the MDV-1 homologs of UL46, UL47, UL48, or UL49 were deleted alone and in various combinations. It could be demonstrated that the UL46, UL47, and UL48 genes are dispensable for MDV-1 growth in chicken embryonic skin and quail muscle QM7 cells, although the generated virus mutants exhibited reduced plaque sizes in all cell types investigated. In contrast, a UL49-negative MDV-1 (20 Delta 49) and a UL48-UL49 (20 Delta 48-49) doubly negative mutant were not able to produce MDV-1-specific plaques on either cell type. It was confirmed that this growth restriction is dependent on the absence of VP22 expression, because growth of these mutant viruses could be partially restored on cells that were cotransfected with a UL49 expression plasmid. In addition, we were able to demonstrate that cell-to-cell spread of MDV-1 conferred by VP22 is dependent on the expression of amino acids 37 to 187 of MDV-1 VP22, because expression plasmids containing MDV-1 UL49 mutant genes with deletions of amino acids 1 to 37 or 188 to 250 were still able to restore partial growth of the 20 Delta 49 and 20 Delta 48-49 viruses. These results demonstrate for the first time that an alphaherpesvirus UL49-homologous gene is essential for virus growth in cell culture.
Collapse
Affiliation(s)
- Fabien Dorange
- Laboratoire de Virologie Moléculaire, Station de Pathologie Aviaire et de Parasitologie, Institut National de la Recherche Agronomique de Tours, 37380 Nouzilly, France
| | | | | | | |
Collapse
|
26
|
Liu HC, Kung HJ, Fulton JE, Morgan RW, Cheng HH. Growth hormone interacts with the Marek's disease virus SORF2 protein and is associated with disease resistance in chicken. Proc Natl Acad Sci U S A 2001; 98:9203-8. [PMID: 11470922 PMCID: PMC55398 DOI: 10.1073/pnas.161466898] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marek's disease (MD) is a lymphoproliferative disease of chickens induced by a herpesvirus, the MD virus (MDV). Because MD is a significant economic problem to the poultry industry, there is great interest in enhancing genetic resistance, which is controlled by multiple genes. The influence of the MHC has been clearly demonstrated, and several relevant quantitative trait loci have been mapped; however, no single gene influencing MD resistance has been identified. Transcription of SORF2 is perturbed in the MDV recombinant clone RM1 due to a solo insertion of the reticuloendotheliosis virus long terminal repeat, which may explain the loss of oncogenicity for this strain. Hypothesizing that SORF2-interacting host proteins are involved in MD resistance, we screened a chicken splenic cDNA library by the yeast two-hybrid assay using SORF2 as bait. The chicken growth hormone (GH) structural peptide was identified, and the specific interaction was verified by coimmunoprecipitation. Immunohistochemical staining and indirect immunofluorescence assay indicated that GH and SORF2 can be coexpressed in MDV-infected cells both in vitro and in vivo. Furthermore, polymorphism in the GH gene (GH1) is associated with the number of tissues with tumors in commercial White Leghorn chickens with the MHC B*2/B*15 genotype. We conclude that GH1 may well be a MD resistance gene.
Collapse
Affiliation(s)
- H C Liu
- U.S. Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | | | | | | | | |
Collapse
|
27
|
Lupiani B, Lee LF, Reddy SM. Protein-coding content of the sequence of Marek's disease virus serotype 1. Curr Top Microbiol Immunol 2001; 255:159-90. [PMID: 11217422 DOI: 10.1007/978-3-642-56863-3_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- B Lupiani
- Avian Disease and Oncology Laboratory, Agricultural Research Service, 3606 East Mount Hope Road, East Lansing, MI 48823, USA
| | | | | |
Collapse
|
28
|
Hirai K, Sakaguchi M. Polyvalent recombinant Marek's disease virus vaccine against poultry diseases. Curr Top Microbiol Immunol 2001; 255:261-87. [PMID: 11217427 DOI: 10.1007/978-3-642-56863-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- K Hirai
- Department of Tumor Virology, Division of Virology and Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | |
Collapse
|
29
|
Hunt HD, Lupiani B, Miller MM, Gimeno I, Lee LF, Parcells MS. Marek's disease virus down-regulates surface expression of MHC (B Complex) Class I (BF) glycoproteins during active but not latent infection of chicken cells. Virology 2001; 282:198-205. [PMID: 11259202 DOI: 10.1006/viro.2000.0797] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection of chicken cells with three Marek's disease virus (MDV) serotypes interferes with expression of the major histocompatibility complex (MHC or B complex) class I (BF) glycoproteins. BF surface expression is blocked after infection of OU2 cells with MDV serotypes 1, 2, and 3. MDV-induced T-cell tumors suffer a nearly complete loss of cell surface BF upon virus reactivation with 5-bromo-2'-deoxyuridine (BUdR). The recombinant virus (RB1BUS2gfpDelta) transforming the MDCC-UA04 cell line expresses green fluorescent protein (GFP) during the immediate early phase of viral gene expression. Of the UA04 cells induced to express the immediate early GFP, approximately 60% have reduced levels of BF expression. All of the reactivated UA04 and MSB1 tumor cells expressing the major early viral protein pp38 display reduced levels of BF. Thus, BF down-regulation begins in the immediate early phase and is complete by the early phase of viral gene expression. The intracellular pool of BF is not appreciably affected, indicating that the likely mechanism is a block in BF transport and not the result of transcriptional or translational regulation.
Collapse
Affiliation(s)
- H D Hunt
- U.S. Department of Agriculture, Agricultural Research Service, Avian Disease and Oncology Laboratory, 3606 East Mount Hope Road, East Lansing, Michigan 48863, USA.
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
Here we present the first complete genomic sequence of Marek's disease virus serotype 3 (MDV3), also known as turkey herpesvirus (HVT). The 159,160-bp genome encodes an estimated 99 putative proteins and resembles alphaherpesviruses in genomic organization and gene content. HVT is very similar to MDV1 and MDV2 within the unique long (UL) and unique short (US) genomic regions, where homologous genes share a high degree of colinearity and their proteins share a high level of amino acid identity. Within the UL region, HVT contains 57 genes with homologues found in herpes simplex virus type 1 (HSV-1), six genes with homologues found only in MDV, and two genes (HVT068 and HVT070 genes) which are unique to HVT. The HVT US region is 2.2 kb shorter than that of MDV1 (Md5 strain) due to the absence of an MDV093 (SORF4) homologue and to differences at the UL/short repeat (RS) boundary. HVT lacks a homologue of MDV087, a protein encoded at the UL/RS boundary of MDV1 (Md5), and it contains two homologues of MDV096 (glycoprotein E) in the RS. HVT RS are 1,039 bp longer than those in MDV1, and with the exception of an ICP4 gene homologue, the gene content is different from that of MDV1. Six unique genes, including a homologue of the antiapoptotic gene Bcl-2, are found in the RS. This is the first reported Bcl-2 homologue in an alphaherpesvirus. HVT long repeats (RL) are 7,407 bp shorter than those in MDV1 and do not contain homologues of MDV1 genes with functions involving virulence, oncogenicity, and immune evasion. HVT lacks homologues of MDV1 oncoprotein MEQ, CxC chemokine, oncogenicity-associated phosphoprotein pp24, and conserved domains of phosphoprotein pp38. These significant genomic differences in and adjacent to RS and RL regions likely account for the differences in host range, virulence, and oncogenicity between nonpathogenic HVT and highly pathogenic MDV1.
Collapse
Affiliation(s)
- C L Afonso
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | |
Collapse
|
32
|
Schumacher D, Tischer BK, Fuchs W, Osterrieder N. Reconstitution of Marek's disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant. J Virol 2000; 74:11088-98. [PMID: 11070004 PMCID: PMC113189 DOI: 10.1128/jvi.74.23.11088-11098.2000] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome of Marek's disease virus serotype 1 (MDV-1) strain 584Ap80C was cloned in Escherichia coli as a bacterial artificial chromosome (BAC). BAC vector sequences were introduced into the U(S)2 locus of the MDV-1 genome by homologous recombination. Viral DNA containing the BAC vector was used to transform Escherichia coli strain DH10B, and several colonies harboring the complete MDV-1 genome as an F plasmid (MDV-1 BACs) were identified. DNA from various MDV-1 BACs was transfected into chicken embryo fibroblasts, and from 3 days after transfection, infectious MDV-1 was obtained. Growth of MDV-1 recovered from BACs was indistinguishable from that of the parental virus, as assessed by plaque formation and determination of growth curves. In one of the MDV-1 BAC clones, sequences encoding glycoprotein B (gB) were deleted by one-step mutagenesis using a linear DNA fragment amplified by PCR. Mutant MDV-1 recovered after transfection of BAC DNA that harbored a 2.0-kbp deletion of the 2.6-kbp gB gene were able to grow and induce MDV-1-specific plaques only on cells providing MDV-1 gB in trans. The gB-negative virus reported here represents the first MDV-1 mutant with a deletion of an essential gene and demonstrates the power and usefulness of BACs to analyze genes and gene products in slowly growing and strictly cell-associated herpesviruses.
Collapse
Affiliation(s)
- D Schumacher
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | |
Collapse
|
33
|
Tulman ER, Afonso CL, Lu Z, Zsak L, Rock DL, Kutish GF. The genome of a very virulent Marek's disease virus. J Virol 2000; 74:7980-8. [PMID: 10933706 PMCID: PMC112329 DOI: 10.1128/jvi.74.17.7980-7988.2000] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present the first complete genomic sequence, with analysis, of a very virulent strain of Marek's disease virus serotype 1 (MDV1), Md5. The genome is 177,874 bp and is predicted to encode 103 proteins. MDV1 is colinear with the prototypic alphaherpesvirus herpes simplex virus type 1 (HSV-1) within the unique long (UL) region, and it is most similar at the amino acid level to MDV2, herpesvirus of turkeys (HVT), and nonavian herpesviruses equine herpesviruses 1 and 4. MDV1 encodes 55 HSV-1 UL homologues together with 6 additional UL proteins that are absent in nonavian herpesviruses. The unique short (US) region is colinear with and has greater than 99% nucleotide identity to that of MDV1 strain GA; however, an extra nucleotide sequence at the Md5 US/short terminal repeat boundary results in a shorter US region and the presence of a second gene (encoding MDV097) similar to the SORF2 gene. MD5, like HVT, encodes an ICP4 homologue that contains a 900-amino-acid amino-terminal extension not found in other herpesviruses. Putative virulence and host range gene products include the oncoprotein MEQ, oncogenicity-associated phosphoproteins pp38 and pp24, a lipase homologue, a CxC chemokine, and unique proteins of unknown function MDV087 and MDV097 (SORF2 homologues) and MDV093 (SORF4). Consistent with its virulent phenotype, Md5 contains only two copies of the 132-bp repeat which has previously been associated with viral attenuation and loss of oncogenicity.
Collapse
Affiliation(s)
- E R Tulman
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | |
Collapse
|
34
|
Meindl A, Osterrieder N. The equine herpesvirus 1 Us2 homolog encodes a nonessential membrane-associated virion component. J Virol 1999; 73:3430-7. [PMID: 10074198 PMCID: PMC104108 DOI: 10.1128/jvi.73.4.3430-3437.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experiments were conducted to analyze the equine herpesvirus 1 (EHV-1) gene 68 product which is encoded by the EHV-1 Us2 homolog. An antiserum directed against the amino-terminal 206 amino acids of the EHV-1 Us2 protein specifically detected a protein with an Mr of 34,000 in cells infected with EHV-1 strain RacL11. EHV-1 strain Ab4 encodes a 44,000-Mr Us2 protein, whereas vaccine strain RacH, a high-passage derivative of RacL11, encodes a 31,000-Mr Us2 polypeptide. Irrespective of its size, the Us2 protein was incorporated into virions. The EHV-1 Us2 protein localized to membrane and nuclear fractions of RacL11-infected cells and to the envelope fraction of purified virions. To monitor intracellular trafficking of the protein, the green fluorescent protein (GFP) was fused to the carboxy terminus of the EHV-1 Us2 protein or to a truncated Us2 protein lacking a stretch of 16 hydrophobic amino acids at the extreme amino terminus. Both fusion proteins were detected at the plasma membrane and accumulated in the vicinity of nuclei of transfected cells. However, trafficking of either GFP fusion protein through the secretory pathway could not be demonstrated, and the EHV-1 Us2 protein lacked detectable N- and O-linked carbohydrates. Consistent with the presence of the Us2 protein in the viral envelope and plasma membrane of infected cells, a Us2-negative RacL11 mutant (L11DeltaUs2) exhibited delayed penetration kinetics and produced smaller plaques compared with either wild-type RacL11 or a Us2-repaired virus. After infection of BALB/c mice with L11DeltaUs2, reduced pathogenicity compared with the parental RacL11 virus and the repaired virus was observed. It is concluded that the EHV-1 Us2 protein modulates virus entry and cell-to-cell spread and appears to support sustained EHV-1 replication in vivo.
Collapse
Affiliation(s)
- A Meindl
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Federal Research Center for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | |
Collapse
|
35
|
Parcells MS, Dienglewicz RL, Anderson AS, Morgan RW. Recombinant Marek's disease virus (MDV)-derived lymphoblastoid cell lines: regulation of a marker gene within the context of the MDV genome. J Virol 1999; 73:1362-73. [PMID: 9882341 PMCID: PMC103960 DOI: 10.1128/jvi.73.2.1362-1373.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marek's disease is a herpesvirus (Marek's disease virus [MDV])-induced pathology of chickens characterized by paralysis and the rapid appearance of T-cell lymphomas. Lymphoblastoid cell lines (LBCLs) derived from MDV-induced tumors have served as models of MDV latency and transformation. We have recently reported the construction of mutant MDVs having a deletion (M. S. Parcells et al., J. Virol. 69:7888-7898, 1995) and an insertion (A. S. Anderson et al., J. Virol. 72:2548-2553, 1998) within the unique short region of the virus genome. These mutant MDVs retained oncogenicity, and LBCLs have been established from the mutant-induced tumors. We report the characterization of these cell lines with respect to (i) virus structure within and reactivated from the cell lines, (ii) surface antigen expression, (iii) kinetics of MDV and marker gene induction, (iv) localization and colocalization of induced MDV antigens and beta-galactosidase (beta-Gal), and (v) methylation status of the region of lacZ insertion in recombinant- and non-recombinant-derived cell lines. Our results indicate that (i) recombinant-derived cell lines contain no parental virus, (ii) the established cell lines are predominantly CD4(+) CD8(-), (iii) the percentage of Lac-expressing cells is low (1 to 3%) but increases dramatically upon 5'-iododeoxyuridine (IUdR) treatment, (iv) lacZ expression is induced with the same kinetics as several MDV lytic-phase genes (pp38, US1, gB, gI, and US10), and (v) the regulation of lacZ expression is not mediated by methylation. Furthermore, the MDV-encoded oncoprotein, Meq, could be detected in cells expressing beta-Gal and various lytic antigens but did not appear to be induced by IUdR treatment. Our results indicate that regulation of the lacZ marker gene can serve as sensitive measure of virus lytic-phase induction and the reactivation from latency.
Collapse
Affiliation(s)
- M S Parcells
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | |
Collapse
|
36
|
Jang HK, Ono M, Kim TJ, Izumiya Y, Damiani AM, Matsumura T, Niikura M, Kai C, Mikami T. The genetic organization and transcriptional analysis of the short unique region in the genome of nononcogenic Marek's disease virus serotype 2. Virus Res 1998; 58:137-47. [PMID: 9879770 DOI: 10.1016/s0168-1702(98)00110-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Studies on the Marek's disease virus (MDV) serotype 2 (MDV2) genome may be important for understanding the naturally nononcogenic nature of the virus. To determine the complete DNA sequence of MDV2 unique short (Us) region, genomic BamHI fragments F, M1 and R were sequenced. The MDV2 Us region is 12109 bp long and contains 12 potential open reading frames (ORFs) likely to encode for proteins. Seven of them exhibit homologies to herpes simplex virus type 1 (HSV-1) US1 (ICP22), US2, US3 (protein kinase), US6 (gD), US7 (gI), US8 (gE) and US10 genes. These ORFs are conserved in a similar arrangement with those of HSV-1, except for US10 which is transposed in the Us regions of all three MDV serotypes. The predicted amino acid sequence of MDV2 ORF6 is homologous to SORF3 of the other serotypes of MDV serotype 1 (MDV1) and herpesvirus of turkeys (HVT) and to infectious laryngotracheitis virus SR1. In addition, four ORFs, which have been identified around the Us and inverted repeat junction regions, have no apparent relation to any other known herpesvirus genes. The identified ORFs in the MDV2 Us region were more colinear with their previously reported locations of MDV1 than with those of HVT and other alphaherpesviruses. Ten of the 12 ORFs in the MDV2 Us region were expressed and transcribed with 3'-coterminal transcripts and/or a unique transcript in the virus-infected cells. Compared to other MDV serotypes, the MDV2 Us-encoded proteins showed 46-70% and 33-59% identities with equivalent of MDV1 and HVT at the amino acid level, respectively. Our present data will be useful to understand the different pathogenicity among serotypes of MDV and to allow precise manipulation of the genes for a possible use in genetically engineered vaccines.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- DNA, Viral/analysis
- DNA, Viral/genetics
- Genome, Viral
- Herpesvirus 2, Gallid/classification
- Herpesvirus 2, Gallid/genetics
- Herpesvirus 2, Gallid/pathogenicity
- Molecular Sequence Data
- Open Reading Frames
- Repetitive Sequences, Nucleic Acid
- Sequence Homology, Amino Acid
- Serotyping
- Transcription, Genetic
Collapse
Affiliation(s)
- H K Jang
- Department of Veterinary Microbiology, Faculty of Agriculture, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jones D, Brunovskis P, Witter R, Kung HJ. Retroviral insertional activation in a herpesvirus: transcriptional activation of US genes by an integrated long terminal repeat in a Marek's disease virus clone. J Virol 1996; 70:2460-7. [PMID: 8642673 PMCID: PMC190089 DOI: 10.1128/jvi.70.4.2460-2467.1996] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Insertional activation of host proto-oncogenes has been recognized as a basic mechanism by which nonacute retroviruses induce cancer. Our previous work has demonstrated that retroviruses can efficiently integrate into DNA virus genomes. Specifically, coinfection of cultured fibroblasts with a chicken herpesvirus, Marek's disease virus (MDV), and a chicken retrovirus results in frequent stable retroviral insertions into the herpesvirus genome. Such insertions could alter the expression of herpesvirus genes, possibly resulting in novel phenotypic properties. In this article, we report the characterization of a replication-competent clone of MDV with integrated retroviral sequences. This virus was isolated from a chicken following injection of fibroblasts coinfected with MDV and the retrovirus, reticuloendotheliosis virus. Transcripts originating from the reticuloendotheliosis virus long terminal repeat promoters were found to encode the adjoining MDV genes, SORF2, US1, and US10. This virus replicates well in culture but has an unusual phenotype in chickens, characterized by an attenuated virulence which produces no nerve lesions but, rather, severe thymic atrophy. While the causal relationship between the insertion and the observed phenotypes remains to be established, our data provide the first evidence of retroviral insertional activation of herpesvirus genes.
Collapse
Affiliation(s)
- D Jones
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
38
|
Sonoda K, Sakaguchi M, Matsuo K, Zhu GS, Hirai K. Asymmetric deletion of the junction between the short unique region and the inverted repeat does not affect viral growth in culture and vaccine-induced immunity against Marek's disease. Vaccine 1996; 14:277-84. [PMID: 8744553 DOI: 10.1016/0264-410x(95)00210-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To construct an effective recombinant Marek's disease virus type 1 (MDV1), we localized a stable insertion site for expression of the Escherichia coli lacZ gene near or within the short inverted repeats of MDV1 strain K554 DNA. A stable recombinant MDV1 was obtained by deleting the junction region between the short unique sequence (Us) and the internal short inverted repeat (IRs). The recombinant MDV1 replicated in cultured cells as well as the parental viral DNA. Antibodies against both MDV1 antigen and beta-galactosidase encoded by the lacZ gene were detected in the sera of chickens immunized with the virus, and persisted for at least 16 weeks. Moreover, the recombinant virus conferred protection upon chickens against a challenge with virulent MDV1. These results demonstrated that the Us-IRs junction region is an effective site for the insertion of foreign genes from which to construct a polyvalent live vaccine for poultry. Analysis of the Us-IRs junction region which was deleted from the parental MDV1 indicated that there is a tandem direct repeat of a 220-bp exists within the short internal and terminal inverted repeats of avirulent MDV1 K554 strain DNA. The 220-bp sequence was well conserved among DNAs from various strains. The number of the repeat units may differ between the IRs and TRs or among various MDV1 strain DNAs.
Collapse
Affiliation(s)
- K Sonoda
- Chemo-Sero Therapeutic Research Institute, Kikuchi Research Center, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
39
|
Wild MA, Cook S, Cochran M. A genomic map of infectious laryngotracheitis virus and the sequence and organization of genes present in the unique short and flanking regions. Virus Genes 1996; 12:107-16. [PMID: 8879127 DOI: 10.1007/bf00572949] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We present a genomic map of infectious laryngotracheitis virus (ILT) and an 18,912 bp sequence containing the entire unique short region and a portion of the flanking short repeats. In determining the genomic map, an 856 bp region repeated as many as 13 times was identified within the short repeats. The unique short sequence contains nine potential open reading frames (ORFs). Six of these ORFs show homology to other known herpesvirus unique short genes. Using the herpes simplex virus nomenclature, these genes are the US2, protein kinase, and glycoproteins G, D, I, and E (ORF 1, 2, 4, 6, 7, and 8, respectively). Interestingly, an open reading frame with homology to HSV-1 UL47 (ORF 3) is found in the unique short. One very large open reading frame (ORF 5) is present and contains a threonine-rich, degenerate repeat sequence. This gene appears to be unique to ILT among sequenced herpesviruses. Two ORFs were identified within the short repeat (SR) region. SRORF 1 is homologous to a gene (SORF3) found in the unique short region in both MDV and HVT, and appears to be specific to avian herpesviruses. SRORF 2 has homology to HSV US10.
Collapse
Affiliation(s)
- M A Wild
- Syntro Corporation, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
40
|
Parcells MS, Anderson AS, Morgan TW. Retention of oncogenicity by a Marek's disease virus mutant lacking six unique short region genes. J Virol 1995; 69:7888-98. [PMID: 7494301 PMCID: PMC189733 DOI: 10.1128/jvi.69.12.7888-7898.1995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We previously reported the construction of Marek's disease virus (MDV) strains having mutations in various genes that map to the unique short (US) region of the viral genome (J.L. Cantello, A.S. Anderson, A. Francesconi, and R.W. Morgan, J. Virol. 65:1584-1588, 1991; M.S. Parcells, A.S. Anderson, and R.W. Morgan, Virus Genes 9:5-13, 1994; M.S. Parcells, A.S. Anderson, and R.W. Morgan, J. Virol. 68:8239-8253, 1994). These strains were constructed by using a high-passage-level serotype 1 MDV strain which grew well in chicken embryo fibroblasts. Despite the growth of the parent and mutant viruses in cell culture, in vivo studies were limited by poor growth of these strains in chickens. One of the mutants studied lacked 4.5 kbp of US region DNA and contained the lacZ gene of Escherichia coli inserted at the site of the deletion. The deletion removed MDV homologs to the US1, US2, and US10 genes of herpes simplex virus type 1 as well as three MDV-specific open reading frames. We now report the construction of a mutant MDV containing a similar deletion in the US region of the highly oncogenic RB1B strain. This mutant, RB1B delta 4.5lac, had a growth impairment in established chicken embryo fibroblasts similar to that described previously for MDVs lacking a functional US1 gene. In chickens, RB1B delta 4.5lac showed decreased early cytolytic infection, mortality, tumor incidence, and horizontal transmission. Several lymphoblastoid cell lines were established from RB1B delta 4.5lac-induced tumors, and virus reactivated from these cell lines was LacZ+. These results indicate that the deleted genes are nonessential for the transformation of chicken T cells or for the establishment and maintenance of latency. On the basis of the growth impairment observed for RB1B delta 4.5lac in cell culture and in vivo, we conclude that deletion of these genes affects the lytic replication of MDV. This is the first MDV mutant constructed in the RB1B oncogenic strain, and the methodology described herein provides for the direct examination of MDV-encoded determinants of oncogenicity.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Cells, Cultured
- Chick Embryo
- Chickens
- DNA, Viral/analysis
- Gene Deletion
- Gene Expression
- Genes, Viral
- Genome, Viral
- Herpesvirus 2, Gallid/genetics
- Herpesvirus 2, Gallid/growth & development
- Herpesvirus 2, Gallid/pathogenicity
- Kinetics
- Mutagenesis
- RNA, Viral/analysis
- Serotyping
- Time Factors
- Tumor Virus Infections/physiopathology
- Tumor Virus Infections/virology
- Virulence/genetics
Collapse
Affiliation(s)
- M S Parcells
- Department of Animal Science and Agricultural Biochemistry, College of Agricultural Sciences, University of Delaware, Newark 19717-1303, USA
| | | | | |
Collapse
|