1
|
Hazlewood JE, Dumenil T, Le TT, Slonchak A, Kazakoff SH, Patch AM, Gray LA, Howley PM, Liu L, Hayball JD, Yan K, Rawle DJ, Prow NA, Suhrbier A. Injection site vaccinology of a recombinant vaccinia-based vector reveals diverse innate immune signatures. PLoS Pathog 2021; 17:e1009215. [PMID: 33439897 PMCID: PMC7837487 DOI: 10.1371/journal.ppat.1009215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1β, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design. Poxvirus vector systems have been widely developed for vaccine applications. Despite considerable progress, so far only one recombinant poxvirus vectored vaccine has to date been licensed for human use, with ongoing efforts seeking to enhance immunogenicity whilst minimizing reactogenicity. The latter two characteristics are often determined by early post-vaccination events at the injection site. We therefore undertook an injection site vaccinology approach to analyzing gene expression at the vaccination site after intramuscular inoculation with a recombinant, multiplication defective, vaccinia-based vaccine. This provided detailed insights into inter alia expression of vector-encoded immunoregulatory genes, as well as host innate and adaptive immune responses. We propose that such injection site vaccinology can inform rational vaccine vector design, and we discuss how the information and approach elucidated herein might be used to improve immunogenicity and limit reactogenicity of poxvirus-based vaccine vector systems.
Collapse
Affiliation(s)
- Jessamine E. Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Stephen H. Kazakoff
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ann-Marie Patch
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Melbourne, Australia
| | | | - Liang Liu
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - John D. Hayball
- Sementis Ltd., Hackney, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Australian Infectious Disease Research Centre, Brisbane, Australia
- * E-mail:
| |
Collapse
|
2
|
Schuenadel L, Tischer BK, Nitsche A. Generation and characterization of a Cowpox virus mutant lacking host range factor CP77. Virus Res 2012; 168:23-32. [PMID: 22705200 DOI: 10.1016/j.virusres.2012.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 11/27/2022]
Abstract
Cowpox virus (CPXV) host range factor CP77 was identified to be required for virus replication in Chinese hamster ovary (CHO) cells, but the underlying molecular mechanism by which CP77 modulates host range has remained unclear. Therefore, a CPXVΔCP77 deletion mutant was constructed by applying bacterial artificial chromosome (BAC) technology. Integrity of BAC-derived viral DNA was confirmed by whole genome sequencing. In vitro growth characteristics of CPXV wild type (WT), BAC-derived vCPXV WT and vCPXVΔCP77 were virtually indistinguishable in HEK293T cells, whereas in CHO-K1 cells replication of virus lacking CP77 was unambiguously attenuated. This block of viral replication was confirmed by lack of late viral protein expression. The replication defect of various Orthopoxviruses lacking CP77 in CHO cells could be restored by recombinant expression of CP77. Thus, for the first time, the described CP77-dependent host range effect in CHO cells was shown in the background of CPXV as well as Camelpox virus. To further characterize the mutant virus, cells of several different species were comparably infected with vCPXV WT and vCPXVΔCP77, respectively. Interestingly, except for CHO-K1 cells, vCPXV WT and vCPXVΔCP77 showed no significant difference in terms of morphology of cytopathic effects, expression of a late transcribed virus-encoded green fluorescent protein and virus reproduction, even in other hamster-derived cells. Additionally, in ovo inoculation with either virus revealed the same red-pock phenotype on chicken egg chorioallantoic membranes. Since the data presented indicate a CP77-dependent host range effect only for CHO cells, we conclude that the protein might mediate additional functions not identified yet. The vCPXVΔCP77 deletion mutant generated can now be applied as a useful tool to investigate the function of the putative host range protein CP77.
Collapse
Affiliation(s)
- Livia Schuenadel
- Robert Koch-Institut, Zentrum für Biologische Sicherheit 1, Nordufer 20, 13353 Berlin, Germany
| | | | | |
Collapse
|
3
|
Hautaniemi M, Ueda N, Tuimala J, Mercer AA, Lahdenperä J, McInnes CJ. The genome of pseudocowpoxvirus: comparison of a reindeer isolate and a reference strain. J Gen Virol 2010; 91:1560-76. [PMID: 20107016 DOI: 10.1099/vir.0.018374-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parapoxviruses (PPV), of the family Poxviridae, cause a pustular cutaneous disease in sheep and goats (orf virus, ORFV) and cattle (pseudocowpoxvirus, PCPV and bovine papular stomatitis virus, BPSV). Here, we present the first genomic sequence of a reference strain of PCPV (VR634) along with the genomic sequence of a PPV (F00.120R) isolated in Finland from reindeer (Rangifer tarandus tarandus). The F00.120R and VR634 genomes are 135 and 145 kb in length and contain 131 and 134 putative genes, respectively, with their genome organization being similar to that of other PPVs. The predicted proteins of F00.120R and VR634 have an average amino acid sequence identity of over 95%, whereas they share only 88 and 73% amino acid identity with the ORFV and BPSV proteomes, respectively. The most notable differences were found near the genome termini. F00.120R lacks six and VR634 lacks three genes seen near the right terminus of other PPVs. Four genes at the left end of F00.120R and one in the middle of both genomes appear to be fragmented paralogues of other genes within the genome. VR634 has larger than expected inverted terminal repeats possibly as a result of genomic rearrangements. The high G+C content (64%) of these two viruses along with amino acid sequence comparisons and whole genome phylogenetic analyses confirm the classification of PCPV as a separate species within the genus Parapoxvirus and verify that the virus responsible for an outbreak of contagious stomatitis in reindeer over the winter of 1999-2000 can be classified as PCPV.
Collapse
Affiliation(s)
- Maria Hautaniemi
- Finnish Food Safety Authority Evira, Research Department/Veterinary Virology, Mustialankatu 3, FI-00790, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
4
|
The orthopoxvirus 68-kilodalton ankyrin-like protein is essential for DNA replication and complete gene expression of modified vaccinia virus Ankara in nonpermissive human and murine cells. J Virol 2009; 83:6029-38. [PMID: 19357172 DOI: 10.1128/jvi.01628-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a highly attenuated and replication-deficient vaccinia virus (VACV) that is being evaluated as replacement smallpox vaccine and candidate viral vector. MVA lacks many genes associated with virulence and/or regulation of virus tropism. The 68-kDa ankyrin-like protein (68k-ank) is the only ankyrin repeat-containing protein that is encoded by the MVA genome and is highly conserved throughout the Orthopoxvirus genus. We showed previously that 68k-ank is composed of ankyrin repeats and an F-box-like domain and forms an SCF ubiquitin ligase complex together with the cellular proteins Skp1a and Cullin-1. We now report that 68k-ank (MVA open reading frame 186R) is an essential factor for completion of the MVA intracellular life cycle in nonpermissive human and murine cells. Infection of mouse NIH 3T3 and human HaCaT cells with MVA with a deletion of the 68k-ank gene (MVA-Delta68k-ank) was characterized by an extensive reduction of viral intermediate RNA and protein, as well as late transcripts and drastically impaired late protein synthesis. Furthermore, infections with MVA-Delta68k-ank failed to induce the host protein shutoff that is characteristic of VACV infections. Although we demonstrated that proteasome function in general is essential for the completion of the MVA molecular life cycle, we found that a mutant 68k-ank protein with a deletion of the F-box-like domain was able to fully complement the deficiency of MVA-Delta68k-ank to express all classes of viral genes. Thus, our data demonstrate that the 68k-ank protein contains another critical domain that may function independently of SCF ubiquitin ligase complex formation, suggesting multiple activities of this interesting regulatory protein.
Collapse
|
5
|
Genome comparison of a nonpathogenic myxoma virus field strain with its ancestor, the virulent Lausanne strain. J Virol 2008; 83:2397-403. [PMID: 19091868 DOI: 10.1128/jvi.02189-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the best-studied examples of host-virus coevolution is the release of myxoma virus (MV) for biological control of European rabbits in Australia and Europe. To investigate the genetic basis of MV adaptation to its new host, we sequenced the genome of 6918, an attenuated Spanish field strain, and compared it with that of Lausanne, the strain originally released in Europe in 1952. Although isolated 43 years apart, the genomes were highly conserved (99.95% identical). Only 32 of the 159 MV predicted proteins revealed amino acid changes. Four genes (M009L, M036L, M135R, and M148R) in 6918 were disrupted by frameshift mutations.
Collapse
|
6
|
Abstract
SUMMARY Monkeypox is a disease that is endemic in Central and Western Africa. However, in 2003, there was an outbreak in the United States, representing the first documented monkeypox cases in the Western hemisphere. Although monkeypox virus is less fatal and not as transmissible as variola virus, the causative agent of smallpox, there is concern that monkeypox virus could become a more efficient human pathogen. The reason for this may lie in the virus' genetic makeup, ecological changes, changes in host behavior, and the fact that with the eradication of variola virus, routine smallpox vaccination is no longer carried out. In this review, we focus on the viral proteins that are predicted to modulate the host immune response and compare the genome of monkeypox virus with the genomes of variola virus and the vaccinia virus, the orthopoxvirus that represented the smallpox vaccine. There are differences found in several of these immune-modulating genes including genes that express proteins that affect cytokines such as interleukin-1, tumor necrosis factor, and interferon. There are also differences in genes that code for virulence factors and host range proteins. Genetic differences likely also explain the differences in virulence between two strains of monkeypox virus found in two different regions of Africa. In the current setting of limited smallpox vaccination and little orthopoxvirus immunity in parts of the world, monkeypox could become a more efficient human pathogen under the right circumstances.
Collapse
Affiliation(s)
- Jessica R Weaver
- Department of Medicine, Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6073, USA
| | | |
Collapse
|
7
|
Abstract
As a family of viruses, poxviruses collectively exhibit a broad host range and most of the individual members are capable of replicating in a wide array of cell types from various host species, at least in vitro. At the cellular level, poxvirus tropism is dependent not upon specific cell surface receptors, but rather upon: (1) the ability of the cell to provide intracellular complementing factors needed for productive virus replication, and (2) the ability of the specific virus to successfully manipulate intracellular signaling networks that regulate cellular antiviral processes downstream of virus entry. The large genomic coding capacity of poxviruses enables the virus to express a unique collection of viral proteins that function as host range factors, which specifically target and manipulate host signaling pathways to establish optimal cellular conditions for viral replication. Functionally, the known host range factors from poxviruses have been associated with manipulation of a diverse array of cellular targets, which includes cellular kinases and phosphatases, apoptosis, and various antiviral pathways. To date, only a small number of poxvirus host range genes have been identified and studied, and only a handful of these have been functionally characterized. For this reason, poxvirus host range factors represent a potential gold mine for the discovery of novel pathogen-host protein interactions. This review summarizes our current understanding of the mechanisms by which the known poxvirus host range genes, and their encoded factors, expand tropism through the manipulation of host cell intracellular signaling pathways.
Collapse
Affiliation(s)
- Steven J Werden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
8
|
Meng X, Chao J, Xiang Y. Identification from diverse mammalian poxviruses of host-range regulatory genes functioning equivalently to vaccinia virus C7L. Virology 2007; 372:372-83. [PMID: 18054061 DOI: 10.1016/j.virol.2007.10.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/06/2007] [Accepted: 10/20/2007] [Indexed: 11/29/2022]
Abstract
Vaccinia virus (VACV) C7L is a host-range gene that regulates cellular tropism of VACV. Distantly related C7L homologues are encoded by nearly all mammalian poxviruses, but whether they are host-range genes functioning similar to VACV C7L has not been determined. Here, we used VACV as a model system to analyze five different C7L homologues from diverse mammalian poxviruses for their abilities to regulate poxvirus cellular tropism. Three C7L homologues (myxoma virus M63R, M64R and cowpox virus 020), when expressed with an epitope tag and from a VACV mutant lacking the host-range genes K1L and C7L (vK1L-C7L-), failed to support productive viral replication in human and murine cells. In nonpermissive cells, these viruses did not synthesize viral late proteins, expressed a reduced level of the early protein E3L, and were defective at suppressing cellular PKR activation. In contrast, two other C7L homologues, myxoma virus (MYXV) M62R and yaba-like disease virus (YLDV) 67R, when expressed with an epitope tag and from vK1L(-)C7L(-), supported normal viral replication in human and murine cells and restored the ability of the virus to suppress PKR activation. Furthermore, M62R rescued the defect of vK1L(-)C7L(-) at replicating and disseminating in mice following intranasal inoculation. These results show that MYXV M62R and YLDV 67R function equivalently to C7L at supporting VACV replication in mammalian hosts and suggest that a C7L-like host-range gene is essential for the replication of many mammalian poxviruses in mammalian hosts.
Collapse
Affiliation(s)
- Xiangzhi Meng
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
9
|
Hsiao JC, Chao CC, Young MJ, Chang YT, Cho EC, Chang W. A poxvirus host range protein, CP77, binds to a cellular protein, HMG20A, and regulates its dissociation from the vaccinia virus genome in CHO-K1 cells. J Virol 2006; 80:7714-28. [PMID: 16840350 PMCID: PMC1563734 DOI: 10.1128/jvi.00207-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus does not grow in Chinese hamster ovary (CHO-K1) cells in the absence of a viral host range factor, cowpox protein CP77. In this study, CP77 was fused to the C terminus of green fluorescence protein (GFP-CP77) and a series of nested deletion mutants of GFP-CP77 was constructed for insertion into a vaccinia virus host range mutant, VV-hr, and expressed from a viral early promoter. Deletion mapping analyses demonstrated that the N-terminal 352 amino acids of CP77 were sufficient to support vaccinia virus growth in CHO-K1 cells, whereas the C-terminal residues 353 to 668 were dispensable. In yeast two-hybrid analyses, CP77 bound to a cellular protein, HMG20A, and GST pulldown analyses showed that residues 1 to 234 of CP77 were sufficient for this interaction. After VV-hr virus infection of CHO-K1 cells, HMG20A was translocated from the nucleus to viral factories and bound to the viral genome via the HMG box region. In control VV-hr-infected CHO-K1 cells, binding of HMG20A to the viral genome persisted from 2 to 8 h postinfection (h p.i.); in contrast, when CP77 was expressed, the association of HMG20A with viral genome was transient, with little HMG20A remaining bound at 8 h p.i. This indicates that dissociation of HMG20A from viral factories correlates well with CP77 host range activity in CHO-K1 cells. Finally, in cells expressing a CP77 deletion protein (amino acids 277 to 668) or a DeltaANK5 mutant that did not support vaccinia virus growth and did not contain the HMG20A binding site, HMG20A remained bound to viral DNA, demonstrating that the binding of CP77 to HMG20A is essential for its host range function. In summary, our data revealed that a novel cellular protein, HMG20A, the dissociation of which from viral DNA is regulated by CP77, providing the first cellular target regulated by viral host range CP77 protein.
Collapse
Affiliation(s)
- Jye-Chian Hsiao
- Graduate Institute of Life Sciences, National Defense Medical Center, Nankang, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
Lua DT, Yasuike M, Hirono I, Aoki T. Transcription program of red sea bream iridovirus as revealed by DNA microarrays. J Virol 2006; 79:15151-64. [PMID: 16306587 PMCID: PMC1316049 DOI: 10.1128/jvi.79.24.15151-15164.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Red sea bream iridovirus (RSIV) has been identified as the causative agent of a serious disease in red sea bream and at least 30 other marine fish species. We developed a viral DNA microarray containing 92 putative open reading frames of RSIV to monitor the viral gene transcription program over the time course of an in vitro infection and to classify RSIV transcripts into temporal kinetic expression classes. The microarray analysis showed that viral genes commenced expression as early as 3 h postinfection (p.i.) and this was followed by a rapid escalation of gene expression from 8 h p.i. onwards. Based on the expression of some enzymes associated with viral DNA replication, the DNA replication of RSIV appeared to begin at around 8 h p.i. in infected cells in vitro. Using a de novo protein synthesis inhibitor (cycloheximide) and a viral DNA replication inhibitor (phosphonoacetic acid), 87 RSIV transcripts could be classified into three temporal kinetic classes: nine immediate-early (IE), 40 early (E), and 38 late (L) transcripts. The gene expression of RSIV occurred in a temporal kinetic cascade with three stages (IE, E, and L). Although the three classes of transcripts were distributed throughout the RSIV genome, E transcripts appeared to cluster in at least six discrete regions and L transcripts appeared to originate from seven discrete regions. The microarray data were statistically confirmed by using a t test, and were also clustered into groups based on similarity in the gene expression patterns by using a cluster program.
Collapse
Affiliation(s)
- Dang Thi Lua
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | | | | | | |
Collapse
|
11
|
Abstract
Despite the success of the WHO-led smallpox eradication programme a quarter of a century ago, there remains considerable fear that variola virus, or other related pathogenic poxviruses such as monkeypox, could re-emerge and spread disease in the human population. Even today, we are still mostly ignorant about why most poxvirus infections of vertebrate hosts show strict species specificity, or how zoonotic poxvirus infections occur when poxviruses occasionally leap into novel host species. Poxvirus tropism at the cellular level seems to be regulated by intracellular events downstream of virus binding and entry, rather than at the level of specific host receptors as is the case for many other viruses. This review summarizes our current understanding of poxvirus tropism and host range, and discusses the prospects of exploiting host-restricted poxvirus vectors for vaccines, gene therapy or tissue-targeted oncolytic viral therapies for the treatment of human cancers. Poxvirus host range varies markedly ? some viruses, such as variola and molluscum contagiosum virus (both of which are human-specific), exhibit strict species tropism, whereas others such as cowpox virus are able to infect multiple host species. Members of four of the eight genera of chordopoxviruses can zoonotically infect man. For example, monkeypox virus can cause severe smallpox-like disease in humans that clinically resembles variola virus. The species tropism that is exhibited by many poxviruses in terms of causing disease is frequently quite different from the range of cultured cells that can be infected by these viruses. Specific host-cell receptors do not mediate the distinction between cells that are permissive as opposed to non-permissive for poxvirus infection. Rather, restrictive host cells fail to support the full replication cycle of the infecting poxvirus at a point downstream of binding and entry. A variety of poxviral host-range genes have been identified that contribute to the control of permissive versus non-permissive infection of cultured mammalian cells. The gene products of these host-range genes regulate the ability of the virus to complete its cytoplasmic replication cycle. The development of host-restricted vaccines, like modified vaccinia Ankara (MVA), that do not replicate in humans but that retain potent immunogenicity, will provide safer platforms for recombinant vaccines. Another advance has been the development of poxvirus-based oncolytic vectors that replicate preferentially in human tumour cells.
Collapse
Affiliation(s)
- Grant McFadden
- Department of Microbiology and Immunology, University of Western Ontario, and Robarts Research Institute, Siebens-Drake Building, Room 133, 1400 Western Road, London, Ontario N6G 2V4, Canada.
| |
Collapse
|
12
|
Afonso CL, Delhon G, Tulman ER, Lu Z, Zsak A, Becerra VM, Zsak L, Kutish GF, Rock DL. Genome of deerpox virus. J Virol 2005; 79:966-77. [PMID: 15613325 PMCID: PMC538591 DOI: 10.1128/jvi.79.2.966-977.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deerpox virus (DPV), an uncharacterized and unclassified member of the Poxviridae, has been isolated from North American free-ranging mule deer (Odocoileus hemionus) exhibiting mucocutaneous disease. Here we report the genomic sequence and comparative analysis of two pathogenic DPV isolates, W-848-83 (W83) and W-1170-84 (W84). The W83 and W84 genomes are 166 and 170 kbp, containing 169 and 170 putative genes, respectively. Nucleotide identity between DPVs is 95% over the central 157 kbp. W83 and W84 share similar gene orders and code for similar replicative, structural, virulence, and host range functions. DPV open reading frames (ORFs) with putative virulence and host range functions include those similar to cytokine receptors (R), including gamma interferon receptor (IFN-gammaR), interleukin 1 receptor (IL-1R), and type 8 CC-chemokine receptors; cytokine binding proteins (BP), including IL-18BP, IFN-alpha/betaBP, and tumor necrosis factor binding protein (TNFBP); serpins; and homologues of vaccinia virus (VACV) E3L, K3L, and A52R proteins. DPVs also encode distinct forms of major histocompatibility complex class I, C-type lectin-like protein, and transforming growth factor beta1 (TGF-beta1), a protein not previously described in a mammalian chordopoxvirus. Notably, DPV encodes homologues of cellular endothelin 2 and IL-1R antagonist, novel poxviral genes also likely involved in the manipulation of host responses. W83 and W84 differ from each other by the presence or absence of five ORFs. Specifically, homologues of a CD30 TNFR family protein, swinepox virus SPV019, and VACV E11L core protein are absent in W83, and homologues of TGF-beta1 and lumpy skin disease virus LSDV023 are absent in W84. Phylogenetic analysis indicates that DPVs are genetically distinct from viruses of other characterized poxviral genera and that they likely comprise a new genus within the subfamily Chordopoxvirinae.
Collapse
Affiliation(s)
- C L Afonso
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, P.O. Box 848, Greenport, NY 11944-0848, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hsiao JC, Chung CS, Drillien R, Chang W. The cowpox virus host range gene, CP77, affects phosphorylation of eIF2 alpha and vaccinia viral translation in apoptotic HeLa cells. Virology 2004; 329:199-212. [PMID: 15476887 DOI: 10.1016/j.virol.2004.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Revised: 04/09/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
Host restriction of vaccinia virus has been previously described in CHO and RK13 cells in which a cowpox virus CP77 gene rescues vaccinia virus growth at the viral protein translation level. Here we investigate the restrictive stage of vaccinia virus in HeLa cells using a vaccinia mutant virus (VV-hr) that contains a deletion of 18-kb genome sequences resulting in no growth in HeLa cells. Insertion of CP77 gene into VV-hr generated a recombinant virus (VV-36hr) that multiplied well in HeLa cells. Both viruses could enter cells, initiate viral DNA replication and intermediate gene transcription. However, translation of viral intermediate gene was only detected in cells infected with VV-36hr, indicating that CP77 relieves host restriction at the intermediate gene translation stage in HeLa cells. Caspase-2 and -3 activation was observed in HeLa cells infected with VV-hr coupled with dramatic morphological alterations and cleavage of the translation initiation factor eIF4G. Caspase activation was reduced in HeLa cells infected with VV-36hr, indicating that CP77 acts upstream of caspase activation. Enhanced phosphorylation of PKR and eIF2alpha was also observed in cells infected with VV-hr and was suppressed by CP77. Suppression of eIF4G cleavage with the caspase inhibitor ZVAD did not rescue virus translation, whereas expression of a mutant eIF2alpha protein with an alanine substitution of serine at amino acid position 51 (eIF2alphaS51A) partially restored viral translation and moderately increased virus growth in HeLa cells.
Collapse
Affiliation(s)
- Jye-Chian Hsiao
- Graduate Institute of Life Science, National Defense Medical Center, National Defense University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
14
|
Do JW, Moon CH, Kim HJ, Ko MS, Kim SB, Son JH, Kim JS, An EJ, Kim MK, Lee SK, Han MS, Cha SJ, Park MS, Park MA, Kim YC, Kim JW, Park JW. Complete genomic DNA sequence of rock bream iridovirus. Virology 2004; 325:351-63. [PMID: 15246274 DOI: 10.1016/j.virol.2004.05.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 03/22/2004] [Accepted: 05/05/2004] [Indexed: 11/29/2022]
Abstract
Iridovirus is a causative agent of epizootics among cultured rock bream (Oplegnathus fasciatus) in Korea. Here, we report the complete genomic sequence of rock bream iridovirus (RBIV). The genome of RBIV was 112080 bp long and contained at least 118 putative open reading frames (ORFs), and its genome organization was similar to that of infectious spleen and kidney necrosis virus (ISKNV). Of the RBIV's 118 ORFs, 85 ORFs showed 60-99% amino acid identity to those of ISKNV. Phylogenetic analysis of major capsid protein (MCP), DNA repair protein RAD2, and DNA polymerase type-B family indicated that RBIV is closely related to red sea bream iridovirus (RSIV), Grouper sleepy disease iridovirus (GSDIV), Dwarf gourami iridovirus (DGIV), and ISKNV. The genome sequence provides useful information concerning the evolution and divergence of iridoviruses in cultured fish.
Collapse
Affiliation(s)
- Jeong Wan Do
- Pathology Division, National Fisheries Research and Development Institute, Kijang, Pusan 626-900, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen N, Danila MI, Feng Z, Buller RML, Wang C, Han X, Lefkowitz EJ, Upton C. The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology 2004; 317:165-86. [PMID: 14675635 DOI: 10.1016/s0042-6822(03)00520-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ectromelia virus is the causative agent of mousepox, an acute exanthematous disease of mouse colonies in Europe, Japan, China, and the U.S. The Moscow, Hampstead, and NIH79 strains are the most thoroughly studied with the Moscow strain being the most infectious and virulent for the mouse. In the late 1940s mousepox was proposed as a model for the study of the pathogenesis of smallpox and generalized vaccinia in humans. Studies in the last five decades from a succession of investigators have resulted in a detailed description of the virologic and pathologic disease course in genetically susceptible and resistant inbred and out-bred mice. We report the DNA sequence of the left-hand end, the predicted right-hand terminal repeat, and central regions of the genome of the Moscow strain of ectromelia virus (approximately 177,500 bp), which together with the previously sequenced right-hand end, yields a genome of 209,771 bp. We identified 175 potential genes specifying proteins of between 53 and 1924 amino acids, and 29 regions containing sequences related to genes predicted in other poxviruses, but unlikely to encode for functional proteins in ectromelia virus. The translated protein sequences were compared with the protein database for structure/function relationships, and these analyses were used to investigate poxvirus evolution and to attempt to explain at the cellular and molecular level the well-characterized features of the ectromelia virus natural life cycle.
Collapse
Affiliation(s)
- Nanhai Chen
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Delhon G, Tulman ER, Afonso CL, Lu Z, de la Concha-Bermejillo A, Lehmkuhl HD, Piccone ME, Kutish GF, Rock DL. Genomes of the parapoxviruses ORF virus and bovine papular stomatitis virus. J Virol 2004; 78:168-77. [PMID: 14671098 PMCID: PMC303426 DOI: 10.1128/jvi.78.1.168-177.2004] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bovine papular stomatitis virus (BPSV) and orf virus (ORFV), members of the genus Parapoxvirus of the Poxviridae, are etiologic agents of worldwide diseases affecting cattle and small ruminants, respectively. Here we report the genomic sequences and comparative analysis of BPSV strain BV-AR02 and ORFV strains OV-SA00, isolated from a goat, and OV-IA82, isolated from a sheep. Parapoxvirus (PPV) BV-AR02, OV-SA00, and OV-IA82 genomes range in size from 134 to 139 kbp, with an average nucleotide composition of 64% G+C. BPSV and ORFV genomes contain 131 and 130 putative genes, respectively, and share colinearity over 127 genes, 88 of which are conserved in all characterized chordopoxviruses. BPSV and ORFV contain 15 and 16 open reading frames (ORFs), respectively, which lack similarity to other poxvirus or cellular proteins. All genes with putative roles in pathogenesis, including a vascular endothelial growth factor (VEGF)-like gene, are present in both viruses; however, BPSV contains two extra ankyrin repeat genes absent in ORFV. Interspecies sequence variability is observed in all functional classes of genes but is highest in putative virulence/host range genes, including genes unique to PPV. At the amino acid level, OV-SA00 is 94% identical to OV-IA82 and 71% identical to BV-AR02. Notably, ORFV 006/132, 103, 109, 110, and 116 genes (VEGF, homologues of vaccinia virus A26L, A33R, and A34R, and a novel PPV ORF) show an unusual degree of intraspecies variability. These genomic differences are consistent with the classification of BPSV and ORFV as two PPV species. Compared to other mammalian chordopoxviruses, PPV shares unique genomic features with molluscum contagiosum virus, including a G+C-rich nucleotide composition, three orthologous genes, and a paucity of nucleotide metabolism genes. Together, these data provide a comparative view of PPV genomics.
Collapse
Affiliation(s)
- G Delhon
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, McFadden G. Poxviruses and immune evasion. Annu Rev Immunol 2003; 21:377-423. [PMID: 12543935 DOI: 10.1146/annurev.immunol.21.120601.141049] [Citation(s) in RCA: 475] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large DNA viruses defend against hostile assault executed by the host immune system by producing an array of gene products that systematically sabotage key components of the inflammatory response. Poxviruses target many of the primary mediators of innate immunity including interferons, tumor necrosis factors, interleukins, complement, and chemokines. Poxviruses also manipulate a variety of intracellular signal transduction pathways such as the apoptotic response. Many of the poxvirus genes that disrupt these pathways have been hijacked directly from the host immune system, while others have demonstrated no clear resemblance to any known host genes. Nonetheless, the immunological targets and the diversity of strategies used by poxviruses to disrupt these host pathways have provided important insights into diverse aspects of immunology, virology, and inflammation. Furthermore, because of their anti-inflammatory nature, many of these poxvirus proteins hold promise as potential therapeutic agents for acute or chronic inflammatory conditions.
Collapse
Affiliation(s)
- Bruce T Seet
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hornemann S, Harlin O, Staib C, Kisling S, Erfle V, Kaspers B, Häcker G, Sutter G. Replication of modified vaccinia virus Ankara in primary chicken embryo fibroblasts requires expression of the interferon resistance gene E3L. J Virol 2003; 77:8394-407. [PMID: 12857909 PMCID: PMC165266 DOI: 10.1128/jvi.77.15.8394-8407.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly attenuated modified vaccinia virus Ankara (MVA) serves as a candidate vaccine to immunize against infectious diseases and cancer. MVA was randomly obtained by serial growth in cultures of chicken embryo fibroblasts (CEF), resulting in the loss of substantial genomic information including many genes regulating virus-host interactions. The vaccinia virus interferon (IFN) resistance gene E3L is among the few conserved open reading frames encoding viral immune defense proteins. To investigate the relevance of E3L in the MVA life cycle, we generated the deletion mutant MVA-DeltaE3L. Surprisingly, we found that MVA-DeltaE3L had lost the ability to grow in CEF, which is the first finding of a vaccinia virus host range phenotype in this otherwise highly permissive cell culture. Reinsertion of E3L led to the generation of revertant virus MVA-E3rev and rescued productive replication in CEF. Nonproductive infection of CEF with MVA-DeltaE3L allowed viral DNA replication to occur but resulted in an abrupt inhibition of viral protein synthesis at late times. Under these nonpermissive conditions, CEF underwent apoptosis starting as early as 6 h after infection, as shown by DNA fragmentation, Hoechst staining, and caspase activation. Moreover, we detected high levels of active chicken alpha/beta IFN (IFN-alpha/beta) in supernatants of MVA-DeltaE3L-infected CEF, while moderate IFN quantities were found after MVA or MVA-E3rev infection and no IFN activity was present upon infection with wild-type vaccinia viruses. Interestingly, pretreatment of CEF with similar amounts of recombinant chicken IFN-alpha inhibited growth of vaccinia viruses, including MVA. We conclude that efficient propagation of MVA in CEF, the tissue culture system used for production of MVA-based vaccines, essentially requires conserved E3L gene function as an inhibitor of apoptosis and/or IFN induction.
Collapse
|
19
|
Rziha HJ, Bauer B, Adam KH, Röttgen M, Cottone R, Henkel M, Dehio C, Büttner M. Relatedness and heterogeneity at the near-terminal end of the genome of a parapoxvirus bovis 1 strain (B177) compared with parapoxvirus ovis (Orf virus). J Gen Virol 2003; 84:1111-1116. [PMID: 12692275 DOI: 10.1099/vir.0.18850-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study provides for the first time an extended investigation of individual genes located at the near-terminal right end of the genome of parapoxvirus bovis 1, Bovine papular stomatitis virus (BPSV) strain B177 and Orf virus (ORFV). Comparison of the respective DNA sequences of ORFV strain D1701 (9.9 kbp) and BPSV B177 (7.7 kbp) revealed a very similar organization of closely related genes transcribed in a rightward orientation. The most salient findings of this study were: (i) the absence of the ORFV-specific vascular endothelial growth factor (VEGF-E) gene in the BPSV isolate; (ii) the presence of an interleukin-10 (IL-10) orthologue; and (iii) the detection of three new genes encoding ankyrin-repeat-containing polypeptides. These results not only contribute to potential improvements of future molecular differentiation between the parapoxvirus species, but also shed new light on different pathobiologies among parapoxviruses.
Collapse
Affiliation(s)
- H-J Rziha
- Federal Research Centre for Virus Diseases of Animals, Institute of Immunology, Paul-Ehrlich-Straße 28, D-72076 Tübingen, Federal Republic of Germany
| | - B Bauer
- Federal Research Centre for Virus Diseases of Animals, Institute of Immunology, Paul-Ehrlich-Straße 28, D-72076 Tübingen, Federal Republic of Germany
| | - K-H Adam
- Federal Research Centre for Virus Diseases of Animals, Institute of Immunology, Paul-Ehrlich-Straße 28, D-72076 Tübingen, Federal Republic of Germany
| | - M Röttgen
- Federal Research Centre for Virus Diseases of Animals, Institute of Immunology, Paul-Ehrlich-Straße 28, D-72076 Tübingen, Federal Republic of Germany
| | - R Cottone
- Federal Research Centre for Virus Diseases of Animals, Institute of Immunology, Paul-Ehrlich-Straße 28, D-72076 Tübingen, Federal Republic of Germany
| | - M Henkel
- Federal Research Centre for Virus Diseases of Animals, Institute of Immunology, Paul-Ehrlich-Straße 28, D-72076 Tübingen, Federal Republic of Germany
| | - C Dehio
- Divison of Molecular Microbiology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - M Büttner
- Federal Research Centre for Virus Diseases of Animals, Institute of Immunology, Paul-Ehrlich-Straße 28, D-72076 Tübingen, Federal Republic of Germany
| |
Collapse
|
20
|
Vives J, Juanola S, Cairó JJ, Gòdia F. Metabolic engineering of apoptosis in cultured animal cells: implications for the biotechnology industry. Metab Eng 2003; 5:124-32. [PMID: 12850134 DOI: 10.1016/s1096-7176(03)00024-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Animal cells have been widely used to obtain a wide range of products for human and animal healthcare applications. However, the extreme sensitivity of these cells in respect to changes experienced in their environment is evidenced by the activation of a gene-encoded program known as apoptosis, resulting in their death and destruction. From the bioprocess angle, losses in cell viability bring lower productivities and higher risks of product degradation. Consequently, many research efforts have been devoted to the development of apoptosis protective mechanisms, including the metabolic engineering of apoptosis pathways, that has proven effective in diminishing programmed cell death in a variety of biotechnological relevant cell lines. This review is focused especially in the encouraging initial results obtained with the over-expression of cloned anti-apoptosis genes, from both endogenous and viral origin interfering at mitochondrial and initiator caspases levels.
Collapse
Affiliation(s)
- Joaquim Vives
- Deptartament d'Enginyeria Química (UAB), Escola Tècnica Superior d'Enginyeria, ETSE, Universitat Autònoma de Barcelona, U.A.B., 08193 Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
21
|
Tulman ER, Afonso CL, Lu Z, Zsak L, Sur JH, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL. The genomes of sheeppox and goatpox viruses. J Virol 2002; 76:6054-61. [PMID: 12021338 PMCID: PMC136203 DOI: 10.1128/jvi.76.12.6054-6061.2002] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sheeppox virus (SPPV) and goatpox virus (GTPV), members of the Capripoxvirus genus of the Poxviridae, are etiologic agents of important diseases of sheep and goats in northern and central Africa, southwest and central Asia, and the Indian subcontinent. Here we report the genomic sequence and comparative analysis of five SPPV and GTPV isolates, including three pathogenic field isolates and two attenuated vaccine viruses. SPPV and GTPV genomes are approximately 150 kbp and are strikingly similar to each other, exhibiting 96% nucleotide identity over their entire length. Wild-type genomes share at least 147 putative genes, including conserved poxvirus replicative and structural genes and genes likely involved in virulence and host range. SPPV and GTPV genomes are very similar to that of lumpy skin disease virus (LSDV), sharing 97% nucleotide identity. All SPPV and GTPV genes are present in LSDV. Notably in both SPPV and GTPV genomes, nine LSDV genes with likely virulence and host range functions are disrupted, including a gene unique to LSDV (LSDV132) and genes similar to those coding for interleukin-1 receptor, myxoma virus M003.2 and M004.1 genes (two copies each), and vaccinia virus F11L, N2L, and K7L genes. The absence of these genes in SPPV and GTPV suggests a significant role for them in the bovine host range. SPPV and GTPV genomes contain specific nucleotide differences, suggesting they are phylogenetically distinct. Relatively few genomic changes in SPPV and GTPV vaccine viruses account for viral attenuation, because they contain 71 and 7 genomic changes compared to their respective field strains. Notable genetic changes include mutation or disruption of genes with predicted functions involving virulence and host range, including two ankyrin repeat proteins in SPPV and three kelch-like proteins in GTPV. These comparative genomic data indicate the close genetic relationship among capripoxviruses, and they suggest that SPPV and GTPV are distinct and likely derived from an LSDV-like ancestor.
Collapse
Affiliation(s)
- E R Tulman
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Poxviruses are large complex viruses that replicate in the cytoplasm of cells without integrating their DNA into the host genome or undergoing a latent intracellular stage. In addition to viral enzymes for DNA and RNA synthesis, poxviruses encode many proteins that modulate host responses. These include inhibitors of apoptosis induced by ligand binding to cell surface receptors, peroxides, ultraviolet light, DNA damaging agents and other cell signaling pathways.
Collapse
Affiliation(s)
- J L Shisler
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, Bethesda, MD 20892-0445, MSC 0445, USA
| | | |
Collapse
|
23
|
Abstract
Here we present the genomic sequence, with analysis, of a pathogenic fowlpox virus (FPV). The 288-kbp FPV genome consists of a central coding region bounded by identical 9.5-kbp inverted terminal repeats and contains 260 open reading frames, of which 101 exhibit similarity to genes of known function. Comparison of the FPV genome with those of other chordopoxviruses (ChPVs) revealed 65 conserved gene homologues, encoding proteins involved in transcription and mRNA biogenesis, nucleotide metabolism, DNA replication and repair, protein processing, and virion structure. Comparison of the FPV genome with those of other ChPVs revealed extensive genome colinearity which is interrupted in FPV by a translocation and a major inversion, the presence of multiple and in some cases large gene families, and novel cellular homologues. Large numbers of cellular homologues together with 10 multigene families largely account for the marked size difference between the FPV genome (260 to 309 kbp) and other known ChPV genomes (178 to 191 kbp). Predicted proteins with putative functions involving immune evasion included eight natural killer cell receptors, four CC chemokines, three G-protein-coupled receptors, two beta nerve growth factors, transforming growth factor beta, interleukin-18-binding protein, semaphorin, and five serine proteinase inhibitors (serpins). Other potential FPV host range proteins included homologues of those involved in apoptosis (e.g., Bcl-2 protein), cell growth (e.g., epidermal growth factor domain protein), tissue tropism (e.g., ankyrin repeat-containing gene family, N1R/p28 gene family, and a T10 homologue), and avian host range (e.g., a protein present in both fowl adenovirus and Marek's disease virus). The presence of homologues of genes encoding proteins involved in steroid biogenesis (e.g., hydroxysteroid dehydrogenase), antioxidant functions (e.g., glutathione peroxidase), vesicle trafficking (e.g., two alpha-type soluble NSF attachment proteins), and other, unknown conserved cellular processes (e.g., Hal3 domain protein and GSN1/SUR4) suggests that significant modification of host cell function occurs upon viral infection. The presence of a cyclobutane pyrimidine dimer photolyase homologue in FPV suggests the presence of a photoreactivation DNA repair pathway. This diverse complement of genes with likely host range functions in FPV suggests significant viral adaptation to the avian host.
Collapse
Affiliation(s)
- C L Afonso
- Plum Island Animal Disease Center, Agricultural Research Service, U. S. Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Successful viral replication requires not only the efficient production and spread of progeny, but also evasion of host defense mechanisms that limit replication by killing infected cells. In addition to inducing immune and inflammatory responses, infection by most viruses triggers apoptosis or programmed cell death of the infected cell. This cell response often results as a compulsory or unavoidable by-product of the action of critical viral replicative functions. In addition, some viruses seem to use apoptosis as a mechanism of cell killing and virus spread. In both cases, successful replication relies on the ability of certain viral products to block or delay apoptosis until sufficient progeny have been produced. Such proteins target a variety of strategic points in the apoptotic pathway. In this review we summarize the great amount of recent information on viruses and apoptosis and offer insights into how this knowledge may be used for future research and novel therapies.
Collapse
Affiliation(s)
- A Roulston
- GeminX Biotechnologies Inc., Montreal, Quebec, Canada.
| | | | | |
Collapse
|
25
|
Shisler JL, Isaacs SN, Moss B. Vaccinia virus serpin-1 deletion mutant exhibits a host range defect characterized by low levels of intermediate and late mRNAs. Virology 1999; 262:298-311. [PMID: 10502509 DOI: 10.1006/viro.1999.9884] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orthopoxviruses encode three serpin homologs-SPI-1, SPI-2 and SPI-3-of which SPI-2 has been well characterized as an inhibitor of ICE-like proteases. A rabbitpox virus SPI-1 deletion mutant exhibited a host range restriction in human lung A549 and pig kidney 15 cell lines that was attributed to apoptosis. Here we report that replication of a vaccinia virus SPI-1 deletion mutant (DeltaSPI-1) was restricted in primary human keratinocytes as well as A549 cells. Although chromatin condensation was detected in some A549 cells, other morphological or biochemical signs of apoptosis including DNA fragmentation, cleavage of poly(ADP-ribose)polymerase or nuclear mitotic apparatus protein, or caspase 3 activation were not found. Moreover, DeltaSPI-1 protected A549 cells from apoptosis induced by tumor necrosis factor, whereas the corresponding DeltaSPI-2 mutant did not. Further studies indicated undiminished amounts of vaccinia virus early mRNA and replicated DNA in the absence of the SPI-1 product. However, there were reduced amounts of viral intermediate and late mRNAs, viral late proteins, cleaved core proteins, and virus particles. These data suggested that apoptosis is not the determining factor in the host range restriction of DeltaSPI-1 and that the SPI-1 gene product is needed to allow efficient expression of intermediate and late genes in A549 cells.
Collapse
MESH Headings
- Apoptosis/genetics
- Caspase 3
- Caspases/metabolism
- Cell Line
- Cells, Cultured
- Chromatin/metabolism
- DNA, Viral/biosynthesis
- Gene Deletion
- Gene Expression Regulation, Viral
- Genes, Reporter/genetics
- Genes, Viral/genetics
- Humans
- In Situ Nick-End Labeling
- Keratinocytes/cytology
- Keratinocytes/enzymology
- Keratinocytes/ultrastructure
- Keratinocytes/virology
- Kinetics
- Microscopy, Electron
- Poly(ADP-ribose) Polymerases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Serpins/genetics
- Serpins/physiology
- Vaccinia virus/genetics
- Vaccinia virus/growth & development
- Vaccinia virus/metabolism
- Vaccinia virus/ultrastructure
- Viral Proteins/biosynthesis
- Virus Assembly
- Virus Replication
Collapse
Affiliation(s)
- J L Shisler
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892-0445, USA
| | | | | |
Collapse
|
26
|
Moss JE, Aliprantis AO, Zychlinsky A. The regulation of apoptosis by microbial pathogens. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 187:203-59. [PMID: 10212981 DOI: 10.1016/s0074-7696(08)62419-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the past few years, there has been remarkable progress unraveling the mechanism and significance of eukaryotic programmed cell death (PCD), or apoptosis. Not surprisingly, it has been discovered that numerous, unrelated microbial pathogens engage or circumvent the host's apoptotic program. In this chapter, we briefly summarize apoptosis, emphasizing those studies which assist the reader in understanding the subsequent discussion on PCD and pathogens. We then examine the relationship between virulent bacteria and apoptosis. This section is organized to reflect both common and diverse mechanisms employed by bacteria to induce PCD. A short discussion of parasites and fungi is followed by a detailed description of the interaction of viral pathogens with the apoptotic machinery. Throughout the review, apoptosis is considered within the broader contexts of pathogenesis, virulence, and host defense. Our goals are to update the reader on this rapidly expanding field and identify topics in the current literature which demand further investigation.
Collapse
Affiliation(s)
- J E Moss
- Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York City 10016, USA
| | | | | |
Collapse
|
27
|
Wyatt LS, Carroll MW, Czerny CP, Merchlinsky M, Sisler JR, Moss B. Marker rescue of the host range restriction defects of modified vaccinia virus Ankara. Virology 1998; 251:334-42. [PMID: 9837798 DOI: 10.1006/viro.1998.9397] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The severely attenuated and host range (HR) restricted modified vaccinia virus Ankara (MVA) was derived by >500 passages in chick embryo fibroblasts, during which multiple deletions and mutations occurred. To determine the basis of the HR defect, we prepared cosmids from the parental vaccinia virus Ankara genome and transfected them into nonpermissive monkey BS-C-1 cells that had been infected with MVA. Recombinant viruses that formed macroscopic plaques were detected after transfections with DNA segments that mapped near the left end of the viral genome. Plaque-forming viruses, generated by transfections with four individual cosmids and one pair of minimally overlapping cosmids, were purified, and their HRs were evaluated in BS-C-1 cells, rabbit RK-13 cells, and human HeLa, MRC-5, and A549 cells. The acquisition of the K1L and SPI-1 HR genes and the repair of large deletions were determined by polymerase chain reaction or pulse-field gel electrophoresis of NotI restriction enzyme digests of genomic DNA. The following results indicated the presence of previously unrecognized vaccinia virus HR genes: (1) the major mutations that restrict HR are within the left end of the MVA genome because the phenotypes of some recombinants approached that of the parental virus, (2) acquisition of the K1L gene correlated with the ability of recombinant viruses to propagate in RK-13 cells but did not enhance replication in human or monkey cell lines, (3) acquisition of the SPI-1 gene correlated with virus propagation in A549 cells but not with the extent of virus spread in monkey or other human cell lines, (4) there are at least two impaired HR genes because rescue occurred with nonoverlapping or minimally overlapping cosmids and recombinant viruses with intermediate HRs were isolated, and (5) at least one of the new HR genes did not map within any of the major deletions because the size of the left terminal NotI fragment was not appreciably altered in some recombinant viruses.
Collapse
Affiliation(s)
- L S Wyatt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Antalis TM, La Linn M, Donnan K, Mateo L, Gardner J, Dickinson JL, Buttigieg K, Suhrbier A. The serine proteinase inhibitor (serpin) plasminogen activation inhibitor type 2 protects against viral cytopathic effects by constitutive interferon alpha/beta priming. J Exp Med 1998; 187:1799-811. [PMID: 9607921 PMCID: PMC2212304 DOI: 10.1084/jem.187.11.1799] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The serine proteinase inhibitor (serpin) plasminogen activator inhibitor type 2 (PAI-2) is well characterized as an inhibitor of extracellular urokinase-type plasminogen activator. Here we show that intracellular, but not extracellular, PAI-2 protected cells from the rapid cytopathic effects of alphavirus infection. This protection did not appear to be related to an effect on apoptosis but was associated with a PAI-2-mediated induction of constitutive low-level interferon (IFN)-alpha/beta production and IFN-stimulated gene factor 3 (ISGF3) activation, which primed the cells for rapid induction of antiviral genes. This primed phenotype was associated with a rapid development of resistance to infection by the PAI-2 transfected cells and the establishment of a persistent productive infection. PAI-2 was also induced in macrophages in response to viral RNA suggesting that PAI-2 is a virus response gene. These observations, together with the recently demonstrated PAI-2-mediated inhibition of tumor necrosis factor-alpha induced apoptosis, (a) illustrate that PAI-2 has an additional and distinct function as an intracellular regulator of signal transduction pathway(s) and (b) demonstrate a novel activity for a eukaryotic serpin.
Collapse
Affiliation(s)
- T M Antalis
- Queensland Cancer Fund Experimental Oncology Unit, The Queensland Institute of Medical Research, Brisbane 4029, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Macen J, Takahashi A, Moon KB, Nathaniel R, Turner PC, Moyer RW. Activation of caspases in pig kidney cells infected with wild-type and CrmA/SPI-2 mutants of cowpox and rabbitpox viruses. J Virol 1998; 72:3524-33. [PMID: 9557631 PMCID: PMC109571 DOI: 10.1128/jvi.72.5.3524-3533.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1997] [Accepted: 01/27/1998] [Indexed: 02/07/2023] Open
Abstract
The cowpox virus (CPV) CrmA and the equivalent rabbitpox virus (RPV) SPI-2 proteins have anti-inflammatory and antiapoptosis activity by virtue of their ability to inhibit caspases, including the interleukin-1beta-converting enzyme (ICE; caspase-1). Infection of LLC-PK1 pig kidney cells with a CPV CrmA mutant, but not with wild-type (wt) CPV, results in the induction of many of the morphological features of apoptosis (C. A. Ray and D. J. Pickup, Virology 217:384-391, 1996). In our study, LLC-PK1 cells infected with CPV delta crmA, but not those infected with wt CPV, showed induction of poly(ADP-ribose) polymerase (PARP)- and lamin A-cleaving activities and processing of the CPP32 (caspase-3) precursor to a mature 18-kDa form. Surprisingly, infection of LLC-PK1 cells with either wt RPV (despite the presence of the SPI-2 protein) or RPV delta SPI-2 resulted in cleavage activity against PARP and lamin A and the appearance of the mature subunit of CPP32/caspase-3. The biotinylated specific peptide inhibitor Ac-Tyr-Val-Lys(biotinyl)-Asp-2,6-dimethylbenzoyloxymethylketone [AcYV(bio)KD-aomk] labeled active caspase subunits of 18, 19, and 21 kDa in extracts from LLC-PK1 cells infected with CPV delta crmA, wt RPV, or RPV delta SPI-2 but not wt CPV. Mixed infection of LLC-PK1 cells with wt RPV and wt CPV gave no PARP-cleaving activity, and all PARP cleavage mediated by SPI-2 and CrmA mutants of RPV and CPV, respectively, could be eliminated by coinfection with wt CPV. These results suggest that the RPV SPI-2 and CPV CrmA proteins are not functionally equivalent and that CrmA, but not SPI-2 protein, can completely prevent apoptosis in LLC-PK1 cells under these conditions.
Collapse
Affiliation(s)
- J Macen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville 32610-0266, USA
| | | | | | | | | | | |
Collapse
|
31
|
Rivas C, Gil J, Mĕlková Z, Esteban M, Díaz-Guerra M. Vaccinia virus E3L protein is an inhibitor of the interferon (i.f.n.)-induced 2-5A synthetase enzyme. Virology 1998; 243:406-14. [PMID: 9568039 DOI: 10.1006/viro.1998.9072] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Induction of apoptosis in mammalian cells by double-stranded (ds) RNA-dependent enzymes, protein kinase (PKR), and 2-5A-synthetase/RNase L (referred to as the 2-5A system) might be a mechanism mediating anticellular and antiviral actions of interferon (i.f.n.). To counteract the effect of i.f.n., animal viruses have acquired genes that block specific i.f.n. pathways. Among poxviruses, vaccinia virus (VV) encodes E3L, a dsRNA-binding protein, which inhibits activation of i.f.n.-induced PKR. It has been proposed that E3L might also block activation of the 2-5A system, but direct proof is lacking. To establish if E3L inhibits the 2-5A system, we have developed a method to assay apoptosis induced by increased production of enzymes in the 2-5A pathway, as well as of their putative modulators. This assay is based on the use of cells derived from homozygous PKR knockout mice (Pkr-/-) infected with a VV mutant lacking E3L (delta E3L) and transiently transfected with a luciferase reporter gene together with plasmid vectors expressing 2-5A-synthetase, RNase L, or E3L, all controlled by the same inducible promoter. We found that expression of 2-5A-synthetase inhibited luciferase activity in a dose-response manner, reaching inhibition values of 80% relative to transfections with control plasmids. Similar results were obtained by transfection with an RNase L vector, although in this case the extent of inhibition was further enhanced upon coexpression of 2-5A-synthetase and RNase L. Inhibition of protein synthesis mediated by the 2-5A system correlated well with induction of apoptosis. Transfection of cells with a plasmid vector expressing E3L together with 2-5A-synthetase completely prevented apoptosis induced by this enzyme. We conclude that VV E3L acts as an inhibitor of the i.f.n.-induced 2-5A-synthetase enzyme.
Collapse
Affiliation(s)
- C Rivas
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Itoh M, Hotta H, Homma M. Increased induction of apoptosis by a Sendai virus mutant is associated with attenuation of mouse pathogenicity. J Virol 1998; 72:2927-34. [PMID: 9525613 PMCID: PMC109738 DOI: 10.1128/jvi.72.4.2927-2934.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An avirulent mutant of Sendai virus, Ohita-MVC11 (MVC11), was generated from a highly virulent field strain, Ohita-M1 (M1), through successive passages in LLC-MK2 cell cultures (M. Itoh, Y. Isegawa, H. Hotta, and M. Homma, J. Gen. Virol. 78:3207-3215, 1997). In LLC-MK2 cells, MVC11 induced a high degree of apoptotic cell death that was demonstrated by chromatin condensation of the nucleus and DNA fragmentation, and production of MVC11 declined markedly after prolonged culture. On the other hand, M1 did not induce prominent apoptosis and maintained high virus titers. In primary mouse pulmonary epithelial cell cultures, M1 replicated rather slowly to reach maximum level of virus production at 3 days postinfection, and high levels of virus production were maintained thereafter without causing apoptosis. In contrast, MVC11, which produced 20 times more progeny virus than M1 at 1 day postinfection, induced a high degree of apoptotic cell death before the virus replication cycle was completed. Accordingly, the production of progeny virus was strongly inhibited thereafter. In the lungs of mice infected with MVC11, virus antigens and signals of DNA fragmentation detected by the in situ terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling technique colocalized in bronchial epithelial cells, clearly demonstrating that infection by MVC11 triggered apoptosis in vivo as well as in vitro. These results suggest the possibility that induction of apoptosis by MVC11 plays an important role in attenuation of mouse pathogenicity by restricting progeny virus production in the lung. The C protein was shown to have the capacity to induce apoptosis, and the increased level of the C protein in MVC11-infected cells was considered to account partly, if not entirely, for the induction of apoptosis.
Collapse
Affiliation(s)
- M Itoh
- Department of Microbiology, Kobe University School of Medicine, Japan.
| | | | | |
Collapse
|
34
|
Ramsey-Ewing A, Moss B. Apoptosis induced by a postbinding step of vaccinia virus entry into Chinese hamster ovary cells. Virology 1998; 242:138-49. [PMID: 9501038 DOI: 10.1006/viro.1997.8985] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unlike most cell types examined, nonpermissive Chinese hamster ovary (CHO) cells readily underwent apoptosis upon infection with vaccinia virus (VV). Apoptosis was observed as early as 3 h postinfection with an electrophoretic assay of DNA fragmentation and by 8 h using an in situ (TUNEL) assay. The CHO hr gene from cowpox virus, which overcomes host range restriction of VV in CHO cells, merely delayed the onset of apoptosis by approximately 3 h. Intermediate and late viral protein synthesis were not necessary for apoptosis since these events do not proceed under nonpermissive conditions. Apoptosis also occurred in the presence of cytosine arabinoside or cycloheximide, which inhibits DNA or protein synthesis, respectively, and after infection with a mutant virus that is blocked in early transcription. We also demonstrated that viral early transcription was not required for induction of apoptosis by infecting CHO cells with psoralen/UV-inactivated virus. On the other hand, apoptosis was inhibited by a neutralizing antibody to the virion L1R protein added either before or after virus attachment to cells. These results indicate that a postbinding step associated with cell entry is sufficient and required for induction of apoptosis in CHO cells. Recent progress on apoptotic signaling pathways raises the possibility that a cellular receptor for VV may be involved in apoptosis.
Collapse
Affiliation(s)
- A Ramsey-Ewing
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | | |
Collapse
|
35
|
Chung CS, Vasilevskaya IA, Wang SC, Bair CH, Chang W. Apoptosis and host restriction of vaccinia virus in RK13 cells. Virus Res 1997; 52:121-32. [PMID: 9495528 DOI: 10.1016/s0168-1702(97)00111-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Poxviruses express a number of host range (hr) genes that control virus growth in distinctive cell types. Inactivation of hr gene expression in several reported cases has led to apoptosis of virus-infected cells. In RK13 cells, the K1L gene serves as a hr gene for vaccinia virus. We therefore investigated the effect of K1L expression in apoptosis of RK13 cells. In contrast to other hr genes, no significant increase of apoptosis was detected in RK13 cells infected with a K1L- mutant virus. Also, expression of a CHO hr gene CP77 rescues K1L- mutant virus in RK13 cells with little effect on apoptosis. We then set out an experimental approach to investigate the relationship between apoptosis and host restriction in CHO and RK13 cells. A recombinant vaccinia virus expressing a human bcl-2 gene, bcl2-VV, was constructed. Expression of bcl-2 suppressed apoptosis of virus-infected CHO cells as expected. However, bcl-2 expression did not allow virus growth in CHO cells, suggesting apoptosis suppression is not sufficient to rescue host restriction. Moreover, infection of bcl-2VV in RK13 cells induced significant apoptosis with no reduction on virus production, indicating that apoptosis does not contribute to host restriction. In consideration of this data, we conclude that host restriction of vaccinia virus in CHO and RK13 cells is mediated by a pathway distinct from apoptosis.
Collapse
Affiliation(s)
- C S Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
36
|
Abstract
Vaccinia virus and other poxviruses express a wide variety of proteins which are non-essential for virus replication in culture but help the virus to evade the host response to infection. Examples include proteins which oppose apoptosis, synthesise steroids, capture chemokines, counteract complement, interfere with interferon and intercept interleukins. This review provides an overview of such proteins, with an emphasis on work from our laboratory, and illustrates how the study of these proteins can increase our understanding of virus pathogenesis, the function of the immune system and how to make safer and more immunogenic poxvirus-based vaccines.
Collapse
Affiliation(s)
- G L Smith
- Sir William Dunn School of Pathology, University of Oxford, UK.
| | | | | | | | | |
Collapse
|
37
|
Díaz-Guerra M, Rivas C, Esteban M. Activation of the IFN-inducible enzyme RNase L causes apoptosis of animal cells. Virology 1997; 236:354-63. [PMID: 9325243 DOI: 10.1006/viro.1997.8719] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interferon (IFN)-induced enzyme RNase L produced by a recombinant vaccinia virus (VV) causes death of mammalian cells with morphological and biochemical characteristics of apoptosis. Coexpression of 2-5A-synthetase enhances apoptosis induced by RNase L Activation of endogenous RNase L by infection with a VV ts mutant (ts22) or with wild-type virus in the presence of the antipoxvirus drug isatin-beta-thiosemicarbazone, a treatment known to significantly increase the amount of double-stranded RNA late during infection, also causes pronounced apoptosis of infected cells. The effects observed with recombinant virus-derived RNase L or with the endogenous enzyme are specific, since apoptosis also occurs in cells derived from mice lacking the IFN-induced protein kinase (PKR). The apoptosis antagonist Bcl-2 prevents induction of cell death by RNase L activation. Apoptosis of mammalian cells by RNase L activation could be a mechanism mediating anticellular actions of IFN.
Collapse
Affiliation(s)
- M Díaz-Guerra
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | |
Collapse
|
38
|
Liao CL, Lin YL, Wang JJ, Huang YL, Yeh CT, Ma SH, Chen LK. Effect of enforced expression of human bcl-2 on Japanese encephalitis virus-induced apoptosis in cultured cells. J Virol 1997; 71:5963-71. [PMID: 9223486 PMCID: PMC191852 DOI: 10.1128/jvi.71.8.5963-5971.1997] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Infection by Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes acute encephalitis in humans and induces severe cytopathic effects in different types of cultured cells. This study attempted to determine whether apoptosis contributes to virus-induced cell death in a culture system by characterizing JEV lytic infection in baby hamster kidney BHK-21 cells, murine neuroblastoma N18 cells, and human neuronal progenitor NT2 cells. According to our results, the replication of JEV, and not the UV-inactivated virions per se, triggered apoptosis in these cell lines, as evidenced by nuclear condensation, DNA fragmentation ladder, and in situ end labeling of DNA strand breaks with terminal transferase (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay). Different strains of JEV, regardless of whether they are neurovirulent to mice, could induce apoptosis of the infected cells. In addition, enforced expression of the human protooncogene bcl-2 in BHK-21 cells, which did not influence virus production, appeared to delay the process of JEV-induced apoptosis, despite the fact that most infected cells were inevitably killed after prolonged cultures. However, Bcl-2 proteins expressed in N18 cells failed to block JEV-induced apoptosis, although they did prevent Sindbis virus-induced apoptosis from occurring in the same cells. This finding suggests that these two viruses may utilize similar but not identical mechanisms to kill their infected cells. The results presented here thus demonstrate that apoptosis can be a general mechanism for JEV-induced cell death and that enforced bcl-2 expression may be inadequate in protecting all cell types from JEV-induced apoptosis in cell cultures.
Collapse
Affiliation(s)
- C L Liao
- Institute of Preventive Medicine, Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kramer B, Huber M, Kern C, Klingel K, Kandolf R, Selinka HC. Chinese hamster ovary cells are non-permissive towards infection with coxsackievirus B3 despite functional virus-receptor interactions. Virus Res 1997; 48:149-56. [PMID: 9175253 DOI: 10.1016/s0168-1702(96)01438-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Viral infection is a complex process which includes binding and interaction of the virus with specific cell surface receptors, uptake and uncoating of the virus, and finally replication. Chinese hamster ovary (CHO) cells are non-permissive towards infection with coxsackieviruses of group B (CVB), although they do express a putative CVB-specific receptor protein. In order to localize the block of infection in CHO cells, these cells were tested for binding of radiolabelled CVB3, receptor-mediated transformation of virions into A-particles, and replication of the viral genome. Binding of CVB3 to CHO cells was found to be comparable to the binding of this virus to permissive cell lines. Detergent-solubilized membrane proteins of CHO cells were tested in virus overlay protein-binding assays (VOPBAs) and shown to express a 100 kDa CVB-binding membrane protein similar to the CVB receptor protein which we recently described for permissive HeLa cells. Incubation of CVB3 with intact CHO cells resulted in transformation of cell-bound virions into non-infectious A-particles (deprived of capsid protein VP4), demonstrating the functional activity of the CVB receptor protein on CHO hamster cells. Transfection of recombinant CVB3 cDNA or viral RNA into CHO cells resulted in the production of infectious CVB3 virions, implying that the failure of CVB to infect CHO cells is not caused by a defect in virus replication but results from a block in the uptake of virus particles into the cell after the initial steps of virus-receptor interactions.
Collapse
Affiliation(s)
- B Kramer
- Department of Molecular Pathology, Eberhard-Karls-University of Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- J M Hardwick
- Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
41
|
Affiliation(s)
- A G Uren
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
42
|
Jelachich ML, Lipton HL. Theiler's murine encephalomyelitis virus kills restrictive but not permissive cells by apoptosis. J Virol 1996; 70:6856-61. [PMID: 8794327 PMCID: PMC190733 DOI: 10.1128/jvi.70.10.6856-6861.1996] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Theiler's murine encephalomyelitis viruses (TMEV), genus Cardiovirus, family Picorniviridae, are natural enteric pathogens of mice which cause central nervous system demyelination similar to that seen in multiple sclerosis. TMEV can be classified into two groups based on neurovirulence: a highly virulent group, e.g., GDVII virus, and a less virulent group, e.g., BeAn virus. Both viruses, depending on the multiplicity of infection, produced cytopathology in BSC-1 cells similar to that in BHK-21 cells. Since apoptosis has been reported as a mechanism of cell death after infection with many viruses, we examined infected BHK-21 and BSC-1 cells for morphological and biochemical changes consistent with apoptosis. Only the restrictive BSC-1 cells showed evidence of nuclear morphology and internucleosomal DNA degradation indicative of apoptosis. Interestingly, the more virulent GDVII virus was at least 50-fold more efficient in inducing apoptosis than the less virulent BeAn virus. This difference was not due to greater GDVII viral RNA replication or production of infectious virus, since the two viruses were similarly restricted in BSC-1 cells. Apoptosis in BSC-1 cells appears to be triggered by a cytoplasmic event, since inactivation of GDVII viral RNA by UV light abolished the ability of the virus to induce apoptosis. The possible role of apoptosis in the pathogenesis of TMEV infection in mice, especially virus persistence in central nervous system macrophages, is discussed.
Collapse
Affiliation(s)
- M L Jelachich
- Division of Neurology, Evanston Hospital, Illinois 60201, USA
| | | |
Collapse
|
43
|
Abstract
Vaccinia virus contains a gene, termed SPI-2 or B13R, that is closely related in its sequence to a potent inhibitor of apoptosis from cowpox virus (crmA). Infection by vaccinia virus protects HeLa cells against apoptosis that is induced by an immunoglobulin M antibody against the fas receptor or by tumor necrosis factor alpha. This effect is profoundly reduced when the SPI-2 gene is deleted. The SPI-2 gene, when transiently expressed in these cells, can also protect against apoptosis mediated by these agents. Given the similarity to crmA, it seems likely that SPI-2 functions in an analogous fashion, inhibiting the activity of ICE protease family members and blocking the onset of apoptosis.
Collapse
Affiliation(s)
- M Dobbelstein
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA.
| | | |
Collapse
|
44
|
Ramsey-Ewing A, Moss B. Recombinant protein synthesis in Chinese hamster ovary cells using a vaccinia virus/bacteriophage T7 hybrid expression system. J Biol Chem 1996; 271:16962-6. [PMID: 8663285 DOI: 10.1074/jbc.271.28.16962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The vaccinia virus/bacteriophage T7 expression system was adapted to Chinese hamster ovary (CHO) cells. Vaccinia virus undergoes abortive infection in CHO cells, which is characterized by a sharp reduction in protein synthesis at the stage of viral intermediate gene expression. We determined that expression of a T7 promoter-regulated chloramphenicol acetyltransferase gene was at least 20 times more efficient in permissive BS-C-1 than in CHO cells. The encephalomyocarditis virus 5'-untranslated region, which confers cap-independent translatability to mRNA, stimulated recombinant protein synthesis by 10-fold in both cell lines, maintaining the advantage of the BS-C-1 cells over CHO cells. Since the cowpox virus hr gene overcomes vaccinia virus host range restriction in CHO cells, we constructed a recombinant virus that carries an intact hr gene in addition to the T7 RNA polymerase gene. With this virus, synthesis of T7 RNA polymerase was enhanced and production of a recombinant protein occurred in CHO cells at the level observed in permissive cell lines. Extension of the vaccinia virus/bacteriophage T7 expression system to CHO cells should be of wide interest, as these cells have advantages for preparation of recombinant proteins in research and biotechnology.
Collapse
Affiliation(s)
- A Ramsey-Ewing
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
45
|
Bair CH, Chung CS, Vasilevskaya IA, Chang W. Isolation and characterization of a Chinese hamster ovary mutant cell line with altered sensitivity to vaccinia virus killing. J Virol 1996; 70:4655-66. [PMID: 8676492 PMCID: PMC190402 DOI: 10.1128/jvi.70.7.4655-4666.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Chinese hamster ovary (CHO) cell line is nonpermissive for vaccinia virus, and translation of viral intermediate genes was reported to be blocked (A. Ramsey-Ewing and B. Moss, Virology 206:984-993, 1995). However, cells are readily killed by vaccinia virus. A vaccinia virus-resistant CHO mutant, VV5-4, was isolated by retroviral insertional mutagenesis. Parental CHO cells, upon infection with vaccinia virus, die within 2 to 3 days, whereas VV5-4 cells preferentially survive this cytotoxic effect. The survival phenotype of VV5-4 is partial and in inverse correlation with the multiplicity of infection used. In addition, viral infection fails to shut off host protein synthesis in VV5-4. VV5-4 was used to study the relationship of progression of the virus life cycle and cell fate. We found that in parental CHO cells, vaccinia virus proceeds through expression of viral early genes, uncoating, viral DNA replication, and expression of intermediate and late promoters. In contrast, we detect only expression of early genes and uncoating in VV5-4 cells, whereas viral DNA replication appears to be blocked. Consistent with the cascade regulation model of viral gene expression, we detect little intermediate- and late-gene expression in VV5-4 cells. Since vaccinia virus is known to be cytolytic, isolation of this mutant therefore demonstrates a new mode of the cellular microenvironment that affects progression of the virus life cycle, resulting in a different cell fate. This process appears to be mediated by a general mechanism, since VV5-4 is also resistant to Shope fibroma virus and myxoma virus killing. On the other hand, VV5-4 remains sensitive to cowpox virus killing. To examine the mechanism of VV5-4 survival, we investigated whether apoptosis is involved. DNA laddering and staining of apoptotic nuclei with Hoechst 33258 were observed in both CHO and VV5-4 cells infected with vaccinia virus. We concluded that the cellular pathway, which blocks viral DNA replication and allows VV5-4 to survive, is independent of apoptosis. This mutant also provides evidence that an inductive signal for apoptosis upon vaccinia virus infection occurs prior to viral DNA replication.
Collapse
Affiliation(s)
- C H Bair
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, Republic of China
| | | | | | | |
Collapse
|
46
|
Mossman K, Lee SF, Barry M, Boshkov L, McFadden G. Disruption of M-T5, a novel myxoma virus gene member of poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits. J Virol 1996; 70:4394-410. [PMID: 8676463 PMCID: PMC190373 DOI: 10.1128/jvi.70.7.4394-4410.1996] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Myxoma virus is a pathogenic poxvirus that induces a lethal myxomatosis disease profile in European rabbits, which is characterized by fulminating lesions at the primary site of inoculation, rapid dissemination to secondary internal organs and peripheral external sites, and supervening gram-negative bacterial infection. Here we describe the role of a novel myxoma virus protein encoded by the M-T5 open reading frame during pathogenesis. The myxoma virus M-T5 protein possesses no significant sequence homology to nonviral proteins but is a member of a larger poxviral superfamily designated host range proteins. An M-T5- mutant virus was constructed by disruption of both copies of the M-T5 gene followed by insertion of the selectable marker p7.5Ecogpt. Although the M-T5- deletion mutant replicated with wild-type kinetics in rabbit fibroblasts, infection of a rabbit CD4+ T-cell line (RL5) with the myxoma virus M-T5- mutant virus resulted in the rapid and complete cessation of both host and viral protein synthesis, accompanied by the manifestation of all the classical features of programmed cell death. Infection of primary rabbit peripheral mononuclear cells with the myxoma virus M-T5-mutant virus resulted in the apoptotic death of nonadherent lymphocytes but not adherent monocytes. Within the European rabbit, disruption of the M-T5 open reading frame caused a dramatic attenuation of the rapidly lethal myxomatosis infection, and none of the infected rabbits displayed any of the characteristic features of myxomatosis. The two most significant histological observations in rabbits infected with the M-T5-mutant virus were (i) the lack of progression of the infection past the primary site of inoculation, coupled with the establishment of a rapid and effective inflammatory reaction, and (ii) the inability of the virus to initiate a cellular reaction within secondary immune organs. We conclude that M-T5 functions as a critical virulence factor by allowing productive infection of immune cells such as peripheral lymphocytes, thus facilitating virus dissemination to secondary tissue sites via the lymphatic channels.
Collapse
Affiliation(s)
- K Mossman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
47
|
Beattie E, Kauffman EB, Martinez H, Perkus ME, Jacobs BL, Paoletti E, Tartaglia J. Host-range restriction of vaccinia virus E3L-specific deletion mutants. Virus Genes 1996; 12:89-94. [PMID: 8879125 DOI: 10.1007/bf00370005] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The vaccinia virus (VV) E3L gene product functions as a dsRNA binding protein that is involved in conferring an interferon-resistant phenotype upon the virus. Studies with a vaccinia virus (VV) E3L- deletion mutant (vP1080) have also demonstrated that the E3L gene product is critical for productive replication on certain cell substrates. While E3L was found to be nonessential for replication in chick embryo fibroblasts (CEFs), virus specifically deleted of E3L was found to be replication deficient in Vero, HeLa, and murine L929 cells. Further, the temporal block in replication appears to differ in these cell systems, as evidenced by the observed timing of protein synthesis inhibition. In Vero cells infected with the VV E3L- mutant, there was no detectable protein synthesis after 2 hr post-infection, whereas in L929 cells normal protein patterns were observed even at late times post-infection. Expression of a heterologous dsRNA binding protein, the reovirus sigma 3 protein, by the E3L- mutant virus restored near wild-type growth characteristics, suggesting the critical nature for regulating dsRNA levels in VV-infected cells.
Collapse
Affiliation(s)
- E Beattie
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany 12222, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Brooks MA, Ali AN, Turner PC, Moyer RW. A rabbitpox virus serpin gene controls host range by inhibiting apoptosis in restrictive cells. J Virol 1995; 69:7688-98. [PMID: 7494278 PMCID: PMC189710 DOI: 10.1128/jvi.69.12.7688-7698.1995] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Poxviruses are unique among viruses in encoding members of the serine proteinase inhibitor (serpin) superfamily. Orthopoxviruses contain three serpins, designated SPI-1, SPI-2, and SPI-3. SPI-1 encodes a 40-kDa protein that is required for the replication of rabbitpox virus (RPV) in PK-15 or A549 cells in culture (A. N. Ali, P. C. Turner, M. A. Brooks, and R. W. Moyer, Virology 202:305-314, 1994). Examination of nonpermissive human A549 cells infected with an RPV mutant disrupted in the SPI-1 gene (RPV delta SPI-1) suggests there are no gross defects in protein or DNA synthesis. The proteolytic processing of late viral structural proteins, a feature of orthopoxvirus infections associated with the maturation of virus particles, also appears relatively normal. However, very few mature virus particles of any kind are produced compared with the level found in infections with wild-type RPV. Morphological examination of RPV delta SPI-1-infected A549 cells, together with an observed fragmentation of cellular DNA, suggests that the host range defect is associated with the onset of apoptosis. Apoptosis is seen only in RPV delta SPI-1 infection of nonpermissive (A549 or PK-15) cells and is absent in all wild-type RPV infections and RPV delta SPI-2 mutant infections examined to date. Although the SPI-1 gene is expressed early, before DNA replication, the triggering apoptotic event occurs late in the infection, as RPV delta SPI-1-infected A549 cells do not undergo apoptosis when infections are carried out in the presence of cytosine arabinoside. While the SPI-2 (crmA) gene, when transfected into cells, has been shown to inhibit apoptosis, our experiments provide the first indication that a poxvirus serpin protein can inhibit apoptosis during a poxvirus infection.
Collapse
Affiliation(s)
- M A Brooks
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville 32610-0266, USA
| | | | | | | |
Collapse
|