1
|
Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner. mBio 2022; 13:e0033722. [PMID: 35579393 PMCID: PMC9239164 DOI: 10.1128/mbio.00337-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional transcription factor that is essential for lytic HCMV infection. IE2 functions as an activator of viral early genes, negatively regulates its own promoter, and is required for viral replication. The mechanisms by which IE2 executes these distinct functions are incompletely understood. Using PRO-Seq, which profiles nascent transcripts, and a recently developed DFF-chromatin immunoprecipitation (DFF-ChIP; employs chromatin digestion by the endonuclease DNA fragmentation factor prior to IP) approach that resolves occupancy and local chromatin environment, we show that IE2 controls viral gene transcription in three distinct capacities during late HCMV infection and reveal mechanisms that involve direct binding of IE2 to viral DNA. IE2 represses a subset of viral promoters by binding within their core promoter regions and blocking the assembly of preinitiation complexes (PICs). Remarkably, IE2 forms a repressive complex at the major immediate-early promoter region involving direct association of IE2 with nucleosomes and TBP. IE2 stimulates transcription by binding nearby, but not within, core promoter regions. In addition, IE2 functions as a direct roadblock to transcription elongation. At one locus, this function of IE2 appears to be important for the synthesis of a spliced viral RNA. Consistent with the minimal observed effects of IE2 depletion on host gene transcription, IE2 does not functionally engage the host genome. Our results reveal mechanisms of transcriptional control by IE2, uncover a previously unknown function of IE2 as a Pol II elongation modulator, and demonstrate that DFF-ChIP is a useful tool for probing transcription factor occupancy and interactions between transcription factors and nucleosomes at high resolution.
Collapse
|
2
|
Manska S, Rossetto CC. Characteristics of Immediate-Early 2 (IE2) and UL84 Proteins in UL84-Independent Strains of Human Cytomegalovirus (HCMV). Microbiol Spectr 2021; 9:e0053921. [PMID: 34550009 PMCID: PMC8557881 DOI: 10.1128/spectrum.00539-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is the major transactivator for viral gene expression and is required for lytic replication. In addition to transcriptional activation, IE2 is known to mediate transcriptional repression of promoters, including the major immediate-early (MIE) promoter and a bidirectional promoter within the lytic origin of replication (oriLyt). The activity of IE2 is modulated by another viral protein, UL84. UL84 is multifunctional and is proposed to act as the origin-binding protein (OBP) during lytic replication. UL84 specifically interacts with IE2 to relieve IE2-mediated repression at the MIE and oriLyt promoters. Originally, UL84 was thought to be indispensable for viral replication, but recent work demonstrated that some strains of HCMV (TB40E and TR) can replicate independently of UL84. This peculiarity is due to a single amino acid change of IE2 (UL122 H388D). Here, we identified that a UL84-dependent (AD169) Δ84 viral mutant had distinct IE2 localization and was unable to synthesize DNA. We also demonstrated that a TB40E Δ84 IE2 D388H mutant containing the reversed IE2 amino acid switch adopted the phenotype of AD169 Δ84. Further functional experiments, including chromatin-immunoprecipitation sequencing (ChIP-seq), suggest distinct protein interactions and transactivation function at oriLyt between strains. Together, these data further highlight the complexity of initiation of HCMV viral DNA replication. IMPORTANCE Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in immunocompromised individuals and is also the leading viral cause of congenital birth defects. After initial infection, HCMV establishes a lifelong latent infection with periodic reactivation and lytic replication. During lytic DNA synthesis, IE2 and UL84 have been regarded as essential factors required for initiation of viral DNA replication. However, previous reports identified that some isolates of HCMV can replicate in a UL84-independent manner due to a single amino acid change in IE2 (H388D). These UL84-independent strains are an important consideration, as they may have implications for HCMV disease and research. This has prompted renewed interest into the functional roles of IE2 and UL84. The work presented here focuses on the described functions of UL84 and ascertains if those required functions are fulfilled by IE2 in UL84-independent strains.
Collapse
Affiliation(s)
- Salome Manska
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Cyprian C. Rossetto
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
3
|
Prolonged activation of cytomegalovirus early gene e1-promoter exclusively in neurons during infection of the developing cerebrum. Acta Neuropathol Commun 2021; 9:39. [PMID: 33750455 PMCID: PMC7941713 DOI: 10.1186/s40478-021-01139-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/26/2021] [Indexed: 11/21/2022] Open
Abstract
The brain is the major target of congenital cytomegalovirus (CMV) infection. It is possible that neuron disorder in the developing brain is a critical factor in the development of neuropsychiatric diseases in later life. Previous studies using mouse model of murine CMV (MCMV) infection demonstrated that the viral early antigen (E1 as a product of e1 gene) persists in the postnatal neurons of the hippocampus (HP) and cerebral cortex (CX) after the disappearance of lytic infection from non-neuronal cells in the periventricular (PV) region. Furthermore, neuron-specific activation of the MCMV-e1-promoter (e1-pro) was found in the cerebrum of transgenic mice carrying the e1-pro-lacZ reporter construct. In this study, in order to elucidate the mechanisms of e1-pro activation in cerebral neurons during actual MCMV infection, we have generated the recombinant MCMV (rMCMV) carrying long e1-pro1373- or short e1-pro448-EGFP reporter constructs. The length of the former, 1373 nucleotides (nt), is similar to that of transgenic mice. rMCMVs and wild type MCMV did not significantly differed in terms of viral replication or E1 expression. rMCMV-infected mouse embryonic fibroblasts showed lytic infection and activation of both promoters, while virus-infected cerebral neurons in primary neuronal cultures demonstrated the non-lytic and persistent infection as well as the activation of e1-pro-1373, but not -448. In the rMCMV-infected postnatal cerebrum, lytic infection and the activation of both promoters were found in non-neuronal cells of the PV region until postnatal 8 days (P8), but these disappeared at P12, while the activation of e1-pro-1373, but not -448 appeared in HP and CX neurons at P8 and were prolonged exclusively in these neurons at P12, with preservation of the neuronal morphology. Therefore, e1-pro-448 is sufficient to activate E1 expression in non-neuronal cells, however, the upstream sequence from nt -449 to -1373 in e1-pro-1373 is supposed to work as an enhancer necessary for the neuron-specific activation of e1-pro, particularly around the second postnatal week. This unique activation of e1-pro in developing cerebral neurons may be an important factor in the neurodevelopmental disorders induced by congenital CMV infection.
Collapse
|
4
|
Regulation of the MIE Locus During HCMV Latency and Reactivation. Pathogens 2020; 9:pathogens9110869. [PMID: 33113934 PMCID: PMC7690695 DOI: 10.3390/pathogens9110869] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesviral pathogen that results in life-long infection. HCMV maintains a latent or quiescent infection in hematopoietic cells, which is broadly defined by transcriptional silencing and the absence of de novo virion production. However, upon cell differentiation coupled with immune dysfunction, the virus can reactivate, which leads to lytic replication in a variety of cell and tissue types. One of the mechanisms controlling the balance between latency and reactivation/lytic replication is the regulation of the major immediate-early (MIE) locus. This enhancer/promoter region is complex, and it is regulated by chromatinization and associated factors, as well as a variety of transcription factors. Herein, we discuss these factors and how they influence the MIE locus, which ultimately impacts the phase of HCMV infection.
Collapse
|
5
|
Manandhar T, Hò GGT, Pump WC, Blasczyk R, Bade-Doeding C. Battle between Host Immune Cellular Responses and HCMV Immune Evasion. Int J Mol Sci 2019; 20:E3626. [PMID: 31344940 PMCID: PMC6695940 DOI: 10.3390/ijms20153626] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is ubiquitously prevalent. HCMV infection is typically asymptomatic and controlled by the immune system in healthy individuals, yet HCMV can be severely pathogenic for the fetus during pregnancy and in immunocompromised persons, such as transplant recipients or HIV infected patients. HCMV has co-evolved with the hosts, developed strategies to hide from immune effector cells and to successfully survive in the human organism. One strategy for evading or delaying the immune response is maintenance of the viral genome to establish the phase of latency. Furthermore, HCMV immune evasion involves the downregulation of human leukocyte antigens (HLA)-Ia molecules to hide infected cells from T-cell recognition. HCMV expresses several proteins that are described for downregulation of the HLA class I pathway via various mechanisms. Here, we review the wide range of immune evasion mechanisms of HCMV. Understanding the mechanisms of HCMV immune evasion will contribute to the development of new customized therapeutic strategies against the virus.
Collapse
Affiliation(s)
- Trishna Manandhar
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
6
|
Pignoloni B, Fionda C, Dell'Oste V, Luganini A, Cippitelli M, Zingoni A, Landolfo S, Gribaudo G, Santoni A, Cerboni C. Distinct Roles for Human Cytomegalovirus Immediate Early Proteins IE1 and IE2 in the Transcriptional Regulation of MICA and PVR/CD155 Expression. THE JOURNAL OF IMMUNOLOGY 2016; 197:4066-4078. [PMID: 27733551 DOI: 10.4049/jimmunol.1502527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
Elimination of virus-infected cells by cytotoxic lymphocytes is triggered by activating receptors, among which NKG2D and DNAM-1/CD226 play an important role. Their ligands, that is, MHC class I-related chain (MIC) A/B and UL16-binding proteins (ULBP)1-6 (NKG2D ligand), Nectin-2/CD112, and poliovirus receptor (PVR)/CD155 (DNAM-1 ligand), are often induced on virus-infected cells, although some viruses, including human CMV (HCMV), can block their expression. In this study, we report that infection of different cell types with laboratory or low-passage HCMV strains upregulated MICA, ULBP3, and PVR, with NKG2D and DNAM-1 playing a role in NK cell-mediated lysis of infected cells. Inhibition of viral DNA replication with phosphonoformic acid did not prevent ligand upregulation, thus indicating that early phases of HCMV infection are involved in ligand increase. Indeed, the major immediate early (IE) proteins IE1 and IE2 stimulated the expression of MICA and PVR, but not ULBP3. IE2 directly activated MICA promoter via its binding to an IE2-responsive element that we identified within the promoter and that is conserved among different alleles of MICA. Both IE proteins were instead required for PVR upregulation via a mechanism independent of IE DNA binding activity. Finally, inhibiting IE protein expression during HCMV infection confirmed their involvement in ligand increase. We also investigated the contribution of the DNA damage response, a pathway activated by HCMV and implicated in ligand regulation. However, silencing of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related protein, and DNA-dependent protein kinase did not influence ligand expression. Overall, these data reveal that MICA and PVR are directly regulated by HCMV IE proteins, and this may be crucial for the onset of an early host antiviral response.
Collapse
Affiliation(s)
- Benedetta Pignoloni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; and
| | - Marco Cippitelli
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; and
| | - Angela Santoni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy; .,Mediterranean Neurological Institute-Neuromed, 86077 Pozzilli (Isernia), Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy;
| |
Collapse
|
7
|
Massari S, Mercorelli B, Sancineto L, Sabatini S, Cecchetti V, Gribaudo G, Palù G, Pannecouque C, Loregian A, Tabarrini O. Design, synthesis, and evaluation of WC5 analogues as inhibitors of human cytomegalovirus Immediate-Early 2 protein, a promising target for anti-HCMV treatment. ChemMedChem 2013; 8:1403-14. [PMID: 23757191 DOI: 10.1002/cmdc.201300106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/16/2013] [Indexed: 12/13/2022]
Abstract
Although human cytomegalovirus (HCMV) infection is mostly asymptomatic for immunocompetent individuals, it remains a serious threat for those who are immunocompromised, in whom it is associated with various clinical manifestations. The therapeutic utility of the few available anti-HCMV drugs is limited by several drawbacks, including cross-resistance due to their common mechanism of action, i.e., inhibition of viral DNA polymerase. Therefore, compounds that target other essential viral events could overcome this problem. One example of this is the 6-aminoquinolone WC5, which acts by directly blocking the transactivation of essential viral Early genes by the Immediate-Early 2 (IE2) protein. In this study, the quinolone scaffold of the lead compound WC5 was investigated in depth, defining more suitable substituents for each of the scaffold positions explored and identifying novel, potent and nontoxic compounds. Some compounds showed potent anti-HCMV activity by interfering with IE2-dependent viral E gene expression. Among them, naphthyridone 1 was also endowed with potent anti-HIV activity in latently infected cells. Their antiviral profile along with their innovative mechanism of action make these anti-HCMV quinolones a very promising class of compounds to be exploited for more effective antiviral therapeutic treatment.
Collapse
Affiliation(s)
- Serena Massari
- Department of Chemistry and Technology of Drugs, University of Perugia, 06123 Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mutation of glutamine to arginine at position 548 of IE2 86 in human cytomegalovirus leads to decreased expression of IE2 40, IE2 60, UL83, and UL84 and increased transcription of US8-9 and US29-32. J Virol 2011; 85:11098-110. [PMID: 21865379 DOI: 10.1128/jvi.05315-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IE2 86 protein of human cytomegalovirus (HCMV) is essential for productive infection. The mutation of glutamine to arginine at position 548 of IE2 86 causes the virus to grow both slowly and to very low titers, making it difficult to study this mutant via infection. In this study, Q548R IE2 86 HCMV was produced on the complementing cell line 86F/40HA, which allowed faster and higher-titer production of mutant virus. The main defects observed in this mutant were greatly decreased expression of IE2 40, IE2 60, UL83, and UL84. Genome replication and the induction of cell cycle arrest were found to proceed at or near wild-type levels, and there was no defect in transitioning to early or late protein expression. Q548R IE2 86 was still able to interact with UL84. Furthermore, Q548R IE2 40 maintained the ability to enhance UL84 expression in a cotransfection assay. Microarray analysis of Q548R IE2 HCMV revealed that the US8, US9, and US29-32 transcripts were all significantly upregulated. These results further confirm the importance of IE2 in UL83 and UL84 expression as well as pointing to several previously unknown regions of the HCMV genome that may be regulated by IE2.
Collapse
|
9
|
Mercorelli B, Lembo D, Palù G, Loregian A. Early inhibitors of human cytomegalovirus: state-of-art and therapeutic perspectives. Pharmacol Ther 2011; 131:309-29. [PMID: 21570424 PMCID: PMC7112563 DOI: 10.1016/j.pharmthera.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, mainly transplant recipients and AIDS patients, and is the most frequent cause of congenital malformations in newborn children. To date, few drugs are licensed for the treatment of HCMV infections, most of which target the viral DNA polymerase and suffer from many drawbacks, including long-term toxicity, low potency, and poor bioavailability. In addition, the emergence of drug-resistant viral strains is becoming an increasing problem for disease management. Finally, none of the current anti-HCMV drugs have been approved for the treatment of congenital infections. For all these reasons, there is still a strong need for new anti-HCMV drugs with novel mechanisms of action. The first events of the virus replication cycle, including attachment, entry, immediate-early gene expression, and immediate-early functions—in particular that of Immediate-Early 2 protein—represent attractive targets for the development of novel antiviral compounds. Such inhibitors would block not only the expression of viral immediate-early proteins, which play a key role in the pathogenesis of HCMV infection, but also the host immunomodulation and the changes to cell physiology induced by the first events of virus infection. This review describes the current knowledge on the initial phases of HCMV replication, their validation as potential novel antiviral targets, and the development of compounds that block such processes.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | | | |
Collapse
|
10
|
Functional properties of the human cytomegalovirus IE86 protein required for transcriptional regulation and virus replication. J Virol 2010; 84:8839-48. [PMID: 20554773 DOI: 10.1128/jvi.00327-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE86 protein is essential for HCMV replication due to its ability to transactivate critical viral early promoters. In the current study, we performed a comprehensive mutational analysis between amino acids (aa) 535 and 545 of IE86 and assessed the impact of these mutations on IE86-mediated transcriptional activation. Using transient assays and complementing analysis with recombinant HCMV clones, we show that single amino acid mutations differentially impair the ability of IE86 to mediate transactivation of essential early gene promoters. The conserved tyrosine at amino acid 544 is critical for activation of the UL54 promoter in vitro and in the context of the viral genome. In contrast, mutation of the proline at position 535 disrupted activation of the UL54 promoter in transient assays but displayed activity similar to that of wild-type (WT) IE86 when assessed in the genomic context. To examine the underlying mechanism of this differential effect, glutathione S-transferase (GST) pulldown assays were performed, revealing that Y544 is critical for binding to the TATA binding protein (TBP), suggesting that this interaction is likely necessary for the ability of IE86 to activate the UL54 promoter. In contrast, mutation of either P535 or Y544 disrupted activation of the UL112-113 promoter both in vitro and in vivo, suggesting that interaction with TBP is not sufficient for IE86-mediated activation of this early promoter. Together, these studies demonstrate that IE86 activates early promoters by distinct mechanisms.
Collapse
|
11
|
Human cytomegalovirus IE2 86 and IE2 40 proteins differentially regulate UL84 protein expression posttranscriptionally in the absence of other viral gene products. J Virol 2010; 84:5158-70. [PMID: 20200242 DOI: 10.1128/jvi.00090-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It has previously been demonstrated that, during human cytomegalovirus infection, the viral IE2 86 and IE2 40 proteins are both important for the expression of an early-late viral protein, UL84. Here, we show that expression of the UL84 protein is enhanced upon cotransfection with either IE2 86 or IE2 40, although IE2 40 appears to play a more important role. The UL84 protein levels are tightly linked to the amount of IE2 40 present, but this does not appear to be true for IE2 86. RNA remains constant for all corresponding proteins, indicating posttranscriptional regulation of UL84. The first 105 amino acids of UL84 are necessary and sufficient for this phenotype, and this region is also required for an interaction with IE2 86 and IE2 40. Treatment with proteasome inhibitors shows that UL84 exhibits some proteasome-dependent degradation, and UL84 is not protected against this degradation when coexpressed with IE2 86 or IE2 40. UL84 also exhibits an inhibitory effect on IE2 86 and IE2 40 protein levels in these cotransfection assays. Further, we show that the amino acid sequence of UL84 is important for the enhancement governed by IE2 40. These results indicate that IE2 86, IE2 40, and UL84 serve to regulate protein expression in a posttranscriptional fashion and that this regulation is independent of other viral proteins.
Collapse
|
12
|
The 6-aminoquinolone WC5 inhibits human cytomegalovirus replication at an early stage by interfering with the transactivating activity of viral immediate-early 2 protein. Antimicrob Agents Chemother 2010; 54:1930-40. [PMID: 20194695 DOI: 10.1128/aac.01730-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
WC5 is a 6-aminoquinolone that potently inhibits the replication of human cytomegalovirus (HCMV) but has no activity, or significantly less activity, against other herpesviruses. Here we investigated the nature of its specific anti-HCMV activity. Structure-activity relationship studies on a small series of analogues showed that WC5 possesses the most suitable pattern of substitutions around the quinolone scaffold to give potent and selective anti-HCMV activity. Studies performed to identify the possible target of WC5 indicated that it prevents viral DNA synthesis but does not significantly affect DNA polymerase activity. In yield reduction experiments with different multiplicities of infection, the anti-HCMV activity of WC5 appeared to be highly dependent on the viral inoculum, suggesting that WC5 may act at an initial stage of virus replication. Consistently, time-of-addition and time-of-removal studies demonstrated that WC5 affects a phase of the HCMV replicative cycle that precedes viral DNA synthesis. Experiments to monitor the effects of the compound on virus attachment and entry showed that it does not inhibit either process. Evaluation of viral mRNA and protein expression revealed that WC5 targets an event of the HCMV replicative cycle that follows the transcription and translation of immediate-early genes and precedes those of early and late genes. In cell-based assays to test the effects of WC5 on the transactivating activity of the HCMV immediate-early 2 (IE2) protein, WC5 markedly interfered with IE2-mediated transactivation of viral early promoters. Finally, WC5 combined with ganciclovir in checkerboard experiments exhibited highly synergistic activity. These findings suggest that WC5 deserves further investigation as a candidate anti-HCMV drug with a novel mechanism of action.
Collapse
|
13
|
Luganini A, Caposio P, Mondini M, Landolfo S, Gribaudo G. New cell-based indicator assays for the detection of human cytomegalovirus infection and screening of inhibitors of viral immediate-early 2 protein activity. J Appl Microbiol 2009; 105:1791-801. [PMID: 19120629 DOI: 10.1111/j.1365-2672.2008.03927.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Expression of early (E) genes of human cytomegalovirus (HCMV) is stimulated cooperatively by the activities of host cell transcription factors and the viral immediate-early 2 (IE2) protein. Taking advantage of the IE2-dependent inducibility of E gene promoters, in this study, we generated cell-based assays in which the expression of the enhanced green fluorescence protein (EGFP) reporter gene was driven by the UL54 or UL112/113 E promoters. METHODS AND RESULTS Cell clones derived from a stably transfected human cell line permissive to HCMV replication showed a specific and inducible dose- and time-dependent EGFP response to HCMV infection. The sensitivity of these indicator cells for detecting infectious particles of clinical isolates of HCMV was comparable to that of a conventional plaque assay. The HCMV-induced EGFP expression was completely prevented by treatment of indicator cells with fomivirsen, an antisense oligodeoxynucleotide designed to block IE2 expression, and this inhibitory activity was also observed when the IE2 protein alone was constitutively expressed in EGFP indicator cells. CONCLUSIONS The EGFP-based cell assays have proved to be a rapid, sensitive, quantitative and specific system for detection of HCMV and selection of antivirals. SIGNIFICANCE AND IMPACT OF THE STUDY These new cell-based assays can be exploited as functional assays to detect infectious HCMV particles, as well as to screen antiviral compounds that interfere with IE2 activity.
Collapse
Affiliation(s)
- A Luganini
- Department of Public Health and Microbiology, University of Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
14
|
Internal deletions of IE2 86 and loss of the late IE2 60 and IE2 40 proteins encoded by human cytomegalovirus affect the levels of UL84 protein but not the amount of UL84 mRNA or the loading and distribution of the mRNA on polysomes. J Virol 2008; 82:11383-97. [PMID: 18787008 DOI: 10.1128/jvi.01293-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major immediate-early (IE) region of human cytomegalovirus encodes two IE proteins, IE1 72 and IE2 86, that are translated from alternatively spliced transcripts that differ in their 3' ends. Two other proteins that correspond to the C-terminal region of IE2 86, IE2 60 and IE2 40, are expressed at late times. In this study, we used IE2 mutant viruses to examine the mechanism by which IE2 86, IE2 60, and IE2 40 affect the expression of a viral DNA replication factor, UL84. Deletion of amino acids (aa) 136 to 290 of IE2 86 results in a significant decrease in UL84 protein during the infection. This loss of UL84 is both proteasome and calpain independent, and the stability of the protein in the context of infection with the mutant remains unaffected. The RNA for UL84 is expressed to normal levels in the mutant virus-infected cells, as are the RNAs for two other proteins encoded by this region, UL85 and UL86. Moreover, nuclear-to-cytoplasmic transport and the distribution of the UL84 mRNA on polysomes are unaffected. A region between aa 290 and 369 of IE2 86 contributes to the UL84-IE2 86 interaction in vivo and in vitro. IE2 86, IE2 60, and IE2 40 are each able to interact with UL84 in the mutant-infected cells, suggesting that these interactions may be important for the roles of UL84 and the IE2 proteins. Thus, these data have defined the contribution of IE2 86, IE2 60, and IE2 40 to the efficient expression of UL84 throughout the infection.
Collapse
|
15
|
Development of cell lines that provide tightly controlled temporal translation of the human cytomegalovirus IE2 proteins for complementation and functional analyses of growth-impaired and nonviable IE2 mutant viruses. J Virol 2008; 82:7059-77. [PMID: 18463148 DOI: 10.1128/jvi.00675-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86 protein is essential for viral replication. Two other proteins, IE2 60 and IE2 40, which arise from the C-terminal half of IE2 86, are important for later stages of the infection. Functional analyses of IE2 86 in the context of the infection have utilized bacterial artificial chromosomes as vectors to generate mutant viruses. One limitation is that many mutations result in debilitated or nonviable viruses. Here, we describe a novel system that allows tightly controlled temporal expression of the IE2 proteins and provides complementation of both growth-impaired and nonviable IE2 mutant viruses. The strategy involves creation of cell lines with separate lentiviruses expressing a bicistronic RNA with a selectable marker as the first open reading frame (ORF) and IE2 86, IE2 60, or IE2 40 as the second ORF. Induction of expression of the IE2 proteins occurs only following DNA recombination events mediated by Cre and FLP recombinases that delete the first ORF. HCMV encodes Cre and FLP, which are expressed at immediate-early (for IE2 86) and early-late (for IE2 40 and IE2 60) times, respectively. We show that the presence of full-length IE2 86 alone provides some complementation for virus production, but the correct temporal expression of IE2 86 and IE2 40 together has the most beneficial effect for early-late gene expression and synthesis of infectious virus. This approach for inducible protein translation can be used for complementation of other mutations as well as controlled expression of toxic cellular and microbial proteins.
Collapse
|
16
|
Sourvinos G, Tavalai N, Berndt A, Spandidos DA, Stamminger T. Recruitment of human cytomegalovirus immediate-early 2 protein onto parental viral genomes in association with ND10 in live-infected cells. J Virol 2007; 81:10123-36. [PMID: 17626080 PMCID: PMC2045433 DOI: 10.1128/jvi.01009-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 07/03/2007] [Indexed: 01/20/2023] Open
Abstract
The human cytomegalovirus (HCMV) immediate-early 2 (IE2) transactivator has previously been shown to form intranuclear, dot-like accumulations in association with subnuclear structures known as promyelocytic leukemia protein (PML) nuclear bodies or ND10. We recently observed that IE2 can form dot-like structures even after infection of PML knockdown cells, which lack genuine ND10. To further analyze the determinants of IE2 subnuclear localization, a recombinant HCMV expressing IE2 fused to the enhanced green fluorescent protein was constructed. We infected primary human fibroblasts expressing Sp100 fused to the autofluorescent protein mCherry while performing live-cell imaging experiments. These experiments revealed a very dynamic association of IE2 dots with ND10 structures during the first hours postinfection: juxtaposed structures rapidly fused to precise co-localizations, followed by segregation, and finally, the dispersal of ND10 accumulations. Furthermore, by infecting PML knockdown cells we determined that the number of IE2 accumulations was dependent on the multiplicity of infection. Since time-lapse microscopy in live-infected cells revealed that IE2 foci developed into viral replication compartments, we hypothesized that viral DNA could act as a determinant of IE2 accumulations. Direct evidence that IE2 molecules are associated with viral DNA early after HCMV infection was obtained using fluorescence in situ hybridization. Finally, a DNA-binding-deficient IE2 mutant could no longer be recruited into viral replication centers, suggesting that the association of IE2 with viral DNA is mediated by a direct DNA contact. Thus, we identified viral DNA as an important determinant of IE2 subnuclear localization, which suggests that the formation of a virus-induced nucleoprotein complex and its spatial organization is likely to be critical at the early stages of a lytic infection.
Collapse
Affiliation(s)
- George Sourvinos
- Institut für Klinische und Molekulare Virologie, University Hospital Erlangen, Schlossgarten 4, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
17
|
Petrik DT, Schmitt KP, Stinski MF. The autoregulatory and transactivating functions of the human cytomegalovirus IE86 protein use independent mechanisms for promoter binding. J Virol 2007; 81:5807-18. [PMID: 17376893 PMCID: PMC1900308 DOI: 10.1128/jvi.02437-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The functions of the human cytomegalovirus (HCMV) IE86 protein are paradoxical, as it can both activate and repress viral gene expression through interaction with the promoter region. Although the mechanism for these functions is not clearly defined, it appears that a combination of direct DNA binding and protein-protein interactions is involved. Multiple sequence alignment of several HCMV IE86 homologs reveals that the amino acids (534)LPIYE(538) are conserved between all primate and nonprimate CMVs. In the context of a bacterial artificial chromosome (BAC), mutation of both P535 and Y537 to alanines (P535A/Y537A) results in a nonviable BAC. The defective HCMV BAC does not undergo DNA replication, although the P535A/Y537A mutant IE86 protein appears to be stably expressed. The P535A/Y537A mutant IE86 protein is able to negatively autoregulate transcription from the major immediate-early (MIE) promoter and was recruited to the MIE promoter in a chromatin immunoprecipitation (ChIP) assay. However, the P535A/Y537A mutant IE86 protein was unable to transactivate early viral genes and was not recruited to the early viral UL4 and UL112 promoters in a ChIP assay. From these data, we conclude that the transactivation and repressive functions of the HCMV IE86 protein can be separated and must occur through independent mechanisms.
Collapse
Affiliation(s)
- Dustin T Petrik
- Interdisciplinary Program in Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
18
|
White EA, Del Rosario CJ, Sanders RL, Spector DH. The IE2 60-kilodalton and 40-kilodalton proteins are dispensable for human cytomegalovirus replication but are required for efficient delayed early and late gene expression and production of infectious virus. J Virol 2007; 81:2573-83. [PMID: 17202222 PMCID: PMC1865986 DOI: 10.1128/jvi.02454-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86-kDa protein is an essential transactivator of viral and cellular gene expression. Additional proteins of 60 and 40 kDa are expressed from the IE2 gene at late times postinfection and are identical to the C terminus of IE2 86. We have constructed HCMV recombinants that express wild-type full-length IE2 86 but do not express the IE2 40- and 60-kDa proteins. Each of these recombinants is viable, indicating that neither the 60-kDa nor the 40-kDa protein is required for virus replication, either alone or in combination. Cells infected with the IE2 60 and IE2 40 deletion mutants, however, exhibit decreased expression of selected viral genes at late times. In particular, expression of the viral DNA replication factor UL84 is affected by the deletion of IE2 40, and expression of the tegument protein pp65 (ppUL83) is affected by the deletion of both IE2 40 and IE2 60. IE2 60 and IE2 40 are also required for the production of normal levels of infectious virus. Finally, IE2 40 appears to function as a repressor of major immediate-early transcription in the infected cell. These results begin to define functions for the IE2 60- and IE2 40-kDa proteins and indicate that these products contribute both to the expression of selected viral genes and to the overall progression of the infection.
Collapse
Affiliation(s)
- Elizabeth A White
- Cellular and Molecular Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
19
|
Reeves M, Murphy J, Greaves R, Fairley J, Brehm A, Sinclair J. Autorepression of the human cytomegalovirus major immediate-early promoter/enhancer at late times of infection is mediated by the recruitment of chromatin remodeling enzymes by IE86. J Virol 2006; 80:9998-10009. [PMID: 17005678 PMCID: PMC1617317 DOI: 10.1128/jvi.01297-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human cytomegalovirus major immediate-early protein IE86 is pivotal for coordinated regulation of viral gene expression throughout infection. A relatively promiscuous transactivator of viral early and late gene transcription, IE86 also acts during infection to negatively regulate its own promoter via direct binding to a 14-bp palindromic IE86-binding site, the cis repression sequence (crs), located between the major immediate-early promoter (MIEP) TATA box and the start of transcription. Although such autoregulation does not involve changes in the binding of basal transcription factors to the MIEP in vitro, it does appear to involve selective inhibition of RNA polymerase II recruitment. However, how this occurs is unclear. We show that autorepression by IE86 at late times of infection correlates with changes in chromatin structure around the MIEP during the course of infection and that this is likely to result from physical and functional interactions between IE86 and chromatin remodeling enzymes normally associated with transcriptional repression of cellular promoters. Firstly, we show that IE86-mediated autorepression is inhibited by histone deacetylase inhibitors. We also show that IE86 interacts, in vitro and in vivo, with the histone deacetylase HDAC1 and histone methyltransferases G9a and Suvar(3-9)H1 and that coexpression of these chromatin remodeling enzymes with IE86 increases autorepression of the MIEP. Finally, we show that mutation of the crs in the context of the virus abrogates the transcriptionally repressive chromatin phenotype normally found around the MIEP at late times of infection, suggesting that negative autoregulation by IE86 results, at least in part, from IE86-mediated changes in chromatin structure of the viral MIEP.
Collapse
Affiliation(s)
- Matthew Reeves
- Department of Medicine, Box 157, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
Asmar J, Wiebusch L, Truss M, Hagemeier C. The putative zinc finger of the human cytomegalovirus IE2 86-kilodalton protein is dispensable for DNA binding and autorepression, thereby demarcating a concise core domain in the C terminus of the protein. J Virol 2004; 78:11853-64. [PMID: 15479827 PMCID: PMC523240 DOI: 10.1128/jvi.78.21.11853-11864.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IE2 86-kDa gene product is an essential regulatory protein of human cytomegalovirus (HCMV) with several functions, including transactivation, negative autoregulation, and cell cycle regulation. In order to understand the physiological significance of each of the IE2 functions, discriminating mutants of IE2 are required that can be tested in a viral background. However, no such mutants of IE2 are available, possibly reflecting structural peculiarities of the large and ill-defined C-terminal domain of IE2. Here, we revisited the C-terminal domain by analyzing IE2 mutants for transactivation, DNA binding, autoregulation, and cell cycle regulation in parallel. We found it to contain an unexpectedly concise core domain (amino acids 450 to 544) that is defined by its absolute sensitivity to any kind of mutation. In contrast, the region adjacent to the core (amino acids 290 to 449) generally tolerates mutations much better. Although it contributes more specific sequence information to distinct IE2 activities, none of the mutations analyzed abolished any particular function. The core is demarcated from the adjacent region by the putative zinc finger region (amino acids 428 to 452). Surprisingly, the deletion of the putative zinc finger region from IE2 revealed that this region is entirely dispensable for any of the IE2 functions tested here in transfection assays. Our work supports the view that the 100 amino acids of the core domain hold the key to most functions of IE2. A systematic, high-density mutational analysis of this region may identify informative mutants discriminating between various IE2 functions that can then be tested in a viral background.
Collapse
Affiliation(s)
- Jasmin Asmar
- Laboratory for Molecular Biology, Department of Pediatrics, Charité, Humboldt-University, Ziegelstr. 5-9, D-10098 Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Xu Y, Cei SA, Rodriguez Huete A, Colletti KS, Pari GS. Human cytomegalovirus DNA replication requires transcriptional activation via an IE2- and UL84-responsive bidirectional promoter element within oriLyt. J Virol 2004; 78:11664-77. [PMID: 15479808 PMCID: PMC523242 DOI: 10.1128/jvi.78.21.11664-11677.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amplification of the human cytomegalovirus (HCMV) lytic origin (oriLyt) in human fibroblasts is dependent upon six core replication proteins and UL84, IE2, and UL36-38. Using a telomerase-immortalized human fibroblast cell line (T-HFs), oriLyt-dependent DNA replication no longer required the gene products of UL36-38. To determine the role of IE2 in DNA replication in human fibroblasts, we examined potential IE2-binding sites within HCMV oriLyt. We now show that a strong bidirectional promoter (oriLyt(PM)) (nucleotides 91754 to 92030) is located in the previously identified core region of the origin and is required for efficient amplification of oriLyt. It was determined that a 14-bp novel DNA motif (oriLyt promoter activation element), which was initially identified as a binding element for the immediate-early protein IE2, was essential for oriLyt(PM) activity. In Vero cells the oriLyt(PM) was constitutively active and strongly repressed by IE2, but it was reactivated by UL84. In contrast, transfection of the oriLyt(PM) into human fibroblasts resulted in a very low basal level of promoter activity that was dramatically up-regulated upon infection with HCMV. Cotransfection assays demonstrated that the transfection of UL84 along with IE2 transactivated the oriLyt(PM) in human fibroblasts. Further activation was observed upon cotransfection of the set of plasmids expressing the entire replication complex. Efficient oriLyt amplification in the absence of IE2 in human fibroblasts was observed by replacing the oriLyt(PM) with the simian virus 40 early promoter. Under these conditions, however, UL84 was still required for amplification of oriLyt. These results suggest that the mechanism of initiation of HCMV lytic replication in part involves transcriptional activation.
Collapse
Affiliation(s)
- Yiyang Xu
- Department of Microbiology and Cell and Molecular Biology Program, University of Nevada-Reno, Howard Bldg., Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
22
|
Colletti KS, Xu Y, Cei SA, Tarrant M, Pari GS. Human cytomegalovirus UL84 oligomerization and heterodimerization domains act as transdominant inhibitors of oriLyt-dependent DNA replication: evidence that IE2-UL84 and UL84-UL84 interactions are required for lytic DNA replication. J Virol 2004; 78:9203-14. [PMID: 15308715 PMCID: PMC506931 DOI: 10.1128/jvi.78.17.9203-9214.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) UL84 encodes a 75-kDa protein required for oriLyt-dependent DNA replication and interacts with IE2 in infected and transfected cells. UL84 localizes to the nucleus of transfected and infected cells and is found in viral replication compartments. In transient assays it was shown that UL84 can interfere with the IE2-mediated transactivation of the UL112/113 promoter of HCMV. To determine whether UL84 protein-protein interactions are necessary for lytic DNA synthesis, we purified UL84 and used this protein to generate a monoclonal antibody. Using this antibody, we now show that UL84 forms a stable interaction with itself in vivo. The point of self-interaction maps to a region of the protein between amino acids 151 and 200, a domain that contains a series of highly charged amino acid residues. Coimmunoprecipitation assays determined that UL84 interacts with a protein domain present within the first 215 amino acids of IE2. We also show that an intact leucine zipper domain of UL84 is required for a stable interaction with IE2 and UL84 leucine zipper mutants fail to complement oriLyt-dependent DNA replication. UL84 leucine zipper mutants no longer interfere with IE2-mediated transactivation of the UL112/113 promoter, confirming that the leucine zipper is essential for a functional interaction with IE2. In addition, we demonstrate that both the leucine zipper and oligomerization domains of UL84 can act as transdominant-negative inhibitors of lytic replication in the transient assay, strongly suggesting that both an IE2-UL84 and a UL84-UL84 interaction are required for DNA synthesis.
Collapse
Affiliation(s)
- Kelly S Colletti
- Department of Microbiology and Immunology, University of Nevada-Reno, Reno, Nevada, USA
| | | | | | | | | |
Collapse
|
23
|
White EA, Clark CL, Sanchez V, Spector DH. Small internal deletions in the human cytomegalovirus IE2 gene result in nonviable recombinant viruses with differential defects in viral gene expression. J Virol 2004; 78:1817-30. [PMID: 14747546 PMCID: PMC369462 DOI: 10.1128/jvi.78.4.1817-1830.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86-kDa protein is a key viral transactivator and an important regulator of HCMV infections. We used the HCMV genome cloned as a bacterial artificial chromosome (BAC) to construct four HCMV mutants with disruptions in regions of IE2 86 that are predicted to be important for its transactivation and autoregulatory functions. Three of these mutants have mutations that remove amino acids 356 to 359, 427 to 435, and 505 to 511, which disrupts a region of IE2 86 implicated in the activation of HCMV early promoters, a predicted zinc finger domain, and a putative helix-loop-helix motif, respectively, while the fourth carries three arginine-to-alanine substitution mutations in the region of amino acids 356 to 359. The resulting recombinant viruses are not viable, and by using quantitative real-time reverse transcription-PCR and immunofluorescence we have determined the location of the block in their replicative cycles. The IE2 86 Delta 356-359 mutant is able to support early gene expression, as indicated by the presence of UL112-113 transcripts and UL112-113 and UL44 proteins in cells transfected with the mutant BAC. This mutant does not express late genes and behaves nearly indistinguishably from the IE2 86R356/7/9A substitution mutant. Both exhibit detectable upregulation of major immediate-early transcripts at early times. The IE2 86 Delta 427-435 and IE2 86 Delta 505-511 recombinant viruses do not activate the early genes examined and are defective in repression of the major immediate-early promoter. These two mutants also induce the expression of selected delayed early (UL89) and late genes at early times in the infection. We conclude that these three regions of IE2 86 are necessary for productive infections and for differential control of downstream viral gene expression.
Collapse
Affiliation(s)
- Elizabeth A White
- Molecular Biology Section and Center for Molecular Genetics, University of California-San Diego, La Jolla, California 92093-0366, USA
| | | | | | | |
Collapse
|
24
|
Huang CH, Chen JY. Identification of additional IE2-p86-responsive cis-repressive sequences within the human cytomegalovirus major immediate early gene promoter. J Biomed Sci 2002; 9:460-70. [PMID: 12218362 DOI: 10.1007/bf02256541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that is the leading viral cause of birth defects and also causes significant morbidity and mortality in immunosuppressed individuals. The immediate early (IE) genes, IE1-p72 and IE2-p86, are the first HCMV genes expressed after infection under the control of a strong transcriptional enhancer-promoter, the major IE promoter (MIEP). Gene expression mediated by the predominant IE2-p86 is believed to be essential for the progression of viral production, as well as for the development of HCMV-associated pathogenesis. To gain further understanding of the transcriptional activity of IE2-p86, we attempted to isolate its downstream target genes within the HCMV genome. By a modified approach coupling the methods of cyclic amplification and selection of targets and selection and amplification of binding sites, several HCMV genomic fragments were identified based on their ability to bind to IE2-p86. Two additional IE2-p86-responsive elements other than the cis-repressive sequence (CRS) were identified within the MIEP and were termed -240 and -170 boxes. These two cis elements resemble the CRS in their sequences, as they contain the CG(N)(10)CG motif. The binding of IE2-p86 to these two distal CRS-like sequences was further confirmed by DNase I footprinting analysis and electrophoretic mobility shift assay. Promoter activity analysis in the transient expression system suggested that these two cis elements act functionally as IE2-p86-responsive repressive sequences to cooperate with the CRS to suppress MIEP expression.
Collapse
Affiliation(s)
- C H Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | |
Collapse
|
25
|
Abstract
It is widely accepted that small DNA tumor viruses, such as adenovirus, simian virus 40 and papillomavirus, push infected cells into S-phase to facilitate the replication of their genome. Until recently, it was believed that the large DNA viruses (i.e. herpesviruses) functioned very differently in this regard by inducing a G(1) arrest in infected cells as part of their replication process. However, studies over the last 6-8 years have uncovered striking parallels (and differences) between the functions of the major immediate early (IE) proteins of at least one herpesvirus, human cytomegalovirus (HCMV) and IE equivalents encoded by small DNA tumor viruses, such as adenovirus. Similarities between the HCMV major IE proteins and adenovirus IE proteins include targeting of members of the RB and p53 families and an ability of these viral factors to induce S-phase in quiescent cells. However, unlike the small DNA tumor virus proteins, individual HCMV IE proteins target different RB family members. HCMV also encodes several other IE gene products as well as virion tegument proteins that act early during infection to prevent an infected cell from replicating its host genome and from undergoing apoptosis. Here, we review the specifics of several HCMV IE proteins, two virion components, and their functions in relation to cell growth control.
Collapse
Affiliation(s)
- Jonathan P Castillo
- Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
26
|
Gawn JM, Greaves RF. Absence of IE1 p72 protein function during low-multiplicity infection by human cytomegalovirus results in a broad block to viral delayed-early gene expression. J Virol 2002; 76:4441-55. [PMID: 11932411 PMCID: PMC155072 DOI: 10.1128/jvi.76.9.4441-4455.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2001] [Accepted: 01/28/2002] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) ie1 deletion mutant CR208 is profoundly growth deficient after low-multiplicity infection of primary fibroblasts. Previously, we showed that many fewer cells infected with CR208 at low multiplicity accumulated the delayed-early (DE) protein ppUL44 than accumulated the immediate-early 2 (IE2) p86 protein, indicating a high frequency of abortive infections. We now demonstrate that accumulation of all DE proteins tested was defective after low-multiplicity infection in the absence of IE1 p72. Accumulation of the DE proteins pUL57, pUL98, and pUL69 followed a pattern very similar to that of ppUL44 during low-multiplicity CR208 infection. Accumulation of the ppUL112-113 proteins occurred in a greater proportion of cells than other DE proteins during low-multiplicity CR208 infection, but was still deficient relative to wild-type virus. We also show for the first time that steady-state levels of many DE RNAs were reduced during low-multiplicity CR208 infection and that by in situ hybridization of the abundant cytoplasmic 2.7-kb TRL4 DE (beta2.7) RNA, a viral DE RNA followed a defective pattern of accumulation similar to that of ppUL44. Furthermore, transfected DE promoter-reporter constructs were found in transient assays to be considerably less responsive to CR208 infection than to infection by wild-type Towne virus. Our results indicate a general defect in DE gene expression following low-multiplicity HCMV infection in the absence of functional IE1 p72, most probably mediated by reduced transcription of DE genes and by the reduced accumulation of DE RNAs.
Collapse
Affiliation(s)
- Jonathan M Gawn
- Department of Medicine, Cambridge University Clinical School, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Sanchez V, Clark CL, Yen JY, Dwarakanath R, Spector DH. Viable human cytomegalovirus recombinant virus with an internal deletion of the IE2 86 gene affects late stages of viral replication. J Virol 2002; 76:2973-89. [PMID: 11861863 PMCID: PMC135995 DOI: 10.1128/jvi.76.6.2973-2989.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using bacterial artificial chromosome (BAC) technology, we have constructed and characterized a human cytomegalovirus recombinant virus with a mutation in the exon specific for the major immediate-early region 2 (IE2) gene product. The resulting IE2 86-kDa protein (IE2 86) has an internal deletion of amino acids 136 to 290 and is fused at the carboxy terminus to enhanced green fluorescent protein (EGFP). The deletion also removes the promoter and initiator methionine for the p40 form of IE2 and initiator methionine for the p60 form of the protein, and therefore, these late gene products are not produced. The mutant virus IE2 86 Delta SX-EGFP is viable but exhibits altered growth characteristics in tissue culture compared with a full-length wild-type (wt) IE2 86-EGFP virus or a revertant virus. When cells are infected with the mutant virus at a low multiplicity of infection (MOI), there is a marked delay in the production of infectious virus. This is associated with slower cell-to-cell spread of the virus. By immunofluorescence and Western blot analyses, we show that the early steps in the replication of the mutant virus are comparable to those for the wt. Although there is significantly less IE2 protein in the cells infected with the mutant, there is only a modest lag in the initial accumulation of IE1 72 and viral early proteins, and viral DNA replication proceeds normally. The mutation also has only a small effect on the synthesis of the viral major capsid protein. The most notable molecular defect in the mutant virus infection is that the steady-state levels of the pp65 (UL83) and pp28 (UL99) matrix proteins are greatly reduced. In the case of UL83, but not UL99, there is also a corresponding decrease in the amount of mRNA present in cells infected with the mutant virus.
Collapse
Affiliation(s)
- Veronica Sanchez
- Molecular Biology Section and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0366, USA
| | | | | | | | | |
Collapse
|
28
|
Murphy JC, Fischle W, Verdin E, Sinclair JH. Control of cytomegalovirus lytic gene expression by histone acetylation. EMBO J 2002; 21:1112-20. [PMID: 11867539 PMCID: PMC125876 DOI: 10.1093/emboj/21.5.1112] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Permissiveness for human cytomegalovirus (HCMV) infection is dependent on the state of cellular differentiation and has been linked to repression of the viral major immediate early promoter (MIEP). We have used conditionally permissive cells to analyze differential regulation of the MIEP and possible mechanisms involved in latency. Our data suggest that histone deacetylases (HDACs) are involved in repression of the MIEP in non-permissive cells as inhibition of HDACs induces viral permissiveness and increases MIEP activity. Non-permissive cells contain the class I HDAC, HDAC3; super-expression of HDAC3 in normally permissive cells reduces infection and MIEP activity. We further show that the MIEP associates with acetylated histones in permissive cells, and that in peripheral blood monocytes the MIEP associates with heterochromatin protein 1 (HP1), a chromosomal protein implicated in gene silencing. As monocytes are believed to be a site of viral latency in HCMV carriers and reactivated virus is only observed upon differentiation into macrophages, we propose that chromatin remodeling of the MIEP following cellular differentiation could potentially play a role in reactivation of latent HCMV.
Collapse
Affiliation(s)
- Jane C. Murphy
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK and
Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA Corresponding author e-mail:
| | - Wolfgang Fischle
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK and
Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA Corresponding author e-mail:
| | - Eric Verdin
- Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK and
Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA Corresponding author e-mail:
| | | |
Collapse
|
29
|
Dwarakanath RS, Clark CL, McElroy AK, Spector DH. The use of recombinant baculoviruses for sustained expression of human cytomegalovirus immediate early proteins in fibroblasts. Virology 2001; 284:297-307. [PMID: 11384228 DOI: 10.1006/viro.2001.0924] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isolation of viruses with mutations in essential genes requires that they be propagated in cells expressing the wild-type proteins. This has been a particularly challenging problem for studying mutations in the human cytomegalovirus (HCMV) immediate early (IE) gene, IE2 86. In the past, we tried a number of approaches to derive human fibroblasts expressing wild-type IE2 86, but were unable to maintain expression of a fully functional protein. To overcome this obstacle, we developed a strategy whereby recombinant baculoviruses were used as vectors for the expression of HCMV IE proteins in primary human fibroblasts (FFs). The IE2 86 and IE1 72 cDNAs, as well as the genomic fragment of the UL122-123 region under the control of a chicken actin promoter, were introduced into the baculovirus genome by site-specific transposition in Escherichia coli. Recombinant "bacmid" DNAs were then transfected into Sf9 cells to generate recombinant baculoviruses. FFs infected at high m.o.i. with these baculoviruses expressed high levels of the HCMV protein for at least 1 week, as determined by immunofluorescence assays and Western blots. Moreover, the IE2 86 protein was found to be fully functional with respect to its ability to activate the HCMV UL112-113 early promoter. Recombinant baculoviruses expressing IE1 72 were also able to efficiently complement HCMV ie1 mutants. These data demonstrate the potential of using recombinant baculoviruses as vectors for the expression of toxic viral genes in human cells and for subsequent isolation of mutant HCMV lacking these essential genes.
Collapse
Affiliation(s)
- R S Dwarakanath
- Molecular Biology Section and Center for Molecular Genetics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0366, USA
| | | | | | | |
Collapse
|
30
|
Wu J, O'Neill J, Barbosa MS. Late temporal gene expression from the human cytomegalovirus pp28US (UL99) promoter when integrated into the host cell chromosome. J Gen Virol 2001; 82:1147-1155. [PMID: 11297689 DOI: 10.1099/0022-1317-82-5-1147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toward understanding the temporal regulation of human cytomegalovirus (HCMV) late genes, we studied the regulation of the late gene promoter (pp28US, UL99) when outside the context of the viral genome and its response to the immediate early (IE) proteins. Expression of the luciferase reporter gene, regulated by the pp28US promoter, was synchronous with that of the endogenous viral pp28 gene, independently of whether the reporter was episomal or integrated into the glioblastoma cell line U373MG. Cotransfection of the reporter with expression vectors for each of the three major IE genes, IE72, IE86 and IE55, indicated that only IE86 transactivated the pp28US promoter. However, the magnitude of the promoter activation upon HCMV infection suggested that additional factors are also required for higher promoter activity. The promoter activation was specific to HCMV, as herpes simplex virus type 1 infection did not induce luciferase expression.
Collapse
Affiliation(s)
- Jun Wu
- Signal Research Division of Celgene, 5555 Oberlin Drive, San Diego, CA 92121, USA1
| | - Joseph O'Neill
- Signal Research Division of Celgene, 5555 Oberlin Drive, San Diego, CA 92121, USA1
| | - Miguel S Barbosa
- Signal Research Division of Celgene, 5555 Oberlin Drive, San Diego, CA 92121, USA1
| |
Collapse
|
31
|
Bryant LA, Mixon P, Davidson M, Bannister AJ, Kouzarides T, Sinclair JH. The human cytomegalovirus 86-kilodalton major immediate-early protein interacts physically and functionally with histone acetyltransferase P/CAF. J Virol 2000; 74:7230-7. [PMID: 10906177 PMCID: PMC112244 DOI: 10.1128/jvi.74.16.7230-7237.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major immediate-early proteins of human cytomegalovirus (HCMV) play a pivotal role in controlling viral and cellular gene expression during productive infection. As well as negatively autoregulating its own promoter, the HCMV 86-kDa major immediate early protein (IE86) activates viral early gene expression and is known to be a promiscuous transcriptional regulator of cellular genes. IE86 appears to act as a multimodal transcription factor. It is able to bind directly to target promoters to activate transcription but is also able to bridge between upstream binding factors such as CREB/ATF and the basal transcription complex as well as interacting directly with general transcription factors such as TATA-binding protein and TFIIB. We now show that IE86 is also able to interact directly with histone acetyltransferases during infection. At least one of these factors is the histone acetyltransferase CBP-associated factor (P/CAF). Furthermore, we show that this interaction results in synergistic transactivation by IE86 of IE86-responsive promoters. Recruitment of such chromatin-remodeling factors to target promoters by IE86 may help explain the ability of this viral protein to act as a promiscuous transactivator of cellular genes.
Collapse
Affiliation(s)
- L A Bryant
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- E A Fortunato
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0366, USA
| | | |
Collapse
|
33
|
Wara-aswapati N, Yang Z, Waterman WR, Koyama Y, Tetradis S, Choy BK, Webb AC, Auron PE. Cytomegalovirus IE2 protein stimulates interleukin 1beta gene transcription via tethering to Spi-1/PU.1. Mol Cell Biol 1999; 19:6803-14. [PMID: 10490619 PMCID: PMC84677 DOI: 10.1128/mcb.19.10.6803] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Potent induction of the gene coding for human prointerleukin 1beta (il1b) normally requires a far-upstream inducible enhancer in addition to a minimal promoter located between positions -131 and +12. The transcription factor Spi-1 (also called PU.1) is necessary for expression and binds to the minimal promoter, thus providing an essential transcription activation domain (TAD). In contrast, infection by human cytomegalovirus (HCMV) can strongly activate il1b via the expression of immediate early (IE) viral proteins and eliminates the requirement for the upstream enhancer. Spi-1 has been circumstantially implicated as a host factor in this process. We report here the molecular basis for the direct involvement of Spi-1 in HCMV activation of il1b. Transfection of Spi-1-deficient HeLa cells demonstrated both the requirement of Spi-1 for IE activity and the need for a shorter promoter (-59 to +12) than that required in the absence of IE proteins. Furthermore, in contrast to normal, enhancer-dependent il1b expression, which absolutely requires both the Spi-1 winged helix-turn-helix (wHTH) DNA-binding domain and the majority of the Spi-1 TAD, il1b expression in the presence of IE proteins does not require the Spi-1 TAD, which plays a synergistic role. In addition, we demonstrate that a single IE protein, IE2, is critical for the induction of il1b. Protein-protein interaction experiments revealed that the wing motif within the Spi-1 wHTH domain directly recruits IE2. In turn, IE2 physically associates with the Spi-1 wing and requires the integrity of at least one region of IE2. Functional analysis demonstrates that both this region and a carboxy-terminal acidic TAD are required for IE2 function. Therefore, we propose a protein-tethered transactivation mechanism in which the il1b promoter-bound Spi-1 wHTH tethers IE2, which provides a TAD, resulting in the transactivation of il1b.
Collapse
Affiliation(s)
- N Wara-aswapati
- The New England Baptist Bone & Joint Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The human cytomegalovirus (HCMV) US11 early gene encodes a protein involved in the down-regulation of major histocompatibility complex class I cell surface expression in HCMV-infected cells. Consequently, this gene is thought to play an important role in HCMV evasion of immune recognition. In this study, we examined the transcriptional regulation of US11 gene expression. Analysis of deletions within the US11 promoter suggests that two sequence elements are important for activation by the viral immediate-early (IE) proteins. Deletion of a CREB site located at -83 relative to the cap site resulted in a reduction in promoter activity to 50% of the wild-type level. Deletion of an additional ATF site immediately upstream of the TATA box resulted in abrogation of responsiveness to the IE proteins. To confirm the role of the CREB and ATF sites within the US11 promoter, mutagenesis of these two sites, both individually and in combination, was carried out. Results indicate that both the CREB element and the ATF site were required for full promoter activity, with the ATF site critical for US11 promoter activation. The loss of transcriptional activation correlated with a loss of cellular proteins binding to the mutated US11 promoter elements. In combination with the viral IE proteins, the HCMV tegument protein pp71 (UL82) was found to up-regulate the US11 promoter by six- to sevenfold in transient assays. These results suggest that pp71 may contribute to the activation of the US11 promoter at early times after infection. Up-regulation by pp71 required the presence of the CREB and ATF sites within the US11 promoter for full activation. The role of the ATF and CREB elements in regulating US11 gene expression during viral infection was then assessed. The US11 gene is not required for replication of HCMV in tissue culture. This property was exploited to generate US11 promoter mutants regulating expression of the endogenous US11 gene in the natural genomic context. We generated recombinant HCMV that contained the US11 promoter with mutations in either the CREB or ATF element or both regulating the expression of the endogenous US11 gene. Northern blot analysis of infected cell mRNA revealed that mutation of the CREB element reduced US11 mRNA expression to approximately 25% of that of the wild-type promoter, with identical kinetics of expression. Mutation of the ATF site alone reduced US11 mRNA levels to 6% of that of the wild-type promoter, with mRNA detectable only at 8 h after infection. Mutation of both the CREB and ATF elements in the US11 promoter reduced US11 gene expression to undetectable levels. These results demonstrate that the CREB and ATF sites cooperate to regulate the US11 promoter in HCMV-infected cells.
Collapse
Affiliation(s)
- N H Chau
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23501, USA
| | | | | |
Collapse
|
35
|
Waheed I, Chiou CJ, Ahn JH, Hayward GS. Binding of the human cytomegalovirus 80-kDa immediate-early protein (IE2) to minor groove A/T-rich sequences bounded by CG dinucleotides is regulated by protein oligomerization and phosphorylation. Virology 1998; 252:235-57. [PMID: 9875333 DOI: 10.1006/viro.1998.9448] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 80-kDa immediate-early regulatory protein IE2 of human cytomegalovirus (HCMV) functions as an essential positive transactivator of downstream viral promoters, but it also specifically down-regulates transcription from the major immediate-early promoter through a 14-bp DNA target motif known as the cis-repression signal (CRS) located at the transcription start site. The IE2 protein purified from bacteria as a fusion product of either staphylococcal Protein A/IE2(290-579) or glutathione-S-transferase (GST)/IE2(346-579) bound specifically to a [32P]-labeled CRS oligonucleotide probe in an in vitro electrophoretic mobility shift assay (EMSA). In contrast, no direct interaction with the CRS probes could be detected with IE2 wild-type protein in extracts from infected or transfected mammalian cells or when synthesized by in vitro translation. However, in vitro phosphorylation of GST/IE2(346-579) by incubation with either the catalytic subunit of protein kinase A (PKA) or a HeLa cell nuclear extract strongly inhibited its DNA-binding activity. This process required ATP hydrolysis and could be reversed by subsequent incubation with bacterial alkaline phosphatase. Importantly, dephosphorylation of the constitutively expressed native IE2 protein present in a nuclear extract from the U373(A45) cell line unmasked a specific CRS DNA-binding activity that could be supershifted with anti-IE2 monoclonal antibody (mAb). A series of high-molecular-weight hetero-oligomeric DNA-bound structures of intermediate mobility were formed in EMSA assays when a mixture of staphylococcal Protein A/IE2 and GST/IE2 was coincubated with the CRS probe. Coincubation with a DNA-binding negative but dimerization-competent GST/IE2 deletion mutant competitively inhibited DNA-binding by staphylococcal Protein A/IE2, whereas coincubation with a GST/IE2 deletion mutant that lacked the ability to both dimerize and bind to DNA failed to influence the mobility of the DNA-bound staphylococcal Protein A/IE2 protein. Therefore, IE2 appears to bind to DNA as a higher-order oligomer in which the presence of subunits with mutant DNA-binding domains interferes with the overall DNA-binding function. A series of point mutations introduced into each of nine conserved motifs throughout the DNA-binding and dimerization domain, all of which abolish the ability of the transfected intact IE2 protein to autoregulate the MIE promoter, also all lacked the ability to bind to CRS sequences as GST/IE2(346-379) fusion proteins. Detailed analysis of point mutations in the 14-bp CRS target DNA binding motif revealed that IE2 binds in a relatively sequence-independent manner to 10-bp-long A/T-rich DNA elements bounded on each side by CG dinucleotides. Moreover, the A/T-rich minor groove binding agent distamycin, but not the G/C-rich minor groove binding agent chromomycin-A3, actively competed with IE2 for binding to the CRS motif in a dose-dependent fashion. In conclusion, IE2 binds preferentially as multimerized dimers to A/T-rich sequences in the minor groove that are flanked on both sides by appropriately spaced CG dinucleotides, and inhibition of the DNA-binding or oligomerization activity by PKA phosphorylation probably accounts for the inactivity of the mammalian and in vitro translated forms of the protein.
Collapse
Affiliation(s)
- I Waheed
- Molecular Virology Laboratories, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
36
|
Rodems SM, Spector DH. Extracellular signal-regulated kinase activity is sustained early during human cytomegalovirus infection. J Virol 1998; 72:9173-80. [PMID: 9765464 PMCID: PMC110336 DOI: 10.1128/jvi.72.11.9173-9180.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of many early viral genes during human cytomegalovirus (HCMV) infection is dependent on cellular transcription factors. Several immediate-early and early viral promoters contain DNA binding sites for cellular factors such as CREB, AP-1, serum response factor, and Elk-1, and these transcription factors can be activated by phosphorylation via the cellular mitogen-activated protein kinase (MAPK) signal transduction cascade. To determine if the extracellular signal-regulated MAPKs, ERK1 and ERK2, play a role in transcription factor activation during infection, we tested for ERK activity during viral infection. We found that HCMV infection resulted in the maintenance of previously activated ERK1 and ERK2 by a mechanism which appears to involve the inhibition of a cellular phosphatase activity. ERK phosphorylation and activity were sustained for at least 8 h after infection, whereas in mock-infected cells, ERK activity steadily declined by 1 h postinfection. The activity of at least one cellular substrate of the ERKs, the protein kinase RSK1, was also maintained during this period. UV inactivation experiments suggested that viral gene expression was required for sustained ERK activity. In turn, activation of the ERKs appeared to be important for viral gene expression, as evidenced by the observed decrease in the transcriptional activity of the HCMV UL112-113 promoter during infection in the presence of the MEK inhibitor PD98059. These data suggest that HCMV utilizes cellular signal transduction pathways to activate viral or cellular transcription factors involved in the control of early viral gene expression and DNA replication.
Collapse
Affiliation(s)
- S M Rodems
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0357, USA
| | | |
Collapse
|
37
|
Bresnahan WA, Albrecht T, Thompson EA. The cyclin E promoter is activated by human cytomegalovirus 86-kDa immediate early protein. J Biol Chem 1998; 273:22075-82. [PMID: 9705351 DOI: 10.1074/jbc.273.34.22075] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) activates cyclin E/Cdk2, which regulates cell cycle progression in G1 and S phase of the cell cycle. HCMV activation of cyclin E/Cdk2 can be demonstrated in cells that are refractory to normal mitotic stimuli. This observation suggests that the virus has some means to overcome the stringent control on expression of cell cycle progression factors that is characteristic of cells in the G0 state. One of the mechanisms involved in activation of cyclin E/Cdk2 is the induction of cyclin E expression. We report here that HCMV induces cyclin E expression through a transcriptional mechanism. The cyclin E gene is activated by the HCMV 86-kDa immediate early gene product (IE86), which directly binds to nucleotide sequences within the cyclin E promoter. An IE86 DNA-binding mutant neither binds nor activates the cyclin E promoter. IE86-binding sites within the cyclin E promoter are required for IE86-mediated activation, and deletion of the IE86-binding site inhibits IE86 activation of the cyclin E promoter. We also demonstrate that mutation of the known E2F-binding sites in the cyclin E promoter does not block activation by HCMV or IE86. These data provide a molecular mechanism for HCMV induction of cyclin E and represent the first report of IE86 directly binding to a cellular promoter.
Collapse
Affiliation(s)
- W A Bresnahan
- Departments of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas 77555-0645, USA
| | | | | |
Collapse
|
38
|
Yamamoto T, Suzuki S, Radsak K, Hirai K. The UL112/113 gene products of human cytomegalovirus which colocalize with viral DNA in infected cell nuclei are related to efficient viral DNA replication. Virus Res 1998; 56:107-14. [PMID: 9784069 DOI: 10.1016/s0168-1702(98)00032-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The UL112/113 gene products of human cytomegalovirus (HCMV) were shown by transient complementation ori Lyt-dependent DNA replication assay to be early viral proteins required for efficient viral DNA synthesis. By immunofluorescence analysis followed by fluorescence in situ hybridization, we showed that UL112/113 gene products of HCMV are colocalized with viral DNA prior to and during viral DNA replication in infected cell nuclei. We have used an anti-sense RNA approach for functional analysis of the UL112/113 gene in HCMV. The astrocytoma cell line U373-MG was used for permanent expression of the anti-sense UL112/113 gene. Expression of the anti-sense RNA in this cell line significantly blocked expression of UL112/113 gene products and viral DNA replication, indicating that the UL112/113 gene products are related to efficient viral DNA replication.
Collapse
Affiliation(s)
- T Yamamoto
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
39
|
Rodems SM, Clark CL, Spector DH. Separate DNA elements containing ATF/CREB and IE86 binding sites differentially regulate the human cytomegalovirus UL112-113 promoter at early and late times in the infection. J Virol 1998; 72:2697-707. [PMID: 9525587 PMCID: PMC109712 DOI: 10.1128/jvi.72.4.2697-2707.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human cytomegalovirus (HCMV) UL112-113 promoter represents a useful model for studying temporal regulation of viral gene expression. Stimulation of this promoter by the 86-kDa immediate-early protein (IE86) is controlled by sequences between nucleotides -113 and -59, which include both an ATF/CREB and an IE86 binding site. In transient assays, the ATF/CREB site is essential, and the IE86 site, although nonessential, can enhance transcription. With recombinant viruses, we have assessed the function of these promoter elements in the context of the viral genome. Transcription from the inserted UL112-113 promoter shows the same temporal pattern as the endogenous promoter, including the switch to an upstream RNA start site late in infection. Deletion of sequences containing the IE86 site results in a decrease in the level of early transcription and elimination of late transcription. In contrast, when the ATF/CREB site is deleted, early RNA synthesis is almost completely abolished, but late transcription is comparable to that of the wild type, with repositioning of the RNA start site downstream by the number of nucleotides deleted. Replacement of sequences between -108 and -95 with the HCMV cis-repression signal from the major immediate-early promoter had no effect on the level of late RNAs but resulted in the repositioning of the RNA start site 39 nucleotides upstream. These results suggest that the ATF/CREB site is functional only at early times, while sequences containing the IE86 site modulate the level of early RNAs and may be required for activating late transcription in a distance-dependent manner.
Collapse
Affiliation(s)
- S M Rodems
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0357, USA
| | | | | |
Collapse
|
40
|
Wing BA, Johnson RA, Huang ES. Identification of positive and negative regulatory regions involved in regulating expression of the human cytomegalovirus UL94 late promoter: role of IE2-86 and cellular p53 in mediating negative regulatory function. J Virol 1998; 72:1814-25. [PMID: 9499032 PMCID: PMC109471 DOI: 10.1128/jvi.72.3.1814-1825.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human cytomegalovirus (HCMV) UL94 gene product is a herpesvirus-common virion protein that is expressed with true late kinetics. To identify the important cis- and trans-acting factors which contribute to UL94 transcriptional regulation, we have cloned, sequenced, and analyzed UL94 promoter function by transient transfection analysis. Transfection of UL94 promoter-reporter gene constructs into permissive human fibroblasts or U373(MG) cells indicated that promoter activity was detected following infection with HCMV. Point mutations within a TATA-like element located upstream of the RNA start site significantly reduced UL94 promoter activity. Deletion mutagenesis of the promoter indicated that a positive regulatory element (PRE) was likely to exist downstream of the UL94 mRNA start site, while a negative regulatory element (NRE) was present upstream of the TATA box. At late times of infection, the PRE appeared to have a dominant effect over the NRE to stimulate maximum levels of UL94 promoter activity, while at earlier times of infection, no activity associated with the PRE could be detected. The NRE, however, appeared to cause constitutive down-regulation of UL94 promoter activity. Binding sites for the cellular p53 protein located within the NRE appeared to contribute to NRE function, and NRE function could be recapitulated in cotransfection assays by concomitant expression of p53 and HCMV IE2-86 protein. Our results suggest a novel mechanism by which the cellular protein p53, which is involved in both transcriptional regulation and progression of cellular DNA synthesis, plays a central role in the regulation of a viral promoter which is not activated prior the onset of viral DNA replication.
Collapse
Affiliation(s)
- B A Wing
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7595, USA
| | | | | |
Collapse
|
41
|
Wu J, O'Neill J, Barbosa MS. Transcription factor Sp1 mediates cell-specific trans-activation of the human cytomegalovirus DNA polymerase gene promoter by immediate-early protein IE86 in glioblastoma U373MG cells. J Virol 1998; 72:236-44. [PMID: 9420220 PMCID: PMC109369 DOI: 10.1128/jvi.72.1.236-244.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) gene expression is highly cell and tissue specific. Cell factor-mediated regulatory interactions are involved in regulating the restricted expression of the HCMV major immediate-early (IE) gene (J. F. Baskar, P. P. Smith, G. Nilaver, R. A. Jupp, S. Hoffmann, N. J. Peffer, D. J. Tenney, A. M. Colberg-Poley, P. Ghazal, and J. A. Nelson, 70:3207-3213, 1996). To gain an understanding of HCMV early gene activation, we studied the effect of each of the three major IE proteins, IE72, IE86, and IE55, on the HCMV DNA polymerase gene (pol; UL54) promoter. In transient-expression assays, the IE86 protein alone was able to transactivate the pol promoter, but IE72 and IE55 were not, in permissive U373MG cells. However, we were unable to detect IE86-mediated transactivation in nonpermissive HeLa or C33-A cells. Using electrophoretic mobility shift assays (EMSAs), we found that expression of the IE86 protein in U373MG cells resulted in specific binding of a DNA complex to an inverted-repeat element, IR1, of the pol promoter. Antibody supershifting and EMSA-Western blotting experiments further showed that IE86 and the cellular transcription factor Sp1 were components of the IR1 DNA-binding complex. Furthermore, we found that binding of DNA by Sp1 was dramatically increased in the presence of IE86. Interestingly, this IE86-induced DNA-binding activity of Sp1 was inhibited by a repressor activity presented in HeLa cells. In summary, our study suggests that a viral regulatory protein can modulate the DNA binding activity of a cellular transcription factor, resulting in cell-specific transactivation of viral genes.
Collapse
Affiliation(s)
- J Wu
- Signal Pharmaceuticals, Inc., San Diego, California 92121, USA.
| | | | | |
Collapse
|
42
|
Greaves RF, Mocarski ES. Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. J Virol 1998; 72:366-79. [PMID: 9420235 PMCID: PMC109384 DOI: 10.1128/jvi.72.1.366-379.1998] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To investigate the importance of the IE1 p72 regulatory protein during human cytomegalovirus replication, a recombinant virus unable to synthesize IE1 p72 was constructed. The Towne strain mutant CR208 lacked exon 4 of the major immediate-early gene and was isolated and complemented in an IE1-expressing immortalized human fibroblast line (ihfie1.3). Replication of CR208 in primary human fibroblasts was completed after an input multiplicity of 10 PFU/cell but was severely-impaired at 0.1 PFU/cell. CR208 formed plaques with lower efficiency on primary fibroblasts than on ihfiel.3 cells, and the relationship between the CR208 inoculum size and the resulting number of undersized plaques was nonlinear, indicating that multiple particles of CR208 were required to initiate lytic replication in a single primary fibroblast. After infection of primary fibroblasts with CR208 at 5 PFU/cell, a normal pattern of viral antigens was detected, although IE1 p72 was absent. During lower-multiplicity infections, IE2 protein was consistently detected at similar levels in a similar proportion of CR208-infected cells relative to the case for a Towne infection, but many fewer CR208-infected cells contained the ppUL44 polymerase accessory protein when evaluated at 24 or 48 h after infection. Furthermore, fibroblasts infected with CR208 at a low multiplicity failed to form viral DNA replication compartments, despite having expressed IE2 p86. These low-multiplicity growth and expression defects were corrected in two rescued derivatives of CR208 able to synthesize IE1 p72. One rescued virus (CR249) carried a deletion removing the large intron between exons 1 and 2 of the ie1-ie2 locus, revealing that this intron was dispensable for growth in cell culture.
Collapse
Affiliation(s)
- R F Greaves
- Department of Medicine, Cambridge University Clinical School, Addenbrookes Hospital, United Kingdom.
| | | |
Collapse
|
43
|
Tsai HL, Kou GH, Tang FM, Wu CW, Lin YS. Negative regulation of a heterologous promoter by human cytomegalovirus immediate-early protein IE2. Virology 1997; 238:372-9. [PMID: 9400610 DOI: 10.1006/viro.1997.8855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The HCMV IE2 protein promiscuously activates transcription of many viral and cellular genes. IE2 also negatively autoregulates its own expression by binding to a strategically positioned IE2 binding site, called CRS, located immediately downstream of the TATA box of the HCMV major IE promoter. Here we show that IE2 is able to repress transcription driven by a heterologous promoter, RSV LTR. Repression of RSV LTR by IE2 is completely dependent of DNA sequences downstream of the TATA box of RSV LTR. A DNA sequence, 5'-CGATACAATAAACG-3', evidently matching the proposed CRS consensus sequence, is located between nucleotides -13 and +1 (relative to the transcription start site) of RSV LTR. Three lines of evidence support the notion that this RSV CRS element is involved in the IE2-mediated repression of RSV LTR. First, introduction of mutation to the RSV CRS element renders to the mutant RSV LTR resistance to IE2-mediated repression. Second, a mutant IE2 defective in DNA binding cannot downregulate transcription from RSV LTR. Third, IE2 specifically binds to the wild-type, but not the mutant, RSV CRS element in vitro. These data, in conjunction with previous works, demonstrate that IE2 can passively repress transcription of homologous and heterologous promoters that contain a CRS element.
Collapse
Affiliation(s)
- H L Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Fortunato EA, Sommer MH, Yoder K, Spector DH. Identification of domains within the human cytomegalovirus major immediate-early 86-kilodalton protein and the retinoblastoma protein required for physical and functional interaction with each other. J Virol 1997; 71:8176-85. [PMID: 9343168 PMCID: PMC192274 DOI: 10.1128/jvi.71.11.8176-8185.1997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human cytomegalovirus major immediate-early 86-kDa protein (IE2 86) plays an important role in the trans activation and regulation of HCMV gene expression. Previously, we demonstrated that IE2 86 contains three regions (amino acids [aa] 86 to 135, 136 to 290, and 291 to 364) that can independently bind to in vitro-translated Rb when IE2 86 is produced as a glutathione S-transferase fusion protein (M. H. Sommer, A. L. Scully, and D. H. Spector, J. Virol. 68:6223-6231, 1994). In this report, we have elucidated the regions of Rb involved in binding to IE2 86 and have further analyzed the functional nature of the interaction between these two proteins. We find that two domains on Rb, the A/B pocket and the carboxy terminus, can each independently form a complex with IE2 86. In functional assays, we demonstrate that IE2 86 and another IE protein, IE1 72, can counter the enlarged flat cell phenotype, but not the G1/S block, which results from expression of wild-type Rb in the human osteosarcoma cell line Saos-2. Mutational analysis reveals that there are two domains on IE2 86 that can independently affect Rb function. One region (aa 241 to 369) includes the major Rb-binding domain, while the second maps to the amino-terminal region (aa 1 to 85) common to both IE2 86 and IE1 72. These data show that Rb and IE2 86 physically and functionally interact with each other via at least two separate domains and provide further support for the hypothesis that IE2 86 may exert its pleiotropic effects through the formation of multimeric protein complexes.
Collapse
Affiliation(s)
- E A Fortunato
- Department of Biology, University of California, San Diego, La Jolla 92093-0357, USA
| | | | | | | |
Collapse
|
45
|
Luu P, Flores O. Binding of SP1 to the immediate-early protein-responsive element of the human cytomegalovirus DNA polymerase promoter. J Virol 1997; 71:6683-91. [PMID: 9261391 PMCID: PMC191947 DOI: 10.1128/jvi.71.9.6683-6691.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human cytomegalovirus (HCMV), a member of the herpesvirus family of DNA viruses, encodes two major immediate-early (IE) transcription factors, IE72 and IE86, that are important for regulated expression of the viral genome. The purpose of this study was to identify the host cellular components required for regulation of the HCMV DNA polymerase promoter (UL54) by HCMV IE proteins. Extensive mutagenesis defined a DNA element located between -54 and -43 relative to the transcription start site that was required for both basal transcriptional activity and transactivation by viral IE proteins. A single copy of the UL54 -54/-43 sequence enhanced the responsiveness of a heterologous minimal promoter to HCMV IE proteins. Fractionation of extracts prepared from uninfected cells led to the isolation of two cellular proteins with apparent molecular masses of 95 and 105 kDa that bound specifically to the UL54 -54/-43 element. Biochemical and immunochemical analyses identified this protein as the transcription factor SP1. Although initial inspection of the UL54 -54/-43 sequence did not predict an SP1 binding site, subsequent analyses indicated that it is indeed a nonconsensus GC box. We propose that SP1 is required to direct basal levels of promoter activity and that SP1-regulated transcription complexes allow the entry of HCMV IE proteins into the transcription cycle.
Collapse
Affiliation(s)
- P Luu
- Tularik Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
46
|
Poma EE, Kowalik TF, Zhu L, Sinclair JH, Huang ES. The human cytomegalovirus IE1-72 protein interacts with the cellular p107 protein and relieves p107-mediated transcriptional repression of an E2F-responsive promoter. J Virol 1996; 70:7867-77. [PMID: 8892909 PMCID: PMC190858 DOI: 10.1128/jvi.70.11.7867-7877.1996] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Rb-related p107 protein has been implicated as an important control element in proper cell cycle progression. The p107 protein is thought to restrict cellular proliferation in part through its interaction with the E2F family of transcription factors and is, therefore, a specific target for regulation by several DNA viruses. Here, we demonstrate that p107 protein levels are induced in a biphasic manner in human fibroblasts during productive infection by the human cytomegalovirus (HCMV). Expression patterns of p107 protein levels during HCMV infection of human embryonic lung cells (HELs) demonstrate a sustained induction from early to late times of infection. We also demonstrate that the HCMV immediate-early protein IE1-72 complexes in vivo with the p107 protein and that this interaction can be reconstituted in an in vitro system by using reticulocyte-translated protein. Our data demonstrate that the interaction between p107 and the IE1-72 protein occurs at times of infection that temporally match the second tier of p107 protein induction and the phosphorylation pattern of the IE1-72 protein. Furthermore, we show here that the ability of p107 to transcriptionally repress E2F-responsive promoters can be overcome by expression of the IE1-72 protein. This effect appears to be specific, since the IE1-72 protein is not capable of relieving Rb-mediated repression of an E2F-responsive promoter. Finally, our data demonstrate that HCMV infection can induce cellular proliferation in quiescent cells and that IE1-72 expression alone can, to a degree, drive a similar progression through the cell cycle. These data suggest that IE1-72-mediated transactivation of E2F-responsive promoters through alleviation of p107 transcriptional repression may play a key role in the cell cycle progression stimulated by HCMV infection.
Collapse
Affiliation(s)
- E E Poma
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 27599-7295, USA
| | | | | | | | | |
Collapse
|
47
|
Schwartz R, Helmich B, Spector DH. CREB and CREB-binding proteins play an important role in the IE2 86-kilodalton protein-mediated transactivation of the human cytomegalovirus 2.2-kilobase RNA promoter. J Virol 1996; 70:6955-66. [PMID: 8794339 PMCID: PMC190745 DOI: 10.1128/jvi.70.10.6955-6966.1996] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human cytomegalovirus (HCMV) immediate-early region 2 86-kDa protein (IE2 86) is the major transactivator of the promoter for the 2.2-kb class of early RNAs (open reading frame UL 112-113). Previously, we reported that a DNA segment on this promoter between nucleotides (nt) -113 and -59 was critical for activation by IE2 86 in vivo and could be bound by IE2 86 in vitro (R. Schwartz, M. H. Sommer, A. Scully, and D. H. Spector, J. Virol. 68:5613-5622, 1994). With a set of site-specific mutations within nt -84 to -61, we have localized the essential cis-acting sequences to nt -72 to -61, which contain an ATF/CREB-binding site. The IE2 86-binding site between nt -113 and -85 is not essential for activation of the promoter by IE2 86 in transient-expression assays, but its presence can enhance the level of activation mediated through the sequences located between nt -84 and -59. Electrophoretic mobility shift assays with a segment containing nt -84 to -59 and nuclear extracts from human cells permissive for the HCMV infection revealed a complex band pattern. However, by supershift analysis with specific antibodies, we were able to identify CREB as the major ATF/CREB family member in the protein-DNA complexes. Further evidence that CREB is a target for IE2 86-mediated induction, is provided by the finding that IE2 86 activates the somatostatin promoter to high levels. Although the binding of IE2 86 to nonphosphorylated full-length CREB or deltaCREB is minimal, IE2 86 does form complexes with p300 and the CREB-binding protein (CBP), which in turn bind to CREB and can serve as adaptor proteins for CREB function. In addition, the in vivo functional relevance of the interaction between IE2 86 and CBP is indicated by the ability of IE2 86 to enhance transcriptional activation mediated by a GAL4-CBP fusion protein brought to a promoter by GAL4-binding sites.
Collapse
Affiliation(s)
- R Schwartz
- Department of Biology, University of California, San Diego, La Jolla, California 92093-0357, USA
| | | | | |
Collapse
|
48
|
Huang L, Zhu Y, Anders DG. The variable 3' ends of a human cytomegalovirus oriLyt transcript (SRT) overlap an essential, conserved replicator element. J Virol 1996; 70:5272-81. [PMID: 8764037 PMCID: PMC190484 DOI: 10.1128/jvi.70.8.5272-5281.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The genetically defined human cytomegalovirus (HCMV) lytic-phase replicator, oriLyt, comprises more than 2 kb in a structurally complex region that spans a variety of potential transcription control signals. Several transcripts originate within or cross oriLyt, and we are studying these oriLyt transcription units to determine whether they participate in initiating or regulating lytic-phase DNA synthesis. Results presented here establish the temporal accumulation and structure of the smallest replicator transcript, which we call SRT, and identify a single-sequence element essential to replicator function. SRT was detected as early as 2 h after HCMV infection of human fibroblast cells; transcript levels increased by 24 h and continued to increase thereafter. Consistent with its early appearance, treatment of HCMV-infected cells with the viral DNA polymerase inhibitor phosphonoformic acid had no effect on SRT accumulation; however, no SRT was detected in RNA preparations from cycloheximide-treated infected cells. Additional Northern (RNA) analysis localized the 0.2- to 0.25-kb SRT to an apparently noncoding segment near the center of the oriLyt core region. Reverse transcriptase PCR (rapid amplification of cDNA 5' ends [5'-RACE]) identified a single 5' end. In transient-transfection assays, the sequence immediately upstream of SRT functioned as a promoter responsive to HCMV infection when placed upstream of a reporter gene, suggesting that SRT is the product of a discrete transcription unit. RNA ligase-mediated 3'-RACE showed that SRT is not polyadenylated and has heterogeneous 3' ends within a roughly 45-nucleotide window overlapping an oligopyrimidine sequence having counterparts in the lytic-phase replicators of several herpesviruses. Mutation of the oligopyrimidine element showed that it is essential to oriLyt replicator function; it is the only essential single-sequence HCMV oriLyt replicator element described to date. Collectively, the location of SRT near the center of the oriLyt core region, its early expression, its overlapping relationship with a sequence element essential to replicator function, and its similarities to replicator transcripts in other systems suggest the possibility that SRT plays a role in initiating or regulating HCMV lytic-phase DNA synthesis.
Collapse
Affiliation(s)
- L Huang
- The David Axelrod Institute, Wadsworth Center for Laboratories and Research, University at Albany School of Public Health, New York 12201-2002, USA
| | | | | |
Collapse
|
49
|
Johnson EP, Strom AR, Helinski DR. Plasmid RK2 toxin protein ParE: purification and interaction with the ParD antitoxin protein. J Bacteriol 1996; 178:1420-9. [PMID: 8631720 PMCID: PMC177817 DOI: 10.1128/jb.178.5.1420-1429.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The parDE operon, located within the 3.2-kb stabilization region of plasmid RK2, encodes antitoxin (ParD) and toxin (ParE) proteins that stabilize the maintenance of this broad-host-range plasmid via a postsegregational killing mechanism. A ParE protein derivative, designated ParE', was purified by construction of a fusion protein, GST-ParE, followed by glutathione-agarose binding and cleavage of the fusion protein. ParE' has three additional amino acids on the N terminus and a methionine residue in place of the native leucine residue. The results of glutathione-agarose affinity binding and glutaraldehyde cross-linking indicate that ParE' exists as a dimer in solution and that it binds to the dimeric form of ParD to form a tetrameric complex. The formation of this complex is presumably responsible for the ability of ParD to neutralize ParE toxin activity. Previous studies demonstrated that the parDE operon is autoregulated as a result of the binding of the ParD protein to the parDE promoter. ParE' also binds to the parDE promoter but only in the presence of the autoregulatory ParD protein. ParE', in the presence or absence of the ParD protein, does not bind to any other part of the 3.2-kb stabilization region. The binding of the ParE' protein to ParD did not alter the DNase I footprint pattern obtained as a result of ParD binding to the parDE promoter. The role of ParE in binding along with ParD to the promoter, if any, remains unclear.
Collapse
Affiliation(s)
- E P Johnson
- Department of Biology, University of California at San Diego, La Jolla 92037-0634, USA
| | | | | |
Collapse
|
50
|
Iskenderian AC, Huang L, Reilly A, Stenberg RM, Anders DG. Four of eleven loci required for transient complementation of human cytomegalovirus DNA replication cooperate to activate expression of replication genes. J Virol 1996; 70:383-92. [PMID: 8523552 PMCID: PMC189828 DOI: 10.1128/jvi.70.1.383-392.1996] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
As previously shown, 11 loci are required to complement human cytomegalovirus (HCMV) DNA replication in a transient-transfection assay (G. S. Pari and D. G. Anders, J. Virol. 67:6979-6988, 1993). Six of these loci encode known or candidate replication fork proteins, as judged by sequence and biochemical similarities to herpes simplex virus homologs of known function; three encode known immediate early regulatory proteins (UL36-38, IRS1/TRS1, and the major immediate early region spanning UL122-123); and two encode early, nucleus-localized proteins of unknown functions (UL84 and UL112-113). We speculated that proteins of the latter five loci might cooperate to promote and regulate expression of the six replication fork proteins. To test this hypothesis we made luciferase reporter plasmids for each of the replication fork gene promoters and measured their activation by the candidate effectors, expressed under the control of their respective native promoters, using a transient-cooperativity assay in which the candidate effectors were subtracted individually from a transfection mixture containing all five loci. The combination of UL36-38, UL112-113, IRS1, or TRS1 and the major immediate early region produced as much as 100-fold-higher expression than the major immediate early region alone; omitting any one of these four loci from complementing mixtures produced a significant reduction in expression. In contrast, omitting UL84 had insignificant (less than twofold), promoter-dependent effects on reporter activity, and these data do not implicate UL84 in regulating HCMV early-gene expression. Most of the effector interactions showed significant positive cooperativity, producing synergistic enhancement of expression. Similar responses to these effectors were observed for the each of the promoters controlling expression of replication fork proteins. However, subtracting UL112-113 had little if any effect on expression by the UL112-113 promoter or by the simian virus 40 promoter-enhancer under the same conditions. Several lines of evidence argue that the cooperative interactions observed in our transient-transfection assays are important to viral replication in permissive cells. Therefore, the data suggest a model in which coordinate expression of multiple essential replication proteins during permissive infection is vitally dependent upon the cooperative regulatory interactions of proteins encoded by multiple loci and thus have broad implications for our understanding of HCMV biology.
Collapse
Affiliation(s)
- A C Iskenderian
- David Axelrod Institute, Wadsworth Center for Laboratories and Research, Albany, NY 12201-2002, USA
| | | | | | | | | |
Collapse
|