1
|
Ono T, Hashimoto K, Kume Y, Chishiki M, Okabe H, Sato M, Norito S, Aso J, Sada M, Mochizuki I, Mashiyama F, Ishibashi N, Suzuki S, Sakuma H, Suwa R, Kawase M, Takeda M, Shirato K, Kimura H, Hosoya M. Molecular Diversity of Human Respiratory Syncytial Virus before and during the COVID-19 Pandemic in Two Neighboring Japanese Cities. Microbiol Spectr 2023; 11:e0260622. [PMID: 37409937 PMCID: PMC10433803 DOI: 10.1128/spectrum.02606-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Human respiratory syncytial viruses (HRSVs) are divided into subgroups A and B, which are further divided based on the nucleotide sequence of the second hypervariable region (HVR) of the attachment glycoprotein (G) gene. Understanding the molecular diversity of HRSV before and during the coronavirus disease 2019 (COVID-19) pandemic can provide insights into the effects of the pandemic on HRSV dissemination and guide vaccine development. Here, we analyzed HRSVs isolated in Fukushima Prefecture from September 2017 to December 2021. Specimens from pediatric patients were collected at two medical institutions in neighboring cities. A phylogenetic tree based on the second HVR nucleotide sequences was constructed using the Bayesian Markov chain Monte Carlo method. HRSV-A (ON1 genotype) and HRSV-B (BA9 genotype) were detected in 183 and 108 specimens, respectively. There were differences in the number of HRSV strains within clusters prevalent at the same time between the two hospitals. The genetic characteristics of HRSVs in 2021 after the COVID-19 outbreak were similar to those in 2019. HRSVs within a cluster may circulate within a region for several years, causing an epidemic cycle. Our findings add to the existing knowledge of the molecular epidemiology of HRSV in Japan. IMPORTANCE Understanding the molecular diversity of human respiratory syncytial viruses during pandemics caused by different viruses can provide insights that can guide public health decisions and vaccine development.
Collapse
Affiliation(s)
- Takashi Ono
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Yohei Kume
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Mina Chishiki
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Hisao Okabe
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Masatoki Sato
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Sakurako Norito
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Jumpei Aso
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Mitsuru Sada
- Department of Respiratory Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Izumi Mochizuki
- Department of Pediatrics, Ohara General Hospital, Fukushima, Fukushima, Japan
| | - Fumi Mashiyama
- Department of Pediatrics, Hoshi General Hospital, Koriyama, Fukushima, Japan
| | - Naohisa Ishibashi
- Department of Pediatrics, Ohara General Hospital, Fukushima, Fukushima, Japan
| | - Shigeo Suzuki
- Department of Pediatrics, Ohara General Hospital, Fukushima, Fukushima, Japan
| | - Hiroko Sakuma
- Department of Pediatrics, Hoshi General Hospital, Koriyama, Fukushima, Japan
| | - Reiko Suwa
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Miyuki Kawase
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Shirato
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirokazu Kimura
- Gunma Paz University, Graduate School of Health Sciences, Takasaki, Gunma, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University, Fukushima, Fukushima, Japan
| |
Collapse
|
2
|
Lara-Hernandez I, Muñoz-Escalante JC, Bernal-Silva S, Noyola DE, Wong-Chew RM, Comas-García A, Comas-Garcia M. Ultrastructural and Functional Characterization of Mitochondrial Dynamics Induced by Human Respiratory Syncytial Virus Infection in HEp-2 Cells. Viruses 2023; 15:1518. [PMID: 37515204 PMCID: PMC10386036 DOI: 10.3390/v15071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is the leading cause of acute lower respiratory tract infections in children under five years of age and older adults worldwide. During hRSV infection, host cells undergo changes in endomembrane organelles, including mitochondria. This organelle is responsible for energy production in the cell and plays an important role in the antiviral response. The present study focuses on characterizing the ultrastructural and functional changes during hRSV infection using thin-section transmission electron microscopy and RT-qPCR. Here we report that hRSV infection alters mitochondrial morphodynamics by regulating the expression of key genes in the antiviral response process, such as Mfn1, VDAC2, and PINK1. Our results suggest that hRSV alters mitochondrial morphology during infection, producing a mitochondrial phenotype with shortened cristae, swollen matrix, and damaged membrane. We also observed that hRSV infection modulates the expression of the aforementioned genes, possibly as an evasion mechanism in the face of cellular antiviral response. Taken together, these results advance our knowledge of the ultrastructural alterations associated with hRSV infection and might guide future therapeutic efforts to develop effective antiviral drugs for hRSV treatment.
Collapse
Affiliation(s)
- Ignacio Lara-Hernandez
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Juan Carlos Muñoz-Escalante
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Sofía Bernal-Silva
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Genomic Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Daniel E Noyola
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Rosa María Wong-Chew
- Research Division, School of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
| | - Andreu Comas-García
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Mauricio Comas-Garcia
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Science Department, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Molecular and Translation Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| |
Collapse
|
3
|
Tabatabai J, Ihling CM, Rehbein RM, Schnee SV, Hoos J, Pfeil J, Grulich-Henn J, Schnitzler P. Molecular epidemiology of respiratory syncytial virus in hospitalised children in Heidelberg, Southern Germany, 2014-2017. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105209. [PMID: 35032683 DOI: 10.1016/j.meegid.2022.105209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading cause of hopitalisation in young children with respiratory tract infections (RTI). The aim of this research project was to analyse RSV genotypes and the diversification of RSV strains among hospitalised children in Heidelberg, Germany. METHODS We prospectively analysed nasopharyngeal swabs (NPS) from children who were hospitalised with acute RTI at the University Hospital Heidelberg, Germany, during winter seasons 2014 to 2017. RSV RT-PCR and RSV sequence analysis of the G gene coding for the attachment glycoprotein were performed. Clinical data was obtained using a standardised questionnaire. RESULTS RSV was detected in 405 out of 946 samples from hospitalised children. Most RSV positive children were below the age of two years (84.4%) and had a lower RTI (78.8%). The majority of RSV positive children was male, significantly younger than RSV negative children with a median age of 0.39 years and with more severe respiratory symptoms. Out of 405 positive samples, 317 RSV strains were successfully sub-grouped into RSV subtypes A (57.4%; 182/317) and B (42.6%; 135/317). Both RSV subtypes cocirculated in all analysed winter seasons. Phylogenetic analysis of 317 isolates revealed that the majority of RSV-A strains (180/182) belonged to the ON1 genotype, most RSV-B strains could be attributed to the BAIX genotype (132/135). ON1 and BAIX strains showed a sub-differentiation into different lineages and we were able to identify new (sub)genotypes. CONCLUSION Analysis of the molecular epidemiology of RSV from different seasons revealed the cocirculation and diversification of RSV genotypes ON1 and BAIX.
Collapse
Affiliation(s)
- J Tabatabai
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - C M Ihling
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Dr. von Haunersches Kinderspital, University Hospital of the LMU Munich, Munich, Germany
| | - R M Rehbein
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - S V Schnee
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany
| | - J Hoos
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - J Pfeil
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - J Grulich-Henn
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - P Schnitzler
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Ihling CM, Schnitzler P, Heinrich N, Mangu C, Sudi L, Souares A, Gies S, Sié A, Coulibaly B, Ouédraogo AT, Mordmüller B, Held J, Adegnika AA, Fernandes JF, Eckerle I, May J, Hogan B, Eibach D, Tabatabai J. Molecular epidemiology of respiratory syncytial virus in children in sub-Saharan Africa. Trop Med Int Health 2021; 26:810-822. [PMID: 33683751 DOI: 10.1111/tmi.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study investigated the molecular epidemiology of respiratory syncytial virus (RSV) among febrile children with acute respiratory tract infection in Ghana, Gabon, Tanzania and Burkina Faso between 2014 and 2017 as well as the evolution and diversification of RSV strains from other sub-Saharan countries. METHODS Pharyngeal swabs were collected at four study sites (Agogo, Ghana: n = 490; Lambaréné, Gabon: n = 182; Mbeya, Tanzania: n = 293; Nouna, Burkina Faso: n = 115) and analysed for RSV and other respiratory viruses using rtPCR. For RSV-positive samples, sequence analysis of the second hypervariable region of the G gene was performed. A dataset of RSV strains from sub-Saharan Africa (2011-2017) currently available in GenBank was compiled. Phylogenetic analysis was conducted to identify the diversity of circulating RSV genotypes. RESULTS In total, 46 samples were tested RSV positive (Ghana n = 31 (6.3%), Gabon n = 4 (2.2%), Tanzania n = 9 (3.1%) and Burkina Faso n = 2 (1.7%)). The most common RSV co-infection was with rhinovirus. All RSV A strains clustered with genotype ON1 strains with a 72-nucleotide duplication and all RSV B strains belonged to genotype BAIX. Phylogenetic analysis of amino acid sequences from sub-Saharan Africa revealed the diversification into 11 different ON1 and 22 different BAIX lineages and differentiation of ON1 and BAIX strains into potential new sub-genotypes, provisionally named ON1-NGR, BAIX-KEN1, BAIX-KEN2 and BAIX-KEN3. CONCLUSION The study contributes to an improved understanding of the molecular epidemiology of RSV infection in sub-Saharan Africa. It provides the first phylogenetic data for RSV from Tanzania, Gabon and Burkina Faso and combines it with RSV strains from all other sub-Saharan countries currently available in GenBank.
Collapse
Affiliation(s)
- Clara Marlene Ihling
- Center of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany.,Dr. von Haunersches Kinderspital, University Hospital of the LMU Munich, Munich, Germany
| | - Paul Schnitzler
- Center of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Heinrich
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Division for Infectious Diseases, University Hospital of the LMU Munich, Munich, Germany
| | - Chacha Mangu
- NIMR-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Lwitiho Sudi
- NIMR-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Aurélia Souares
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Gies
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Ali Sié
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | | | | | - Benjamin Mordmüller
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Jana Held
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Ayola Akim Adegnika
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Eberhard Karls University Tuebingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - José F Fernandes
- Eberhard Karls University Tuebingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Isabella Eckerle
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany.,Faculty of Medicine, Geneva Center for Emerging Viral Diseases, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Juergen May
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Benedikt Hogan
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Daniel Eibach
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Tabatabai
- Center of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany.,Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Ramaekers K, Rector A, Cuypers L, Lemey P, Keyaerts E, Van Ranst M. Towards a unified classification for human respiratory syncytial virus genotypes. Virus Evol 2020; 6:veaa052. [PMID: 33072402 PMCID: PMC7552823 DOI: 10.1093/ve/veaa052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since the first human respiratory syncytial virus (HRSV) genotype classification in 1998, inconsistent conclusions have been drawn regarding the criteria that define HRSV genotypes and their nomenclature, challenging data comparisons between research groups. In this study, we aim to unify the field of HRSV genotype classification by reviewing the different methods that have been used in the past to define HRSV genotypes and by proposing a new classification procedure, based on well-established phylogenetic methods. All available complete HRSV genomes (>12,000 bp) were downloaded from GenBank and divided into the two subgroups: HRSV-A and HRSV-B. From whole-genome alignments, the regions that correspond to the open reading frame of the glycoprotein G and the second hypervariable region (HVR2) of the ectodomain were extracted. In the resulting partial alignments, the phylogenetic signal within each fragment was assessed. Maximum likelihood phylogenetic trees were reconstructed using the complete genome alignments. Patristic distances were calculated between all pairs of tips in the phylogenetic tree and summarized as a density plot in order to determine a cutoff value at the lowest point following the major distance peak. Our data show that neither the HVR2 fragment nor the G gene contains sufficient phylogenetic signal to perform reliable phylogenetic reconstruction. Therefore, whole-genome alignments were used to determine HRSV genotypes. We define a genotype using the following criteria: a bootstrap support of ≥ 70 per cent for the respective clade and a maximum patristic distance between all members of the clade of ≤0.018 substitutions per site for HRSV-A or ≤0.026 substitutions per site for HRSV-B. By applying this definition, we distinguish twenty-three genotypes within subtype HRSV-A and six genotypes within subtype HRSV-B. Applying the genotype criteria on subsampled data sets confirmed the robustness of the method.
Collapse
Affiliation(s)
- Kaat Ramaekers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
| | - Annabel Rector
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
| | - Lize Cuypers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
- University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, BE-3000 Leuven, Belgium
| | - Philippe Lemey
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
| | - Els Keyaerts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
- University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, BE-3000 Leuven, Belgium
| | - Marc Van Ranst
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
- University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, BE-3000 Leuven, Belgium
| |
Collapse
|
6
|
Thielen BK, Bye E, Wang X, Maroushek S, Friedlander H, Bistodeau S, Christensen J, Reisdorf E, Shilts MH, Martin K, Como-Sabetti K, Strain AK, Ferrieri P, Lynfield R. Summer Outbreak of Severe RSV-B Disease, Minnesota, 2017 Associated with Emergence of a Genetically Distinct Viral Lineage. J Infect Dis 2020; 222:288-297. [PMID: 32083677 PMCID: PMC7323494 DOI: 10.1093/infdis/jiaa075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 02/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) typically causes winter outbreaks in temperate climates. During summer 2017, the Minnesota Department of Health received a report of increased cases of severe RSV-B infection. METHODS We compared characteristics of summer 2017 cases with those of 2014-2018 summers. To understand the genetic relatedness among viruses, we performed high-throughput sequencing of RSV from patients with a spectrum of illness from sites in Minnesota and Wisconsin. RESULTS From May to September 2017, 58 RSV cases (43 RSV-B) were reported compared to 20-29 cases (3-7 RSV-B) during these months in other years. Median age and frequency of comorbidities were similar, but 55% (24/43) were admitted to the ICU in 2017 compared to 12% in preceding 3 years (odds ratio, 4.84, P < .01). Sequencing was performed on 137 specimens from March 2016 to March 2018. Outbreak cases formed a unique clade sharing a single conserved nonsynonymous change in the SH gene. We observed increased cases during the following winter season, when the new lineage was the predominant strain. CONCLUSIONS We identified an outbreak of severe RSV-B disease associated with a new genetic lineage among urban Minnesota children during a time of expected low RSV circulation.
Collapse
Affiliation(s)
- Beth K Thielen
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Erica Bye
- Minnesota Department of Health, St Paul, Minnesota, USA
| | - Xiong Wang
- Minnesota Department of Health, St Paul, Minnesota, USA
| | | | | | | | | | - Erik Reisdorf
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA
| | - Meghan H Shilts
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Karen Martin
- Minnesota Department of Health, St Paul, Minnesota, USA
| | | | - Anna K Strain
- Minnesota Department of Health, St Paul, Minnesota, USA
| | - Patricia Ferrieri
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ruth Lynfield
- Minnesota Department of Health, St Paul, Minnesota, USA
| |
Collapse
|
7
|
Systematic Review of the Respiratory Syncytial Virus (RSV) Prevalence, Genotype Distribution, and Seasonality in Children from the Middle East and North Africa (MENA) Region. Microorganisms 2020; 8:microorganisms8050713. [PMID: 32403364 PMCID: PMC7284433 DOI: 10.3390/microorganisms8050713] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common viruses to infect children worldwide and is the leading cause of lower respiratory tract illness (LRI) in infants. This study aimed to conduct a systematic review by collecting and reviewing all the published knowledge about the epidemiology of RSV in the Middle East and North Africa (MENA) region. Therefore, we systematically searched four databases; Embase, Medline, Scopus, and Cochrane databases from 2001 to 2019 to collect all the information related to the RSV prevalence, genotype distribution, and seasonality in children in MENA region. Our search strategy identified 598 studies, of which 83 met our inclusion criteria, which cover the past 19 years (2000–2019). Odds ratio (OR) and confidence interval (CI) were calculated to measure the association between RSV prevalence, gender, and age distribution. An overall prevalence of 24.4% (n = 17,106/69,981) of respiratory infections was recorded for RSV. The highest RSV prevalence was reported in Jordan (64%, during 2006–2007) and Israel (56%, 2005–2006). RSV A subgroup was more prevalent (62.9%; OR = 2.9, 95%CI = 2.64–3.13) than RSV B. RSV was most prevalent in children who were less than 12 months old (68.6%; OR = 4.7, 95%CI = 2.6–8.6) and was higher in males (59.6%; OR = 2.17, 95%CI = 1.2–3.8) than in female infants. Finally, the highest prevalence was recorded during winter seasons in all countries, except for Pakistan. RSV prevalence in the MENA region is comparable with the global one (24.4% vs. 22%). This first comprehensive report about RSV prevalence in the MENA region and our data should be important to guide vaccine introduction decisions and future evaluation.
Collapse
|
8
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Muñoz-Escalante JC, Comas-García A, Bernal-Silva S, Robles-Espinoza CD, Gómez-Leal G, Noyola DE. Respiratory syncytial virus A genotype classification based on systematic intergenotypic and intragenotypic sequence analysis. Sci Rep 2019; 9:20097. [PMID: 31882808 PMCID: PMC6934736 DOI: 10.1038/s41598-019-56552-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV), a leading cause of lower respiratory tract infections, is classified in two major groups (A and B) with multiple genotypes within them. Continuous changes in spatiotemporal distribution of RSV genotypes have been recorded since the identification of this virus. However, there are no established criteria for genotype definition, which affects the understanding of viral evolution, immunity, and development of vaccines. We conducted a phylogenetic analysis of 4,353 RSV-A G gene ectodomain sequences, and used 1,103 complete genome sequences to analyze the totallity of RSV-A genes. Intra- and intergenotype p-distance analysis and identification of molecular markers associated to specific genotypes were performed. Our results indicate that previously reported genotypes can be classified into nine distinct genotypes: GA1-GA7, SAA1, and NA1. We propose the analysis of the G gene ectodomain with a wide set of reference sequences of all genotypes for an accurate genotype identification.
Collapse
Affiliation(s)
- Juan Carlos Muñoz-Escalante
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Andreu Comas-García
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Center for Research in Biomedicine and Health Sciences, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sofía Bernal-Silva
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Center for Research in Biomedicine and Health Sciences, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Guillermo Gómez-Leal
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel E Noyola
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
10
|
Phylogenetic evidence of a novel lineage of canine pneumovirus and a naturally recombinant strain isolated from dogs with respiratory illness in Thailand. BMC Vet Res 2019; 15:300. [PMID: 31426794 PMCID: PMC6700830 DOI: 10.1186/s12917-019-2035-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Canine pneumovirus (CPV) is a pathogen that causes respiratory disease in dogs, and recent outbreaks in shelters in America and Europe have been reported. However, based on published data and documents, the identification of CPV and its variant in clinically symptomatic individual dogs in Thailand through Asia is limited. Therefore, the aims of this study were to determine the emergence of CPV and to consequently establish the genetic characterization and phylogenetic analysis of the CPV strains from 209 dogs showing respiratory distress in Thailand. RESULTS This study identified and described the full-length CPV genome from three strains, designated herein as CPV_CP13 TH/2015, CPV_CP82 TH/2016 and CPV_SR1 TH/2016, that were isolated from six dogs out of 209 dogs (2.9%) with respiratory illness in Thailand. Phylogenetic analysis suggested that these three Thai CPV strains (CPV TH strains) belong to the CPV subgroup A and form a novel lineage; proposed as the Asian prototype. Specific mutations in the deduced amino acids of these CPV TH strains were found in the G/glycoprotein sequence, suggesting potential substitution sites for subtype classification. Results of intragenic recombination analysis revealed that CPV_CP82 TH/2016 is a recombinant strain, where the recombination event occurred in the L gene with the Italian prototype CPV Bari/100-12 as the putative major parent. Selective pressure analysis demonstrated that the majority of the nucleotides in the G/glycoprotein were under purifying selection with evidence of positive selection sites. CONCLUSIONS This collective information on the CPV TH strains is the first evidence of CPV emergence with genetic characterization in Thailand and as first report in Asia, where homologous recombination acts as a potential force driving the genetic diversity and shaping the evolution of canine pneumovirus.
Collapse
|
11
|
Genotyping of Type A Human Respiratory Syncytial Virus Based on Direct F Gene Sequencing. ACTA ACUST UNITED AC 2019; 55:medicina55050169. [PMID: 31137571 PMCID: PMC6571984 DOI: 10.3390/medicina55050169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/16/2019] [Accepted: 05/14/2019] [Indexed: 12/23/2022]
Abstract
Background and objectives: The human respiratory syncytial virus (hRSV) is among the important respiratory pathogens affecting children. Genotype-specific attachment (G) gene sequencing is usually used to determine the virus genotype. The reliability of the fusion (F) gene vs. G gene genotype-specific sequencing was screened. Materials and Methods: Archival RNA from Saudi children who tested positive for hRSV-A were used. Samples were subjected to a conventional one-step RT-PCR for both F and G genes and direct gene sequencing of the amplicons using the same primer sets. Phylogeny and mutational analysis of the obtained sequences were conducted. Results: The generic primer set succeeded to amplify target gene sequences. The phylogenetic tree based on partial F gene sequencing resulted in an efficient genotyping of hRSV-A strains equivalent to the partial G gene genotyping method. NA1, ON1, and GA5 genotypes were detected in the clinical samples. The latter was detected for the first time in Saudi Arabia. Different mutations in both conserved and escape-mutant domains were detected in both F and G. Conclusion: It was concluded that a partial F gene sequence can be used efficiently for hRSV-A genotyping.
Collapse
|
12
|
Guerra-Maupome M, Palmer MV, McGill JL, Sacco RE. Utility of the Neonatal Calf Model for Testing Vaccines and Intervention Strategies for Use against Human RSV Infection. Vaccines (Basel) 2019; 7:vaccines7010007. [PMID: 30626099 PMCID: PMC6466205 DOI: 10.3390/vaccines7010007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of pediatric respiratory tract infections. It is estimated that two-thirds of infants are infected with RSV during the first year of life and it is one of the leading causes of death in this age group worldwide. Similarly, bovine RSV is a primary viral pathogen in cases of pneumonia in young calves and plays a significant role in bovine respiratory disease complex. Importantly, naturally occurring infection of calves with bovine RSV shares many features in common with human RSV infection. Herein, we update our current understanding of RSV infection in cattle, with particular focus on similarities between the calf and human infection, and the recent reports in which the neonatal calf has been employed for the development and testing of vaccines and therapeutics which may be applied to hRSV infection in humans.
Collapse
Affiliation(s)
- Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
13
|
Otieno JR, Kamau EM, Oketch JW, Ngoi JM, Gichuki AM, Binter Š, Otieno GP, Ngama M, Agoti CN, Cane PA, Kellam P, Cotten M, Lemey P, Nokes DJ. Whole genome analysis of local Kenyan and global sequences unravels the epidemiological and molecular evolutionary dynamics of RSV genotype ON1 strains. Virus Evol 2018; 4:vey027. [PMID: 30271623 PMCID: PMC6153471 DOI: 10.1093/ve/vey027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The respiratory syncytial virus (RSV) group A variant with the 72-nucleotide duplication in the G gene, genotype ON1, was first detected in Kilifi in 2012 and has almost completely replaced circulating genotype GA2 strains. This replacement suggests some fitness advantage of ON1 over the GA2 viruses in Kilifi, and might be accompanied by important genomic substitutions in ON1 viruses. Close observation of such a new virus genotype introduction over time provides an opportunity to better understand the transmission and evolutionary dynamics of the pathogen. We have generated and analysed 184 RSV-A whole-genome sequences (WGSs) from Kilifi (Kenya) collected between 2011 and 2016, the first ON1 genomes from Africa and the largest collection globally from a single location. Phylogenetic analysis indicates that RSV-A circulation in this coastal Kenya location is characterized by multiple introductions of viral lineages from diverse origins but with varied success in local transmission. We identified signature amino acid substitutions between ON1 and GA2 viruses’ surface proteins (G and F), polymerase (L), and matrix M2-1 proteins, some of which were positively selected, and thereby provide an enhanced picture of RSV-A diversity. Furthermore, five of the eleven RSV open reading frames (ORFs) (G, F, L, N, and P) formed distinct phylogenetic clusters for the two genotypes. This might suggest that coding regions outside of the most frequently studied G ORF also play a role in the adaptation of RSV to host populations, with the alternative possibility that some of the substitutions are neutral and provide no selective advantage. Our analysis provides insight into the epidemiological processes that define RSV spread, highlights the genetic substitutions that characterize emerging strains, and demonstrates the utility of large-scale WGS in molecular epidemiological studies.
Collapse
Affiliation(s)
- J R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - E M Kamau
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - J W Oketch
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - J M Ngoi
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - A M Gichuki
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - Š Binter
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge,UK.,Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - G P Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - M Ngama
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - C N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya.,Department of Biomedical Sciences, Pwani University, Kilifi, Kenya
| | - P A Cane
- High Containment Microbiology, Public Health England, Salisbury, UK
| | - P Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK.,Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - M Cotten
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge,UK.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - P Lemey
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - D J Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya.,School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, UK
| |
Collapse
|
14
|
Haider MSH, Deeba F, Khan WH, Naqvi IH, Ali S, Ahmed A, Broor S, Alsenaidy HA, Alsenaidy AM, Dohare R, Parveen S. Global distribution of NA1 genotype of respiratory syncytial virus and its evolutionary dynamics assessed from the past 11 years. INFECTION GENETICS AND EVOLUTION 2018; 60:140-150. [PMID: 29427763 DOI: 10.1016/j.meegid.2018.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/29/2023]
Abstract
Respiratory syncytial virus (RSV) is a potent pathogen having global distribution. The main purpose of this study was to gain an insight into distribution pattern of the NA1 genotype of group A RSV across the globe together with its evolutionary dynamics. We focused on the second hypervariable region of the G protein gene and used the same for Phylogenetic, Bayesian and Network analyses. Eighteen percent of the samples collected from 500 symptomatic pediatric patients with acute respiratory tract infection (ARI) were found to be positive for RSV during 2011-15 from New Delhi, India. Of these, group B RSV was predominant and clustered into two different genotypes (BA and SAB4). Similarly, group A viruses clustered into two genotypes (NA1 and ON1). The data set from the group A viruses included 543 sequences from 23 different countries including 67 strains from India. The local evolutionary dynamics suggested consistent virus population of NA1 genotype in India during 2009 to 2014. The molecular clock analysis suggested that most recent common ancestor of group A and NA1 genotype have emerged in during the years 1953 and 2000, respectively. The global evolutionary rates of group A viruses and NA1 genotype were estimated to be 3.49 × 10-3 (95% HPD, 2.90-4.17 × 10-3) and 3.56 × 10-3 (95% HPD, 2.91 × 10-3-4.18 × 10-3) substitution/site/year, respectively. Analysis of the NA1 genotype of group A RSV reported during 11 years i.e. from 2004 to 2014 showed its dominance in 21 different countries across the globe reflecting its evolutionary dynamics. The Network analysis showed highly intricate but an inconsistent pattern of haplotypes of NA1 genotype circulating in the world. Present study seems to be first comprehensive attempt on global distribution and evolution of NA1 genotype augmenting the optimism towards the vaccine development.
Collapse
Affiliation(s)
| | - Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Wajihul Hasan Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India; Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Irshad H Naqvi
- Dr. M.A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia; Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shobha Broor
- Department of Microbiology, Faculty of Medicine and Health Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon, Haryana, India
| | | | | | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
15
|
Abdel-Moneim AS, Soliman MS, Kamel MM, El-Kholy AA. Sequence analysis of the G gene of hRSVA ON1 genotype from Egyptian children with acute respiratory tract infections. J Med Microbiol 2018; 67:387-391. [PMID: 29458556 DOI: 10.1099/jmm.0.000699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human respiratory syncytial virus causes severe lower respiratory tract infection in neonates and children. Genotype ON1, with duplication of 72-nt in the G gene, was first detected in Canada and then recorded in other countries. In the current study, we describe the first detection of the ON1 genotype among children in Egypt in 2014/2015. Sequence analysis of the full-attachment G gene revealed that the majority of the strains examined were related to the ON1 genotype and only one sample related to N1 genotype. The Egyptian ON1 strains showed unique non-silent mutations in addition to variable mutations near the antigenic sites in comparison to the original ON1 ancestor strain. Continuous surveillance of hRSV regionally and globally is needed to understand the evolutionary mechanisms and strategies adopted by hRSV and their inducers for better adaption to the host.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- Microbiology Department, College of Medicine, Taif University, Al-Taif 21944, Saudi Arabia.,Virology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - May S Soliman
- Clinical Pathology Department, College of Medicine, Cairo University, Giza, Egypt
| | - Mahmoud M Kamel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Amani A El-Kholy
- Clinical Pathology Department, College of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Patil SL, Balakrishnan A. Genetic characterization respiratory syncytial virus in Kerala, the southern part of India. J Med Virol 2017; 89:2092-2097. [PMID: 28464224 DOI: 10.1002/jmv.24842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/11/2017] [Indexed: 11/09/2022]
Abstract
Respiratory syncytial virus (RSV) is an important cause of acute lower respiratory tract infection (ALRI) in infants and young children globally. RSV presents two antigenic groups RSV-A and -B. Genetic variability is also very high within each group. RSV circulation varies year to year and even varies among different regions. Data on circulatory pattern of RSV are available from other parts of India except Kerala. The aim of the study was to generate data about groups and genotypes of circulating RSV in Kerala. In this study, RSV positive samples received during January, 2012 to December, 2014 were used for genetic characterization. The samples were tested by using nucleocapsid (N) gene-based conventional multiplex reverse transcriptase polymerase chain reaction (RT-PCR) to identify the RSV group. Genotyping was done by nucleotide sequencing of the C-terminal region of the glycoprotein (G) gene. Out of the 130 patient samples tested, 49 samples were positive for RSV. Among the positive samples, 32 belong to the RSV-A and 17 belong to RSV-B virus. Phylogenetic analysis revealed that all RSV-A sequences (n = 22) belonged to NA1 genotype and five of the sequences showed the novel 72 nucleotide duplication and clustered into the newly designated ON1 genotype. All RSV-B sequences (n = 17) were clustered into the BA (BA9 and 10) genotype. From this study, we concluded both RSV-A and -B were co-circulated in Kerala and RSV-A was observed predominantly in 2012 and RSV-B in 2014. As per our best of knowledge, BA10 genotype is first observed in India.
Collapse
Affiliation(s)
- Savita L Patil
- BSL-4 Laboratory, Microbial Containment Complex, National Institute of Virology, Pashan, Pune, Maharashtra, India
| | - Anukumar Balakrishnan
- National Institute of Virology Kerala Unit, Govt. T.D. Medical College Hospital, Vandanam, Alappuzha, Kerala, India
| |
Collapse
|
17
|
Genomic Loads and Genotypes of Respiratory Syncytial Virus: Viral Factors during Lower Respiratory Tract Infection in Chilean Hospitalized Infants. Int J Mol Sci 2017; 18:ijms18030654. [PMID: 28335547 PMCID: PMC5372666 DOI: 10.3390/ijms18030654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 11/17/2022] Open
Abstract
The clinical impact of viral factors (types and viral loads) during respiratory syncytial virus (RSV) infection is still controversial, especially regarding newly described genotypes. In this study, infants with RSV bronchiolitis were recruited to describe the association of these viral factors with severity of infection. RSV antigenic types, genotypes, and viral loads were determined from hospitalized patients at Hospital Roberto del Río, Santiago, Chile. Cases were characterized by demographic and clinical information, including days of lower respiratory symptoms and severity. A total of 86 patients were included: 49 moderate and 37 severe cases. During 2013, RSV-A was dominant (86%). RSV-B predominated in 2014 (92%). Phylogenetic analyses revealed circulation of GA2, Buenos Aires (BA), and Ontario (ON) genotypes. No association was observed between severity of infection and RSV group (p = 0.69) or genotype (p = 0.87). After a clinical categorization of duration of illness, higher RSV genomic loads were detected in infants evaluated earlier in their disease (p < 0.001) and also in infants evaluated later, but coursing a more severe infection (p = 0.04). Although types and genotypes did not associate with severity in our children, higher RSV genomic loads and delayed viral clearance in severe patients define a group that might benefit from new antiviral therapies.
Collapse
|
18
|
Rossey I, Gilman MSA, Kabeche SC, Sedeyn K, Wrapp D, Kanekiyo M, Chen M, Mas V, Spitaels J, Melero JA, Graham BS, Schepens B, McLellan JS, Saelens X. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun 2017; 8:14158. [PMID: 28194013 PMCID: PMC5316805 DOI: 10.1038/ncomms14158] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/05/2016] [Indexed: 12/19/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is the fusion-competent form of the protein and the primary target of neutralizing activity present in human serum. Here, we describe two llama-derived single-domain antibodies (VHHs) that have potent RSV-neutralizing activity and bind selectively to prefusion RSV F with picomolar affinity. Crystal structures of these VHHs in complex with prefusion F show that they recognize a conserved cavity formed by two F protomers. In addition, the VHHs prevent RSV replication and lung infiltration of inflammatory monocytes and T cells in RSV-challenged mice. These prefusion F-specific VHHs represent promising antiviral agents against RSV.
Collapse
Affiliation(s)
- Iebe Rossey
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - Morgan S A Gilman
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Stephanie C Kabeche
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Koen Sedeyn
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - Daniel Wrapp
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vicente Mas
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Jan Spitaels
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - José A Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bert Schepens
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| | - Jason S McLellan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755-3844, USA
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Technologiepark 927, Ghent B-9052, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent B-9052, Belgium
| |
Collapse
|
19
|
Durigon EL, Botosso VF, de Oliveira DBL. Human Respiratory Syncytial Virus: Biology, Epidemiology, and Control. HUMAN VIROLOGY IN LATIN AMERICA 2017. [PMCID: PMC7121549 DOI: 10.1007/978-3-319-54567-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Zou L, Yi L, Wu J, Song Y, Huang G, Zhang X, Liang L, Ni H, Pybus OG, Ke C, Lu J. Evolution and Transmission of Respiratory Syncytial Group A (RSV-A) Viruses in Guangdong, China 2008-2015. Front Microbiol 2016; 7:1263. [PMID: 27574518 PMCID: PMC4983572 DOI: 10.3389/fmicb.2016.01263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial viruses (RSVs) including subgroups A (RSV-A) and B (RSV-B) are an important cause of acute respiratory tract infections worldwide. RSV-A include major epidemic strains. Fundamental questions concerning the evolution, persistence and transmission of RSV-A are critical for disease control and prevention, yet remain unanswered. In this study, we generated 64 complete G gene sequences of RSV-A strains collected between 2008 and 2015 in Guangdong, China. Phylogenetic analysis was undertaken by incorporating 572 publicly available RSV-A sequences. Current data indicate that genotypes GA1, GA4, and GA5 are endemic with limited epidemic activity. In contrast, the GA2 genotype which likely originated in 1980 has spread rapidly and caused epidemics worldwide. By analyzing GA2 genotype sequences across epidemic seasons within Guangdong, we find that RSV-A epidemics in Guangdong are caused by a combination of virus importation and local persistence, although the magnitude of the latter is likely overestimated due to infrequent sampling in other regions. Our results provide new insights into RSV-A evolution and transmission at global and local scales and highlights the rapid and wide spread of genotype GA2 compared to other genotypes. In order to control RSV transmission and outbreak, both local persistence and external introduction should be taken into account when designing optimal strategies.
Collapse
Affiliation(s)
- Lirong Zou
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Lina Yi
- Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China
| | - Jie Wu
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Yingchao Song
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Guofeng Huang
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Lijun Liang
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Hanzhong Ni
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | | | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Jing Lu
- Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; Department of Zoology, University of OxfordOxford, UK
| |
Collapse
|
21
|
Do LAH, Wilm A, van Doorn HR, Lam HM, Sim S, Sukumaran R, Tran AT, Nguyen BH, Tran TTL, Tran QH, Vo QB, Dac NAT, Trinh HN, Nguyen TTH, Binh BTL, Le K, Nguyen MT, Thai QT, Vo TV, Ngo NQM, Dang TKH, Cao NH, Tran TV, Ho LV, Farrar J, de Jong M, Chen S, Nagarajan N, Bryant JE, Hibberd ML. Direct whole-genome deep-sequencing of human respiratory syncytial virus A and B from Vietnamese children identifies distinct patterns of inter- and intra-host evolution. J Gen Virol 2016; 96:3470-3483. [PMID: 26407694 DOI: 10.1099/jgv.0.000298] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in children ,2 years of age. Little is known about RSV intra-host genetic diversity over the course of infection or about the immune pressures that drive RSV molecular evolution. We performed whole-genome deep-sequencing on 53 RSV-positive samples (37 RSV subgroup A and 16 RSV subgroup B) collected from the upper airways of hospitalized children in southern Vietnam over two consecutive seasons. RSV A NA1 and RSV B BA9 were the predominant genotypes found in our samples, consistent with other reports on global RSV circulation during the same period. For both RSV A and B, the M gene was the most conserved, confirming its potential as a target for novel therapeutics. The G gene was the most variable and was the only gene under detectable positive selection. Further, positively selected sites inG were found in close proximity to and in some cases overlapped with predicted glycosylation motifs, suggesting that selection on amino acid glycosylation may drive viral genetic diversity. We further identified hotspots and coldspots of intra-host genetic diversity in the RSV genome, some of which may highlight previously unknown regions of functional importance.
Collapse
Affiliation(s)
- Lien Anh Ha Do
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Andreas Wilm
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ha Minh Lam
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Shuzhen Sim
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - Rashmi Sukumaran
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | - Anh Tuan Tran
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Bach Hue Nguyen
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thi Thu Loan Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Quynh Huong Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Quoc Bao Vo
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | | | - Hong Nhien Trinh
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | | | - Bao Tinh Le Binh
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Khanh Le
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Minh Tien Nguyen
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Quang Tung Thai
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | - Thanh Vu Vo
- Children's Hospital 1, Ward 10, District 10, Ho Chi Minh City, Vietnam
| | | | - Thi Kim Huyen Dang
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Ngoc Huong Cao
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Thu Van Tran
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Lu Viet Ho
- Children's Hospital 2, Ben Nghe Ward, District 1, Ho Chi Minh City, Vietnam
| | - Jeremy Farrar
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam
| | - Menno de Jong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Swaine Chen
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| | | | - Juliet E Bryant
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Program, Ho Chi Minh City, Vietnam.,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Martin L Hibberd
- Genome Institute of Singapore, Genome Building, 138672 Singapore
| |
Collapse
|
22
|
Qiao L, Zhang Y, Chai F, Tan Y, Huo C, Pan Z. Chimeric virus-like particles containing a conserved region of the G protein in combination with a single peptide of the M2 protein confer protection against respiratory syncytial virus infection. Antiviral Res 2016; 131:131-40. [PMID: 27154395 DOI: 10.1016/j.antiviral.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 01/08/2023]
Abstract
To investigate the feasibility and efficacy of a virus-like particle (VLP) vaccine composed of the conserved antigenic epitopes of respiratory syncytial virus (RSV), the chimeric RSV VLPs HBcΔ-tG and HBcΔ-tG/M282-90 were generated based on the truncated hepatitis B virus core protein (HBcΔ). HBcΔ-tG consisted of HBcΔ, the conserved region (aa 144-204) of the RSV G protein. HBcΔ-tG was combined with a single peptide (aa 82-90) of the M2 protein to generate HBcΔ-tG/M282-90. Immunization of mice with the HBcΔ-tG or HBcΔ-tG/M282-90 VLPs elicited RSV-specific IgG and neutralizing antibody production and conferred protection against RSV infection. Compared with HBcΔ-tG, HBcΔ-tG/M282-90 induced decreased Th2 cytokine production (IL-4 and IL-5), increased Th1 cytokine response (IFN-γ, TNF-α, and IL-2), and increased ratios of IgG2a/IgG1 antibodies, thereby relieving pulmonary pathology upon subsequent RSV infection. Our results demonstrated that chimeric HBcΔ-tG/M282-90 VLPs represented an effective RSV subunit vaccine candidate.
Collapse
Affiliation(s)
- Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuan Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Chai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yiluo Tan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chunling Huo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
23
|
Long-Term Shedding of Influenza Virus, Parainfluenza Virus, Respiratory Syncytial Virus and Nosocomial Epidemiology in Patients with Hematological Disorders. PLoS One 2016; 11:e0148258. [PMID: 26866481 PMCID: PMC4750950 DOI: 10.1371/journal.pone.0148258] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/15/2016] [Indexed: 01/25/2023] Open
Abstract
Respiratory viruses are a cause of upper respiratory tract infections (URTI), but can be associated with severe lower respiratory tract infections (LRTI) in immunocompromised patients. The objective of this study was to investigate the genetic variability of influenza virus, parainfluenza virus and respiratory syncytial virus (RSV) and the duration of viral shedding in hematological patients. Nasopharyngeal swabs from hematological patients were screened for influenza, parainfluenza and RSV on admission as well as on development of respiratory symptoms. Consecutive swabs were collected until viral clearance. Out of 672 tested patients, a total of 111 patients (17%) were infected with one of the investigated viral agents: 40 with influenza, 13 with parainfluenza and 64 with RSV; six patients had influenza/RSV or parainfluenza/RSV co-infections. The majority of infected patients (n = 75/111) underwent stem cell transplantation (42 autologous, 48 allogeneic, 15 autologous and allogeneic). LRTI was observed in 48 patients, of whom 15 patients developed severe LRTI, and 13 patients with respiratory tract infection died. Phylogenetic analysis revealed a variety of influenza A(H1N1)pdm09, A(H3N2), influenza B, parainfluenza 3 and RSV A, B viruses. RSV A was detected in 54 patients, RSV B in ten patients. The newly emerging RSV A genotype ON1 predominated in the study cohort and was found in 48 (75%) of 64 RSV-infected patients. Furthermore, two distinct clusters were detected for RSV A genotype ON1, identical RSV G gene sequences in these patients are consistent with nosocomial transmission. Long-term viral shedding for more than 30 days was significantly associated with prior allogeneic transplantation (p = 0.01) and was most pronounced in patients with RSV infection (n = 16) with a median duration of viral shedding for 80 days (range 35–334 days). Long-term shedding of respiratory viruses might be a catalyzer of nosocomial transmission and must be considered for efficient infection control in immunocompromised patients.
Collapse
|
24
|
Chan CHS, Sanders LP, Tanaka MM. Modelling the role of immunity in reversion of viral antigenic sites. J Theor Biol 2015; 392:23-34. [PMID: 26723535 DOI: 10.1016/j.jtbi.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
Abstract
Antigenic sites in viral pathogens exhibit distinctive evolutionary dynamics due to their role in evading recognition by host immunity. Antigenic selection is known to drive higher rates of non-synonymous substitution; less well understood is why differences are observed between viruses in their propensity to mutate to a novel or previously encountered amino acid. Here, we present a model to explain patterns of antigenic reversion and forward substitution in terms of the epidemiological and molecular processes of the viral population. We develop an analytical three-strain model and extend the analysis to a multi-site model to predict characteristics of observed sequence samples. Our model provides insight into how the balance between selection to escape immunity and to maintain viability is affected by the rate of mutational input. We also show that while low probabilities of reversion may be due to either a low cost of immune escape or slowly decaying host immunity, these two scenarios can be differentiated by the frequency patterns at antigenic sites. Comparison between frequency patterns of human influenza A (H3N2) and human RSV-A suggests that the increased rates of antigenic reversion in RSV-A is due to faster decaying immunity and not higher costs of escape.
Collapse
Affiliation(s)
- Carmen H S Chan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia.
| | - Lloyd P Sanders
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia; Computational Social Science, ETH, Zürich, Switzerland
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Malasao R, Okamoto M, Chaimongkol N, Imamura T, Tohma K, Dapat I, Dapat C, Suzuki A, Saito M, Saito M, Tamaki R, Pedrera-Rico GAG, Aniceto R, Quicho RFN, Segubre-Mercado E, Lupisan S, Oshitani H. Molecular Characterization of Human Respiratory Syncytial Virus in the Philippines, 2012-2013. PLoS One 2015; 10:e0142192. [PMID: 26540236 PMCID: PMC4635013 DOI: 10.1371/journal.pone.0142192] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a major cause of acute lower respiratory tract infections in infants and children worldwide. We performed molecular analysis of HRSV among infants and children with clinical diagnosis of severe pneumonia in four study sites in the Philippines, including Biliran, Leyte, Palawan, and Metro Manila from June 2012 to July 2013. Nasopharyngeal swabs were collected and screened for HRSV using real-time polymerase chain reaction (PCR). Positive samples were tested by conventional PCR and sequenced for the second hypervariable region (2nd HVR) of the G gene. Among a total of 1,505 samples, 423 samples were positive for HRSV (28.1%), of which 305 (72.1%) and 118 (27.9%) were identified as HRSV-A and HRSV-B, respectively. Two genotypes of HRSV-A, NA1 and ON1, were identified during the study period. The novel ON1 genotype with a 72-nucleotide duplication in 2nd HVR of the G gene increased rapidly and finally became the predominant genotype in 2013 with an evolutionary rate higher than the NA1 genotype. Moreover, in the ON1 genotype, we found positive selection at amino acid position 274 (p<0.05) and massive O- and N-glycosylation in the 2nd HVR of the G gene. Among HRSV-B, BA9 was the predominant genotype circulating in the Philippines. However, two sporadic cases of GB2 genotype were found, which might share a common ancestor with other Asian strains. These findings suggest that HRSV is an important cause of severe acute respiratory infection among children in the Philippines and revealed the emergence and subsequent predominance of the ON1 genotype and the sporadic detection of the GB2 genotype. Both genotypes were detected for the first time in the Philippines.
Collapse
Affiliation(s)
| | - Michiko Okamoto
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | - Kentaro Tohma
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Isolde Dapat
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Clyde Dapat
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Suzuki
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuko Saito
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariko Saito
- Tohoku-RITM Collaborating Research Center on Emerging and Reemerging Diseases, Muntinlupa City, Philippines
| | - Raita Tamaki
- Tohoku-RITM Collaborating Research Center on Emerging and Reemerging Diseases, Muntinlupa City, Philippines
| | | | - Rapunzel Aniceto
- Eastern Visayas Regional Medical Center, Tacloban City, Philippines
| | | | | | - Socorro Lupisan
- Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | | |
Collapse
|
26
|
Successive Respiratory Syncytial Virus Epidemics in Local Populations Arise from Multiple Variant Introductions, Providing Insights into Virus Persistence. J Virol 2015; 89:11630-42. [PMID: 26355091 PMCID: PMC4645665 DOI: 10.1128/jvi.01972-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/01/2015] [Indexed: 11/29/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a global respiratory pathogen of humans, with infection occurring characteristically as recurrent seasonal epidemics. Unlike influenza viruses, little attention has been paid to the mechanism underlying worldwide spread and persistence of RSV and how this may be discerned through an improved understanding of the introduction and persistence of RSV in local communities. We analyzed 651 attachment (G) glycoprotein nucleotide sequences of RSV B collected over 11 epidemics (2002 to 2012) in Kilifi, Kenya, and contemporaneous data collected elsewhere in Kenya and 18 other countries worldwide (2002 to 2012). Based on phylogeny, genetic distance and clustering patterns, we set out pragmatic criteria to classify local viruses into distinct genotypes and variants, identifying those newly introduced and those locally persisting. Three genotypes were identified in the Kilifi data set: BA (n = 500), SAB1 (n = 148), and SAB4 (n = 3). Recurrent RSV epidemics in the local population were composed of numerous genetic variants, most of which have been newly introduced rather than persisting in the location from season to season. Global comparison revealed that (i) most Kilifi variants do not cluster closely with strains from outside Kenya, (ii) some Kilifi variants were closely related to those observed outside Kenya (mostly Western Europe), and (iii) many variants were circulating elsewhere but were never detected in Kilifi. These results are consistent with the hypothesis that year-to-year presence of RSV at the local level (i.e., Kilifi) is achieved primarily, but not exclusively, through introductions from a pool of variants that are geographically restricted (i.e., to Kenya or to the region) rather than global. IMPORTANCE The mechanism by which RSV persists and reinvades local populations is poorly understood. We investigated this by studying the temporal patterns of RSV variants in a rural setting in tropical Africa and comparing these variants with contemporaneous variants circulating in other countries. We found that periodic seasonal RSV transmission at the local level appears to require regular new introductions of variants. However, importantly, the evidence suggests that the source of new variants is mostly geographically restricted, and we hypothesize that year-to-year RSV persistence is at the country level rather than the global level. This has implications for control.
Collapse
|
27
|
Trento A, Ábrego L, Rodriguez-Fernandez R, González-Sánchez MI, González-Martínez F, Delfraro A, Pascale JM, Arbiza J, Melero JA. Conservation of G-Protein Epitopes in Respiratory Syncytial Virus (Group A) Despite Broad Genetic Diversity: Is Antibody Selection Involved in Virus Evolution? J Virol 2015; 89:7776-85. [PMID: 25995258 PMCID: PMC4505632 DOI: 10.1128/jvi.00467-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Worldwide G-glycoprotein phylogeny of human respiratory syncytial virus (hRSV) group A sequences revealed diversification in major clades and genotypes over more than 50 years of recorded history. Multiple genotypes cocirculated during prolonged periods of time, but recent dominance of the GA2 genotype was noticed in several studies, and it is highlighted here with sequences from viruses circulating recently in Spain and Panama. Reactivity of group A viruses with monoclonal antibodies (MAbs) that recognize strain-variable epitopes of the G glycoprotein failed to correlate genotype diversification with antibody reactivity. Additionally, no clear correlation was found between changes in strain-variable epitopes and predicted sites of positive selection, despite both traits being associated with the C-terminal third of the G glycoprotein. Hence, our data do not lend support to the proposed antibody-driven selection of variants as a major determinant of hRSV evolution. Other alternative mechanisms are considered to account for the high degree of hRSV G-protein variability. IMPORTANCE An unusual characteristic of the G glycoprotein of human respiratory syncytial virus (hRSV) is the accumulation of nonsynonymous (N) changes at higher rates than synonymous (S) changes, reaching dN/dS values at certain sites predictive of positive selection. Since these sites cluster preferentially in the C-terminal third of the G protein, like certain epitopes recognized by murine antibodies, it was proposed that immune (antibody) selection might be driving the apparent positive selection, analogous to the antigenic drift observed in the influenza virus hemagglutinin (HA). However, careful antigenic and genetic comparison of the G glycoprotein does not provide evidence of antigenic drift in the G molecule, in agreement with recently published data which did not indicate antigenic drift in the G protein with human sera. Alternative explanations to the immune-driven selection hypothesis are offered to account for the high level of G-protein genetic diversity highlighted in this study.
Collapse
Affiliation(s)
- Alfonsina Trento
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Leyda Ábrego
- Departamento de Investigación en Virología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá, Panama
| | | | | | | | - Adriana Delfraro
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Juan M Pascale
- Departamento de Investigación en Virología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá, Panama
| | - Juan Arbiza
- Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - José A Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Local evolutionary patterns of human respiratory syncytial virus derived from whole-genome sequencing. J Virol 2015; 89:3444-54. [PMID: 25609811 PMCID: PMC4403408 DOI: 10.1128/jvi.03391-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is associated with severe childhood respiratory infections. A clear description of local RSV molecular epidemiology, evolution, and transmission requires detailed sequence data and can inform new strategies for virus control and vaccine development. We have generated 27 complete or nearly complete genomes of RSV from hospitalized children attending a rural coastal district hospital in Kilifi, Kenya, over a 10-year period using a novel full-genome deep-sequencing process. Phylogenetic analysis of the new genomes demonstrated the existence and cocirculation of multiple genotypes in both RSV A and B groups in Kilifi. Comparison of local versus global strains demonstrated that most RSV A variants observed locally in Kilifi were also seen in other parts of the world, while the Kilifi RSV B genomes encoded a high degree of variation that was not observed in other parts of the world. The nucleotide substitution rates for the individual open reading frames (ORFs) were highest in the regions encoding the attachment (G) glycoprotein and the NS2 protein. The analysis of RSV full genomes, compared to subgenomic regions, provided more precise estimates of the RSV sequence changes and revealed important patterns of RSV genomic variation and global movement. The novel sequencing method and the new RSV genomic sequences reported here expand our knowledge base for large-scale RSV epidemiological and transmission studies. IMPORTANCE The new RSV genomic sequences and the novel sequencing method reported here provide important data for understanding RSV transmission and vaccine development. Given the complex interplay between RSV A and RSV B infections, the existence of local RSV B evolution is an important factor in vaccine deployment.
Collapse
|
29
|
Erickson JJ, Rogers MC, Hastings AK, Tollefson SJ, Williams JV. Programmed death-1 impairs secondary effector lung CD8⁺ T cells during respiratory virus reinfection. THE JOURNAL OF IMMUNOLOGY 2014; 193:5108-17. [PMID: 25339663 DOI: 10.4049/jimmunol.1302208] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reinfections with respiratory viruses are common and cause significant clinical illness, yet precise mechanisms governing this susceptibility are ill defined. Lung Ag-specific CD8(+) T cells (T(CD8)) are impaired during acute viral lower respiratory infection by the inhibitory receptor programmed death-1 (PD-1). To determine whether PD-1 contributes to recurrent infection, we first established a model of reinfection by challenging B cell-deficient mice with human metapneumovirus (HMPV) several weeks after primary infection, and found that HMPV replicated to high titers in the lungs. A robust secondary effector lung TCD8 response was generated during reinfection, but these cells were more impaired and more highly expressed the inhibitory receptors PD-1, LAG-3, and 2B4 than primary T(CD8). In vitro blockade demonstrated that PD-1 was the dominant inhibitory receptor early after reinfection. In vivo therapeutic PD-1 blockade during HMPV reinfection restored lung T(CD8) effector functions (i.e., degranulation and cytokine production) and enhanced viral clearance. PD-1 also limited the protective efficacy of HMPV epitope-specific peptide vaccination and impaired lung T(CD8) during heterotypic influenza virus challenge infection. Our results indicate that PD-1 signaling may contribute to respiratory virus reinfection and evasion of vaccine-elicited immune responses. These results have important implications for the design of effective vaccines against respiratory viruses.
Collapse
Affiliation(s)
- John J Erickson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Meredith C Rogers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Andrew K Hastings
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and
| | - Sharon J Tollefson
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John V Williams
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
30
|
Tabatabai J, Prifert C, Pfeil J, Grulich-Henn J, Schnitzler P. Novel respiratory syncytial virus (RSV) genotype ON1 predominates in Germany during winter season 2012-13. PLoS One 2014; 9:e109191. [PMID: 25290155 PMCID: PMC4188618 DOI: 10.1371/journal.pone.0109191] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of hospitalization especially in young children with respiratory tract infections (RTI). Patterns of circulating RSV genotypes can provide a better understanding of the molecular epidemiology of RSV infection. We retrospectively analyzed the genetic diversity of RSV infection in hospitalized children with acute RTI admitted to University Hospital Heidelberg/Germany between October 2012 and April 2013. Nasopharyngeal aspirates (NPA) were routinely obtained in 240 children younger than 2 years of age who presented with clinical symptoms of upper or lower RTI. We analyzed NPAs via PCR and sequence analysis of the second variable region of the RSV G gene coding for the attachment glycoprotein. We obtained medical records reviewing routine clinical data. RSV was detected in 134/240 children. In RSV-positive patients the most common diagnosis was bronchitis/bronchiolitis (75.4%). The mean duration of hospitalization was longer in RSV-positive compared to RSV-negative patients (3.5 vs. 5.1 days; p<0.01). RSV-A was detected in 82.1%, RSV-B in 17.9% of all samples. Phylogenetic analysis of 112 isolates revealed that the majority of RSV-A strains (65%) belonged to the novel ON1 genotype containing a 72-nucleotide duplication. However, genotype ON1 was not associated with a more severe course of illness when taking basic clinical/laboratory parameters into account. Molecular characterization of RSV confirms the co-circulation of multiple genotypes of subtype RSV-A and RSV-B. The duplication in the G gene of genotype ON1 might have an effect on the rapid spread of this emerging RSV strain.
Collapse
Affiliation(s)
- Julia Tabatabai
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christiane Prifert
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Johannes Pfeil
- Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- German Centre for Infectious Diseases (DZIF), Heidelberg, Germany
| | | | - Paul Schnitzler
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
31
|
Tapia LI, Shaw CA, Aideyan LO, Jewell AM, Dawson BC, Haq TR, Piedra PA. Gene sequence variability of the three surface proteins of human respiratory syncytial virus (HRSV) in Texas. PLoS One 2014; 9:e90786. [PMID: 24625544 PMCID: PMC3953119 DOI: 10.1371/journal.pone.0090786] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) has three surface glycoproteins: small hydrophobic (SH), attachment (G) and fusion (F), encoded by three consecutive genes (SH-G-F). A 270-nt fragment of the G gene is used to genotype HRSV isolates. This study genotyped and investigated the variability of the gene and amino acid sequences of the three surface proteins of HRSV strains collected from 1987 to 2005 from one center. Sixty original clinical isolates and 5 prototype strains were analyzed. Sequences containing SH, F and G genes were generated, and multiple alignments and phylogenetic trees were analyzed. Genetic variability by protein domains comparing virus genotypes was assessed. Complete sequences of the SH-G-F genes were obtained for all 65 samples: HRSV-A = 35; HRSV-B = 30. In group A strains, genotypes GA5 and GA2 were predominant. For HRSV-B strains, the genotype GB4 was predominant from 1992 to 1994 and only genotype BA viruses were detected in 2004-2005. Different genetic variability at nucleotide level was detected between the genes, with G gene being the most variable and the highest variability detected in the 270-nt G fragment that is frequently used to genotype the virus. High variability (>10%) was also detected in the signal peptide and transmembrane domains of the F gene of HRSV A strains. Variability among the HRSV strains resulting in non-synonymous changes was detected in hypervariable domains of G protein, the signal peptide of the F protein, a not previously defined domain in the F protein, and the antigenic site Ø in the pre-fusion F. Divergent trends were observed between HRSV -A and -B groups for some functional domains. A diverse population of HRSV -A and -B genotypes circulated in Houston during an 18 year period. We hypothesize that diverse sequence variation of the surface protein genes provide HRSV strains a survival advantage in a partially immune-protected community.
Collapse
Affiliation(s)
- Lorena I. Tapia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil Norte, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Letisha O. Aideyan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alan M. Jewell
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Brian C. Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Taha R. Haq
- Medicine School, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
32
|
Faghihloo E, Yavarian J, Jandaghi NZS, Shadab A, Azad TM. Genotype circulation pattern of human respiratory syncytial virus in Iran. INFECTION GENETICS AND EVOLUTION 2014; 22:130-3. [PMID: 24462624 DOI: 10.1016/j.meegid.2014.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/22/2013] [Accepted: 01/13/2014] [Indexed: 11/29/2022]
Abstract
In order to have information on the molecular epidemiology and genetic circulation pattern of human respiratory syncytial virus (HRSV) in Iran, we studied the genetic variability of both group A and B HRSV strains during seven consecutive years by sequencing the hypervariable C-terminal domain of G protein. A total of 485 children <2years of age who were negative for influenza viruses, screened for the presence of HRSV in this research. HRSV was detected in 94 (19.38%) of the samples using nested RT-PCR. Group A viruses were isolated during each year, while group B viruses were isolated during 2009 and 2013. Phylogenetic analysis showed that all HRSV group A viruses belonged to three genotypes: GA1, GA2, GA5 and the group B viruses were in BA genotype.
Collapse
Affiliation(s)
- Ebrahim Faghihloo
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Iran.
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Iran.
| | | | - Azadeh Shadab
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Iran.
| | - Talat Mokhtari Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
33
|
Aamir UB, Alam MM, Sadia H, Zaidi SSZ, Kazi BM. Molecular characterization of circulating respiratory syncytial virus (RSV) genotypes in Gilgit Baltistan Province of Pakistan during 2011-2012 winter season. PLoS One 2013; 8:e74018. [PMID: 24058513 PMCID: PMC3772930 DOI: 10.1371/journal.pone.0074018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/25/2013] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of acute lower respiratory tract infections in young children, but very little is known about its epidemiology and circulating genotypes in Pakistan. This study analyzed the epidemiological and molecular characteristics of RSV genotypes detected in Pakistani children less than 2 years of age with acute respiratory tract infections (ARIs) in a tertiary care hospital in Gilgit Baltistan (GB) province during 2011-12 winter season. RSV was detected in 75 out of 105 children presenting with acute respiratory infection. Male infants between 2-6 months age made up the highest percentage of RSV positive cases. Epidemiological factors such as pre-maturity, mean weight, clinical features and diagnosis when compared between RSV positive and negative groups were found to be statistically insignificant. Phylogenetic analysis classified all 75 of the RSV strains into 71 strains of subgroups A and 4 strains of subgroup B, respectively. Strains belonging to subgroups A and B were further subdivided into NA1/GA2 and BA, respectively. The nucleotide and deduced amino acid sequence identities were relatively high among these strains (>90%). Both RSV-A and RSV-B isolates had two potential N-glycosylation sites in HVR2 of G protein and with heavy O-glycosylation of serine and threonine residues (G scores of 0.5-0.7). This report highlights the significance of RSV as a dominant viral etiologic agent of pediatric ARIs, and need for continued molecular epidemiological surveys for early detection of prevalent strains and newly emerging genotypes to understand epidemiology of RSV infections in various regions of Pakistan.
Collapse
Affiliation(s)
- Uzma Bashir Aamir
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan
| | - Muhammad Masroor Alam
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan
| | - Hajra Sadia
- Atta-ur-Rehman School of Applied BioSciences (ASAB), National University of Science & Technology (NUST), Islamabad, Pakistan
| | - Syed Sohail Zahoor Zaidi
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan
- * E-mail:
| | - Birjees Mazher Kazi
- Department of Virology, National Institute of Health, Chak Shahzad, Park Road, Islamabad, Pakistan
| |
Collapse
|
34
|
Sacco RE, McGill JL, Pillatzki AE, Palmer MV, Ackermann MR. Respiratory syncytial virus infection in cattle. Vet Pathol 2013; 51:427-36. [PMID: 24009269 DOI: 10.1177/0300985813501341] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bovine respiratory syncytial virus (RSV) is a cause of respiratory disease in cattle worldwide. It has an integral role in enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV infection can predispose calves to secondary bacterial infection by organisms such as Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, resulting in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Even in cases where animals do not succumb to bovine respiratory disease complex, there can be long-term losses in production performance. This includes reductions in feed efficiency and rate of gain in the feedlot, as well as reproductive performance, milk production, and longevity in the breeding herd. As a result, economic costs to the cattle industry from bovine respiratory disease have been estimated to approach $1 billion annually due to death losses, reduced performance, and costs of vaccinations and treatment modalities. Human and bovine RSV are closely related viruses with similarities in histopathologic lesions and mechanisms of immune modulation induced following infection. Therefore, where appropriate, we provide comparisons between RSV infections in humans and cattle. This review article discusses key aspects of RSV infection of cattle, including epidemiology and strain variability, clinical signs and diagnosis, experimental infection, gross and microscopic lesions, innate and adaptive immune responses, and vaccination strategies.
Collapse
Affiliation(s)
- R E Sacco
- National Animal Disease Center, Ruminant Diseases and Immunology Research Unit, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
35
|
Adams O, Werzmirzowsky J, Hengel H. Genetic analysis and antigenic characterization of human respiratory syncytial virus group A viruses isolated in Germany 1996-2008. Virus Genes 2013; 47:210-8. [PMID: 23775758 DOI: 10.1007/s11262-013-0936-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/03/2013] [Indexed: 11/26/2022]
Abstract
The genetic and antigenic variability of 18 human respiratory syncytial virus group A viruses isolated in Germany from 1996 to 2008 was evaluated by nucleotide sequencing of the complete G and F genes and enzyme-linked immunosorbent assay analysis with anti-G and anti-F monoclonal antibodies. Phylogenetic analyses showed that the G-proteins clustered into the two genotypes GA2 and GA5. The antigenic analysis of G-gene was carried out with a panel of anti-G and anti-F monoclonal antibodies that recognized strain-specific or variable epitopes which were originally derived against long strain (subtype GA1) and MON-3-88 strain (GA2). An amino acid substitution was found in a potential O-glycosylation site leading to a loss of reactivity with a strain-specific MAb. A score was calculated for quantifying the overall reactivity of the antibodies. If reactivity of all MAbs was totalized, a net sum loss of reactivity was seen over the time suggesting that antigenic drift due to immune selection may be occurring.
Collapse
Affiliation(s)
- Ortwin Adams
- Institut für Virologie, Universitätsklinikum Düsseldorf, Heinrich-Heine University Düsseldorf, Geb. 22.21, Universitätsstr. 1, Düsseldorf, 40225, Germany,
| | | | | |
Collapse
|
36
|
Glineur SF, Renshaw RW, Percopo CM, Dyer KD, Dubovi EJ, Domachowske JB, Rosenberg HF. Novel pneumoviruses (PnVs): Evolution and inflammatory pathology. Virology 2013; 443:257-64. [PMID: 23763766 DOI: 10.1016/j.virol.2013.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/22/2022]
Abstract
A previous report of a novel pneumovirus (PnV) isolated from the respiratory tract of a dog described its significant homology to the rodent pathogen, pneumonia virus of mice (PVM). The original PnV-Ane4 pathogen replicated in and could be re-isolated in infectious state from mouse lung but elicited minimal mortality compared to PVM strain J3666. Here we assess phylogeny and physiologic responses to 10 new PnV isolates. The G/glycoprotein sequences of all PnVs include elongated amino-termini when compared to the characterized PVMs, and suggest division into groups A and B. While we observed significant differences in cytokine production and neutrophil recruitment to the lungs of BALB/c mice in response to survival doses (50 TCID50 units) of representative group A (114378-10-29-KY-F) and group B (7968-11-OK) PnVs, we observed no evidence for positive selection (dN > dS) among the PnV/PnV, PVM/PnV or PVM/PVM G/glycoprotein or F/fusion protein sequence pairs.
Collapse
Affiliation(s)
- Stephanie F Glineur
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1883, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Neonatal calf infection with respiratory syncytial virus: drawing parallels to the disease in human infants. Viruses 2013; 4:3731-53. [PMID: 23342375 PMCID: PMC3528288 DOI: 10.3390/v4123731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common viral cause of childhood acute lower respiratory tract infections. It is estimated that RSV infections result in more than 100,000 deaths annually worldwide. Bovine RSV is a cause of enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV plays a significant role in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Infection of calves with bovine RSV shares features in common with RSV infection in children, such as an age-dependent susceptibility. In addition, comparable microscopic lesions consisting of bronchiolar neutrophilic infiltrates, epithelial cell necrosis, and syncytial cell formation are observed. Further, our studies have shown an upregulation of pro-inflammatory mediators in RSV-infected calves, including IL-12p40 and CXCL8 (IL-8). This finding is consistent with increased levels of IL-8 observed in children with RSV bronchiolitis. Since rodents lack IL-8, neonatal calves can be useful for studies of IL-8 regulation in response to RSV infection. We have recently found that vitamin D in milk replacer diets can be manipulated to produce calves differing in circulating 25-hydroxyvitamin D3. The results to date indicate that although the vitamin D intracrine pathway is activated during RSV infection, pro-inflammatory mediators frequently inhibited by the vitamin D intacrine pathway in vitro are, in fact, upregulated or unaffected in lungs of infected calves. This review will summarize available data that provide parallels between bovine RSV infection in neonatal calves and human RSV in infants.
Collapse
|
38
|
Houspie L, Lemey P, Keyaerts E, Reijmen E, Vergote V, Vankeerberghen A, Vaeyens F, De Beenhouwer H, Van Ranst M. Circulation of HRSV in Belgium: from multiple genotype circulation to prolonged circulation of predominant genotypes. PLoS One 2013; 8:e60416. [PMID: 23577109 PMCID: PMC3618235 DOI: 10.1371/journal.pone.0060416] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/26/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular surveillance of HRSV in Belgium for 15 consecutive seasons (1996-2011) revealed a shift from a regular 3-yearly cyclic pattern, into a yearly alternating periodicity where HRSV-B is replaced by HRSV-A. Phylogenetic analysis for HRSV-A demonstrated the stable circulation of GA2 and GA5, with GA2 being dominant over GA5 during 5 consecutive seasons (2006-2011). We also identified 2 new genotype specific amino acid mutations of the GA2 genotype (A122 and Q156) and 7 new GA5 genotype specific amino acid mutations (F102, I108, T111, I125, D161, S191 and L217). Several amino acid positions, all located in the second hypervariable region of HRSV-A were found to be under positive selection. Phylogenetic analysis of HRSV-B showed the circulation of GB12 and GB13, where GB13 represented 100% of the isolated strains in 4 out of 5 consecutive seasons (2007-2011). Amino acids under positive selection were all located in the aminoterminal hypervariable region of HRSV-B, except one amino acid located in the conserved region. The genotype distribution within the HRSV-B subgroup has evolved from a co-circulation of multiple genotypes to the circulation of a single predominant genotype. The Belgian GB13 strains circulating since 2006, all clustered under the BAIV branch and contained several branch specific amino acid substitutions. The demographic history of genotypes GA2, GA5 and GB13 demonstrated a decrease in the total GA2 and GA5 population size, coinciding with the global expansion of the GB13 population. The emergence of the GB13 genotype resulted in a newly established balance between the predominant genotypes.
Collapse
Affiliation(s)
- Lieselot Houspie
- Laboratory of Clinical Virology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Khor CS, Sam IC, Hooi PS, Chan YF. Displacement of predominant respiratory syncytial virus genotypes in Malaysia between 1989 and 2011. INFECTION GENETICS AND EVOLUTION 2013; 14:357-60. [DOI: 10.1016/j.meegid.2012.12.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
|
40
|
Melero JA, Moore ML. Influence of respiratory syncytial virus strain differences on pathogenesis and immunity. Curr Top Microbiol Immunol 2013; 372:59-82. [PMID: 24362684 DOI: 10.1007/978-3-642-38919-1_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular epidemiology studies have provided convincing evidence of antigenic and sequence variability among respiratory syncytial virus (RSV) isolates. Circulating viruses have been classified into two antigenic groups (A and B) that correlate with well-delineated genetic groups. Most sequence and antigenic differences (both inter- and intra-groups) accumulate in two hypervariable segments of the G-protein gene. Sequences of the G gene have been used for phylogenetic analyses. These studies have shown a worldwide distribution of RSV strains with both local and global replacement of dominant viruses with time. Although data are still limited, there is evidence that strain variation may contribute to differences in pathogenicity. In addition, there is some but limited evidence that RSV variation may be, at least partially, immune (antibody) driven. However, there is the paradox in RSV that, in contrast to other viruses (e.g., influenza viruses) the epitopes recognized by the most effective RSV-neutralizing antibodies are highly conserved. In contrast, antibodies that recognize strain-specific epitopes are poorly neutralizing. It is likely that this apparent contradiction is due to the lack of a comprehensive knowledge of the duration and specificities of the human antibody response against RSV antigens. Since there are some data supporting a group- (or clade-) specific antibody response after a primary infection in humans, it may be wise to consider the incorporation of strains representative of groups A and B (or their antigens) in future RSV vaccine development.
Collapse
Affiliation(s)
- José A Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain,
| | | |
Collapse
|
41
|
Molecular characterization of a respiratory syncytial virus outbreak in a hematology unit in Heidelberg, Germany. J Clin Microbiol 2012; 51:155-62. [PMID: 23100345 DOI: 10.1128/jcm.02151-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In 2011 and 2012, a large outbreak of respiratory syncytial virus (RSV) infections affecting 57 laboratory-confirmed patients occurred in an adult hematology unit in Heidelberg, Germany. During the outbreak investigation, we performed molecular genotyping of RSV strains to differentiate between single versus multiple introductions of the virus into the unit. Furthermore, we assessed the time of viral shedding of consecutive samples from the patients in order to better understand the possible impact of prolonged shedding for outbreak control management. We used subtype-specific reverse transcription-PCR on nasopharyngeal and bronchoalveolar specimens for routine diagnostics and for measuring the viral shedding period. Samples of 47 RSV-infected patients involved in the outbreak were genotyped by sequence analysis and compared to samples from RSV-infected hospitalized children representing the timing of the annual RSV epidemic in the community. Molecular investigation of the virus strains from clinical samples revealed a unique cluster with identical nucleotide sequences of RSV type A (RSV A outbreak strain) for 41 patients, while 3 patients were infected with different RSV A (nonoutbreak) strains and three other patients with RSV type B. Outbreak strains were identified in samples from November 2011 until January 2012, while nonoutbreak strains were from samples coinciding with the community epidemic in February and March 2012. Median duration of viral shedding time was 24.5 days (range, 1 to 168 days) with no difference between outbreak and nonoutbreak strains (P = 0.45). Our investigation suggests a single introduction of the RSV A outbreak strain into the unit that spread among the immunocompromised patients. Prolonged viral shedding may have contributed to nosocomial transmission and should be taken into account in the infection control management of RSV outbreaks in settings with heavily immunosuppressed patients.
Collapse
|
42
|
Diversity and adaptation of human respiratory syncytial virus genotypes circulating in two distinct communities: public hospital and day care center. Viruses 2012. [PMID: 23202489 PMCID: PMC3509657 DOI: 10.3390/v4112432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
HRSV is one of the most important pathogens causing acute respiratory tract diseases as bronchiolitis and pneumonia among infants. HRSV was isolated from two distinct communities, a public day care center and a public hospital in São José do Rio Preto - SP, Brazil. We obtained partial sequences from G gene that were used on phylogenetic and selection pressure analysis. HRSV accounted for 29% of respiratory infections in hospitalized children and 7.7% in day care center children. On phylogenetic analysis of 60 HRSV strains, 48 (80%) clustered within or adjacent to the GA1 genotype; GA5, NA1, NA2, BA-IV and SAB1 were also observed. SJRP GA1 strains presented variations among deduced amino acids composition and lost the potential O-glycosilation site at amino acid position 295, nevertheless this resulted in an insertion of two potential O-glycosilation sites at positions 296 and 297. Furthermore, a potential O-glycosilation site insertion, at position 293, was only observed for hospital strains. Using SLAC and MEME methods, only amino acid 274 was identified to be under positive selection. This is the first report on HRSV circulation and genotypes classification derived from a day care center community in Brazil.
Collapse
|
43
|
Katzov-Eckert H, Botosso VF, Neto EA, Zanotto PMDA. Phylodynamics and dispersal of HRSV entails its permanence in the general population in between yearly outbreaks in children. PLoS One 2012; 7:e41953. [PMID: 23077477 PMCID: PMC3471929 DOI: 10.1371/journal.pone.0041953] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/29/2012] [Indexed: 12/22/2022] Open
Abstract
Background Human respiratory syncytial virus (HRSV) is one of the major etiologic agents of respiratory tract infections among children worldwide. Methodology/Principal Findings Here through a comprehensive analysis of the two major HRSV groups A and B (n = 1983) which comprise of several genotypes, we present a complex pattern of population dynamics of HRSV over a time period of 50 years (1956–2006). Circulation pattern of HRSV revealed a series of expansions and fluctuations of co-circulating lineages with a predominance of HRSVA. Positively selected amino acid substitutions of the G glycoprotein occurred upon population growth of GB3 with a 60-nucleotide insertion (GB3 Insert), while other genotypes acquired substitutions upon both population growth and decrease, thus possibly reflecting a role for immune selected epitopes in linkage to the traced substitution sites that may have important relevance for vaccine design. Analysis evidenced the co-circulation and predominance of distinct HRSV genotypes in Brazil and suggested a year-round presence of the virus. In Brazil, GA2 and GA5 were the main culprits of HRSV outbreaks until recently, when the GB3 Insert became highly prevalent. Using Bayesian methods, we determined the dispersal patterns of genotypes through several inferred migratory routes. Conclusions/Significance Genotypes spread across continents and between neighboring areas. Crucially, genotypes also remained at any given region for extended periods, independent of seasonal outbreaks possibly maintained by re-infecting the general population.
Collapse
Affiliation(s)
- Hagit Katzov-Eckert
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute-ICB-II, University of São Paulo, São Paulo, Brazil
| | | | - Eurico Arruda Neto
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil, and the VGDN Consortium
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute-ICB-II, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | | |
Collapse
|
44
|
Eshaghi A, Duvvuri VR, Lai R, Nadarajah JT, Li A, Patel SN, Low DE, Gubbay JB. Genetic variability of human respiratory syncytial virus A strains circulating in Ontario: a novel genotype with a 72 nucleotide G gene duplication. PLoS One 2012; 7:e32807. [PMID: 22470426 PMCID: PMC3314658 DOI: 10.1371/journal.pone.0032807] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/06/2012] [Indexed: 12/02/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is the main cause of acute lower respiratory infections in children under 2 years of age and causes repeated infections throughout life. We investigated the genetic variability of RSV-A circulating in Ontario during 2010–2011 winter season by sequencing and phylogenetic analysis of the G glycoprotein gene. Among the 201 consecutive RSV isolates studied, RSV-A (55.7%) was more commonly observed than RSV-B (42.3%). 59.8% and 90.1% of RSV-A infections were among children ≤12 months and ≤5 years old, respectively. On phylogenetic analysis of the second hypervariable region of the 112 RSV-A strains, 110 (98.2%) clustered within or adjacent to the NA1 genotype; two isolates were GA5 genotype. Eleven (10%) NA1-related isolates clustered together phylogenetically as a novel RSV-A genotype, named ON1, containing a 72 nucleotide duplication in the C-terminal region of the attachment (G) glycoprotein. The predicted polypeptide is lengthened by 24 amino acids and includes a23 amino acid duplication. Using RNA secondary structural software, a possible mechanism of duplication occurrence was derived. The 23 amino acid ON1 G gene duplication results in a repeat of 7 potential O-glycosylation sites including three O-linked sugar acceptors at residues 270, 275, and 283. Using Phylogenetic Analysis by Maximum Likelihood analysis, a total of 19 positively selected sites were observed among Ontario NA1 isolates; six were found to be codons which reverted to the previous state observed in the prototype RSV-A2 strain. The tendency of codon regression in the G-ectodomain may infer a decreased avidity of antibody to the current circulating strains. Further work is needed to document and further understand the emergence, virulence, pathogenicity and transmissibility of this novel RSV-A genotype with a72 nucleotide G gene duplication.
Collapse
Affiliation(s)
- AliReza Eshaghi
- Ontario Agency for Health Protection and Promotion, Toronto, Ontario, Canada
| | - Venkata R. Duvvuri
- Ontario Agency for Health Protection and Promotion, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rachel Lai
- Ontario Agency for Health Protection and Promotion, Toronto, Ontario, Canada
| | | | - Aimin Li
- Ontario Agency for Health Protection and Promotion, Toronto, Ontario, Canada
| | - Samir N. Patel
- Ontario Agency for Health Protection and Promotion, Toronto, Ontario, Canada
| | - Donald E. Low
- Ontario Agency for Health Protection and Promotion, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Jonathan B. Gubbay
- Ontario Agency for Health Protection and Promotion, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
45
|
Jang JE, Lee JB, Kim KH, Park SM, Shim BS, Cheon IS, Song MK, Chang J. Evaluation of protective efficacy of respiratory syncytial virus vaccine against A and B subgroup human isolates in Korea. PLoS One 2011; 6:e23797. [PMID: 21915262 PMCID: PMC3168431 DOI: 10.1371/journal.pone.0023797] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 07/26/2011] [Indexed: 01/23/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a significant cause of upper and lower respiratory tract illness mainly in infants and young children worldwide. HRSV is divided into two subgroups, HRSV-A and HRSV-B, based on sequence variation within the G gene. Despite its importance as a respiratory pathogen, there is currently no safe and effective vaccine for HRSV. In this study, we have detected and identified the HRSV by RT-PCR from nasopharyngeal aspirates of Korean pediatric patients. Interestingly, all HRSV-B isolates exhibited unique deletion of 6 nucleotides and duplication of 60 nucleotides in the G gene. We successfully amplified two isolates ('KR/A/09-8' belonging to HRSV-A and 'KR/B/10-12' to HRSV-B) on large-scale, and evaluated the cross-protective efficacy of our recombinant adenovirus-based HRSV vaccine candidate, rAd/3xG, by challenging the immunized mice with these isolates. The single intranasal immunization with rAd/3xG protected the mice completely from KR/A/09-8 infection and partially from KR/B/10-12 infection. Our study contributes to the understanding of the genetic characteristics and distribution of subgroups in the seasonal HRSV epidemics in Korea and, for the first time, to the evaluation of the cross-protective efficacy of RSV vaccine against HRSV-A and -B field-isolates.
Collapse
Affiliation(s)
- Ji-Eun Jang
- Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sovero M, Garcia J, Kochel T, Laguna-Torres VA, Gomez J, Chicaiza W, Barrantes M, Sanchez F, Jimenez M, Comach G, de Rivera IL, Arango AE, Agudo R, Halsey ES. Circulating strains of human respiratory syncytial virus in central and south America. PLoS One 2011; 6:e22111. [PMID: 21829605 PMCID: PMC3148217 DOI: 10.1371/journal.pone.0022111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/15/2011] [Indexed: 11/18/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is a major cause of viral lower respiratory tract infections among infants and young children. HRSV strains vary genetically and antigenically and have been classified into two broad subgroups, A and B (HRSV-A and HRSV-B, respectively). To date, little is known about the circulating strains of HRSV in Latin America. We have evaluated the genetic diversity of 96 HRSV strains by sequencing a variable region of the G protein gene of isolates collected from 2007 to 2009 in Central and South America. Our results show the presence of the two antigenic subgroups of HRSV during this period with the majority belonging to the genotype HRSV-A2.
Collapse
Affiliation(s)
- Merly Sovero
- United States Naval Medical Research Unit 6, Lima, Peru
| | - Josefina Garcia
- United States Naval Medical Research Unit 6, Lima, Peru
- * E-mail:
| | | | | | - Jorge Gomez
- Dirección General de Epidemiología, Ministerio de Salud, Lima, Perú
| | | | | | - Felix Sanchez
- Hospital Infantil Manuel de Jesus Rivera, Managua, Nicaragua
| | | | | | | | | | - Roberto Agudo
- Dirección General de Epidemiología, Ministerio de Salud, Cochabamba, Bolivia
| | | |
Collapse
|
47
|
Kumaria R, Iyer LR, Hibberd ML, Simões EAF, Sugrue RJ. Whole genome characterization of non-tissue culture adapted HRSV strains in severely infected children. Virol J 2011; 8:372. [PMID: 21794174 PMCID: PMC3166936 DOI: 10.1186/1743-422x-8-372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/28/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human respiratory syncytial virus (HRSV) is the most important virus causing lower respiratory infection in young children. The complete genetic characterization of RSV clinical strains is a prerequisite for understanding HRSV infection in the clinical context. Current information about the genetic structure of the HRSV genome has largely been obtained using tissue culture adapted viruses. During tissue culture adaptation genetic changes can be introduced into the virus genome, which may obscure subtle variations in the genetic structure of different RSV strains. METHODS In this study we describe a novel Sanger sequencing strategy which allowed the complete genetic characterisation of 14 clinical HRSV strains. The viruses were sequenced directly in the nasal washes of severely hospitalized children, and without prior passage of the viruses in tissue culture. RESULTS The analysis of nucleotide sequences suggested that vRNA length is a variable factor among primary strains, while the phylogenetic analysis suggests selective pressure for change. The G gene showed the greatest sequence variation (2-6.4%), while small hydrophobic protein and matrix genes were completely conserved across all clinical strains studied. A number of sequence changes in the F, L, M2-1 and M2-2 genes were observed that have not been described in laboratory isolates. The gene junction regions showed more sequence variability, and in particular the intergenic regions showed a highest level of sequence variation. Although the clinical strains grew slower than the HRSVA2 virus isolate in tissue culture, the HRSVA2 isolate and clinical strains formed similar virus structures such as virus filaments and inclusion bodies in infected cells; supporting the clinical relevance of these virus structures. CONCLUSION This is the first report to describe the complete genetic characterization of HRSV clinical strains that have been sequenced directly from clinical material. The presence of novel substitutions and deletions in the vRNA of clinical strains emphasize the importance of genomic characterization of non-tissue culture adapted primary strains.
Collapse
Affiliation(s)
- Rajni Kumaria
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
| | - Laxmi Ravi Iyer
- Division of Molecular and Cell biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 639798, Singapore
| | - Martin L Hibberd
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
- Genome Institute of Singapore, #02-01, Genome Building, 60 Biopolis Street, 138672, Singapore
| | - Eric AF Simões
- University of Colorado, Denver and The Division of Infectious Diseases, The Children's Hospital, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Richard J Sugrue
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
- Division of Molecular and Cell biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 639798, Singapore
| |
Collapse
|
48
|
Replacement of previously circulating respiratory syncytial virus subtype B strains with the BA genotype in South Africa. J Virol 2011; 85:8789-97. [PMID: 21715483 DOI: 10.1128/jvi.02623-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of bronchiolitis and pneumonia in infants, the immunocompromised, and the elderly in both developed and developing countries. Reinfections are common, and G protein variability is one mechanism to overcome herd immunity. This is illustrated by the appearance of the BA genotype with a 60-nucleotide duplication dominating the subtype B genotypes in epidemics worldwide. To investigate the evolution of subtype B in South Africa since 2002, the genetic variability of the G protein was analyzed in all recent strains isolated over 4 years (2006 to 2009) in South African hospitals. Bayesian analysis revealed a replacement of all subtype B genotypes previously identified in South Africa with the BA genotype since 2006, while subtype A genotypes identified in previous years are still circulating. Compared to BA strains from other countries, the evolutionary rate of the South African BA genotype was shown to be 2.305 × 10(-3) nucleotide substitutions/site/year and drift was evident. The most recent common ancestor (MRCA) of the South African BA viruses was determined to date back to 1996. All South African BA isolates clustered with the BA-IV subgenotype, and the appearance of new subgenotypes within this branch may occur if drift continues. Sequencing of the complete G protein of selected South African strains revealed an additional 6-nucleotide deletion. Acquisition of the 60-nucleotide duplication appeared to have improved the fitness of this virus, and more recent subtype B strains may need to be included in experimental vaccines to evaluate their efficacy in the current setting of evolved circulating strains.
Collapse
|
49
|
Differential pathogenesis of respiratory syncytial virus clinical isolates in BALB/c mice. J Virol 2011; 85:5782-93. [PMID: 21471228 DOI: 10.1128/jvi.01693-10] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Airway mucus is a hallmark of respiratory syncytial virus (RSV) lower respiratory tract illness. Laboratory RSV strains differentially induce airway mucus production in mice. Here, we tested the hypothesis that RSV strains differ in pathogenesis by screening six low-passage RSV clinical isolates for mucogenicity and virulence in BALB/cJ mice. The RSV clinical isolates induced variable disease severity, lung interleukin-13 (IL-13) levels, and gob-5 levels in BALB/cJ mice. We chose two of these clinical isolates for further study. Infection of BALB/cJ mice with RSV A2001/2-20 (2-20) resulted in greater disease severity, higher lung IL-13 levels, and higher lung gob-5 levels than infection with RSV strains A2, line 19, Long, and A2001/3-12 (3-12). Like the line 19 RSV strain, the 2-20 clinical isolate induced airway mucin expression in BALB/cJ mice. The 2-20 and 3-12 RSV clinical isolates had higher lung viral loads than laboratory RSV strains at 1 day postinfection (p.i.). This increased viral load correlated with higher viral antigen levels in the bronchiolar epithelium and greater histopathologic changes at 1 day p.i. The A2 RSV strain had the highest peak viral load at day 4 p.i. RSV 2-20 infection caused epithelial desquamation, bronchiolitis, airway hyperresponsiveness, and increased breathing effort in BALB/cJ mice. We found that RSV clinical isolates induce variable pathogenesis in mice, and we established a mouse model of clinical isolate strain-dependent RSV pathogenesis that recapitulates key features of RSV disease.
Collapse
|
50
|
Gaunt ER, Jansen RR, Poovorawan Y, Templeton KE, Toms GL, Simmonds P. Molecular epidemiology and evolution of human respiratory syncytial virus and human metapneumovirus. PLoS One 2011; 6:e17427. [PMID: 21390255 PMCID: PMC3046979 DOI: 10.1371/journal.pone.0017427] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/02/2011] [Indexed: 11/23/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are ubiquitous respiratory pathogens of the Pneumovirinae subfamily of the Paramyxoviridae. Two major surface antigens are expressed by both viruses; the highly conserved fusion (F) protein, and the extremely diverse attachment (G) glycoprotein. Both viruses comprise two genetic groups, A and B. Circulation frequencies of the two genetic groups fluctuate for both viruses, giving rise to frequently observed switching of the predominantly circulating group. Nucleotide sequence data for the F and G gene regions of HRSV and HMPV variants from the UK, the Netherlands, Bangkok and data available from Genbank were used to identify clades of both viruses. Several contemporary circulating clades of HRSV and HMPV were identified by phylogenetic reconstructions. The molecular epidemiology and evolutionary dynamics of clades were modelled in parallel. Times of origin were determined and positively selected sites were identified. Sustained circulation of contemporary clades of both viruses for decades and their global dissemination demonstrated that switching of the predominant genetic group did not arise through the emergence of novel lineages each respiratory season, but through the fluctuating circulation frequencies of pre-existing lineages which undergo proliferative and eclipse phases. An abundance of sites were identified as positively selected within the G protein but not the F protein of both viruses. For HRSV, these were discordant with previously identified residues under selection, suggesting the virus can evade immune responses by generating diversity at multiple sites within linear epitopes. For both viruses, different sites were identified as positively selected between genetic groups.
Collapse
Affiliation(s)
- Eleanor R Gaunt
- Centre for Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|