1
|
Singh RS, Singh A, Masih GD, Batra G, Sharma AR, Joshi R, Prakash A, Suroy B, Sarma P, Prajapat M, Kaur H, Bhattacharyya A, Upadhyay S, Medhi B. A comprehensive insight on the challenges for COVID-19 vaccine: A lesson learnt from other viral vaccines. Heliyon 2023; 9:e16813. [PMID: 37303517 PMCID: PMC10245239 DOI: 10.1016/j.heliyon.2023.e16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
The aim of this study is to comprehensively analyze previous viral vaccine programs and identify potential challenges and effective measures for the COVID-19 vaccine program. Previous viral vaccine programs, such as those for HIV, Zika, Influenza, Ebola, Dengue, SARS, and MERS, were evaluated. Paramount challenges were identified, including quasi-species, cross-reactivity, duration of immunity, revaccination, mutation, immunosenescence, and adverse events related to viral vaccines. Although a large population has been vaccinated, mutations in SARS-CoV-2 and adverse events related to vaccines pose significant challenges. Previous vaccine programs have taught us that predicting the final outcome of the current vaccine program for COVID-19 cannot be determined at a given state. Long-term follow-up studies are essential. Validated preclinical studies, long-term follow-up studies, alternative therapeutic approaches, and alternative vaccines are necessary.
Collapse
Affiliation(s)
- Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gladson David Masih
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Benjamin Suroy
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Sector-32, Chandigarh, 160030, India
| | - Sujata Upadhyay
- Department of Physiology, Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
2
|
Marasini B, Vyas HK, Lakhashe SK, Hariraju D, Akhtar A, Ratcliffe SJ, Ruprecht RM. Mucosal AIDS virus transmission is enhanced by antiviral IgG isolated early in infection. AIDS 2021; 35:2423-2432. [PMID: 34402452 PMCID: PMC8631165 DOI: 10.1097/qad.0000000000003050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Antibody-dependent enhancement (ADE) affects host-virus dynamics in fundamentally different ways: i) enhancement of initial virus acquisition, and/or ii) increased disease progression/severity. Here we address the question whether anti-HIV-1 antibodies can enhance initial infection. While cell-culture experiments hinted at this possibility, in-vivo proof remained elusive. DESIGN We used passive immunization in nonhuman primates challenged with simian-human immunodeficiency virus (SHIV), a chimera expressing HIV-1 envelope. We purified IgG from rhesus monkeys with early-stage SHIV infection - before cross-neutralizing anti-HIV-1 antibodies had developed - and screened for maximal complement-mediated antibody-dependent enhancement (C'-ADE) of viral replication with a SHIV strain phylogenetically distinct from that harbored by IgG donor macaques. IgG fractions with maximal C'-ADE but lacking neutralization were combined to yield enhancing anti-SHIV IgG (enSHIVIG). RESULTS We serially enrolled naive macaques (Group 1) to determine the minimal and 50% animal infectious doses required to establish persistent infection after intrarectal SHIV challenge. The first animal was inoculated with a 1 : 10 virus-stock dilution; after this animal's viral RNA load was >104copies/ml, the next macaque was challenged with 10x less virus, a process repeated until viremia no longer ensued. Group 2 was pretreated intravenously with enSHIVIG 24 h before SHIV challenge. Overall, Group 2 macaques required 3.4-fold less virus compared to controls (P = 0.002). This finding is consistent with enhanced susceptibility of the passively immunized animals to mucosal SHIV challenge. CONCLUSION These passive immunization data give proof of IgG-mediated enhanced virus acquisition after mucosal exposure - a potential concern for antibody-based AIDS vaccine development.
Collapse
Affiliation(s)
- Bishal Marasini
- University of Louisiana at Lafayette, New Iberia Research Center, New Iberia
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana
- Texas Biomedical Research Institute, San Antonio, Texas
| | | | | | - Dinesh Hariraju
- University of Louisiana at Lafayette, New Iberia Research Center, New Iberia
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Akil Akhtar
- Texas Biomedical Research Institute, San Antonio, Texas
| | | | - Ruth M. Ruprecht
- University of Louisiana at Lafayette, New Iberia Research Center, New Iberia
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana
- Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
3
|
Abstract
The innate immune system is comprised of both cellular and humoral players that recognise and eradicate invading pathogens. Therefore, the interplay between retroviruses and innate immunity has emerged as an important component of viral pathogenesis. HIV-1 infection in humans that results in hematologic abnormalities and immune suppression is well represented by changes in the CD4/CD8 T cell ratio and consequent cell death causing CD4 lymphopenia. The innate immune responses by mucosal barriers such as complement, DCs, macrophages, and NK cells as well as cytokine/chemokine profiles attain great importance in acute HIV-1 infection, and thus, prevent mucosal capture and transmission of HIV-1. Conversely, HIV-1 has evolved to overcome innate immune responses through RNA-mediated rapid mutations, pathogen-associated molecular patterns (PAMPs) modification, down-regulation of NK cell activity and complement receptors, resulting in increased secretion of inflammatory factors. Consequently, epithelial tissues lining up female reproductive tract express innate immune sensors including anti-microbial peptides responsible for forming primary barriers and have displayed an effective potent anti-HIV activity during phase I/II clinical trials.
Collapse
|
4
|
Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK. Challenges in Dengue Vaccines Development: Pre-existing Infections and Cross-Reactivity. Front Immunol 2020; 11:1055. [PMID: 32655548 PMCID: PMC7325873 DOI: 10.3389/fimmu.2020.01055] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Dengue is one of the most frequently transmitted mosquito-borne diseases in the world, which creates a significant public health concern globally, especially in tropical and subtropical countries. It is estimated that more than 390 million people are infected with dengue virus each year and around 96 million develop clinical pathologies. Dengue infections are not only a health problem but also a substantial economic burden. To date, there are no effective antiviral therapies and there is only one licensed dengue vaccine that only demonstrated protection in the seropositive (Immune), naturally infected with dengue, but not dengue seronegative (Naïve) vaccines. In this review, we address several immune components and their interplay with the dengue virus. Additionally, we summarize the literature pertaining to current dengue vaccine development and advances. Moreover, we review some of the factors affecting vaccine responses, such as the pre-vaccination environment, and provide an overview of the significant challenges that face the development of an efficient/protective dengue vaccine including the presence of multiple serotypes, antibody-dependent enhancement (ADE), as well as cross-reactivity with other flaviviruses. Finally, we discuss targeting T follicular helper cells (Tfh), a significant cell population that is essential for the production of high-affinity antibodies, which might be one of the elements needed to be specifically targeted to enhance vaccine precision to dengue regardless of dengue serostatus.
Collapse
Affiliation(s)
- Abdullah M Izmirly
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sana O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sawsan O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jennifer Connors
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
5
|
Gach JS, Venzon D, Vaccari M, Keele BF, Franchini G, Forthal DN. Relationship between Vaccine-Induced Antibody Capture of Infectious Virus and Infection Outcomes following Repeated Low-Dose Rectal Challenges with Simian Immunodeficiency Virus SIVmac251. J Virol 2016; 90:8487-95. [PMID: 27440881 PMCID: PMC5021405 DOI: 10.1128/jvi.00812-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/06/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Antibodies are known to enhance in vitro infection by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). We measured the ability of antibodies induced by ALVAC-SIV/gp120 vaccination, given with alum or MF59 adjuvant, to capture infectious SIVmac251 and determined the association between capture and infection outcomes following low-dose, repeated rectal challenge of rhesus macaques. We found that capture correlated with the number of transmitted/founder (T/F) variants that established infection, such that animals whose plasma captured more virus were infected with a higher number of T/F strains. Capture also correlated with results of Env binding assays, indicating that greater immunogenicity resulted in greater capture. Although vaccination elicited negligible neutralizing activity against the challenge strain (50% inhibitory dilutions of >1/80 in all cases), animals with low capture and whose plasma, at a fixed dilution, inhibited a higher fraction of virus were infected at a lower rate than animals with high capture and low neutralization (P = 0.039); only animals with the low capture/high neutralization response profile were protected compared with unvaccinated control animals (P = 0.026). In a sieve analysis, high capture and low capture were distinguishable on the basis of polymorphisms in the V1 loop of Env at amino acids 144 and 145. Our results indicate that vaccine-induced antibody that binds to and captures infectious virus but does not inhibit its infectivity may enhance the likelihood of infection following rectal challenge with SIVmac251. Higher immunogenicity resulting in better antibody capture but similar anti-infectivity may not improve vaccine efficacy. IMPORTANCE Vaccines generally prevent viral infections by eliciting antibodies that inhibit virus infectivity. However, antibodies, including those induced by vaccination, have the potential to enhance, rather than prevent infection. We measured the ability of vaccine-induced antibodies to capture infectious simian immunodeficiency virus (SIV) and explored the relationship between virus capture and infection outcomes. We found that capture correlated with the number of SIV variants that established infection, such that animals whose plasma captured more virus were infected with a higher number of unique strains. In addition, animals whose sera had high capture but weak anti-infectivity activity were infected at a higher rate than were animals with low capture and stronger anti-infectivity activity. These results suggest that vaccines that induce antibodies that bind to and capture infectious virus but do not inhibit virus infectivity will not be effective in preventing infection.
Collapse
Affiliation(s)
- Johannes S Gach
- Division of Infectious Diseases, Departments of Medicine and Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Monica Vaccari
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Departments of Medicine and Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
6
|
Heesters BA, Lindqvist M, Vagefi PA, Scully EP, Schildberg FA, Altfeld M, Walker BD, Kaufmann DE, Carroll MC. Follicular Dendritic Cells Retain Infectious HIV in Cycling Endosomes. PLoS Pathog 2015; 11:e1005285. [PMID: 26623655 PMCID: PMC4666623 DOI: 10.1371/journal.ppat.1005285] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/27/2015] [Indexed: 01/12/2023] Open
Abstract
Despite the success of antiretroviral therapy (ART), it does not cure Human Immunodeficiency Virus (HIV) and discontinuation results in viral rebound. Follicular dendritic cells (FDC) are in direct contact with CD4+ T cells and they retain intact antigen for prolonged periods. We found that human FDC isolated from patients on ART retain infectious HIV within a non-degradative cycling compartment and transmit infectious virus to uninfected CD4 T cells in vitro. Importantly, treatment of the HIV+ FDC with a soluble complement receptor 2 purges the FDC of HIV virions and prevents viral transmission in vitro. Our results provide an explanation for how FDC can retain infectious HIV for extended periods and suggest a therapeutic strategy to achieve cure in HIV-infected humans. Human immunodeficiency virus (HIV) can lead to acquired immunodeficiency syndrome, or AIDS. Before the introduction of anti retroviral therapy (ART) in the mid-1990s, people with HIV could progress to AIDS in just a few years. Today patients with HIV have a close to normal life expectancy. Worldwide, there are about 2 million new cases of HIV per year. Currently about 35 million people are living with HIV of which around 13 million receive ART. Still an estimated 1.5 million people die from the consequences of HIV each year. Despite the success of ART, it does not cure HIV and discontinuation results in viral rebound. Follicular dendritic cells (FDC), located central to the B cell follicle, are also in direct contact with T cells. FDCs retain intact antigen for prolonged periods. We found that human FDCs isolated from patients on ART retain infectious HIV and can transmit virus to uninfected T cells in vitro. Treatment of the HIV+ FDC with a soluble complement receptor 2 purges the FDC of HIV virions and prevents viral transmission to T cells in vitro. Our results can explain how FDCs retain infectious HIV and suggest a therapeutic strategy to come closer to a cure.
Collapse
Affiliation(s)
- Balthasar A. Heesters
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| | - Madelene Lindqvist
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Parsia A. Vagefi
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Eileen P. Scully
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank A. Schildberg
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcus Altfeld
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Viral Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniel E. Kaufmann
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Center and Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, United States of America
- Centre de Recherché du CHUM; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Michael C. Carroll
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Herrero R, Real LM, Rivero-Juárez A, Pineda JA, Camacho Á, Macías J, Laplana M, Konieczny P, Márquez FJ, Souto JC, Soria JM, Saulle I, Lo Caputo S, Biasin M, Rivero A, Fibla J, Caruz A. Association of complement receptor 2 polymorphisms with innate resistance to HIV-1 infection. Genes Immun 2015; 16:134-41. [PMID: 25569262 DOI: 10.1038/gene.2014.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/09/2022]
Abstract
HIV-1 induces activation of complement through the classical and lectin pathways. However, the virus incorporates several membrane-bound or soluble regulators of complement activation (RCA) that inactivate complement. HIV-1 can also use the complement receptors (CRs) for complement-mediated antibody-dependent enhancement of infection (Ć-ADE). We hypothesize that hypofunctional polymorphisms in RCA or CRs may protect from HIV-1 infection. For this purpose, 139 SNPs located in 19 RCA and CRs genes were genotyped in a population of 201 Spanish HIV-1-exposed seronegative individuals (HESN) and 250 HIV-1-infected patients. Two SNPs were associated with infection susceptibility, rs1567190 in CR2 (odds ratio (OR) = 2.27, P = 1 × 10(-4)) and rs2842704 in C4BPA (OR = 2.11, P = 2 × 10(-4)). To replicate this finding, we analyzed a cohort of Italian, sexually HESN individuals. Although not significant (P = 0.25, OR = 1.57), similar genotypic proportions were obtained for the CR2 marker rs1567190. The results of the two association analyses were combined through a random effect meta-analysis, with a significant P-value of 2.6 x 10(-5) (OR = 2.07). Furthermore, we found that the protective CR2 genotype is correlated with lower levels CR2 mRNA as well as differences in the ratio of the long and short CR2 isoforms.
Collapse
Affiliation(s)
- R Herrero
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - L M Real
- Infectious Diseases and Microbiology Clinical Unit. Valme Hospital, Seville, Spain
| | - A Rivero-Juárez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, Cordoba, Spain
| | - J A Pineda
- Infectious Diseases and Microbiology Clinical Unit. Valme Hospital, Seville, Spain
| | - Á Camacho
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, Cordoba, Spain
| | - J Macías
- Infectious Diseases and Microbiology Clinical Unit. Valme Hospital, Seville, Spain
| | - M Laplana
- Human Genetics Unit, Department of Basic Medical Sciences, University of Lleida IRBLleida, Lleida, Catalonia, Spain
| | - P Konieczny
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - F J Márquez
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - J C Souto
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i de Sant Pau, Barcelone, Spain
| | - J M Soria
- Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i de Sant Pau, Barcelone, Spain
| | - I Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - M Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - A Rivero
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/Reina Sofia University Hospital, Cordoba, Spain
| | - J Fibla
- Human Genetics Unit, Department of Basic Medical Sciences, University of Lleida IRBLleida, Lleida, Catalonia, Spain
| | - A Caruz
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
8
|
Abstract
Follicular dendritic cells (FDCs) are essential for high-affinity antibody production and for the development of B cell memory. Historically, FDCs have been characterized as 'accessory' cells that passively support germinal centre (GC) responses. However, recent observations suggest that FDCs actively shape humoral immunity. In this Review, we discuss recent findings concerning the antigen acquisition and retention functions of FDCs, and relevant implications for protective immunity. Furthermore, we describe the roles of FDCs within GCs in secondary lymphoid organs and discuss FDC development within this dynamic environment. Finally, we discuss how a better understanding of FDCs could facilitate the design of next-generation vaccines.
Collapse
|
9
|
Antibody-mediated enhancement of parvovirus B19 uptake into endothelial cells mediated by a receptor for complement factor C1q. J Virol 2014; 88:8102-15. [PMID: 24807719 DOI: 10.1128/jvi.00649-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite its strong host tropism for erythroid progenitor cells, human parvovirus B19 (B19V) can also infect a variety of additional cell types. Acute and chronic inflammatory cardiomyopathies have been associated with a high prevalence of B19V DNA in endothelial cells of the myocardium. To elucidate the mechanisms of B19V uptake into endothelium, we first analyzed the surface expression of the well-characterized primary B19V receptor P antigen and the putative coreceptors α5β1 integrins and Ku80 antigen on primary and permanent endothelial cells. The receptor expression pattern and also the primary attachment levels were similar to those in the UT7/Epo-S1 cell line regarded as functional for B19V entry, but internalization of the virus was strongly reduced. As an alternative B19V uptake mechanism in endothelial cells, we demonstrated antibody-dependent enhancement (ADE), with up to a 4,000-fold increase in B19V uptake in the presence of B19V-specific human antibodies. ADE was mediated almost exclusively at the level of virus internalization, with efficient B19V translocation to the nucleus. In contrast to monocytes, where ADE of B19V has been described previously, enhancement does not rely on interaction of the virus-antibody complexes with Fc receptors (FcRs), but rather, involves an alternative mechanism mediated by the heat-sensitive complement factor C1q and its receptor, CD93. Our results suggest that ADE represents the predominant mechanism of endothelial B19V infection, and it is tempting to speculate that it may play a role in the pathogenicity of cardiac B19V infection. Importance: Both efficient entry and productive infection of human parvovirus B19 (B19V) seem to be limited to erythroid progenitor cells. However, in vivo, the viral DNA can also be detected in additional cell types, such as endothelial cells of the myocardium, where its presence has been associated with acute and chronic inflammatory cardiomyopathies. In this study, we demonstrated that uptake of B19V into endothelial cells most probably does not rely on the classical receptor-mediated route via the primary B19V receptor P antigen and coreceptors, such as α5β1 integrins, but rather on antibody-dependent mechanisms. Since the strong antibody-dependent enhancement (ADE) of B19V entry requires the CD93 surface protein, it very likely involves bridging of the B19V-antibody complexes to this receptor by the complement factor C1q, leading to enhanced endocytosis of the virus.
Collapse
|
10
|
Complement and HIV-I infection/HIV-associated neurocognitive disorders. J Neurovirol 2014; 20:184-98. [PMID: 24639397 DOI: 10.1007/s13365-014-0243-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
The various neurological complications associated with HIV-1 infection, specifically HIV-associated neurocognitive disorders (HAND) persist as a major public health burden worldwide. Despite the widespread use of anti-retroviral therapy, the prevalence of HAND is significantly high. HAND results from the direct effects of an HIV-1 infection as well as secondary effects of HIV-1-induced immune reaction and inflammatory response. Complement, a critical mediator of innate and acquired immunity, plays important roles in defeating many viral infections by the formation of a lytic pore or indirectly by opsonization and recruitment of phagocytes. While the role of complement in the pathogenesis of HIV-1 infection and HAND has been previously recognized for over 15 years, it has been largely underestimated thus far. Complement can be activated through HIV-1 envelope proteins, mannose-binding lectins (MBL), and anti-HIV-1 antibodies. Complement not only fights against HIV-1 infection but also enhances HIV-1 infection. In addition, HIV-1 can hijack complement regulators such as CD59 and CD55 and can utilize these regulators and factor H to escape from complement attack. Normally, complement levels in brain are much lower than plasma levels and there is no or little complement deposition in brain cells. Interestingly, local production and deposition of complement are dramatically increased in HIV-1-infected brain, indicating that complement may contribute to the pathogenesis of HAND. Here, we review the current understanding of the role of complement in HIV-1 infection and HAND, as well as potential therapeutic approaches targeting the complement system for the treatment and eradications of HIV-1 infection.
Collapse
|
11
|
Association of Fcγ receptor IIIa genotype with the rate of HIV infection after gp120 vaccination. Blood 2012; 120:2836-42. [PMID: 22915639 DOI: 10.1182/blood-2012-05-431361] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We determined whether polymorphisms in Fcγ receptor (FcγR) IIa or FcγRIIIa genes were associated with outcomes in Vax004, a trial testing recombinant gp120 vaccination in preventing sexually acquired HIV infection. Male subjects (n = 1725), including infected and uninfected vaccinees and placebo recipients, were genotyped. We observed no association between FcγRIIa genotype and infection rate in vaccinees or placebo recipients. However, FcγRIIIa genotype was associated with infection rate among vaccinees (P = .035). Exploratory analyses revealed that vaccinees homozygous for the FcγRIIIa V allele in the lowest behavioral risk group had a greater rate of infection than low risk vaccinees with at least 1 F allele (hazard ratio [HR] = 3.52; P = .002). No such association was seen among vaccinees with high-risk behaviors or among placebo recipients in either risk stratum. Vaccinated low-risk VV subjects had a greater infection rate than low-risk VV placebo recipients (HR = 4.51; P = .17) or low-risk placebo recipients with any genotype (HR = 4.72; P = .002). Moreover, low-risk VV vaccinees had infection rates similar to individuals with high behavioral risk, irrespective of genotype. Our results generate the hypothesis that recombinant gp120 vaccine may have increased the likelihood of acquiring HIV infection in individuals with the VV genotype (present in ~ 10% of the population) at low behavioral risk of infection.
Collapse
|
12
|
Willey S, Aasa-Chapman MMI, O'Farrell S, Pellegrino P, Williams I, Weiss RA, Neil SJD. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection. Retrovirology 2011; 8:16. [PMID: 21401915 PMCID: PMC3065417 DOI: 10.1186/1742-4690-8-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 03/14/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Non-neutralising antibodies to the envelope glycoprotein are elicited during acute HIV-1 infection and are abundant throughout the course of disease progression. Although these antibodies appear to have negligible effects on HIV-1 infection when assayed in standard neutralisation assays, they have the potential to exert either inhibitory or enhancing effects through interactions with complement and/or Fc receptors. Here we report that non-neutralising antibodies produced early in response to HIV-1 infection can enhance viral infectivity. RESULTS We investigated this complement-mediated antibody-dependent enhancement (C'-ADE) of early HIV infection by carrying out longitudinal studies with primary viruses and autologous sera derived sequentially from recently infected individuals, using a T cell line naturally expressing the complement receptor 2 (CR2; CD21). The C'-ADE was consistently observed and in some cases achieved infection-enhancing levels of greater than 350-fold, converting a low-level infection to a highly destructive one. C'-ADE activity declined as a neutralising response to the early virus emerged, but later virus isolates that had escaped the neutralising response demonstrated an increased capacity for enhanced infection by autologous antibodies. Moreover, sera with autologous enhancing activity were capable of C'ADE of heterologous viral isolates, suggesting the targeting of conserved epitopes on the envelope glycoprotein. Ectopic expression of CR2 on cell lines expressing HIV-1 receptors was sufficient to render them sensitive to C'ADE. CONCLUSIONS Taken together, these results suggest that non-neutralising antibodies to the HIV-1 envelope that arise during acute infection are not 'passive', but in concert with complement and complement receptors may have consequences for HIV-1 dissemination and pathogenesis.
Collapse
Affiliation(s)
- Suzanne Willey
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
- Department of Infectious Diseases, King's College London, Peter Gorer Department of Immunobiology, Borough Wing, Guy's Hospital, London SE1 9RT, UK
| | - Marlén MI Aasa-Chapman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Stephen O'Farrell
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, UK
| | - Robin A Weiss
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | - Stuart JD Neil
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
- Department of Infectious Diseases, King's College London, Peter Gorer Department of Immunobiology, Borough Wing, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
13
|
Abstract
The complement system, a key component of innate immunity, is a first-line defender against foreign pathogens such as HIV-1. The role of the complement system in HIV-1 pathogenesis appears to be multifaceted. Although the complement system plays critical roles in clearing and neutralizing HIV-1 virions, it also represents a critical factor for the spread and maintenance of the virus in the infected host. In addition, complement regulators such as human CD59 present in the envelope of HIV-1 prevent complement-mediated lysis of HIV-1. Some novel approaches are proposed to combat HIV-1 infection through the enhancement of antibody-dependent complement activity against HIV-1. In this paper, we will review these diverse roles of complement in HIV-1 infection.
Collapse
|
14
|
Willey S, Aasa-Chapman MMI. Humoral immunity to HIV-1: neutralisation and antibody effector functions. Trends Microbiol 2008; 16:596-604. [PMID: 18964020 DOI: 10.1016/j.tim.2008.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/04/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
Several features of HIV have frustrated efforts to develop a vaccine able to induce broadly neutralising antibodies. The enormous genetic diversity of HIV is a major factor, accompanied by the camouflaged nature of the envelope spike, upon which HIV depends for cellular entry and to which antibodies must bind to neutralise. The picture is further complicated by the presence of nonfunctional envelope glycoproteins on the surface of HIV that are immunogenic. Consequently, HIV attracts antibodies that do not directly neutralise the virus but still activate complement and engage Fc receptors, which can both enhance and inhibit infection. The various effects that anti-envelope antibodies have on HIV infection will be reviewed here. Further research is needed to determine if these in vitro-characterised activities have relevance in vivo, and if some of the undesirable effects of non-neutralising antibodies can be avoided or the beneficial effects harnessed.
Collapse
Affiliation(s)
- Suzanne Willey
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | | |
Collapse
|
15
|
Abstract
Hepatitis C virus (HCV) often causes a persistent infection associated with hypergammaglobulinemia, high levels of antiviral antibody and circulating immune complexes, and immune complex disease. We previously reported that only a limited neutralizing activity to vesicular stomatitis virus or HCV pseudotype is generated in animals immunized with recombinant HCV envelope proteins and chronically infected HCV patient sera. Interestingly, when some of these neutralizing sera were diluted into a range of concentrations below those that reduced virus plaque number, an increase in pseudotype plaque formation was observed. Purified HCV E2-specific human monoclonal antibodies were used to further verify the specificity of this enhancement, and one- to twofold increases were apparent on permissive Huh-7 cells. The enhancement of HCV pseudotype titer could be inhibited by the addition of a Fc-specific anti-human immunoglobulin G Fab fragment to the virus-antibody mixture prior to infection. Treatment of cells with antibody to Fc receptor I (FcRI) or FcRII, but not FcRIII, also led to an inhibition of pseudotype titer enhancement in an additive manner. Human lymphoblastoid cell line (Raji), a poor host for HCV pseudotype infection, exhibited a four- to sixfold enhancement of pseudotype-mediated cell death upon incubation with antibody at nonneutralizing concentrations. A similar enhancement of cell culture-grown HCV infectivity by a human monoclonal antibody was also observed. Taken together, antibodies to viral epitopes enhancing HCV infection need to be taken into consideration for pathogenesis and in the development of an effective vaccine.
Collapse
|
16
|
Robinson WE. Mechanism for complement-mediated, antibody-dependent enhancement of human immunodeficiency virus type 1 infection in MT2 cells is enhanced entry through CD4, CD21, and CXCR4 chemokine receptors. Viral Immunol 2006; 19:434-47. [PMID: 16987062 DOI: 10.1089/vim.2006.19.434] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Some antibodies neutralize Human Immunodeficiency Virus (HIV). However, antibody to HIV and complement can enhance HIV replication if cells express both complement receptors and CD4, a phenomenon described as complement-mediated, antibody-dependent enhancement (C'ADE). Although increased binding of opsonized virions has been reported, the mechanism by which C'ADE enhances HIV replication remains unproven. In this study, real-time polymerase chain reaction to detect HIV cDNA indicates that complement and anti-HIV antibodies enhance HIV entry 8- to 30- fold with similar increases in integrated provirus. Thus, complement increases HIV replication through a mechanism of enhanced entry. To further refine the mechanism of C'ADE, chemokine receptor antagonists were employed. JM2987, a CXCR4 chemokine receptor antagonist, blocked HIV infection and C'ADE; thus CD4, complement receptors, and CXCR4 chemokine receptors are required for enhanced entry of HIV into MT2 cells. Finally, anti-HIV immunoglobulin enhanced replication of not only group M clade B HIV but also group M clade D and group O isolates. These data demonstrate that antibodies mediating C'ADE of HIV infection are broadly reactive.
Collapse
Affiliation(s)
- W Edward Robinson
- Department of Pathology, University of California, Irvine, CA 92697-4800, USA.
| |
Collapse
|
17
|
Braibant M, Brunet S, Costagliola D, Rouzioux C, Agut H, Katinger H, Autran B, Barin F. Antibodies to conserved epitopes of the HIV-1 envelope in sera from long-term non-progressors: prevalence and association with neutralizing activity. AIDS 2006; 20:1923-30. [PMID: 16988513 DOI: 10.1097/01.aids.0000247113.43714.5e] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Previous studies have shown that broadly neutralizing antibodies (NAb) are more frequent in long-term non-progressors (LTNP) than in other HIV-1 infected patients, but nothing is known about the envelope regions targeted by these broadly NAb. We investigated whether the breadth of neutralizing activity of sera was associated with the presence of specific antibodies (2F5- and/or 4E10-like, b12-like or 2G12-like antibodies) directed against conserved epitopes known to be involved in broad neutralization. METHODS We assessed the ability of sera from 67 LTNP of the French ANRS cohort (ANRS CO15) to neutralize four heterologous primary isolates of four various clades. Competitive and non-competitive ELISA were developed for the specific comparison of levels of antibodies against these specific epitopes in neutralizing and non-neutralizing sera from LTNP. RESULTS We found that higher 2G12-like antibody levels were significantly associated with the broadest neutralizing activity in sera from LTNP. Levels of 2G12-like antibodies were higher in the sera that neutralized the four isolates than in the others, with a median of 5.7 microg/ml [interquartile range (IQR), 2.7-9.3 microg/ml] versus 2.3 microg/ml (IQR, 1.1-3.9 microg/ml) (Mann-Whitney test, P = 0.03). Levels of antibodies against the other targeted envelope epitopes did not differ significantly between broadly and non-broadly neutralizing sera. CONCLUSION These results suggest that the antigenicity of the "silent face" of gp120 that exposes the 2G12 epitope should be analysed in more detail, to find ways to induce broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Martine Braibant
- Laboratoire de Virologie, Université François-Rabelais, INSERM ERI 19, 37044 Tours cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Grundner C, Li Y, Louder M, Mascola J, Yang X, Sodroski J, Wyatt R. Analysis of the neutralizing antibody response elicited in rabbits by repeated inoculation with trimeric HIV-1 envelope glycoproteins. Virology 2005; 331:33-46. [PMID: 15582651 DOI: 10.1016/j.virol.2004.09.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/09/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
The elicitation of broadly neutralizing antibodies directed against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, gp120 and gp41, remains a major challenge. Attempts to utilize monomeric gp120 as an immunogen to elicit high titers of neutralizing antibodies have been disappointing. Envelope glycoprotein constructs that better reflect the trimeric structure of the functional envelope spike have exhibited improved immunogenicity compared with monomeric gp120. We have described soluble gp140 ectodomain constructs with a heterologous trimerization motif; these have previously been shown to elicit antibodies in mice that were able to neutralize a number of HIV-1 isolates, among them primary isolate viruses. Recently, solid-phase proteoliposomes retaining the envelope glycoproteins as trimeric spikes in a physiologic membrane setting have been described. Here, we compare the immunogenic properties of these two trimeric envelope glycoprotein formulations and monomeric gp120 in rabbits. Both trimeric envelope glycoprotein preparations generated neutralizing antibodies more effectively than gp120. In contrast to monomeric gp120, the trimeric envelope glycoproteins elicited neutralizing antibodies with some breadth of neutralization. Furthermore, repeated boosting with the soluble trimeric formulations resulted in an increase in potency that allowed neutralization of a subset of neutralization-resistant HIV-1 primary isolates. We demonstrate that the neutralization is concentration-dependent, is mediated by serum IgG and that the major portion of the neutralizing activity is not directed against the gp120 V3 loop. Thus, mimics of the trimeric envelope glycoprotein spike described here elicit HIV-1-neutralizing antibodies that could contribute to a protective immune response and provide platforms for further modifications to improve the efficiency of this process.
Collapse
Affiliation(s)
- Christoph Grundner
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Takada A, Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 2004; 13:387-98. [PMID: 14625886 DOI: 10.1002/rmv.405] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Besides the common receptor/coreceptor-dependent mechanism of cellular attachment, some viruses rely on antiviral antibodies for their efficient entry into target cells. This mechanism, known as antibody-dependent enhancement (ADE) of viral infection, depends on the cross-linking of complexes of virus-antibody or virus-activated complement components through interaction with cellular molecules such as Fc receptors or complement receptors, leading to enhanced infection of susceptible cells. Recent studies have suggested that additional mechanisms underlie ADE: involvement of complement component C1q and its receptor (Ebola virus), antibody-mediated modulation of the interaction between viral protein and its coreceptor (human immunodeficiency virus) and suppression of cellular antiviral genes by the replication of viruses entering cells via ADE (Ross River virus). Since ADE is exploited by a variety of viruses and has been associated with disease exacerbation, it may have broad relevance to the pathogenesis of viral infection and antiviral strategies.
Collapse
Affiliation(s)
- Ayato Takada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | |
Collapse
|
20
|
Affiliation(s)
- F P Siegal
- St. Vincents Hospital Medical Center, New York, New York, USA
| | | |
Collapse
|
21
|
Burton DR, Saphire EO, Parren PW. A model for neutralization of viruses based on antibody coating of the virion surface. Curr Top Microbiol Immunol 2001; 260:109-43. [PMID: 11443871 DOI: 10.1007/978-3-662-05783-4_7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- D R Burton
- Departments of Immunology and Molecular Biology, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
22
|
Affiliation(s)
- N J Sullivan
- Vaccine Research Center, National Institutes of Health, Building 40, Room 4614B, 40 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Abstract
This chapter discusses in vitro and in vivo antiviral activities of antibody. Since experimentation is far easier in vitro , researchers have been sought to develop in vitro assays that are expected to predict activity in vivo . This could be important in both vaccine design and in passive antibody administration. The proposed mechanisms of in vitro neutralization range from those requiring binding of a single antibody molecule to virus to those requiring substantially complete antibody coating of virus. In vitro, antiviral activity can be separated into activity against virions and activity against infected cells. The activity against virions most often considered is neutralization that can be defined as the loss of infectivity, which ensues when antibody molecule(s) bind to a virus particle, and occurs without the involvement of any other agency. In vivo, it is conventional to distinguish phenomenologically between two types of antibody antiviral activity. One of them is the ability of antibody to protect against infection when it is present before or immediately following infection. Evidence for a number of viruses in vitro indicates that lower antibody concentrations are required to inhibit infection propagated by free virus than are required to inhibit infection propagated by cell-to-cell spread.
Collapse
Affiliation(s)
- P W Parren
- Departments of Immunology and Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
24
|
Tacnet-Delorme P, Boyer V, Thielens NM, Hernandez JF, Bally I, Sim RB, Desgranges C, Arlaud GJ. In Vitro Analysis of Complement-Dependent HIV-1 Cell Infection Using a Model System. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.4088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Previous studies based on the use of human serum as a source of C have provided evidence for the C-dependent enhancement of cell infection by HIV-1. The present study was undertaken to distinguish C from other serum factors and to identify the proteins and the mechanisms involved in C-dependent cell infection by HIV-1. The classical C activation pathway was reconstituted from the proteins C1q, C1r, C1s, C4, C2, C3, factor H, and factor I; each were purified to homogeneity. A mixture of these proteins at physiological concentrations was shown to reproduce the ability of normal human serum to enhance the infection of MT2 cells by HIV-1 at low doses of virus. This enhancing effect was abolished when heat-inactivated serum and C2- or C3-depleted serum were used, and was restored upon addition of the corresponding purified proteins. A mixture of two synthetic peptides corresponding to positions 10–15 and 90–97 of human C receptor type 2 (CD21) as well as soluble CD4 both inhibited the C-dependent infection process. These data provide unambiguous evidence that HIV-1 triggers a direct activation of the classical C pathway in vitro and thereby facilitates the infection of MT2 cells at low doses of virus. These findings are consistent with a mechanism involving increased interaction between the virus opsonized by C3b-derived fragment(s) and the CD21 cell receptors and subsequent virus entry through CD4 receptors.
Collapse
Affiliation(s)
- Pascale Tacnet-Delorme
- *Laboratoire d’Enzymologie Moléculaire, Institut de Biologie Structurale, Grenoble, France
| | - Véronique Boyer
- †Unité Institut National de la Santé et de la Recherche Médicale 271, Lyon, France; and
| | - Nicole M. Thielens
- *Laboratoire d’Enzymologie Moléculaire, Institut de Biologie Structurale, Grenoble, France
| | | | - Isabelle Bally
- *Laboratoire d’Enzymologie Moléculaire, Institut de Biologie Structurale, Grenoble, France
| | - Robert B. Sim
- ‡Medical Research Council Immunochemistry Unit, Department of Biochemistry, Oxford, United Kingdom
| | - Claude Desgranges
- †Unité Institut National de la Santé et de la Recherche Médicale 271, Lyon, France; and
| | - Gérard J. Arlaud
- *Laboratoire d’Enzymologie Moléculaire, Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
25
|
Jakubik JJ, Saifuddin M, Takefman DM, Spear GT. B lymphocytes in lymph nodes and peripheral blood are important for binding immune complexes containing HIV-1. Immunology 1999; 96:612-9. [PMID: 10233749 PMCID: PMC2326775 DOI: 10.1046/j.1365-2567.1999.00304.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the interaction of HIV immune complexes (HIV IC) with mononuclear cells from lymph nodes and blood. While antibody alone did not affect binding of HIV IC to mononuclear cells, antibody plus complement increased binding by as much as 10-fold and complement alone also increased binding slightly. Most of the increased binding of HIV IC to mononuclear cells was blocked by heat-inactivation of complement and by OKB7 monoclonal antibody, indicating that virus binding was to CR2 on B cells. A similar pattern of antibody and complement dependence for binding of HIV IC was observed with two model systems; Raji and Arent B-cell lines. Most of the HIV IC that bound to lymph node cells were not internalized, but remained on the cell surface and were gradually released. However, even after 48 hr some HIV IC could be detected bound to cells. Under certain conditions, HIV IC were infectious for T cells if bound to B cells but not infectious if added directly to T cells. Additionally, HIV IC bound to B cells led to higher virus replication. These studies show that B lymphocytes from blood and lymph nodes can transfer infectious HIV IC to T cells.
Collapse
Affiliation(s)
- J J Jakubik
- Department of Immunology and Microbiology, Rush University, 1653 W. Congress Parkway, Chicago, IL. 60612, USA
| | | | | | | |
Collapse
|
26
|
Nielsen SD, Sørensen AM, Schønning K, Lund O, Nielsen JO, Hansen JE. Complement-mediated enhancement of HIV-1 infection in peripheral blood mononuclear cells. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 1998; 29:447-52. [PMID: 9435030 DOI: 10.3109/00365549709011852] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We investigated if complement-mediated enhancement of HIV infection occurs in peripheral blood mononuclear cells (PBMC). In 7 experiments, we evaluated the effect of human complement on HIVIIIB infection in vitro. We measured HIV antigen production on day 4 and found that pre-incubation of HIV with complement led to enhanced production of antigen with a median enhancement of 2.5-fold (range 1.1-6.8). This complement-mediated increase in antigen production was statistically significant (p < 0.02). Complement-mediated enhancement of HIV infection was also tested in CD4 cells enriched from PBMC, and CD4 cells persistently gave higher levels of infection enhancement than PBMC. Thus, CD4 cells appear to be sufficient for complement-mediated enhancement of HIV infection to occur. In addition, we tested if it was possible to detect complement-mediated enhancement of primary HIV isolates in PBMC. We tested 3 isolates and found only a minor effect on antigen production (median enhancement 1.2-fold, range 0.6-1.5). Furthermore, addition of HIV-specific antibodies in combination with complement resulted in enhanced antigen production in 2/3 sera tested. However, the combination of complement and antibodies resulted in only a minor increase in enhancement of HIV infection compared to that obtained with complement alone. Finally, we found evidence of complement-mediated enhancement of HIV infection in resting PBMC. In conclusion, we demonstrated that complement-mediated enhancement of HIV infection does occur in vitro in PBMC.
Collapse
Affiliation(s)
- S D Nielsen
- Department of Infectious Diseases, Hvidovre Hospital, Denmark
| | | | | | | | | | | |
Collapse
|
27
|
Hansen JE, Gram GJ, Nielsen SD, Sørensen A, Jensen PB, Sehested M, Nielsen JO, Rørth M. Transduction potential of human retroviruses in highly proliferating small-cell lung cancer cells as well as non-proliferating hematopoietic stem cells. APMIS 1997; 105:723-9. [PMID: 9350217 DOI: 10.1111/j.1699-0463.1997.tb05077.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Direct gene transfer to solid tissues or metastatic cancer cells requires vectors capable of in vivo transduction to specific cells. The predominant retroviral vectors of murine origin are inactivated by human complement, which precludes their use in vivo. Such inactivation does not take place with vectors based on human retroviruses. Murine retroviral vectors are also limited to proliferating cells, which human retroviruses are not. In this study we examined whether or not a vector using components from the human retroviruses HIV-1 and HTLV-1 could infect small-cell lung cancer cells and resting CD34+ hematopoietic stem cells. While HIV-1 itself was unable to infect cells lacking the CD4-membrane molecule, chimeric viral particles (pseudotype virus) with HIV-1 genome and HTLV-1 envelope components were able to infect both CD4-containing lymphocytic cells, CD4-negative tumour cells and hematopoietic stem cells. After infection with the pseudotype vector, the RNA genome was reverse transcribed and integrated. Transduction efficiency and gene expression under the HIV-1 LTR promoter in both tumour and stem cells were found to be of a similar or greater magnitude than in lymphocytic cells. These results suggest that gene transfer targeting proliferating as well as resting cells in vivo may be realized using components from human retroviruses.
Collapse
Affiliation(s)
- J E Hansen
- Department 144, Hvidovre Hospital, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lund O, Lund OS, Gram G, Nielsen SD, Schønning K, Nielsen JO, Hansen JE, Mosekilde E. Gene therapy of T helper cells in HIV infection: mathematical model of the criteria for clinical effect. Bull Math Biol 1997; 59:725-45. [PMID: 9214851 DOI: 10.1007/bf02458427] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper presents a mathematical analysis of the criteria for gene therapy of T helper cells to have a clinical effect on HIV infection. The analysis indicates that for such a therapy to be successful, it must protect the transduced cells against HIV-induced death. The transduced cells will not survive as a population if the gene therapy only blocks the spread of virus from transduced cells that become infected. The analysis also suggests that the degree of protection against disease-related cell death provided by the gene therapy is more important than the fraction cells that is initially transduced. If only a small fraction of the cells can be transduced, transduction of T helper cells and transduction of haematopoietic progenitor cells will result in the same steady-state level of transduced T helper cells. For gene therapy to be efficient against HIV infection, our analysis suggests that a 100% protection against viral escape must be obtained. The study also suggests that a gene therapy against HIV infection should be designed to give the transduced cells a partial but not necessarily total protection against HIV-induced cell death, and to avoid the production of viral mutants insensitive to the gene therapy.
Collapse
Affiliation(s)
- O Lund
- Laboratory for infectious Diseases, Hvidovre Hospital, University of Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Prohászka Z, Nemes J, Hidvégi T, Tóth FD, Kerekes K, Erdei A, Szabó J, Ujhelyi E, Thielens N, Dierich MP, Späth P, Ghebrehiwet B, Hampl H, Kiss J, Arlaud G, Füst G. Two parallel routes of the complement-mediated antibody-dependent enhancement of HIV-1 infection. AIDS 1997; 11:949-58. [PMID: 9223728 DOI: 10.1097/00002030-199708000-00002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To study the mechanism of the complement-mediated antibody-dependent enhancement (C'-ADE) of HIV infection which may play a significant role in the progression of HIV-disease. METHODS In vitro complement activating and complement-mediated HIV-infection enhancing abilities of three human anti-gp41 monoclonal antibodies (MAb) were tested. C'-ADE was estimated using HIV-1IIIB and CR2 (CD21)-carrying MT-4 target cells. Normal human serum (NHS), purified C1q, C1q-deficient (C1qD) and C2-deficient (C2D) human sera were applied as complement sources. RESULTS All MAb mediated increased C1q binding to solid-phase gp41. All MAb had a marked dose-dependent and strictly complement-mediated HIV-infection enhancing effect. Mixtures of the MAb with purified C1q also significantly increased HIV-1 infection. C1qD serum had a markedly lower enhancing effect than NHS, which could be raised to normal level by addition of purified C1q. Pretreatment of the target cells with anti-CR2 antibodies only partially inhibited the enhancing effect of the MAb plus normal human serum. CONCLUSION These novel findings indicate that besides the well-known facilitation of entry of HIV-1 by the interaction between virus-bound C3 fragments and CR2 present on the target cells, fixation of C1q to intact virions also results in an enhanced productive HIV-1 infection in the MT-4 cell cultures.
Collapse
Affiliation(s)
- Z Prohászka
- National Institute of Haematology, Blood Transfusion and Immunology, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Prohászka Z, Tóth FD, Bánhegyi D, Füst G. Role of Complement and Antibodies in the Control and Facilitation of HIV Disease. Pathol Oncol Res 1997; 3:296-302. [PMID: 11173651 DOI: 10.1007/bf02904290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In humans the HIV infection results in a chronic disease with a permanent fight between factors controlling HIV and the escape of the virus. Fromthese control mechanisms the present review summarizes the role betwen complement and autoantibodies; the competition of complement and anti-HIV antibodies for binding sites, the role of mannan-binding lectin in the susceptibility to and in the survival after HIV infection, the contribution of complement-dependent enhancing type antibodies to the clinical progression of HIV disease as well as the changing pattern of some autoantibodies (mimicking MHC class II molecules, anti-heat shock protein 60 antibodies and anti-C1q antibodies) which were found to correlate to immunological and clinical parameters.
Collapse
Affiliation(s)
- Zoltán Prohászka
- Semmelweis University of Medicine, 3rd Department of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|
31
|
Chirmule N, Pahwa S. Envelope glycoproteins of human immunodeficiency virus type 1: profound influences on immune functions. Microbiol Rev 1996; 60:386-406. [PMID: 8801439 PMCID: PMC239449 DOI: 10.1128/mr.60.2.386-406.1996] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Infection by human immunodeficiency virus type 1 (HIV-1) leads to progressive destruction of the CD4+ T-cell subset, resulting in immune deficiency and AIDS. The specific binding of the viral external envelope glycoprotein of HIV-1, gp120, to the CD4 molecules initiates viral entry. In the past few years, several studies have indicated that the interaction of HIV-1 envelope glycoprotein with cells and molecules of the immune system leads to pleiotropic biological effects on immune functions, which include effects on differentiation of CD34+ lymphoid progenitor cells and thymocytes, aberrant activation and cytokine secretion patterns of mature T cells, induction of apoptosis, B-cell hyperactivity, inhibition of T-cell dependent B-cell differentiation, modulation of macrophage functions, interactions with components of complement, and effects on neuronal cells. The amino acid sequence homologies of the envelope glycoproteins with several cellular proteins have suggested that molecular mimicry may play a role in the pathogenesis of the disease. This review summarizes work done by several investigators demonstrating the profound biological effects of envelope glycoproteins of HIV-1 on immune system cells. Extensive studies have also been done on interactions of the viral envelope proteins with components of the immune system which may be important for eliciting a "protective immune response." Understanding the influences of HIV-1 envelope glycoproteins on the immune system may provide valuable insights into HIV-1 disease pathogenesis and carries implications for the trials of HIV-1 envelope protein vaccines and immunotherapeutics.
Collapse
Affiliation(s)
- N Chirmule
- Department of Pediatrics, North Shore University Hospital-Cornell University Medical College, Manhasset, New York 11030, USA. N_Chirmule or
| | | |
Collapse
|
32
|
Abstract
The secondary structure of HIV-1 gp120 was predicted using multiple alignment and a combination of two independent methods based on neural network and nearest-neighbor algorithms. The methods agreed on the secondary structure for 80% of the residues in BH10 gp120. Six helices were predicted in HIV strain BH10 gp120, as well as in 27 other HIV-1 strains examined. Two helical segments were predicted in regions displaying profound sequence variation, one in a region suggested to be critical for CD4 binding. The predicted content of helix, beta-strand, and coil was consistent with estimates from Fourier transform infrared spectroscopy. The predicted secondary structure of gp120 compared well with data from NMR analysis of synthetic peptides from the V3 loop and the C4 region. As a first step towards modeling the tertiary structure of gp120, the predicted secondary structure may guide the design of future HIV subunit vaccine candidates.
Collapse
Affiliation(s)
- J E Hansen
- Laboratory for Infectious Diseases, Hvidovre Hospital, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- H Wege
- Institute for Diagnostic Virology, Federal Research Centre for Virus Diseases of Animals, Friedrich-Loeffler-Institutes, Insel Riems, Germany
| |
Collapse
|