1
|
Cackett G, Sýkora M, Portugal R, Dulson C, Dixon L, Werner F. Transcription termination and readthrough in African swine fever virus. Front Immunol 2024; 15:1350267. [PMID: 38545109 PMCID: PMC10965686 DOI: 10.3389/fimmu.2024.1350267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that encodes its own host-like RNA polymerase (RNAP) and factors required to produce mature mRNA. The formation of accurate mRNA 3' ends by ASFV RNAP depends on transcription termination, likely enabled by a combination of sequence motifs and transcription factors, although these are poorly understood. The termination of any RNAP is rarely 100% efficient, and the transcriptional "readthrough" at terminators can generate long mRNAs which may interfere with the expression of downstream genes. ASFV transcriptome analyses reveal a landscape of heterogeneous mRNA 3' termini, likely a combination of bona fide termination sites and the result of mRNA degradation and processing. While short-read sequencing (SRS) like 3' RNA-seq indicates an accumulation of mRNA 3' ends at specific sites, it cannot inform about which promoters and transcription start sites (TSSs) directed their synthesis, i.e., information about the complete and unprocessed mRNAs at nucleotide resolution. Methods Here, we report a rigorous analysis of full-length ASFV transcripts using long-read sequencing (LRS). We systematically compared transcription termination sites predicted from SRS 3' RNA-seq with 3' ends mapped by LRS during early and late infection. Results Using in-vitro transcription assays, we show that recombinant ASFV RNAP terminates transcription at polyT stretches in the non-template strand, similar to the archaeal RNAP or eukaryotic RNAPIII, unaided by secondary RNA structures or predicted viral termination factors. Our results cement this T-rich motif (U-rich in the RNA) as a universal transcription termination signal in ASFV. Many genes share the usage of the same terminators, while genes can also use a range of terminators to generate transcript isoforms varying enormously in length. A key factor in the latter phenomenon is the highly abundant terminator readthrough we observed, which is more prevalent during late compared with early infection. Discussion This indicates that ASFV mRNAs under the control of late gene promoters utilize different termination mechanisms and factors to early promoters and/or that cellular factors influence the viral transcriptome landscape differently during the late stages of infection.
Collapse
Affiliation(s)
- Gwenny Cackett
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Michal Sýkora
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | | | - Christopher Dulson
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Linda Dixon
- Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
2
|
Reyna-Rosas E, Contreras-Treviño HI, León-Rodríguez R, Rocha-Zavaleta L, Dinkova TD, Padilla-Noriega L. The accumulation of rotavirus NSP3 dimers does not correlate with the extent of host cell translation inhibition. Future Virol 2020. [DOI: 10.2217/fvl-2020-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: We aimed to determine the functionality of rotavirus NSP3 dimers. Materials & methods: We expressed rhesus rotavirus NSP3 and determined the kinetics of host cell translation inhibition and the levels of accumulated dimerization intermediates and dimers. Results: We observed a linear kinetics of host cell translation inhibition, which correlated well with the sum of the dimerization intermediates and dimers. Treatment with 17-dimethylaminoethylamino-17-demethoxygeldanamycin reduced the accumulation of NSP3 dimers and potentiated host cell translation inhibition. Conclusion: Our results show that NSP3 dimer formation does not correlate with host cell translation inhibition and suggest that both NSP3 dimers and dimerization intermediates are functional and inhibit host cell translation.
Collapse
Affiliation(s)
- Edgar Reyna-Rosas
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo I Contreras-Treviño
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Renato León-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tzvetanka D Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Padilla-Noriega
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Contreras-Treviño HI, Reyna-Rosas E, León-Rodríguez R, Ruiz-Ordaz BH, Dinkova TD, Cevallos AM, Padilla-Noriega L. Species A rotavirus NSP3 acquires its translation inhibitory function prior to stable dimer formation. PLoS One 2017; 12:e0181871. [PMID: 28738064 PMCID: PMC5524322 DOI: 10.1371/journal.pone.0181871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/07/2017] [Indexed: 11/18/2022] Open
Abstract
Species A rotavirus non-structural protein 3 (NSP3) is a translational regulator that inhibits or, under some conditions, enhances host cell translation. NSP3 binds to the translation initiation factor eIF4G1 and evicts poly-(A) binding protein (PABP) from eIF4G1, thus inhibiting translation of polyadenylated mRNAs, presumably by disrupting the effect of PABP bound to their 3’-ends. NSP3 has a long coiled-coil region involved in dimerization that includes a chaperone Hsp90-binding domain (HS90BD). We aimed to study the role in NSP3 dimerization of a segment of the coiled-coil region adjoining the HS90BD. We used a vaccinia virus system to express NSP3 with point mutations in conserved amino acids in the coiled-coil region and determined the effects of these mutations on translation by metabolic labeling of proteins as well as on accumulation of stable NSP3 dimers by non-dissociating Western blot, a method that separates stable NSP3 dimers from the monomer/dimerization intermediate forms of the protein. Four of five mutations reduced the total yield of NSP3 and the formation of stable dimers (W170A, K171E, R173E and R187E:K191E), whereas one mutation had the opposite effects (Y192A). Treatment with the proteasome inhibitor MG132 revealed that stable NSP3 dimers and monomers/dimerization intermediates are susceptible to proteasome degradation. Surprisingly, mutants severely impaired in the formation of stable dimers were still able to inhibit host cell translation, suggesting that NSP3 dimerization intermediates are functional. Our results demonstrate that rotavirus NSP3 acquires its function prior to stable dimer formation and remain as a proteasome target throughout dimerization.
Collapse
Affiliation(s)
- Hugo I. Contreras-Treviño
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Reyna-Rosas
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Renato León-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Blanca H. Ruiz-Ordaz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tzvetanka D. Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ana M. Cevallos
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Padilla-Noriega
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- * E-mail:
| |
Collapse
|
4
|
Experimental Evolution Identifies Vaccinia Virus Mutations in A24R and A35R That Antagonize the Protein Kinase R Pathway and Accompany Collapse of an Extragenic Gene Amplification. J Virol 2015. [PMID: 26202237 DOI: 10.1128/jvi.01233-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Most new human infectious diseases emerge from cross-species pathogen transmissions; however, it is not clear how viruses adapt to productively infect new hosts. Host restriction factors represent one species-specific barrier that viruses may initially have little ability to inhibit in new hosts. For example, viral antagonists of protein kinase R (PKR) vary in their ability to block PKR-mediated inhibition of viral replication, in part due to PKR allelic variation between species. We previously reported that amplification of a weak PKR antagonist encoded by rhesus cytomegalovirus, rhtrs1, improved replication of a recombinant poxvirus (VVΔEΔK+RhTRS1) in several resistant primate cells. To test whether amplification increases the opportunity for mutations that improve virus replication with only a single copy of rhtrs1 to evolve, we passaged rhtrs1-amplified viruses in semipermissive primate cells. After passage, we isolated two viruses that contained only a single copy of rhtrs1 yet replicated as well as the amplified virus. Surprisingly, rhtrs1 was not mutated in these viruses; instead, we identified mutations in two vaccinia virus (VACV) genes, A24R and A35R, either of which was sufficient to improve VVΔEΔK+RhTRS1 replication. Neither of these genes has previously been implicated in PKR antagonism. Furthermore, the mutation in A24R, but not A35R, increased resistance to the antipoxviral drug isatin-β-thiosemicarbazone, suggesting that these mutations employ different mechanisms to evade PKR. This study supports our hypothesis that gene amplification may provide a "molecular foothold," broadly improving replication to facilitate rapid adaptation, while subsequent mutations maintain this efficient replication in the new host without requiring gene amplification. IMPORTANCE Understanding how viruses adapt to a new host may help identify viruses poised to cross species barriers before an outbreak occurs. Amplification of rhtrs1, a weak viral antagonist of the host antiviral protein PKR, enabled a recombinant vaccinia virus to replicate in resistant cells from humans and other primates. After serial passage of rhtrs1-amplified viruses, there arose in two vaccinia virus genes mutations that improved viral replication without requiring rhtrs1 amplification. Neither of these genes has previously been associated with inhibition of the PKR pathway. These data suggest that gene amplification can improve viral replication in a resistant host species and facilitate the emergence of novel adaptations that maintain the foothold needed for continued replication and spread in the new host.
Collapse
|
5
|
|
6
|
Kay NE, Bainbridge TW, Condit RC, Bubb MR, Judd RE, Venkatakrishnan B, McKenna R, D'Costa SM. Biochemical and biophysical properties of a putative hub protein expressed by vaccinia virus. J Biol Chem 2013; 288:11470-81. [PMID: 23476017 DOI: 10.1074/jbc.m112.442012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
H5 is a constitutively expressed, phosphorylated vaccinia virus protein that has been implicated in viral DNA replication, post-replicative gene expression, and virus assembly. For the purpose of understanding the role of H5 in vaccinia biology, we have characterized its biochemical and biophysical properties. Previously, we have demonstrated that H5 is associated with an endoribonucleolytic activity. In this study, we have shown that this cleavage results in a 3'-OH end suitable for polyadenylation of the nascent transcript, corroborating a role for H5 in vaccinia transcription termination. Furthermore, we have shown that H5 is intrinsically disordered, with an elongated rod-shaped structure that preferentially binds double-stranded nucleic acids in a sequence nonspecific manner. The dynamic phosphorylation status of H5 influences this structure and has implications for the role of H5 in multiple processes during virus replication.
Collapse
Affiliation(s)
- Nicole E Kay
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
8
|
Dower K, Rubins KH, Hensley LE, Connor JH. Development of Vaccinia reporter viruses for rapid, high content analysis of viral function at all stages of gene expression. Antiviral Res 2011; 91:72-80. [PMID: 21569797 PMCID: PMC3177160 DOI: 10.1016/j.antiviral.2011.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 01/25/2023]
Abstract
Vaccinia virus is the prototypical orthopoxvirus of Poxviridae, a family of viruses that includes the human pathogens Variola (smallpox) and Monkeypox. Core viral functions are conserved among orthopoxviruses, and consequently Vaccinia is routinely used to study poxvirus biology and screen for novel antiviral compounds. Here we describe the development of a series of fluorescent protein-based reporter Vaccinia viruses that provide unprecedented resolution for tracking viral function. The reporter viruses are divided into two sets: (1) single reporter viruses that utilize temporally regulated early, intermediate, or late viral promoters; and (2) multi-reporter viruses that utilize multiple temporally regulated promoters. Promoter and reporter combinations were chosen that yielded high signal-to-background for stage-specific viral outputs. We provide examples for how these viruses can be used in the rapid and accurate monitoring of Vaccinia function and drug action.
Collapse
Affiliation(s)
- Ken Dower
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.
Collapse
|
10
|
Majji S, Thodima V, Sample R, Whitley D, Deng Y, Mao J, Chinchar VG. Transcriptome analysis of Frog virus 3, the type species of the genus Ranavirus, family Iridoviridae. Virology 2009; 391:293-303. [PMID: 19608212 DOI: 10.1016/j.virol.2009.06.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/19/2009] [Accepted: 06/06/2009] [Indexed: 01/04/2023]
Abstract
Frog virus 3 is the best characterized species within the genus Ranavirus, family Iridoviridae. FV3's large ( approximately 105 kbp) dsDNA genome encodes 98 putative open reading frames (ORFs) that are expressed in a coordinated fashion leading to the sequential appearance of immediate early (IE), delayed early (DE) and late (L) viral transcripts. As a step toward elucidating molecular events in FV3 replication, we sought to identify the temporal class of viral messages. To accomplish this objective an oligonucleotide microarray containing 70-mer probes corresponding to each of the 98 FV3 ORFs was designed and used to examine viral gene expression. Viral transcription was initially monitored during the course of a productive replication cycle at 2, 4 and 9 h after infection. To confirm results of the time course assay, viral gene expression was also monitored in the presence of cycloheximide (CHX), which limits expression to only IE genes, and following infection with a temperature-sensitive (ts) mutant which at non-permissive temperatures is defective in viral DNA synthesis and blocked in late gene expression. Subsequently, microarray analyses were validated by RT-PCR and qRT-PCR. Using these approaches we identified 33 IE genes, 22 DE genes and 36 L viral genes. The temporal class of the 7 remaining genes could not be determined. Comparison of protein function with temporal class indicated that, in general, genes encoding putative regulatory factors, or proteins that played a part in nucleic acid metabolism and immune evasion, were classified as IE and DE genes, whereas those involved in DNA packaging and virion assembly were considered L genes. Information on temporal class will provide the basis for determining whether members of the same temporal class contain common upstream regulatory regions and perhaps allow us to identify virion-associated and virus-induced proteins that control viral gene expression.
Collapse
Affiliation(s)
- S Majji
- Department of Microbiology, University of Mississippi Medical Ctr., 2500 North State Street, Jackson, MS 39216, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Huang Y, Huang X, Liu H, Gong J, Ouyang Z, Cui H, Cao J, Zhao Y, Wang X, Jiang Y, Qin Q. Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae. BMC Genomics 2009; 10:224. [PMID: 19439104 PMCID: PMC2689277 DOI: 10.1186/1471-2164-10-224] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 05/14/2009] [Indexed: 12/21/2022] Open
Abstract
Background Soft-shelled turtle iridovirus (STIV) is the causative agent of severe systemic diseases in cultured soft-shelled turtles (Trionyx sinensis). To our knowledge, the only molecular information available on STIV mainly concerns the highly conserved STIV major capsid protein. The complete sequence of the STIV genome is not yet available. Therefore, determining the genome sequence of STIV and providing a detailed bioinformatic analysis of its genome content and evolution status will facilitate further understanding of the taxonomic elements of STIV and the molecular mechanisms of reptile iridovirus pathogenesis. Results We determined the complete nucleotide sequence of the STIV genome using 454 Life Science sequencing technology. The STIV genome is 105 890 bp in length with a base composition of 55.1% G+C. Computer assisted analysis revealed that the STIV genome contains 105 potential open reading frames (ORFs), which encode polypeptides ranging from 40 to 1,294 amino acids and 20 microRNA candidates. Among the putative proteins, 20 share homology with the ancestral proteins of the nuclear and cytoplasmic large DNA viruses (NCLDVs). Comparative genomic analysis showed that STIV has the highest degree of sequence conservation and a colinear arrangement of genes with frog virus 3 (FV3), followed by Tiger frog virus (TFV), Ambystoma tigrinum virus (ATV), Singapore grouper iridovirus (SGIV), Grouper iridovirus (GIV) and other iridovirus isolates. Phylogenetic analysis based on conserved core genes and complete genome sequence of STIV with other virus genomes was performed. Moreover, analysis of the gene gain-and-loss events in the family Iridoviridae suggested that the genes encoded by iridoviruses have evolved for favoring adaptation to different natural host species. Conclusion This study has provided the complete genome sequence of STIV. Phylogenetic analysis suggested that STIV and FV3 are strains of the same viral species belonging to the Ranavirus genus in the Iridoviridae family. Given virus-host co-evolution and the phylogenetic relationship among vertebrates from fish to reptiles, we propose that iridovirus might transmit between reptiles and amphibians and that STIV and FV3 are strains of the same viral species in the Ranavirus genus.
Collapse
Affiliation(s)
- Youhua Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
D'Costa SM, Bainbridge TW, Condit RC. Purification and properties of the vaccinia virus mRNA processing factor. J Biol Chem 2007; 283:5267-75. [PMID: 18089571 DOI: 10.1074/jbc.m709258200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mRNAs encoding the vaccinia virus F17 protein and the cowpox A-type inclusion protein are known to possess sequence-homogeneous 3' ends, generated by a post-transcriptional cleavage event. By using partially purified extracts, we have previously shown that the same factor probably cleaves both the F17 and A-type inclusion protein transcripts and that the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. In this study, we have purified the cleavage factor from vaccinia-infected HeLa cells using column chromatography and gel filtration. The factor eluted from the gel filtration column with an apparent molecular mass of approximately 440 kDa. Mass spectrometric analyses of the proteins present in the peak active fractions revealed the presence of at least one vaccinia protein with a high degree of certainty, the H5R gene product. To extend this finding, extracts were prepared from HeLa cells infected with vaccinia virus overexpressing His-tagged H5, chromatographed on a nickel affinity column, and eluted using an imidazole gradient. Cleavage activity eluted with the peak of His-tagged H5. Gel filtration of the affinity-purified material further demonstrated that cleavage activity and His-tagged H5 co-chromatographed with an apparent molecular mass of 463 kDa. We therefore conclude that H5 is specifically associated with post-transcriptional cleavage of F17R transcripts. In addition, we show that dephosphorylation of a cleavage competent extract with a nonspecific phosphatase abolishes cleavage activity implying a role for phosphorylation in cleavage activity.
Collapse
Affiliation(s)
- Susan M D'Costa
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA.
| | | | | |
Collapse
|
13
|
Cresawn SG, Condit RC. A targeted approach to identification of vaccinia virus postreplicative transcription elongation factors: genetic evidence for a role of the H5R gene in vaccinia transcription. Virology 2007; 363:333-41. [PMID: 17376501 PMCID: PMC1950266 DOI: 10.1016/j.virol.2007.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 11/18/2006] [Accepted: 02/05/2007] [Indexed: 11/17/2022]
Abstract
Treatment of wild-type vaccinia virus infected cells with the anti-poxviral drug isatin-beta-thiosemicarbazone (IBT) induces the viral postreplicative transcription apparatus to synthesize longer-than-normal mRNAs through an unknown mechanism. Prior studies have shown that virus mutants resistant to or dependent on IBT affect proteins involved in control of viral postreplicative transcription elongation, including G2, J3, and the viral RNA polymerase. Prior studies also suggest that there exist additional unidentified vaccinia genes that influence transcription elongation. The present study was undertaken to target candidate transcription elongation factor genes in an error-prone mutagenesis protocol to determine whether IBT-resistant or -dependent alleles could be isolated in those candidate genes. Mutagenesis of genes in which IBT resistance alleles have previously been isolated, namely A24R (encoding the second largest RNA polymerase subunit, rpo132) and G2R (encoding a positive transcription elongation factor), resulted in isolation of novel IBT resistance and dependence alleles therefore providing proof of principle of the targeted mutagenesis technique. The vaccinia H5 protein has been implicated previously in transcription elongation by virtue of its association with the positive elongation factor G2. Mutagenesis of the vaccinia H5R gene resulted in a novel H5R IBT resistance allele, strongly suggesting that H5 is a positive transcription elongation factor.
Collapse
Affiliation(s)
| | - Richard C. Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610
| |
Collapse
|
14
|
Cresawn SG, Prins C, Latner DR, Condit RC. Mapping and phenotypic analysis of spontaneous isatin-beta-thiosemicarbazone resistant mutants of vaccinia virus. Virology 2007; 363:319-32. [PMID: 17336362 PMCID: PMC1950264 DOI: 10.1016/j.virol.2007.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 11/22/2022]
Abstract
Treatment of wild type vaccinia virus infected cells with the anti-poxviral drug isatin-beta-thiosemicarbazone (IBT) induces the viral postreplicative transcription apparatus to synthesize longer-than-normal mRNAs through an unknown mechanism. Previous studies have shown that virus mutants resistant to or dependent on IBT affect genes involved in control of viral postreplicative transcription elongation. This study was initiated in order to identify additional viral genes involved in control of vaccinia postreplicative transcription elongation. Eight independent, spontaneous IBT resistant mutants of vaccinia virus were isolated. Marker rescue experiments mapped two mutants to gene G2R, which encodes a previously characterized postreplicative gene positive transcription elongation factor. Three mutants mapped to the largest subunit of the viral RNA polymerase, rpo147, the product of gene J6R. One mutant contained missense mutations in both G2R and A24R (rpo132, the second largest subunit of the RNA polymerase). Two mutants could not be mapped, however sequence analysis demonstrated that neither of these mutants contained mutations in previously identified IBT resistance or dependence genes. Phenotypic and biochemical analysis of the mutants suggests that they possess defects in transcription elongation that compensate for the elongation enhancing effects of IBT. The results implicate the largest subunit of the RNA polymerase (rpo147) in the control of elongation, and suggest that there exist additional gene products which mediate intermediate and late transcription elongation in vaccinia virus.
Collapse
Affiliation(s)
| | | | | | - Richard C. Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610
| |
Collapse
|
15
|
Pirrung MC, Pansare SV, Sarma KD, Keith KA, Kern ER. Combinatorial Optimization of Isatin-β-Thiosemicarbazones as Anti-poxvirus Agents. J Med Chem 2005; 48:3045-50. [PMID: 15828843 DOI: 10.1021/jm049147h] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel strategies are required to combat pox virus infections, whether caused by escape of viruses such as monkeypox from indigenous areas or intentional release of smallpox. Anti-smallpox drugs with a unique mode of antiviral action, inhibition of transcription termination, were known but not therapeutically useful. Using a combinatorial method, variants of the basic isatin-beta-thiosemicarbazone structure were prepared and examined for cytotoxicity and antiviral activity in vaccinia virus- and cowpox virus-infected human cells. Potent and much more selective N-aminomethyl-isatin-beta-thiosemicarbazones were discovered.
Collapse
Affiliation(s)
- Michael C Pirrung
- Department of Chemistry, Levine Science Research Center, Box 90317, Duke University, Durham, North Carolina 27708-0317, USA.
| | | | | | | | | |
Collapse
|
16
|
Dellis S, Strickland KC, McCrary WJ, Patel A, Stocum E, Wright CF. Protein interactions among the vaccinia virus late transcription factors. Virology 2005; 329:328-36. [PMID: 15518812 DOI: 10.1016/j.virol.2004.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 07/23/2004] [Accepted: 08/17/2004] [Indexed: 11/18/2022]
Abstract
The viral proteins A1L, A2L, G8R, and H5R positively modulate vaccinia virus late gene expression. Host-encoded proteins hnRNP A2 and RBM3 may also interact with these viral factors to influence late gene expression. In these studies, a yeast two-hybrid screen and in vitro pulldown and crosslinking experiments were used to investigate protein--protein interactions among these factors. These studies confirmed a previous observation that G8R interacts with itself and A1L. However, self-interactions of A1L and H5R, and interactions between A2L and G8R, A2L and H5R, and H5R and G8R were also observed. In addition, the proteins hnRNP A2 and RBM3 both showed some interaction with A2L. Illustration of these interactions is a step toward understanding the architecture of the late gene transcription complex as it occurs in poxviruses.
Collapse
Affiliation(s)
- Stephanie Dellis
- Biology Department, College of Charleston, Charleston, SC 29401, USA
| | | | | | | | | | | |
Collapse
|
17
|
Prins C, Cresawn SG, Condit RC. An isatin-beta-thiosemicarbazone-resistant vaccinia virus containing a mutation in the second largest subunit of the viral RNA polymerase is defective in transcription elongation. J Biol Chem 2004; 279:44858-71. [PMID: 15294890 DOI: 10.1074/jbc.m408167200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The vaccinia virus RNA polymerase is a multi-subunit enzyme that contains eight subunits in the postreplicative form. A prior study of a virus called IBT(r90), which contains a mutation in the A24 gene encoding the RPO132 subunit of the RNA polymerase, demonstrated that the mutation results in resistance to the anti-poxvirus drug isatin-beta-thiosemicarbazone (IBT). In this study, we utilized an in vitro transcription elongation assay to determine the effect of this mutation on transcription elongation. Both wild type and IBT(r90) polymerase complexes were studied with regard to their ability to pause during elongation, their stability in a paused state, their ability to release transcripts, and their elongation rate. We have determined that the IBT(r90) complex is specifically defective in elongation compared with the WT complex, pausing longer and more frequently than the WT complex. We have built a homology model of the RPO132 subunit with the yeast pol II rpb2 subunit to propose a structural mechanism for this elongation defect.
Collapse
Affiliation(s)
- Cindy Prins
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | |
Collapse
|
18
|
D'Costa SM, Antczak JB, Pickup DJ, Condit RC. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus. Virology 2004; 319:1-11. [PMID: 14967483 DOI: 10.1016/j.virol.2003.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 09/16/2003] [Accepted: 09/25/2003] [Indexed: 10/26/2022]
Abstract
Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor.
Collapse
Affiliation(s)
- Susan M D'Costa
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610-0266, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts.
Collapse
Affiliation(s)
- Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| |
Collapse
|
20
|
Lackner CA, D'Costa SM, Buck C, Condit RC. Complementation analysis of the dales collection of vaccinia virus temperature-sensitive mutants. Virology 2003; 305:240-59. [PMID: 12573570 DOI: 10.1006/viro.2002.1745] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A collection of randomly generated temperature-sensitive (ts) vaccinia virus (strain IHD-W) mutants were reported by S. Dales et al., (1978, Virology, 84, 403-428) in 1978 and characterized by electron microscopy. We have performed further genetic analysis on the Dales collection of mutants to make the mutants more useful to the scientific community. We obtained the entire Dales collection, 97 mutants, from the American Type Culture Center (ATCC). All 97 mutants were grown and reassessed for temperature sensitivity. Of these, 16 mutants were either very leaky or showed unacceptably high reversion indices even after plaque purification and therefore were not used for further analysis. The remaining 81 ts mutants were used to perform a complete complementation analysis with each other and the existing Condit collection of ts vaccinia virus (strain WR) mutants. Twenty-two of these 81 Dales mutants were dropped during complementation analysis due to erratic or weak behavior in the complementation test. Of the 59 mutants that were fit for further investigation, 30 fall into 13 of Condit's existing complementation groups, 5 comprise 3 previously identified complementation groups independent of the Condit collection, and 24 comprise 18 new complementation groups. The 59 mutants which were successfully characterized by complementation will be accessioned by and made available to the scientific community through the ATCC.
Collapse
Affiliation(s)
- Cari A Lackner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
21
|
Latner DR, Thompson JM, Gershon PD, Storrs C, Condit RC. The positive transcription elongation factor activity of the vaccinia virus J3 protein is independent from its (nucleoside-2'-O-) methyltransferase and poly(A) polymerase stimulatory functions. Virology 2002; 301:64-80. [PMID: 12359447 DOI: 10.1006/viro.2002.1538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous genetic and biochemical experiments have shown that the vaccinia virus J3 protein has three different roles in mRNA synthesis and modification. First, J3 is a (nucleoside-2'-O-)methyltransferase which methylates the 2' position of the first transcribed nucleotide, thus converting a cap-0 to a cap-1 structure at the 5' ends of mRNAs. Second, J3 is a processivity factor for the virus coded poly(A) polymerase. Third, J3 has recently been shown to have intermediate and late gene positive transcription elongation factor activity in vivo. Previous experiments have shown that the poly(A) polymerase stimulatory activity and the (nucleoside-2'-O-)methyltransferase activity are two independent functions of the protein that can be genetically separated through site-directed mutagenesis. In this article, the relationship between the J3-mediated transcription elongation activity and the two other functions of the protein was investigated by constructing several site-directed mutant viruses that contain specific defects in either methyltransferase or poly(A) polymerase processivity functions. The results demonstrate that the J3 positive transcription elongation factor activity is a third independent function of the protein that is genetically separable from its two other functions in mRNA modification. The results also show that neither the poly(A) polymerase stimulatory nor the methyltransferase activities of the J3 protein is essential for virus growth in cell culture.
Collapse
Affiliation(s)
- Donald R Latner
- Department of molecular Genetics and microbiology and Center for Mammalian Genetics, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
22
|
Condit RC, Niles EG. Regulation of viral transcription elongation and termination during vaccinia virus infection. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:325-36. [PMID: 12213661 DOI: 10.1016/s0167-4781(02)00461-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccinia virus provides a useful genetic and biochemical tool for studies of the basic mechanisms of eukaryotic transcription. Vaccinia genes are transcribed in three successive gene classes during infection, early, intermediate, and late. Vaccinia transcription is regulated primarily by virus gene products not only during initiation, but also during elongation and termination. The factors and mechanisms regulating early elongation and termination differ from those regulating intermediate and late gene expression. Control of transcription elongation and termination in vaccinia virus bears some similarity to the same process in other prokaryotic and eukaryotic systems, yet features some novel mechanisms as well.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, P.O. Box 100266, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
23
|
Latner DR, Xiang Y, Lewis JI, Condit J, Condit RC. The vaccinia virus bifunctional gene J3 (nucleoside-2'-O-)-methyltransferase and poly(A) polymerase stimulatory factor is implicated as a positive transcription elongation factor by two genetic approaches. Virology 2000; 269:345-55. [PMID: 10753713 DOI: 10.1006/viro.2000.0243] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vaccinia virus genes A18 and G2 affect the elongation and termination of postreplicative viral gene transcription in opposite ways. Viruses with mutations in gene A18 produce abnormally long transcripts, indicating that A18 is a negative transcription elongation factor. Viruses containing mutations in gene G2 produce transcripts that are abnormally short, truncated specifically from their 3' ends, indicating that G2 is a positive transcription elongation factor. Despite the fact that both A18 and G2 are essential genes, A18-G2 double-mutant viruses are viable, presumably because the effects of the mutations are mutually compensatory. In addition, the anti-poxviral drug isatin-beta-thiosemicarbazone (IBT) seems to enhance elongation during a vaccinia infection: IBT treatment of a wildtype vaccinia infection induces a phenotype identical to an A18 mutant infection, and G2 mutant viruses are dependent on IBT for growth, presumably because IBT restores the G2 mutant truncated transcripts to a normal length. These observations inspire two independent genetic selections that have now been used to identify an additional vaccinia gene, J3, that regulates postreplicative transcription elongation. In the first selection, a single virus that contains an extragenic suppressor of the A18 temperature-sensitive mutant, Cts23, was isolated. In the second selection, several spontaneous IBT-dependent (IBT(d)) mutant viruses were isolated and characterized genetically. Marker rescue mapping and DNA sequence analysis show that the extragenic suppressor of Cts23 contains a point mutation in the J3 gene, while each of seven new IBT(d) mutants contains null mutations in the J3 gene. The J3 protein has previously been identified as a (nucleoside-2'-O-)-methyltransferase and as a processivity subunit for the heterodimeric viral poly(A) polymerase. The nature of the two independent selections used to isolate the J3 mutants strongly suggests that the J3 protein serves as a positive postreplicative transcription elongation factor during a normal virus infection.
Collapse
Affiliation(s)
- D R Latner
- Department of Molecular Genetics, Center for Mammalian Genetics, University of Florida, Gainesville, Florida, 32610-0266, USA
| | | | | | | | | |
Collapse
|
24
|
Xiang Y, Latner DR, Niles EG, Condit RC. Transcription elongation activity of the vaccinia virus J3 protein in vivo is independent of poly(A) polymerase stimulation. Virology 2000; 269:356-69. [PMID: 10753714 DOI: 10.1006/viro.2000.0242] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior genetic analysis suggests that the vaccinia virus J3 gene product, previously characterized as a bifunctional (nucleoside-2'-O-)-methyltransferase and poly(A) polymerase stimulatory factor, is a postreplicative positive transcription elongation factor. To test this hypothesis, viruses bearing mutations in the J3 gene were characterized with respect to viral protein and RNA synthesis in infected cells. The analysis reveals that compared to wt virus infections, J3 mutants synthesize reduced amounts of large late viral proteins and shorter-than-normal intermediate and late mRNAs. Structural analysis of one late mRNA shows that it is specifically truncated from the 3' end, thus accounting for its shorter than normal chain length. Thus J3 mutant viruses are defective in elongation of transcription of postreplicative viral genes, strongly suggesting that the J3 gene product normally acts as a positive transcription elongation factor. Biochemical analysis of one J3 missense mutant demonstrates that it retains poly(A) stimulatory activity but is defective in (nucleoside-2'-O-)-methyltransferase activity. Thus the elongation factor activity of the J3 gene product is independent of the poly(A) stimulatory activity. It remains to be determined whether the (nucleoside-2'-O-)-methyltransferase and elongation factor activities of the J3 protein are linked or can be uncoupled by mutation.
Collapse
Affiliation(s)
- Y Xiang
- Department of Molecular Genetics, Center for Mammalian Genetics, University of Florida, Gainesville, Florida, 32610-0266, USA
| | | | | | | |
Collapse
|
25
|
DeMasi J, Traktman P. Clustered charge-to-alanine mutagenesis of the vaccinia virus H5 gene: isolation of a dominant, temperature-sensitive mutant with a profound defect in morphogenesis. J Virol 2000; 74:2393-405. [PMID: 10666270 PMCID: PMC111721 DOI: 10.1128/jvi.74.5.2393-2405.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus H5 gene encodes a 22.3-kDa phosphoprotein that is expressed during both the early and late phases of viral gene expression. It is a major component of virosomes and has been implicated in viral transcription and, as a substrate of the B1 kinase, may participate in genome replication. To enable a genetic analysis of the role of H5 during the viral life cycle, we used clustered charge-to-alanine mutagenesis in an attempt to create a temperature-sensitive (ts) virus with a lesion in the H5 gene. Five mutant viruses were isolated, with one of them, tsH5-4, having a strong ts phenotype as assayed by plaque formation and measurements of 24-h viral yield. Surprisingly, no defects in genome replication or viral gene expression were detected at the nonpermissive temperature. By electron microscopy, we observed a profound defect in the early stages of virion morphogenesis, with arrest occurring prior to the formation of crescent membranes or immature particles. Nonfunctional, "curdled" virosomes were detected in tsH5-4 infections at the nonpermissive temperature. These structures appeared to revert to functional virosomes after a temperature shift to permissive conditions. We suggest an essential role for H5 in normal virosome formation and the initiation of virion morphogenesis. By constructing recombinant genomes containing two H5 alleles, wild type and H5-4, we determined that H5-4 exerted a dominant phenotype. tsH5-4 is the first example of a dominant ts mutant isolated and characterized in vaccinia virus.
Collapse
Affiliation(s)
- J DeMasi
- Program in Molecular Biology, Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
26
|
Shchelkunov SN, Totmenin AV, Loparev VN, Safronov PF, Gutorov VV, Chizhikov VE, Knight JC, Parsons JM, Massung RF, Esposito JJ. Alastrim smallpox variola minor virus genome DNA sequences. Virology 2000; 266:361-86. [PMID: 10639322 DOI: 10.1006/viro.1999.0086] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alastrim variola minor virus, which causes mild smallpox, was first recognized in Florida and South America in the late 19th century. Genome linear double-stranded DNA sequences (186,986 bp) of the alastrim virus Garcia-1966, a laboratory reference strain from an outbreak associated with 0.8% case fatalities in Brazil in 1966, were determined except for a 530-bp fragment of hairpin-loop sequences at each terminus. The DNA sequences (EMBL Accession No. Y16780) showed 206 potential open reading frames for proteins containing >/=60 amino acids. The amino acid sequences of the putative proteins were compared with those reported for vaccinia virus strain Copenhagen and the Asian variola major strains India-1967 and Bangladesh-1975. About one-third of the alastrim viral proteins were 100% identical to correlates in the variola major strains and the remainder were >/=95% identical. Compared with variola major virus DNA, alastrim virus DNA has additional segments of 898 and 627 bp, respectively, within the left and right terminal regions. The former segment aligns well with sequences in other orthopoxviruses, particularly cowpox and vaccinia viruses, and the latter is apparently alastrim-specific.
Collapse
Affiliation(s)
- S N Shchelkunov
- Department of Molecular Biology of Genomes, State Research Center of Virology and Biotechnology (Vector), Koltsovo, Novosibirsk Region, 633159, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lackner CA, Condit RC. Vaccinia virus gene A18R DNA helicase is a transcript release factor. J Biol Chem 2000; 275:1485-94. [PMID: 10625702 DOI: 10.1074/jbc.275.2.1485] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prior phenotypic analysis of a vaccinia virus gene A18R mutant, Cts23, showed the synthesis of longer than wild type (Wt) length viral transcripts during the intermediate stage of infection, indicating that the A18R protein may act as a negative transcription elongation factor. The purpose of the work described here was to determine a biochemical activity for the A18R protein. Pulse-labeled transcription complexes established from intermediate virus promoters on bead-bound DNA templates were assayed for transcript release during an elongation step that contained nucleotides and various proteins. Pulse-labeled transcription complexes elongated in the presence of only nucleotides were unable to release nascent RNA. The addition of Wt extract during the elongation phase resulted in release of the nascent transcript, indicating that additional factors present in the Wt extract are capable of inducing transcript release. Extract from Cts23 or mock-infected cells was unable to induce release. The lack of release upon addition of Cts23 extract suggests that A18R is involved in release of nascent RNA. By itself, purified polyhistidine-tagged A18R protein (His-A18R) was unable to induce release; however, release did occur in the presence of purified His-A18R protein plus extract from either Cts23 or mock-infected cells. These data taken together indicate that A18R is necessary but not sufficient for release of nascent transcripts. We have also demonstrated that the combination of A18R protein and mock extract induces transcript release in an ATP-dependent manner, consistent with the fact that the A18R protein is an ATP-dependent helicase. Further analysis revealed that the release activity is not restricted to a vaccinia intermediate promoter but is observed using pulse-labeled transcription complexes initiated from all three viral gene class promoters. Therefore, we conclude that A18R and an as yet unidentified cellular factor(s) are required for the in vitro release of nascent RNA from a vaccinia virus transcription elongation complex.
Collapse
Affiliation(s)
- C A Lackner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | |
Collapse
|
28
|
Gunasinghe SK, Hubbs AE, Wright CF. A vaccinia virus late transcription factor with biochemical and molecular identity to a human cellular protein. J Biol Chem 1998; 273:27524-30. [PMID: 9765284 DOI: 10.1074/jbc.273.42.27524] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A factor designated VLTF-X is required to support vaccinia virus late transcription in vitro. It has been found that a late promoter DNA binding activity cochromatographs and cosediments with VLTF-X activity. Current experiments show that VLTF-X activity is present in a variety of uninfected mammalian cell types and is indistinguishable from that recovered from infected cells based upon several criteria. VLTF-X activity from both sources displays the same purification profile over phosphocellulose and DNA affinity resins and has the same sedimentation coefficient. In addition, the factors purified from both infected and uninfected cells form protein-DNA complexes of identical electrophoretic mobility in the presence of vaccinia virus late promoter-containing DNA. The affinity of these factors for the late promoter probes is identical and late promoter-specific based on competition experiments. Moreover, VLTF-X purified from both sources bound to late promoter-containing DNA in the presence or absence of MgCl2 and ATP and formed complexes resistant to heat inactivation. These experiments offer proof that vaccinia virus factor VLTF-X is a host cell protein that supports transcription of the viral late genes.
Collapse
Affiliation(s)
- S K Gunasinghe
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
29
|
Xiang Y, Simpson DA, Spiegel J, Zhou A, Silverman RH, Condit RC. The vaccinia virus A18R DNA helicase is a postreplicative negative transcription elongation factor. J Virol 1998; 72:7012-23. [PMID: 9696793 PMCID: PMC109921 DOI: 10.1128/jvi.72.9.7012-7023.1998] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of vaccinia virus A18R gene function results in an aberrant transcription profile termed promiscuous transcription, defined as transcription within regions of the genome which are normally transcriptionally silent late during infection. Promiscuous transcription results in an increase in the intracellular concentration of double-stranded RNA, which in turn results in activation of the cellular 2-5A pathway and subsequent RNase L-catalyzed degradation of viral and cellular RNAs. One of three hypotheses could account for promiscuous transcription: (i) reactivation of early promoters late during infection, (ii) random transcription initiation, (iii) readthrough transcription from upstream promoters. Transcriptional analysis of several viral genes, presented here, argues strongly against the first two hypotheses. We have tested the readthrough hypothesis by conducting a detailed transcriptional analysis of a region of the vaccinia virus genome which contains three early genes (M1L, M2L, and K1L) positioned directly downstream of the intermediate gene, K2L. The results show that mutation of the A18R gene results in increased readthrough transcription of the M1L gene originating from the K2L intermediate promoter. A18R mutant infection of RNase L knockout mouse fibroblast (KO3) cells does not result in 2-5A pathway activation, yet the virus mutant is defective in late viral gene expression and remains temperature sensitive. These results demonstrate that the A18R gene product is a negative transcription elongation factor for postreplicative viral genes.
Collapse
Affiliation(s)
- Y Xiang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | | | | | | | |
Collapse
|
30
|
Black EP, Moussatche N, Condit RC. Characterization of the interactions among vaccinia virus transcription factors G2R, A18R, and H5R. Virology 1998; 245:313-22. [PMID: 9636370 DOI: 10.1006/viro.1998.9166] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prior genetic analysis suggests that there may exist an interaction between the products of the vaccinia virus genes A18R, a putative negative transcription elongation factor, and G2R, a putative positive transcription elongation factor. In addition, affinity purification of polyhistidine-tagged G2R protein overexpressed in vaccinia virus-infected cells, reported here, results in copurification of the vaccinia H5R protein, previously characterized as a late viral transcription factor. We have therefore used several methods to screen further for interactions among the G2R, A18R, and H5R proteins. Methods include copurification or co-immunoprecipitation of proteins overexpressed during vaccinia virus infection, activation of the gal 4 promoter by gal 4 fusions in the yeast two-hybrid system, and co-immunoprecipitation of proteins synthesized in vitro in a rabbit reticulocyte lysate. The results reveal interactions which include all possible pairwise combinations of the three proteins G2R, A18R, and H5R; however, not all possible permutations of the interactions are observed and the interactions are not observed in all environments tested. The results suggest that the vaccinia virus proteins G2R, A18R, and H5R interact as part of a higher order transcription complex.
Collapse
Affiliation(s)
- E P Black
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | |
Collapse
|
31
|
Zhu M, Moore T, Broyles SS. A cellular protein binds vaccinia virus late promoters and activates transcription in vitro. J Virol 1998; 72:3893-9. [PMID: 9557674 PMCID: PMC109614 DOI: 10.1128/jvi.72.5.3893-3899.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Available evidence indicates that the transcription of the late class of vaccinia virus genes requires the participation of several virus-encoded proteins in addition to the viral RNA polymerase. In this report we describe the identification of a protein present in extracts of uninfected HeLa cells that binds avidly to viral late promoter DNA. The protein bound specifically to several different vaccinia virus late promoters but not an early nor an intermediate promoter. DNase I footprinting localized the protein's binding site to nucleotides surrounding the transcriptional start site of the I1L promoter. Optimal promoter binding required sequences in the highly conserved TAAAT motif at the transcriptional start site as well as sequences immediately upstream; however, one variation on the motif's sequence did not affect promoter binding by the protein. Partially purified late promoter binding protein (LPBP) was capable of stimulating the transcription activity of extracts depleted of LPBP on a late promoter-driven template, establishing LPBP as a transcription activator in vitro. These results suggest that a cellular protein is responsible for targeting vaccinia virus late promoters for initiation of transcription.
Collapse
Affiliation(s)
- M Zhu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
32
|
Hassett DE, Lewis JI, Xing X, DeLange L, Condit RC. Analysis of a temperature-sensitive vaccinia virus mutant in the viral mRNA capping enzyme isolated by clustered charge-to-alanine mutagenesis and transient dominant selection. Virology 1997; 238:391-409. [PMID: 9400612 DOI: 10.1006/viro.1997.8820] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously reported the successful development of a targeted genetic method for the creation of temperature-sensitive vaccinia virus mutants [D. E. Hassett and R. C. Condit (1994) Proc. Natl. Acad. Sci. USA 91, 4554-4558]. This method has now been applied to the large subunit of the multifunctional vaccinia virus capping enzyme, encoded by gene D1R. Ten clustered charge-to-alanine mutations were created in a cloned copy of D1R. Four of these mutations were successfully transferred into the viral genome using transient dominant selection, and each of these four mutations yielded viruses with plaque phenotypes different from that of wild-type virus. Two of the mutant viruses, 516 and 793, were temperature sensitive in a plaque assay. Mutant 793 was also temperature sensitive in a one-step growth experiment. Phenotypic characterization of the 793 virus under both permissive and nonpermissive conditions revealed nearly normal patterns of viral protein and mRNA synthesis. Under nonpermissive conditions the 793 virus was defective in telomere resolution and blocked at an intermediate stage of viral morphogenesis. In vitro assays of various capping enzyme activities revealed that in permeabilized virions, enzyme guanylylate intermediate formation was reduced and methyltransferase activity was thermolabile, while in solubilized virion extracts enzyme guanylylate activity was reduced and both guanylyltransferase and methyltransferase activities were absent. Thus, the 793 mutation affects at least two separate enzymatic activities of the capping enzyme, guanylyltransferase and methyltransferase, and when incorporated into the virus genome, the mutation yields a virus that is temperature sensitive for growth, telomere resolution, and virion morphogenesis.
Collapse
Affiliation(s)
- D E Hassett
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Ternary complexes of DNA-dependent RNA polymerase with its DNA template and nascent transcript are central intermediates in transcription. In recent years, several unusual biochemical reactions have been discovered that affect the progression of RNA polymerase in ternary complexes through various transcription units. These reactions can be signaled intrinsically, by nucleic acid sequences and the RNA polymerase, or extrinsically, by protein or other regulatory factors. These factors can affect any of these processes, including promoter proximal and promoter distal pausing in both prokaryotes and eukaryotes, and therefore play a central role in regulation of gene expression. In eukaryotic systems, at least two of these factors appear to be related to cellular transformation and human cancers. New models for the structure of ternary complexes, and for the mechanism by which they move along DNA, provide plausible explanations for novel biochemical reactions that have been observed. These models predict that RNA polymerase moves along DNA without the constant possibility of dissociation and consequent termination. A further prediction of these models is that the polymerase can move in a discontinuous or inchworm-like manner. Many direct predictions of these models have been confirmed. However, one feature of RNA chain elongation not predicted by the model is that the DNA sequence can determine whether the enzyme moves discontinuously or monotonically. In at least two cases, the encounter between the RNA polymerase and a DNA block to elongation appears to specifically induce a discontinuous mode of synthesis. These findings provide important new insights into the RNA chain elongation process and offer the prospect of understanding many significant biological regulatory systems at the molecular level.
Collapse
Affiliation(s)
- S M Uptain
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
| | | | | |
Collapse
|