1
|
Abstract
In 2009, Dimitrov's group reported that the inferred germline (iGL) forms of several HIV-1 broadly neutralizing antibodies (bNAbs) did not display measurable binding to a recombinant gp140 Env protein (derived from the dual-tropic 89.6 virus), which was efficiently recognized by the mature (somatically mutated) antibodies. At that time, a small number of bNAbs were available, but in the following years, the implementation of high-throughput B-cell isolation and sequencing assays and of screening methodologies facilitated the isolation of greater numbers of bNAbs from infected subjects. Using these newest bNAbs, and a wide range of diverse recombinant Envs, we and others confirmed the observations made by Dimitrov's group. The results from these studies created a paradigm shift in our collective thinking as to why recombinant Envs are ineffective in eliciting bNAbs and has led to the "germline-targeting" immunization approach. Here we discuss this approach in detail: what has been done so far, the advantages and limitations of the current germline-targeting immunogens and of the animal models used to test them, and we conclude with a few thoughts about future directions in this area of research.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
2
|
Engineering, expression, purification, and characterization of stable clade A/B recombinant soluble heterotrimeric gp140 proteins. J Virol 2011; 86:128-42. [PMID: 22031951 DOI: 10.1128/jvi.06363-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is composed of two noncovalently associated subunits: an extracellular subunit (gp120) and a transmembrane subunit (gp41). The functional unit of Env on the surface of infectious virions is a trimer of gp120/gp41 heterodimers. Env is the target of anti-HIV neutralizing antibodies. A considerable effort has been invested in the engineering of recombinant soluble forms of the virion-associated Env trimer as vaccine candidates to elicit anti-HIV neutralizing antibody responses. These soluble constructs contain three gp120 subunits and the extracellular segments of the corresponding gp41 subunits. The individual gp120/gp41 protomers on these soluble trimers are identical in amino acid sequence (homotrimers). Here, we engineered novel soluble trimeric gp140 proteins that are formed by the association of gp140 protomers that differ in amino acid sequence and glycosylation patterns (heterotrimers). Specifically, we engineered soluble heterotrimeric proteins composed of clade A and clade B Env protomers. The clade A gp140 protomers were derived from viruses isolated during acute infection (Q168a2, Q259d2.17, and Q461e2), whereas the clade B gp140 protomers were derived from a virus isolated during chronic infection (SF162). The amino acid sequence divergence between the clade A and the clade B Envs is approximately 24%. Neutralization epitopes in the CD4 binding sites and coreceptor binding sites, as well as the membrane-proximal external region (MPER), were differentially expressed on the heterotrimeric and homotrimeric proteins. The heterotrimeric gp140s elicited broader anti-tier 1 isolate neutralizing antibody responses than did the homotrimeric gp140s.
Collapse
|
3
|
Feng Y, Broder CC, Kennedy PE, Berger EA. Pillars article: HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996. 272: 872-877. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:6076-81. [PMID: 21597040 PMCID: PMC3412311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A cofactor for HIV-1 (human immunodeficiency virus-type 1) fusion and entry was identified with the use of a novel functional complementary DNA (cDNA) cloning strategy. This protein, designated “fusin,” is a putative G protein–coupled receptor with seven transmembrane segments. Recombinant fusin enabled CD4-expressing nonhuman cell types to support HIV-1 Env-mediated cell fusion and HIV-1 infection. Antibodies to fusin blocked cell fusion and infection with normal CD4-positive human target cells. Fusin messenger RNA levels correlated with HIV-1 permissiveness in diverse human cell types. Fusin acted preferentially for T cell line–tropic isolates, in comparison to its activity with macrophage-tropic HIV-1 isolates.
Collapse
|
4
|
Significant protection against high-dose simian immunodeficiency virus challenge conferred by a new prime-boost vaccine regimen. J Virol 2011; 85:5764-72. [PMID: 21490100 DOI: 10.1128/jvi.00342-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We constructed vaccine vectors based on live recombinant vesicular stomatitis virus (VSV) and a Semliki Forest virus (SFV) replicon (SFVG) that propagates through expression of the VSV glycoprotein (G). These vectors expressing simian immunodeficiency virus (SIV) Gag and Env proteins were used to vaccinate rhesus macaques with a new heterologous prime-boost regimen designed to optimize induction of antibody. Six vaccinated animals and six controls were then given a high-dose mucosal challenge with the diverse SIVsmE660 quasispecies. All control animals became infected and had peak viral RNA loads of 10(6) to 10(8) copies/ml. In contrast, four of the vaccinees showed significant (P = 0.03) apparent sterilizing immunity and no detectable viral loads. Subsequent CD8(+) T cell depletion confirmed the absence of SIV infection in these animals. The two other vaccinees had peak viral loads of 7 × 10(5) and 8 × 10(3) copies/ml, levels below those of all of the controls, and showed undetectable virus loads by day 42 postchallenge. The vaccine regimen induced high-titer prechallenge serum neutralizing antibodies (nAbs) to some cloned SIVsmE660 Env proteins, but antibodies able to neutralize the challenge virus swarm were not detected. The cellular immune responses induced by the vaccine were generally weak and did not correlate with protection. Although the immune correlates of protection are not yet clear, the heterologous VSV/SFVG prime-boost is clearly a potent vaccine regimen for inducing virus nAbs and protection against a heterogeneous viral swarm.
Collapse
|
5
|
Cafaro A, Macchia I, Maggiorella MT, Titti F, Ensoli B. Innovative approaches to develop prophylactic and therapeutic vaccines against HIV/AIDS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:189-242. [PMID: 20047043 DOI: 10.1007/978-1-4419-1132-2_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acquired immunodeficiency syndrome (AIDS) emerged in the human population in the summer of 1981. According to the latest United Nations estimates, worldwide over 33 million people are infected with human immunodeficiency virus (HIV) and the prevalence rates continue to rise globally. To control the alarming spread of HIV, an urgent need exists for developing a safe and effective vaccine that prevents individuals from becoming infected or progressing to disease. To be effective, an HIV/AIDS vaccine should induce broad and long-lasting humoral and cellular immune responses, at both mucosal and systemic level. However, the nature of protective immune responses remains largely elusive and this represents one of the major roadblocks preventing the development of an effective vaccine. Here we summarize our present understanding of the factors responsible for resistance to infection or control of progression to disease in human and monkey that may be relevant to vaccine development and briefly review recent approaches which are currently being tested in clinical trials. Finally, the rationale and the current status of novel strategies based on nonstructural HIV-1 proteins, such as Tat, Nef and Rev, used alone or in combination with modified structural HIV-1 Env proteins are discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
6
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-based vaccines: an overview and perspectives in the field of HIV/AIDS vaccine development. Int Rev Immunol 2009; 28:285-334. [PMID: 19811313 DOI: 10.1080/08830180903013026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The HIV epidemic continues to represent one of the major problems worldwide, particularly in the Asia and Sub-Saharan regions of the world, with social and economical devastating effects. Although antiretroviral drugs have had a dramatically beneficial impact on HIV-infected individuals that have access to treatment, it has had a negligible impact on the global epidemic. Hence, the inexorable spreading of the HIV pandemic and the increasing deaths from AIDS, especially in developing countries, underscore the urgency for an effective vaccine against HIV/AIDS. However, the generation of such a vaccine has turned out to be extremely challenging. Here we provide an overview on the rationale for the use of non-structural HIV proteins, such as the Tat protein, alone or in combination with other HIV early and late structural HIV antigens, as novel, promising preventative and therapeutic HIV/AIDS vaccine strategies.
Collapse
Affiliation(s)
- Antonella Caputo
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gaston F, Babas T, Lakhdar-Ghazal F, Bahraoui E. Structure-antigenicity of the V3 region of SIVmac envelope glycoprotein. J Pept Sci 2009; 16:48-57. [PMID: 19908202 DOI: 10.1002/psc.1193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of this study was to analyze the immunogenicity and antigenicity of the V3 domain (Cys313-Cys346) of the external envelope glycoprotein gp125 of SIVmac251. The corresponding peptide was synthesized and characterized as linear and cyclic peptides. Our results showed that this region, as for HIV-1, contained an immunodominant epitope. The antigenicity was similar for the linear and cyclic peptides when tested against a panel of 15 sera from SIV infected macaques. Similarly, both peptide structures presented similar immunogenicity as shown by the characterization of the anti-peptide antibodies produced in rabbits against the cyclic and linear forms. But, unexpectedly, the antibodies produced against linear peptides recognized with a relatively higher intensity the native envelope gp140 than those produced against the cyclic structure. Furthermore, we showed that these antibodies recognized better the deglycosylated form of the glycoprotein. But, in contrast to the neutralizing activity obtained with anti-V3 peptides from HIV-1, no antiviral activity was obtained with antibodies generated against linear or cyclic SIVmac V3 peptides.
Collapse
Affiliation(s)
- Fabrice Gaston
- Laboratoire d'immuno-virologie, Université Paul Sabatier, UFR/SVT, 31062 Toulouse, France.
| | | | | | | |
Collapse
|
8
|
Sellhorn G, Caldwell Z, Mineart C, Stamatatos L. Improving the expression of recombinant soluble HIV Envelope glycoproteins using pseudo-stable transient transfection. Vaccine 2009; 28:430-6. [PMID: 19857451 DOI: 10.1016/j.vaccine.2009.10.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/01/2009] [Accepted: 10/07/2009] [Indexed: 11/24/2022]
Abstract
The Envelope glycoprotein (Env) of the human immunodeficiency virus (HIV) is the target of neutralizing antibodies (NAbs). So far, HIV Env-derived immunogens have not been able to elicit broad neutralizing antibody responses against primary isolates. Identifying conditions that will permit the efficient production of different soluble HIV Env proteins will facilitate a high throughput comparative analysis of the immunogenicity of diverse Env constructs, potentially identifying Env forms that are more conducive to the elicitation of anti-HIV NAbs. Here we compared different cell types, transfection reagents, transfection conditions and different DNA expression vectors on soluble HIV Envelope expression levels. We identified optimal expression conditions and developed a protocol to streamline and maximize production of diverse HIV Env constructs. Using this optimized platform, milligram quantities of purified soluble HIV Env trimer can be routinely achieved in a rapid and cost-effective manner.
Collapse
Affiliation(s)
- George Sellhorn
- Seattle Biomedical Research Institute, Seattle, WA 98109, United States
| | | | | | | |
Collapse
|
9
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development. Int Rev Immunol 2009. [DOI: 10.1080/08830180903013026 10.1080/08830180903013026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Characterization of neutralizing antibody responses elicited by clade A envelope immunogens derived from early transmitted viruses. J Virol 2008; 82:5912-21. [PMID: 18400850 DOI: 10.1128/jvi.00389-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vast majority of studies with candidate immunogens based on the human immunodeficiency virus envelope (Env) have been conducted with Env proteins derived from clade B viruses isolated during chronic infection. Whether non-clade B Env protein immunogens will elicit antibodies with epitope specificities that are similar to those of antibodies elicited by clade B Envs and whether the antibodies elicited by Envs derived from early transmitted viruses will be similar to those elicited by Envs derived from viruses isolated during chronic infection are currently unknown. Here we performed immunizations with four clade A Envs, cloned directly from the peripheral blood of infected individuals during acute infection, which differed in lengths and extents of glycosylation. The antibody responses elicited by these four Envs were compared to each other and to those elicited by a well-characterized clade B Env immunogen derived from the SF162 virus, which was isolated during chronic infection. Only one clade A Env, the one with the fewer glycosylation sites, elicited homologous neutralizing antibodies (NAbs); these did not target the V1, V2, or V3 regions. In contrast, all four clade A Envs elicited anti-V3 NAbs against "easy-to-neutralize" clade B and clade A isolates, irrespective of the variable region length and extent of glycosylation of the Env used as an immunogen. These anti-V3 NAbs did not access their epitopes on homologous and heterologous clade A, or B, neutralization-resistant viruses. The length and extent of glycosylation of the variable regions on the clade A Env immunogens tested did not affect the breadth of the elicited NAbs. Our data also indicate that the development of cross-reactive NAbs against clade A viruses faces similar hurdles to the development of cross-reactive anti-clade B NAbs.
Collapse
|
11
|
Caputo A, Brocca-Cofano E, Castaldello A, Voltan R, Gavioli R, Srivastava IK, Barnett SW, Cafaro A, Ensoli B. Characterization of immune responses elicited in mice by intranasal co-immunization with HIV-1 Tat, gp140 DeltaV2Env and/or SIV Gag proteins and the nontoxicogenic heat-labile Escherichia coli enterotoxin. Vaccine 2008; 26:1214-27. [PMID: 18243435 DOI: 10.1016/j.vaccine.2007.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
The development of a vaccine against HIV/AIDS capable of inducing broad humoral and cellular responses at both systemic and mucosal sites, able to stop or reduce viral infection at the portal of entry, represents the only realistic way to control the infection caused by HIV world-wide. The promising results obtained with the HIV-1 Tat-based vaccines in preclinical and clinical settings, the evidence that a broad immunity against HIV correlates with reduced viral load or virus control, as well as the availability of novel gp140 V2-loop deleted HIV-1 Env (DeltaV2Env) immunogens capable of inducing cross-reactive neutralizing antibodies, have led to the design of new vaccine strategies based on the combination of non-structural and structural proteins. In this study, we demonstrate that immunization with a biologically active HIV-1 Tat protein in combination with the oligomeric HIV-1 gp140 DeltaV2Env and/or SIV Gag proteins, delivered intranasally with the detoxified LTK63 mucosal adjuvant, whose safety has been recently shown in humans, elicits long-lasting local and systemic antibody and cellular immune responses against the co-administered antigens in a fashion similar to immune responses induced by vaccination with Tat, DeltaV2Env and Gag proteins alone. The results indicate lack of antigen interference implying that HIV-1 Tat is an optimal co-antigen for combined vaccine strategies employing DeltaV2Env and/or Gag proteins.
Collapse
Affiliation(s)
- Antonella Caputo
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Via A. Gabelli 63, 35122 Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Blay WM, Kasprzyk T, Misher L, Richardson BA, Haigwood NL. Mutations in envelope gp120 can impact proteolytic processing of the gp160 precursor and thereby affect neutralization sensitivity of human immunodeficiency virus type 1 pseudoviruses. J Virol 2007; 81:13037-49. [PMID: 17855534 PMCID: PMC2169095 DOI: 10.1128/jvi.01215-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The design of an efficient human immunodeficiency virus (HIV) immunogen able to generate broad neutralizing antibodies (NAbs) remains an elusive goal. As more data emerge, it is becoming apparent that one important aspect of such an immunogen will be the proper representation of the envelope protein (Env) as it exists on native virions. Important questions that are yet to be fully addressed include what factors dictate Env processing, how different Env forms are represented on the virion, and ultimately how these issues influence the development and efficacy of NAbs. Recent data have begun to illuminate the extent to which changes in gp41 can impact the overall structure and neutralizing sensitivity of Env. Here, we present evidence to suggest that minor mutations in gp120 can significantly impact Env processing. We analyzed the gp120 sequences of 20 env variants that evolved in multiple macaques over 8 months of infection with simian/human immunodeficiency virus 89.6P. Variant gp120 sequences were subcloned into gp160 expression plasmids with identical cleavage motifs and gp41 sequences. Cells cotransfected with these plasmids and delta env genomes were able to produce competent virus. The resulting pseudoviruses incorporated high levels of Env onto virions that exhibited a range of degrees of virion-associated Env cleavage (15 to 40%). Higher levels of cleavage correlated with increased infectivity and increased resistance to macaque plasma, HIV immunoglobulin, soluble CD4, and human monoclonal antibodies 4E10, 2F5, and b12. Based on these data, we discuss a model whereby changes in gp120 of 89.6P impact Env processing and thereby mediate escape from a range of neutralizing agents.
Collapse
Affiliation(s)
- Wendy M Blay
- Seattle Biomedical Research Institute, 307 Westlake Ave. N, Seattle, WA 98019, USA
| | | | | | | | | |
Collapse
|
13
|
Hijnen M, van Zoelen DJ, Chamorro C, van Gageldonk P, Mooi FR, Berbers G, Liskamp RMJ. A novel strategy to mimic discontinuous protective epitopes using a synthetic scaffold. Vaccine 2007; 25:6807-17. [PMID: 17689841 DOI: 10.1016/j.vaccine.2007.06.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 05/31/2007] [Accepted: 06/04/2007] [Indexed: 11/24/2022]
Abstract
Although vaccines have been used for a long time and different types of vaccines have been developed, as yet no fully synthetic vaccines have been produced. The production of fully synthetic vaccines has probably not been realized so far due to the structural limitations of linear synthetic peptides to mimic the native shape of protein fragments which is often needed to induce protective antibodies. In this report we used the Bordetella pertussis protein pertactin as a model and show that a novel synthetic scaffold can be used to mimic structurally defined epitopes by confined presentation of several different peptide arms. Guided by modelling a construct was synthesized that induced protective antibodies directed towards a discontinuous epitope. This approach opens up the possibility to the design of new and fully synthetic vaccines that can induce protective antibodies.
Collapse
Affiliation(s)
- Marcel Hijnen
- Laboratory for Vaccine Preventable Diseases, National Institute of Public Health and the Environment, Antonie van Leeuwenhoeklaan 1, PO Box 1, Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Titti F, Cafaro A, Ferrantelli F, Tripiciano A, Moretti S, Caputo A, Gavioli R, Ensoli F, Robert-Guroff M, Barnett S, Ensoli B. Problems and emerging approaches in HIV/AIDS vaccine development. Expert Opin Emerg Drugs 2007; 12:23-48. [PMID: 17355212 DOI: 10.1517/14728214.12.1.23] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
According to recent estimates, 39.5 million people have been infected with HIV and 2.9 million have already died. The effect of HIV infection on individuals and communities is socially and economically devastating. Although antiretroviral drugs have had a dramatically beneficial impact on HIV-infected individuals who have access to treatment, it has had a negligible impact on the global epidemic. Therefore, the need for an efficacious HIV/AIDS vaccine remains the highest priority of the world HIV/AIDS agenda. The generation of a vaccine against HIV/AIDS has turned out to be extremely challenging, as indicated by > 20 years of unsuccessful attempts. This review discusses the major challenges in the field and key experimental evidence providing a rationale for the use of non-structural HIV proteins, such as Rev, Tat and Nef, either in the native form or expressed by viral vectors such as a replicating adeno-vector. These non-structural proteins alone or in combination with modified structural HIV-1 Env proteins represent a novel strategy for both preventative and therapeutic HIV/AIDS vaccine development.
Collapse
Affiliation(s)
- Fausto Titti
- Istituto Superiore di Sanità, National AIDS Center, V.le Regina Elena 299, Rome 00161, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sharma VA, Kan E, Sun Y, Lian Y, Cisto J, Frasca V, Hilt S, Stamatatos L, Donnelly JJ, Ulmer JB, Barnett SW, Srivastava IK. Structural characteristics correlate with immune responses induced by HIV envelope glycoprotein vaccines. Virology 2006; 352:131-44. [DOI: 10.1016/j.virol.2006.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Hammonds J, Chen X, Fouts T, DeVico A, Montefiori D, Spearman P. Induction of neutralizing antibodies against human immunodeficiency virus type 1 primary isolates by Gag-Env pseudovirion immunization. J Virol 2005; 79:14804-14. [PMID: 16282480 PMCID: PMC1287556 DOI: 10.1128/jvi.79.23.14804-14814.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 09/15/2005] [Indexed: 11/20/2022] Open
Abstract
A major challenge for the development of an effective HIV vaccine is to elicit neutralizing antibodies against a broad array of primary isolates. Monomeric gp120-based vaccine approaches have not been successful in inducing this type of response, prompting a number of approaches designed to recreate the native glycoprotein complex that exists on the viral membrane. Gag-Env pseudovirions are noninfectious viruslike particles that recreate the native envelope glycoprotein structure and have the potential to generate neutralizing antibody responses against primary isolates. In this study, an inducible cell line was created in order to generate Gag-Env pseudovirions for examination of neutralizing antibody responses in guinea pigs. Unadjuvanted pseudovirions generated relatively weak anti-gp120 responses, while the use of a block copolymer water-in-oil emulsion or aluminum hydroxide combined with CpG oligodeoxynucleotides resulted in high levels of antibodies that bind to gp120. Sera from immunized animals neutralized a panel of human immunodeficiency virus (HIV) type 1 primary isolate viruses at titers that were significantly higher than that of the corresponding monomeric gp120 protein. Interpretation of these results was complicated by the occurrence of neutralizing antibodies directed against cellular (non-envelope protein) components of the pseudovirion. However, a major component of the pseudovirion-elicited antibody response was directed specifically against the HIV envelope. These results provide support for the role of pseudovirion-based vaccines in generating neutralizing antibodies against primary isolates of HIV and highlight the potential confounding role of antibodies directed at non-envelope cell surface components.
Collapse
Affiliation(s)
- Jason Hammonds
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
17
|
McGettigan JP, Koser ML, McKenna PM, Smith ME, Marvin JM, Eisenlohr LC, Dietzschold B, Schnell MJ. Enhanced humoral HIV-1-specific immune responses generated from recombinant rhabdoviral-based vaccine vectors co-expressing HIV-1 proteins and IL-2. Virology 2005; 344:363-77. [PMID: 16226782 DOI: 10.1016/j.virol.2005.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/10/2005] [Accepted: 09/06/2005] [Indexed: 12/23/2022]
Abstract
Recombinant rabies virus (RV) vaccine strain-based vectors expressing HIV-1 antigens have been shown to induce strong and long-lasting cellular but modest humoral responses against the expressed antigens in mice. However, an effective vaccine against HIV-1 may require stronger responses, and the development of such an immune response may depend on the presence of certain cytokines at the time of the inoculation. Here, we describe several new RV-based vaccine vehicles expressing HIV-1 Gag or envelope (Env) and murine IL-2 or IL-4. Cells infected with recombinant RVs expressed high levels of functional IL-2 or IL-4 in culture supernatants in addition to HIV-1 proteins. The recombinant RV expressing IL-4 was highly attenuated in a cytokine-independent manner, indicating that the insertion of two foreign genes into the RV genome is mainly responsible for the attenuation observed. The expression of IL-4 resulted in a decrease in the cellular immune response against HIV-1 Gag and Env when compared with the parental virus not expressing IL-4 and only 2 of 20 mice seroconverted to HIV-1 Env after two inoculations. The IL-2-expressing RV was completely apathogenic after direct intracranial inoculation of mice. In addition, mice immunized with IL-2 maintained strong anti-HIV-1 Gag and Env cellular responses and consistently induced seroconversion against HIV-1 Env after two inoculations. This suggests the potential use of IL-2 in RV-based HIV-1 vaccine strategies, which may require the induction of both arms of the immune response.
Collapse
Affiliation(s)
- James P McGettigan
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB 330, Philadelphia, PA 19107-6799, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tan GS, McKenna PM, Koser ML, McLinden R, Kim JH, McGettigan JP, Schnell MJ. Strong cellular and humoral anti-HIV Env immune responses induced by a heterologous rhabdoviral prime-boost approach. Virology 2005; 331:82-93. [PMID: 15582655 DOI: 10.1016/j.virol.2004.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 09/15/2004] [Accepted: 10/08/2004] [Indexed: 11/20/2022]
Abstract
Recombinant rhabdovirus vectors expressing human immunodeficiency virus (HIV) and/or simian immunodeficiency virus (SIV) proteins have been shown to induce strong immune responses in mice and rhesus macaques. However, the finding that such responses protect rhesus macaques from AIDS-like disease but not from infection indicates that further improvements for these vectors are needed. Here, we designed a prime-boost schedule consisting of a rabies virus (RV) vaccine strain and a recombinant vesicular stomatitis virus (VSV) both expressing HIV Envelope (Env). Mice were primed and boosted with the two vaccine vehicles by different routes and in different combinations. Mucosal and systemic humoral responses were assessed using enzyme linked immunosorbent assay (ELISA) while the cellular immune response was determined by an IFN-gamma ELISPOT assay. We found that an immunization combination of RV and VSV elicited the highest titers of anti-Env antibodies and the greatest amount of Env-specific IFN-gamma secreting cells pre- and post-challenge with a recombinant vaccinia virus expressing HIV(89.6) Env. Furthermore, intramuscular immunization did not induce antigen-specific mucosal antibodies while intranasal inoculation stimulated vector-specific IgA antibodies in vaginal washings and serum. Our results show that it is feasible to elicit robust cellular and humoral anti-HIV responses using two different live attenuated Rhabdovirus vectors to sequentially prime and boost.
Collapse
Affiliation(s)
- Gene S Tan
- Department of Microbiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kim M, Qiao ZS, Montefiori DC, Haynes BF, Reinherz EL, Liao HX. Comparison of HIV Type 1 ADA gp120 monomers versus gp140 trimers as immunogens for the induction of neutralizing antibodies. AIDS Res Hum Retroviruses 2005; 21:58-67. [PMID: 15665645 DOI: 10.1089/aid.2005.21.58] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Designing an immunogen for effective neutralizing antibody induction against diverse primary isolates of human immunodeficiency virus type 1 (HIV-1) is a high priority for HIV-1 vaccine development. Soluble gp120 envelope (Env) glycoprotein subunit vaccines elicit high titers of antibodies that neutralize T cell line-adapted (TCLA) strains but the antibodies possess poor neutralizing activity against many primary isolates. Previously, we generated soluble trimeric recombinant gp140 from the HIV-1 primary isolate ADA. Here we compared monomeric ADAgp120 and trimeric ADAgp140 as immunogens for neutralizing antibody responses in guinea pigs. Both immunogens generated a neutralizing antibody response that was detectable against the vaccine strain and several heterologous strains. The magnitude of this response was significantly greater in ADAgp140-immunized animals when measured against the TCLA strain, MN, and the R5 primary isolate, Bal. Two additional isolates (SS1196 and Bx08) were neutralized equally by sera from both groups of animals whereas other isolates were neutralized weakly or not at all. Despite equal titers of V3 loop specific binding antibodies in sera from both groups of animals, neutralization of ADA by sera from gp140-immunized animals was insensitive to the presence of ADA-V3 peptide, whereas addition of this peptide to sera from gp120- immunized animals blocked all detectable neutralizing activity against ADA. These results support the idea that trimeric gp140 is an improved immunogen compared to monomeric gp120 but that additional improvements are required to afford broad protection against a spectrum of heterologous primary HIV-1 isolates. This ADAgp140 immunogen may be considered a starting point from which to engineer additional improvements for cross-reactive neutralizing antibody induction.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Medical Oncology, Dana Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Schreiber A, Humbert M, Benz A, Dietrich U. 3D-Epitope-Explorer (3DEX): Localization of conformational epitopes within three-dimensional structures of proteins. J Comput Chem 2005; 26:879-87. [DOI: 10.1002/jcc.20229] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
McKenna PM, Aye PP, Dietzschold B, Montefiori DC, Martin LN, Marx PA, Pomerantz RJ, Lackner A, Schnell MJ. Immunogenicity study of glycoprotein-deficient rabies virus expressing simian/human immunodeficiency virus SHIV89.6P envelope in a rhesus macaque. J Virol 2004; 78:13455-9. [PMID: 15564456 PMCID: PMC533936 DOI: 10.1128/jvi.78.24.13455-13459.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rabies virus (RV) has recently been developed as a novel vaccine candidate for human immunodeficiency virus type 1 (HIV-1). The RV glycoprotein (G) can be functionally replaced by HIV-1 envelope glycoprotein (Env) if the gp160 cytoplasmic domain (CD) of HIV-1 Env is replaced by that of RV G. Here, we describe a pilot study of the in vivo replication and immunogenicity of an RV with a deletion of G (DeltaG) expressing a simian/human immunodeficiency virus SHIV(89.6P) Env ectodomain and transmembrane domain fused to the RV G CD (DeltaG-89.6P-RVG) in a rhesus macaque. An animal vaccinated with DeltaG-89.6P-RVG developed SHIV(89.6P) virus-neutralizing antibodies and SHIV(89.6P)-specific cellular immune responses after challenge with SHIV(89.6P). There was no evidence of CD4(+) T-cell loss, and plasma viremia was controlled to undetectable levels by 6 weeks postchallenge and has remained suppressed out to 22 weeks postchallenge.
Collapse
Affiliation(s)
- Philip M McKenna
- Department of Microbiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Binley JM, Wrin T, Korber B, Zwick MB, Wang M, Chappey C, Stiegler G, Kunert R, Zolla-Pazner S, Katinger H, Petropoulos CJ, Burton DR. Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 2004; 78:13232-52. [PMID: 15542675 PMCID: PMC524984 DOI: 10.1128/jvi.78.23.13232-13252.2004] [Citation(s) in RCA: 590] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 07/09/2004] [Indexed: 12/20/2022] Open
Abstract
Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV(+) plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (=7%). MAbs b6 (directed against the CD4 binding site) and X5 (directed against a CD4-induced epitope of gp120) neutralized only sensitive primary clade B viruses. The HIV(+) plasma neutralized 70% of the viruses, including some from all major clades. Further analysis revealed five neutralizing immunotypes that were somewhat associated with clades. As well as the significance for vaccine design, our data have implications for passive-immunization studies in countries where clade C viruses are common, given that only MAbs b12 and 4E10 were effective against viruses from this clade.
Collapse
Affiliation(s)
- James M Binley
- IMM2, Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Publicover J, Ramsburg E, Rose JK. Characterization of nonpathogenic, live, viral vaccine vectors inducing potent cellular immune responses. J Virol 2004; 78:9317-24. [PMID: 15308726 PMCID: PMC506945 DOI: 10.1128/jvi.78.17.9317-9324.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental vaccines based on recombinant vesicular stomatitis viruses (VSV) expressing foreign viral proteins are protective in several animal disease models. Although these attenuated viruses are nonpathogenic in nonhuman primates when given by nasal, oral, or intramuscular routes, they are pathogenic in mice when given intranasally, and further vector attenuation may be required before human trials with VSV-based vectors can begin. Mutations truncating the VSV glycoprotein (G) cytoplasmic domain from 29 to 9 or 1 amino acid (designated CT9 or CT1, respectively) were shown previously to attenuate VSV growth in cell culture and pathogenesis in mice. Here we show that VSV recombinants carrying either the CT1 or CT9 deletion and expressing the human immunodeficiency virus (HIV) Env protein are nonpathogenic in mice, even when given by the intranasal route. We then carried out a detailed analysis of the CD8+ T-cell responses, including in vivo cytotoxic T-cell activity, induced by these vectors. When given by either the intranasal or intraperitoneal route, the VSV-CT9 vector expressing HIV Env elicited primary and memory CD8+ T-cell responses to Env equivalent to those elicited by recombinant wild-type VSV expressing Env. The VSV-CT1 vector also induced potent CD8+ T-cell responses after intraperitoneal vaccination, but was less effective when given by the intranasal route. The VSV-CT1 vector was also substantially less effective than the VSV-CT9 or wild-type vector at inducing antibody to Env. The VSV-CT9 vector appears ideal because of its lack of pathogenesis, propagation to high titers in vitro, and stimulation of strong cellular and humoral immune responses.
Collapse
Affiliation(s)
- Jean Publicover
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
24
|
Ramsburg E, Rose NF, Marx PA, Mefford M, Nixon DF, Moretto WJ, Montefiori D, Earl P, Moss B, Rose JK. Highly effective control of an AIDS virus challenge in macaques by using vesicular stomatitis virus and modified vaccinia virus Ankara vaccine vectors in a single-boost protocol. J Virol 2004; 78:3930-40. [PMID: 15047809 PMCID: PMC374300 DOI: 10.1128/jvi.78.8.3930-3940.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that vaccination and boosting of rhesus macaques with attenuated vesicular stomatitis virus (VSV) vectors encoding Env and Gag proteins of simian immunodeficiency virus-human immunodeficiency virus (SHIV) hybrid viruses protect rhesus macaques from AIDS after challenge with the highly pathogenic SHIV 89.6P (23). In the present study, we compared the effectiveness of a single prime-boost protocol consisting of VSV vectors expressing SHIV Env, Gag, and Pol proteins to that of a protocol consisting of a VSV vector prime followed with a single boost with modified vaccinia virus Ankara (MVA) expressing the same SHIV proteins. After challenge with SHIV 89.6P, MVA-boosted animals controlled peak challenge viral loads to less than 2 x 10(6) copies/ml (a level significantly lower than that seen with VSV-boosted animals and lower than those reported for other vaccine studies employing the same challenge). MVA-boosted animals have shown excellent preservation of CD4(+) T cells, while two of four VSV-boosted animals have shown significant loss of CD4(+) T cells. The improved protection in MVA-boosted animals correlates with trends toward stronger prechallenge CD8(+)-T-cell responses to SHIV antigens and stronger postchallenge SHIV-neutralizing antibody production.
Collapse
|
25
|
Jeffs SA, Goriup S, Kebble B, Crane D, Bolgiano B, Sattentau Q, Jones S, Holmes H. Expression and characterisation of recombinant oligomeric envelope glycoproteins derived from primary isolates of HIV-1. Vaccine 2004; 22:1032-46. [PMID: 15161081 DOI: 10.1016/j.vaccine.2003.08.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Accepted: 08/18/2003] [Indexed: 11/26/2022]
Abstract
The production, purification and characterisation of recombinant gp140 oligomeric envelope glycoproteins derived from six primary isolates of HIV-1 (covering clades A, B, C, D, F and O) are described. Using a Chinese hamster ovary cell expression system, expression levels of between 0.1 and 1 mg/l cell-conditioned culture media were obtained, and purified to >95% by affinity chromatography. A, B, D, F and O clade gp 140s were found to be multimeric, bind to a panel of defined env-specific monoclonal antibodies and interact with CD4 and CXCR4, demonstrating correct folding. Their immunogenicity was confirmed by the generation of high-titre anti-gp140 antibodies in rabbits. The C clade gp140 was incorrectly folded and poorly antigenic. Despite the presence of an unmodified gp120/41 cleavage site, only the B clade gp140 showed significant processing to gp120 and gp41. Each gp140 has a specific pattern of oligomerisation, and varies in its resistance to reducing agents and salt concentration. The binding of gp140 to soluble and cell-surface CD4 and CXCR4 is related to the degree of oligomerisation. The C1 and C5 regions, CD4 binding domain and the epitope defined by the 2G12 monoclonal antibody were well exposed, but the C-terminal region of the extracellular domain of gp41 appears to be occluded by oligomerisation. These reagents have potential as immunogens for use in vaccine development.
Collapse
Affiliation(s)
- S A Jeffs
- Division of Retrovirology, NIBSC, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
McKenna PM, Pomerantz RJ, Dietzschold B, McGettigan JP, Schnell MJ. Covalently linked human immunodeficiency virus type 1 gp120/gp41 is stably anchored in rhabdovirus particles and exposes critical neutralizing epitopes. J Virol 2004; 77:12782-94. [PMID: 14610200 PMCID: PMC262580 DOI: 10.1128/jvi.77.23.12782-12794.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rabies virus (RV) vaccine strain-based vectors show significant promise as potential live-attenuated vaccines against human immunodeficiency virus type 1 (HIV-1). Here we describe a new RV construct that will also likely have applications as a live-attenuated or killed-particle immunogen. We have created a RV containing a chimeric HIV-1 Env protein, which contains introduced cysteine residues that give rise to an intermolecular disulfide bridge between gp120 and the ectodomain of gp41. This covalently linked gp140 (gp140 SOS) is fused in frame to the cytoplasmic domain of RV G glycoprotein and is efficiently incorporated into the RV virion. On the HIV-1 virion, the gp120 and gp41 moieties are noncovalently associated, which leads to extensive shedding of gp120 from virions and virus-infected cells. The ability to use HIV-1 particles as purified, inactivated immunogens has been confounded by the loss of gp120 during preparation. Additionally, monomeric gp120 and uncleaved gp160 molecules have been shown to be poor antigenic representations of virion-associated gp160. Because the gp120 and gp41 portions are covalently attached in the gp140 SOS molecule, the protein is maintained on the surface of the RV virion throughout purification. Surface immunostaining and fluorescence-activated cell sorting analysis with anti-envelope antibodies show that the gp140 SOS protein is stably expressed on the surface of infected cells and maintains CD4 binding capabilities. Furthermore, Western blot and immunoprecipitation experiments with infected-cell lysates and purified virions show that a panel of neutralizing anti-envelope antibodies efficiently recognize the gp140 SOS protein. The antigenic properties of this recombinant RV particle containing covalently attached Env, as well as the ability to present Env in a membrane-bound form, suggest that this approach could be a useful component of a HIV-1 vaccine strategy.
Collapse
Affiliation(s)
- Philip M McKenna
- Department of Microbiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
27
|
Srivastava IK, Stamatatos L, Kan E, Vajdy M, Lian Y, Hilt S, Martin L, Vita C, Zhu P, Roux KH, Vojtech L, C Montefiori D, Donnelly J, Ulmer JB, Barnett SW. Purification, characterization, and immunogenicity of a soluble trimeric envelope protein containing a partial deletion of the V2 loop derived from SF162, an R5-tropic human immunodeficiency virus type 1 isolate. J Virol 2003; 77:11244-59. [PMID: 14512572 PMCID: PMC224963 DOI: 10.1128/jvi.77.20.11244-11259.2003] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope (Env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) is the major target of neutralizing antibody responses and is likely to be a critical component of an effective vaccine against AIDS. Although monomeric HIV envelope subunit vaccines (gp120) have induced high-titer antibody responses and neutralizing antibodies against laboratory-adapted HIV-1 strains, they have failed to induce neutralizing antibodies against diverse heterologous primary HIV isolates. Most probably, the reason for this failure is that the antigenic structure(s) of these previously used immunogens does not mimic that of the functional HIV envelope, which is a trimer, and thus these immunogens do not elicit high titers of relevant functional antibodies. We recently reported that an Env glycoprotein immunogen (o-gp140SF162DeltaV2) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162, when used in a DNA priming-protein boosting vaccine regimen in rhesus macaques, induced neutralizing antibodies against heterologous subtype B primary isolates as well as protection to the vaccinated animals upon challenge with pathogenic SHIV(SF162P4) virus. Here we describe the purification of this protein to homogeneity, its characterization as trimer, and its ability to induce primary isolate-neutralizing responses in rhesus macaques. Optimal mutations in the primary and secondary protease cleavage sites of the env gene were identified that resulted in the stable secretion of a trimeric Env glycoprotein in mammalian cell cultures. We determined the molecular mass and hydrodynamic radius (R(h)) using a triple detector analysis (TDA) system. The molecular mass of the oligomer was found to be 324 kDa, close to the expected M(w) of a HIV envelope trimer protein (330 kDa), and the hydrodynamic radius was 7.27 nm. Negative staining electron microscopy of o-gp140SF162DeltaV2 showed that it is a trimer with considerable structural flexibility and supported the data obtained by TDA. The structural integrity of the purified trimeric protein was also confirmed by determinations of its ability to bind the HIV receptor, CD4, and its ability to bind a panel of well-characterized neutralizing monoclonal antibodies. No deleterious effect of V2 loop deletion was observed on the structure and conformation of the protein, and several critical neutralization epitopes were preserved and well exposed on the purified o-gp140SF162DeltaV2 protein. In an intranasal priming and intramuscular boosting regimen, this protein induced high titers of functional antibodies, which neutralized the vaccine strain, i.e., SF162. These results highlight a potential role for the trimeric o-gp140SF162DeltaV2 Env immunogen in a successful HIV vaccine.
Collapse
|
28
|
Ulanet DB, Torbenson M, Dang CV, Casciola-Rosen L, Rosen A. Unique conformation of cancer autoantigen B23 in hepatoma: a mechanism for specificity in the autoimmune response. Proc Natl Acad Sci U S A 2003; 100:12361-6. [PMID: 14519847 PMCID: PMC218763 DOI: 10.1073/pnas.2035245100] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The association of a specific autoantibody response with distinct disease phenotypes is observed in both autoimmune diseases and cancer. Although the underlying mechanisms remain unclear, it is likely that unique properties of disease-specific autoantigens expressed in the relevant target cells play a role. It has recently been observed that the majority of autoantigens targeted across the spectrum of systemic autoimmune diseases (but not nonautoantigens) are selectively cleaved by the cytotoxic lymphocyte granule protease granzyme B (GB), generating unique fragments not observed during other forms of cell death. Although susceptibility of a molecule to cleavage by GB strongly predicts autoantigen status, the significance of this association is unclear. We used hepatocellular carcinoma and the hepatocellular carcinoma autoantigen, nucleophosmin/B23, as a model system to define the unique features of disease-specific autoantigens in the relevant disease microenvironment. These studies revealed a striking, selective susceptibility of B23 to cleavage by GB in extracts of neoplastic liver. The increased sensitivity of tumor B23 to proteolysis by GB was accompanied by slightly increased mobility on SDS/PAGE, altered subcellular localization, enrichment of an SDS-stable oligomeric form of B23, and recognition by a conformation-specific antibody detecting a B23 epitope ending at the GB cleavage site. In vitro studies demonstrated that this unique B23 conformation and resultant increased susceptibility to cleavage by GB arise when B23 translation is initiated at methionine-7. We propose that unique features of autoantigens in the disease-relevant microenvironment may regulate susceptibility to cleavage by GB and their selection by the specific autoimmune response.
Collapse
Affiliation(s)
- Danielle B Ulanet
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
29
|
Dong M, Zhang PF, Grieder F, Lee J, Krishnamurthy G, VanCott T, Broder C, Polonis VR, Yu XF, Shao Y, Faix D, Valente P, Quinnan GV. Induction of primary virus-cross-reactive human immunodeficiency virus type 1-neutralizing antibodies in small animals by using an alphavirus-derived in vivo expression system. J Virol 2003; 77:3119-30. [PMID: 12584337 PMCID: PMC149731 DOI: 10.1128/jvi.77.5.3119-3130.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the induction of neutralizing antibodies by in vivo expression of the human immunodeficiency virus type 1 (HIV-1) envelope by using a Venezuelan equine encephalitis virus (VEE) replicon system with mice and rabbits. The HIV-1 envelope, clone R2, has broad sensitivity to cross-reactive neutralization and was obtained from a donor with broadly cross-reactive, primary virus-neutralizing antibodies (donor of reference serum, HIV-1-neutralizing serum 2 [HNS2]). It was expressed as gp160, as secreted gp140, and as gp160deltaCT with the cytoplasmic tail deleted. gp140 was expressed in vitro at a high level and was predominantly uncleaved oligomer. gp160deltaCT was released by cells in the form of membrane-bound vesicles. gp160deltaCT induced stronger neutralizing responses than the other forms. Use of a helper plasmid for replicon particle packaging, in which the VEE envelope gene comprised a wild-type rather than a host range-adapted sequence, also enhanced immunogenicity. Neutralizing activity fractionated with immunoglobulin G. This activity was cross-reactive among a panel of five nonhomologous primary clade B strains and a Chinese clade C strain and minimally reactive against a Chinese clade E (circulating recombinant form 1) strain. The comparative neutralization of these strains by immune mouse sera was similar to the relative neutralizing effects of HNS2, and responses induced in rabbits were similar to those induced in mice. Together, these results demonstrate that neutralizing antibody responses can be induced in mice within 2 to 3 months that are similar in potency and cross-reactivity to those found in the chronically infected, long-term nonprogressive donor of HNS2. These findings support the expectation that induction of highly cross-reactive HIV-1 primary virus-neutralizing activity by vaccination may be realized.
Collapse
Affiliation(s)
- Ming Dong
- Departments of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda 20814, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Srivastava IK, VanDorsten K, Vojtech L, Barnett SW, Stamatatos L. Changes in the immunogenic properties of soluble gp140 human immunodeficiency virus envelope constructs upon partial deletion of the second hypervariable region. J Virol 2003; 77:2310-20. [PMID: 12551968 PMCID: PMC141106 DOI: 10.1128/jvi.77.4.2310-2320.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization of macaques with the soluble oligomeric gp140 form of the SF162 envelope (SF162gp140) or with an SF162gp140-derived construct lacking the central region of the V2 loop (DeltaV2gp140) results in the generation of high titers of antibodies capable of neutralizing the homologous human immunodeficiency virus type 1 (HIV-1), SF162 virus (Barnett et al. J. Virol. 75:5526-5540, 2001). However, the DeltaV2gp140 immunogen is more effective than the SF162gp140 immunogen in eliciting the generation of antibodies capable of neutralizing heterologous HIV-1 isolates. This indicates that deletion of the V2 loop alters the immunogenicity of the SF162gp140 protein. The present studies were aimed at identifying the envelope regions whose immunogenicity is altered following V2 loop deletion. We report that the antibodies elicited by the SF162gp140 immunogen recognize elements of the V1, V2, and V3 loops, the CD4-binding site, and the C1 and C2 regions on the homologous SF162 gp120. With the exception of the V1 and V2 loops, the same regions are recognized on heterologous gp120 proteins. Surprisingly, although a minority of the SF162gp140-elicited antibodies target the V3 loop on the homologous gp120, the majority of the antibodies elicited by this immunogen that are capable of binding to the heterologous gp120s tested recognize their V3 loops. Deletion of the V2 loop has two effects. First, it alters the immunogenicity of the V3 and V1 loops, and second, it renders the C5 region immunogenic. Although deletion of the V2 loop does not result in an increase in the immunogenicity of the CD4-binding site per se, the relative ratio of anti-CD4-binding site to anti-V3 loop antibodies that bind to the heterologous gp120s tested is higher in sera collected from the DeltaV2gp140-immunized animals than in the SF162gp140-immunized animals. Overall, our studies indicate that it is possible to alter the immunogenic structure of the HIV envelope by introducing specific modifications.
Collapse
|
31
|
Schülke N, Vesanen MS, Sanders RW, Zhu P, Lu M, Anselma DJ, Villa AR, Parren PWHI, Binley JM, Roux KH, Maddon PJ, Moore JP, Olson WC. Oligomeric and conformational properties of a proteolytically mature, disulfide-stabilized human immunodeficiency virus type 1 gp140 envelope glycoprotein. J Virol 2002; 76:7760-76. [PMID: 12097589 PMCID: PMC136400 DOI: 10.1128/jvi.76.15.7760-7776.2002] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the further properties of a protein, designated SOS gp140, wherein the association of the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein is stabilized by an intersubunit disulfide bond. HIV-1(JR-FL) SOS gp140, proteolytically uncleaved gp140 (gp140(UNC)), and gp120 were expressed in stably transfected Chinese hamster ovary cells and analyzed for antigenic and structural properties before and after purification. Compared with gp140(UNC), SOS gp140 reacted more strongly in surface plasmon resonance and radioimmunoprecipitation assays with the neutralizing monoclonal antibodies (MAbs) 2G12 (anti-gp120), 2F5 (anti-gp41), and 17b (to a CD4-induced epitope that overlaps the CCR5-binding site). In contrast, gp140(UNC) displayed the greater reactivity with nonneutralizing anti-gp120 and anti-gp41 MAbs. Immunoelectron microscopy studies suggested a model for SOS gp140 wherein the gp41 ectodomain (gp41(ECTO)) occludes the "nonneutralizing" face of gp120, consistent with the antigenic properties of this protein. We also report the application of Blue Native polyacrylamide gel electrophoresis (BN-PAGE), a high-resolution molecular sizing method, to the study of viral envelope proteins. BN-PAGE and other biophysical studies demonstrated that SOS gp140 was monomeric, whereas gp140(UNC) comprised a mixture of noncovalently associated and disulfide-linked dimers, trimers, and tetramers. The oligomeric and conformational properties of SOS gp140 and gp140(UNC) were largely unaffected by purification. An uncleaved gp140 protein containing the SOS cysteine mutations (SOS gp140(UNC)) was also oligomeric. Surprisingly, variable-loop-deleted SOS gp140 proteins were expressed (although not yet purified) as cleaved, noncovalently associated oligomers that were significantly more stable than the full-length protein. Overall, our findings have relevance for rational vaccine design.
Collapse
Affiliation(s)
- Norbert Schülke
- Progenics Pharmaceuticals Inc., Tarrytown, New York 10591, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Quiñones-Kochs MI, Buonocore L, Rose JK. Role of N-linked glycans in a human immunodeficiency virus envelope glycoprotein: effects on protein function and the neutralizing antibody response. J Virol 2002; 76:4199-211. [PMID: 11932385 PMCID: PMC155056 DOI: 10.1128/jvi.76.9.4199-4211.2002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The envelope (Env) glycoprotein of human immunodeficiency virus (HIV) contains 24 N-glycosylation sites covering much of the protein surface. It has been proposed that one role of these carbohydrates is to form a shield that protects the virus from immune recognition. Strong evidence for such a role for glycosylation has been reported for simian immunodeficiency virus (SIV) mutants lacking glycans in the V1 region of Env (J. N. Reitter, R. E. Means, and R. C. Desrosiers, Nat. Med. 4:679-684, 1998). Here we used recombinant vesicular stomatitis viruses (VSVs) expressing HIV Env glycosylation mutants to determine if removal of carbohydrates in the V1 and V2 domains affected protein function and the generation of neutralizing antibodies in mice. Mutations that eliminated one to six of the sites for N-linked glycosylation in the V1 and V2 loops were introduced into a gene encoding the HIV type 1 primary isolate 89.6 envelope glycoprotein with its cytoplasmic domain replaced by that of the VSV G glycoprotein. The membrane fusion activities of the mutant proteins were studied in a syncytium induction assay. The transport and processing of the mutant proteins were studied with recombinant VSVs expressing mutant Env G proteins. We found that HIV Env V1 and V2 glycosylation mutants were no better than wild-type envelope at inducing antibodies neutralizing wild-type Env, although an Env mutant lacking glycans appeared somewhat more sensitive to neutralization by antibodies raised to mutant or wild-type Env. These results indicate significant differences between SIV and HIV with regard to the roles of glycans in the V1 and V2 domains.
Collapse
Affiliation(s)
- Miriam I Quiñones-Kochs
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
33
|
Liu J, Wang S, Hoxie JA, LaBranche CC, Lu M. Mutations that destabilize the gp41 core are determinants for stabilizing the simian immunodeficiency virus-CPmac envelope glycoprotein complex. J Biol Chem 2002; 277:12891-900. [PMID: 11830586 DOI: 10.1074/jbc.m110315200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human and simian immunodeficiency viruses (HIV and SIV) envelope glycoprotein consists of a trimer of two noncovalently and weakly associated subunits, gp120 and gp41. Upon binding of gp120 to cellular receptors, this labile native envelope complex undergoes conformational changes, resulting in a stable trimer-of-hairpins structure in gp41. Formation of the hairpin structure is thought to mediate membrane fusion by placing the viral and cellular membranes in close proximity. An in vitro-derived variant of SIVmac251, denoted CPmac, has acquired an unusually stable virion-associated gp120-gp41 complex. This unique phenotype is conferred by five amino acid substitutions in the gp41 ectodomain. Here we characterize the structural and physicochemical properties of the N40(L6)C38 model of the CPmac gp41 core. The 1.7-A resolution crystal structure of N40(L6)C38 is very similar to the six-helix bundle structure present in the parent SIVmac251 gp41. In both structures, three N40 peptides form a central three-stranded coiled coil, and three C38 peptides pack in an antiparallel orientation into hydrophobic grooves on the coiled-coil surface. Thermal unfolding studies show that the CPmac mutations destabilize the SIVmac251 six-helix bundle by 15 kJ/mol. Our results suggest that the formation of the gp41 trimer-of-hairpins structure is thermodynamically coupled to the conformational stability of the native envelope glycoprotein and raise the intriguing possibility that introduction of mutations to destabilize the six-helix bundle may lead to the stabilization of the trimeric gp120-gp41 complex. This study suggests a potential strategy for the production of stably folded envelope protein immunogens for HIV vaccine development.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
34
|
Margolin DH, Saunders EFH, Bronfin B, de Rosa N, Axthelm MK, Alvarez X, Letvin NL. High frequency of virus-specific B lymphocytes in germinal centers of simian-human immunodeficiency virus-infected rhesus monkeys. J Virol 2002; 76:3965-73. [PMID: 11907236 PMCID: PMC136115 DOI: 10.1128/jvi.76.8.3965-3973.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The etiology of the lymphadenopathy and follicular hyperplasia associated with human immunodeficiency virus type 1 (HIV-1) infection has remained unclear. To determine whether the B-lymphocyte expansions characteristic of this syndrome represent polyclonal and virus-specific processes, the antigen specificity of B cells in lymphoid tissues of monkeys infected with simian-human immunodeficiency virus (SHIV) chimeras was assessed using an inverse immunohistochemical assay with biotinylated HIV-1 envelope gp120 (Env) as an antigen probe. Env-binding B cells were found aggregated in lymph node and splenic germinal centers (GCs). Most Env-binding GCs also contained an unstained population of B cells, suggesting the GCs were formed by a polyclonal (oligoclonal) process. By day 42 following infection, Env-binding B cells were present in 19% of all lymph node GCs. Env-binding cells were present in 25% of GCs even during chronic infection. This extraordinarily high frequency of Env-specific B lymphocytes suggests that the expansion of virus-specific B cells may largely account for the follicular hyperplasia in AIDS virus-infected individuals.
Collapse
Affiliation(s)
- David H Margolin
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Binley JM, Sanders RW, Master A, Cayanan CS, Wiley CL, Schiffner L, Travis B, Kuhmann S, Burton DR, Hu SL, Olson WC, Moore JP. Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J Virol 2002; 76:2606-16. [PMID: 11861826 PMCID: PMC135977 DOI: 10.1128/jvi.76.6.2606-2616.2002] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Accepted: 12/06/2001] [Indexed: 12/31/2022] Open
Abstract
In virus-infected cells, the envelope glycoprotein (Env) precursor, gp160, of human immunodeficiency virus type 1 is cleaved by cellular proteases into a fusion-competent gp120-gp41 heterodimer in which the two subunits are noncovalently associated. However, cleavage can be inefficient when recombinant Env is expressed at high levels, either as a full-length gp160 or as a soluble gp140 truncated immediately N-terminal to the transmembrane domain. We have explored several methods for obtaining fully cleaved Env for use as a vaccine antigen. We tested whether purified Env could be enzymatically digested with purified protease in vitro. Plasmin efficiently cleaved the Env precursor but also cut at a second site in gp120, most probably the V3 loop. In contrast, a soluble form of furin was specific for the gp120-gp41 cleavage site but cleaved inefficiently. Coexpression of Env with the full-length or soluble form of furin enhanced Env cleavage but also reduced Env expression. When the Env cleavage site (REKR) was mutated in order to see if its use by cellular proteases could be enhanced, several mutants were found to be processed more efficiently than the wild-type protein. The optimal cleavage site sequences were RRRRRR, RRRRKR, and RRRKKR. These mutations did not significantly alter the capacity of the Env protein to mediate fusion, so they have not radically perturbed Env structure. Furthermore, unlike that of wild-type Env, expression of the cleavage site mutants was not significantly reduced by furin coexpression. Coexpression of Env cleavage site mutants and furin is therefore a useful method for obtaining high-level expression of processed Env.
Collapse
Affiliation(s)
- James M Binley
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Srivastava IK, Stamatatos L, Legg H, Kan E, Fong A, Coates SR, Leung L, Wininger M, Donnelly JJ, Ulmer JB, Barnett SW. Purification and characterization of oligomeric envelope glycoprotein from a primary R5 subtype B human immunodeficiency virus. J Virol 2002; 76:2835-47. [PMID: 11861851 PMCID: PMC135955 DOI: 10.1128/jvi.76.6.2835-2847.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) continues to be a major public health problem throughout the world, with high levels of mortality and morbidity associated with AIDS. Considerable efforts to develop an effective vaccine for HIV have been directed towards the generation of cellular, humoral, and mucosal immune responses. A major emphasis of our work has been toward the evaluation of oligomeric (o-gp140) forms of the HIV type 1 (HIV-1) envelope protein for their ability to induce neutralizing antibody responses. We have derived stable CHO cell lines expressing o-gp140 envelope protein from the primary non-syncytium-inducing (R5) subtype B strain HIV-1(US4). We have developed an efficient purification strategy to purify oligomers to near homogeneity. Using a combination of three detectors measuring intrinsic viscosity, light scattering, and refractive index, we calculated the molecular mass of the oligomer to be 474 kDa, consistent with either a trimer or a tetramer. The hydrodynamic radius (R(h)) of o-gp140 was determined to be 8.40 nm, compared with 5.07 nm for the monomer. The relatively smaller R(h) of the oligomer suggests that there are indeed differences between the foldings of o-gp140 and gp120. To assess the structural integrity of the purified trimers, we performed a detailed characterization of the glycosylation profile of o-gp140, its ability to bind soluble CD4, and also its ability to bind to a panel of monoclonal antibodies with known epitope specificities for the CD4 binding site, the CD4 inducible site, the V3 loop, and gp41. Immunogenicity studies with rabbits indicated that the purified o-gp140 protein was highly immunogenic and induced high-titer, high-avidity antibodies directed predominantly against conformational epitopes. These observations confirm the structural integrity of purified o-gp140 and its potential as a vaccine antigen.
Collapse
Affiliation(s)
- Indresh K Srivastava
- Department of Immunology and Infectious Diseases, Chiron Corporation, Emeryville, California 94608, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rose NF, Marx PA, Luckay A, Nixon DF, Moretto WJ, Donahoe SM, Montefiori D, Roberts A, Buonocore L, Rose JK. An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 2001; 106:539-49. [PMID: 11551502 DOI: 10.1016/s0092-8674(01)00482-2] [Citation(s) in RCA: 363] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed an AIDS vaccine based on attenuated VSV vectors expressing env and gag genes and tested it in rhesus monkeys. Boosting was accomplished using vectors with glycoproteins from different VSV serotypes. Animals were challenged with a pathogenic AIDS virus (SHIV89.6P). Control monkeys showed a severe loss of CD4+ T cells and high viral loads, and 7/8 progressed to AIDS with an average time of 148 days. All seven vaccinees were initially infected with SHIV89.6P but have remained healthy for up to 14 months after challenge with low or undetectable viral loads. Protection from AIDS was highly significant (p = 0.001). VSV vectors are promising candidates for human AIDS vaccine trials because they propagate to high titers and can be delivered without injection.
Collapse
Affiliation(s)
- N F Rose
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cho MW. Assessment of HIV vaccine development: past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:263-314. [PMID: 11013767 DOI: 10.1016/s1054-3589(00)49030-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- M W Cho
- AIDS Vaccine Research and Development Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
39
|
Earl PL, Sugiura W, Montefiori DC, Broder CC, Lee SA, Wild C, Lifson J, Moss B. Immunogenicity and protective efficacy of oligomeric human immunodeficiency virus type 1 gp140. J Virol 2001; 75:645-53. [PMID: 11134278 PMCID: PMC113961 DOI: 10.1128/jvi.75.2.645-653.2001] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biologically active form of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein is oligomeric. We previously described a soluble HIV-1 IIIB Env protein, gp140, with a stable oligomeric structure composed of uncleaved gp120 linked to the ectodomain of gp41 (P. L. Earl, C. C. Broder, D. Long, S. A. Lee, J. Peterson, S. Chakrabarti, R. W. Doms, and B. Moss, J. Virol. 68:3015-3026, 1994). Here we compared the antibody responses of rabbits to gp120 and gp140 that had been produced and purified in an identical manner. The gp140 antisera exhibited enhanced cross-reactivity with heterologous Env proteins as well as greater neutralization of HIV-1 compared to the gp120 antisera. To examine both immunogenicity and protective efficacy, we immunized rhesus macaques with oligomeric gp140. Strong neutralizing antibodies against a homologous virus and modest neutralization of heterologous laboratory-adapted isolates were elicited. No neutralization of primary isolates was observed. However, a substantial fraction of the neutralizing activity could not be blocked by a V3 loop peptide. After intravenous challenge with simian-HIV virus SHIV-HXB2, three of the four vaccinated macaques exhibited no evidence of virus replication.
Collapse
Affiliation(s)
- P L Earl
- Laboratory of Viral Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bures R, Gaitan A, Zhu T, Graziosi C, McGrath KM, Tartaglia J, Caudrelier P, El Habib R, Klein M, Lazzarin A, Stablein DM, Deers M, Corey L, Greenberg ML, Schwartz DH, Montefiori DC. Immunization with recombinant canarypox vectors expressing membrane-anchored glycoprotein 120 followed by glycoprotein 160 boosting fails to generate antibodies that neutralize R5 primary isolates of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 2000; 16:2019-35. [PMID: 11153085 DOI: 10.1089/088922200750054756] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibodies generated by candidate HIV-1 vaccines in a phase I clinical trial were assessed for neutralizing activity with a panel of eight well-characterized, genetically diverse clade B primary isolates having an R5 phenotype. The vaccines consisted of one of three different recombinant canarypox vectors expressing membrane-anchored HIV-1(MN)gp120 (ALVAC vCP205, vCP1433, and vCP1452) followed by boosting with a soluble gp160 hybrid consisting of MNgp120 and the majority of gp41 from strain IIIB. Serum samples from a subset of volunteers in each arm of the trial, containing moderate to high titers of neutralizing antibodies to HIV-1 MN, were analyzed. Competition assays with peptides revealed that the majority of neutralizing activity was specific for the MN-V3 loop. Despite MN-specific neutralization titers that sometimes exceeded 1:500, no neutralization of primary isolates was detected and, in some cases, mild infection enhancement was observed. In addition, little or no neutralization of the HIV-1 IIIB heterologous T cell line-adapted strain of virus was detected. These results reinforce the notion that monovalent HIV-1 ENV is a poor immunogen for generating cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- R Bures
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rose NF, Roberts A, Buonocore L, Rose JK. Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. J Virol 2000; 74:10903-10. [PMID: 11069984 PMCID: PMC113169 DOI: 10.1128/jvi.74.23.10903-10910.2000] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live recombinant vesicular stomatitis viruses (VSVs) expressing foreign antigens are highly effective vaccine vectors. However, these vectors induce high-titer neutralizing antibody directed at the single VSV glycoprotein (G), and this antibody alone can prevent reinfection and boosting with the same vector. To determine if efficient boosting could be achieved by changing the G protein of the vector, we have developed two new recombinant VSV vectors based on the VSV Indiana serotype but with the G protein gene replaced with G genes from two other VSV serotypes, New Jersey and Chandipura. These G protein exchange vectors grew to titers equivalent to wild-type VSV and induced similar neutralizing titers to themselves but no cross-neutralizing antibodies to the other two serotypes. The effectiveness of these recombinant VSV vectors was illustrated in experiments in which sequential boosting of mice with the three vectors, all encoding the same primary human immunodeficiency virus (HIV) envelope protein, gave a fourfold increase in antibody titer to an oligomeric HIV envelope compared with the response in animals receiving the same vector three times. In addition, only the animals boosted with the exchange vectors produced antibodies neutralizing the autologous HIV primary isolate. These VSV envelope exchange vectors have potential as vaccines in immunizations when boosting of immune responses may be essential.
Collapse
Affiliation(s)
- N F Rose
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
42
|
Boutet A, Altmeyer R, Héry C, Tardieu M. Direct role of plasma membrane-expressed gp120/41 in toxicity to human astrocytes induced by HIV-1-infected macrophages. AIDS 2000; 14:2687-97. [PMID: 11125887 DOI: 10.1097/00002030-200012010-00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare astrocyte toxicity induced by plasma membrane-expressed gp120/41 and soluble gp120. DESIGN Analysis of morphological alterations and lactate dehydrogenase (LDH) release from astrocytes in culture with monocytes infected with HIV-1, microglia expressing Env of a macrophage-tropic HIV-1 isolate or soluble Env. METHODS Primary human embryonic astrocytes were cultured with: monocytes infected with two M-tropic HIV-1 isolates (HIV-1(9533), HIV-1(BX08)); human microglia infected with the defective Semliki Forest virus (SFV) vector coding for the env gene of HIV-1(BX08) isolate (SFVenvBX08); and soluble gp140 purified from baby hamster kidney cells transfected with the env gene of HIV-1(BX08) lacking the intracytoplasmic region of gp41 (SFVdelta envBX08). Gp120 mRNA levels were assessed by quantitative reverse transcriptase-polymerase chain reaction and the protein was detected by immunofluorescence in infected monocytes or microglia. RESULTS Contact of HIV-infected monocytes induced morphological changes in astrocytes and a 137% increase in LDH release at day 2 of co-culture compared with controls (uninfected monocytes). Gp120/41(BX08)-expressing microglia induced a 170% increase in LDH release (relative to SFVLacZ-infected microglia). Pretreatment of co-cultures with an anti-gp120 monoclonal antibody (mAb; NEA-9305) directed against the V3 loop inhibited LDH release. Soluble purified gp140 from BX08 isolate induced only a weak LDH release (104%). Finally, cytotoxicity was not blocked by treatment of the co-culture with Bordetella pertussis toxin, an inhibitor of Gi alpha protein-dependent receptors. CONCLUSION HIV envelope glycoprotein expressed at the plasma membrane induced astrocyte damage more efficiently than its soluble counterpart. The V3 loop was involved in toxicity induction through a pathway independent of the Gi alpha protein-coupled receptor.
Collapse
Affiliation(s)
- A Boutet
- Laboratoire Virus, Neurone et Immunité, Université Paris-Sud, Le Kremlin-Bicêtre, France.
| | | | | | | |
Collapse
|
43
|
Stamatatos L, Lim M, Cheng-Mayer C. Generation and structural analysis of soluble oligomeric gp140 envelope proteins derived from neutralization-resistant and neutralization-susceptible primary HIV type 1 isolates. AIDS Res Hum Retroviruses 2000; 16:981-94. [PMID: 10890360 DOI: 10.1089/08892220050058407] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We generated DNA constructs expressing soluble truncated forms of the envelope of SF162, a neutralization-resistant primary human immunodeficiency virus type 1 isolate, and SF162AV2, a neutralization-susceptible virus derived from SF162 after the deletion of 30 amino acids from the V2 loop. The constructs express the entire gp120 subunit and the extracellular region of the gp41 subunit, with either the presence ("cleaved" forms, designated gp140C) or the absence ("fused" forms, designated gp140F) of the gp120-gp41 cleavage site. Both gp140 forms derived from SF162 and SF162deltaV2 are secreted in the cell medium and are recognized by the oligomer-specific anti-gp41 MAb T4. As is the case for the corresponding virion-associated envelope molecules, the CD4-binding region is occluded within both gp140F and gp140C forms. However, structural differences exist between these two forms. The gp140F proteins are less efficiently recognized than the gp140C proteins by antibodies present in the sera of HIV-infected patients with neutralizing activities against SF162 and SF162AV2. Also, the V3 loop is more exposed on gp140F than gp140C. As is the case for intact virions, on CD4 binding both the gp140F and gp140C proteins undergo conformational changes that result in the exposure of the epitope recognized by MAb 17b, which has been implicated in coreceptor binding. In contrast, during these structural changes the exposure of specific V3 loop epitopes is not increased on either gp140C or gp140F. Taken together, our data indicate that although these gp140 forms differ structurally from the native envelope, their similarities, in particular that of gp140C, outweigh their differences.
Collapse
Affiliation(s)
- L Stamatatos
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York 10021, USA.
| | | | | |
Collapse
|
44
|
Yang X, Florin L, Farzan M, Kolchinsky P, Kwong PD, Sodroski J, Wyatt R. Modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution. J Virol 2000; 74:4746-54. [PMID: 10775613 PMCID: PMC111997 DOI: 10.1128/jvi.74.10.4746-4754.2000] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional unit of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins is a trimer composed of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. The lability of intersubunit interactions has hindered the production and characterization of soluble, homogeneous envelope glycoprotein trimers. Here we report three modifications that stabilize soluble forms of HIV-1 envelope glycoprotein trimers: disruption of the proteolytic cleavage site between gp120 and gp41, introduction of cysteines that form intersubunit disulfide bonds, and addition of GCN4 trimeric helices. Characterization of these secreted glycoproteins by immunologic and biophysical methods indicates that these stable trimers retain structural integrity. The efficacy of the GCN4 sequences in stabilizing the trimers, the formation of intersubunit disulfide bonds between appropriately placed cysteines, and the ability of the trimers to interact with a helical, C-terminal gp41 peptide (DP178) support a model in which the N-terminal gp41 coiled coil exists in the envelope glycoprotein precursor and contributes to intersubunit interactions within the trimer. The availability of stable, soluble HIV-1 envelope glycoprotein trimers should expedite progress in understanding the structure and function of the virion envelope glycoprotein spikes.
Collapse
Affiliation(s)
- X Yang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Recombinant, replication-competent rabies virus (RV) vaccine strain-based vectors were developed expressing HIV type I (HIV-1) envelope glycoprotein (gp160) from both a laboratory-adapted (CXCR4-tropic) and a primary (dual-tropic) HIV-1 isolate. An additional transcription stop/start unit within the RV genome was used to express HIV-1 gp160 in addition to the other RV proteins. The HIV-1 gp160 protein was stably and functionally expressed, as indicated by fusion of human T cell lines after infection with the recombinant RVs. Inoculation of mice with the recombinant RVs expressing HIV-1 gp160 induced a strong humoral response directed against the HIV-1 envelope protein after a single boost with recombinant HIV-1 gp120 protein. Moreover, high neutralization titers up to 1:800 against HIV-1 could be detected in the mouse sera. These data indicate that a live recombinant RV, a rhabdovirus, expressing HIV-1 gp160 may serve as an effective vector for an HIV-1 vaccine.
Collapse
|
46
|
Schnell MJ, Foley HD, Siler CA, McGettigan JP, Dietzschold B, Pomerantz RJ. Recombinant rabies virus as potential live-viral vaccines for HIV-1. Proc Natl Acad Sci U S A 2000; 97:3544-9. [PMID: 10706640 PMCID: PMC16276 DOI: 10.1073/pnas.97.7.3544] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinant, replication-competent rabies virus (RV) vaccine strain-based vectors were developed expressing HIV type I (HIV-1) envelope glycoprotein (gp160) from both a laboratory-adapted (CXCR4-tropic) and a primary (dual-tropic) HIV-1 isolate. An additional transcription stop/start unit within the RV genome was used to express HIV-1 gp160 in addition to the other RV proteins. The HIV-1 gp160 protein was stably and functionally expressed, as indicated by fusion of human T cell lines after infection with the recombinant RVs. Inoculation of mice with the recombinant RVs expressing HIV-1 gp160 induced a strong humoral response directed against the HIV-1 envelope protein after a single boost with recombinant HIV-1 gp120 protein. Moreover, high neutralization titers up to 1:800 against HIV-1 could be detected in the mouse sera. These data indicate that a live recombinant RV, a rhabdovirus, expressing HIV-1 gp160 may serve as an effective vector for an HIV-1 vaccine.
Collapse
Affiliation(s)
- M J Schnell
- Center for Human Virology and Department of Biochemistry and Molecular Pharmacology, Dorrance H. Hamilton Laboratories, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Gorny MK, VanCott TC, Williams C, Revesz K, Zolla-Pazner S. Effects of oligomerization on the epitopes of the human immunodeficiency virus type 1 envelope glycoproteins. Virology 2000; 267:220-8. [PMID: 10662617 DOI: 10.1006/viro.1999.0095] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand the differential expression of epitopes on monomeric and oligomeric forms of the envelope glycoproteins, nine human monoclonal antibodies (mAbs) were derived from the cells of human immunodeficiency virus-infected subjects by selection with soluble oligomeric gp140 (o.140). These nine mAbs and 12 human mAbs selected with V3 peptides, viral lysates, and rgp120, specific for the V2, V3, C5, CD4-binding domain (CD4bd), and gp41, were tested in a binding assay to compare the exposure of these regions on monomeric gp120 or gp41 and on o.140. None of the 21 mAbs were oligomer specific. However, mAbs to V3 and CD4bd were "oligomer sensitive," whereas mAbs to V2 and the distal epitope of C5 tended to be "monomer sensitive" (i.e., to react better with the oligomer or monomer, respectively). The majority of anti-gp41 mAbs reacted similarly with monomer and oligomer. Although the uncleaved o.140 used in this study differs from the cleaved gp120/41 oligomer found on the native virus particle, these results suggest that new epitopes are not introduced by oligomerization of viral envelope proteins, that such oligomer-specific epitopes, if they exist, are not highly immunogenic, and/or that they are not efficiently selected using soluble o.140.
Collapse
Affiliation(s)
- M K Gorny
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
48
|
Liao HX, Etemad-Moghadam B, Montefiori DC, Sun Y, Sodroski J, Scearce RM, Doms RW, Thomasch JR, Robinson S, Letvin NL, Haynes BF. Induction of antibodies in guinea pigs and rhesus monkeys against the human immunodeficiency virus type 1 envelope: neutralization of nonpathogenic and pathogenic primary isolate simian/human immunodeficiency virus strains. J Virol 2000; 74:254-63. [PMID: 10590113 PMCID: PMC111535 DOI: 10.1128/jvi.74.1.254-263.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have compared the abilities of human immunodeficiency virus type 1 (HIV-1) envelope V3 peptides and recombinant gp120 to induce antibodies that neutralize simian/human immunodeficiency viruses (SHIVs). SHIV-89.6 is a nonpathogenic SHIV that expresses the envelope protein of primary HIV-1 isolate 89.6. SHIV-89.6P, clone KB9, is a pathogenic SHIV variant derived from SHIV-89.6. Infection of rhesus monkeys with these SHIVs rarely induces anti-V3 region antibodies. To determine the availability of the gp120 V3 loop for neutralizing antibody binding on SHIV-89.6 and KB9 virions, we have constructed immunogenic C4-V3 peptides from these SHIVs and induced anti-V3 antibodies in guinea pigs and rhesus monkeys. We found that both SHIV-89.6 and KB9 C4-V3 peptides induced antibodies that neutralized SHIV-89.6 but that only SHIV-KB9 C4-V3 peptide induced antibodies that neutralized SHIV-KB9. Immunoprecipitation assays demonstrated that SHIV-KB9 C4-V3 peptide-induced antibodies had a greater ability to bind SHIV-KB9 envelope proteins than did antibodies raised against SHIV-89.6 C4-V3 peptide. We have used a series of mutant HIV-1 envelope constructs to map the gp120 determinants that affect neutralization by anti-V3 antibodies. The residue change at position 305 of arginine (in SHIV-89.6) to glutamic acid (in SHIV-KB9) played a central role in determining the ability of peptide-induced anti-V3 antiserum to neutralize primary isolate SHIVs. Moreover, residue changes in the SHIV-89.6 V1/V2 loops also played roles in regulating the availability of the V3 neutralizing epitope on SHIV-89.6 and -KB9. Thus, SHIV-89.6 and -KB9 V3 region peptides are capable of inducing neutralizing antibodies against these primary isolate SHIVs, although the pathogenic SHIV-KB9 is less easily neutralized than its nonpathogenic variant SHIV-89.6. In contrast to natural infection with SHIV-89.6, in which few animals make anti-V3 antibodies, C4-V3 peptides frequently induced anti-V3 antibodies that neutralized primary isolate SHIV strains.
Collapse
Affiliation(s)
- H X Liao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Binley JM, Sanders RW, Clas B, Schuelke N, Master A, Guo Y, Kajumo F, Anselma DJ, Maddon PJ, Olson WC, Moore JP. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J Virol 2000; 74:627-43. [PMID: 10623724 PMCID: PMC111582 DOI: 10.1128/jvi.74.2.627-643.2000] [Citation(s) in RCA: 444] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The few antibodies that can potently neutralize human immunodeficiency virus type 1 (HIV-1) recognize the limited number of envelope glycoprotein epitopes exposed on infectious virions. These native envelope glycoprotein complexes comprise three gp120 subunits noncovalently and weakly associated with three gp41 moieties. The individual subunits induce neutralizing antibodies inefficiently but raise many nonneutralizing antibodies. Consequently, recombinant envelope glycoproteins do not elicit strong antiviral antibody responses, particularly against primary HIV-1 isolates. To try to develop recombinant proteins that are better antigenic mimics of the native envelope glycoprotein complex, we have introduced a disulfide bond between the C-terminal region of gp120 and the immunodominant segment of the gp41 ectodomain. The resulting gp140 protein is processed efficiently, producing a properly folded envelope glycoprotein complex. The association of gp120 with gp41 is now stabilized by the supplementary intermolecular disulfide bond, which forms with approximately 50% efficiency. The gp140 protein has antigenic properties which resemble those of the virion-associated complex. This type of gp140 protein may be worth evaluating for immunogenicity as a component of a multivalent HIV-1 vaccine.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Cell Line, Transformed
- Centrifugation, Density Gradient
- Chromatography, Gel
- Cysteine/genetics
- Disulfides/metabolism
- Furin
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Glycoproteins/genetics
- Glycoproteins/immunology
- Glycoproteins/metabolism
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- HIV Envelope Protein gp120/metabolism
- HIV Envelope Protein gp41/genetics
- HIV Envelope Protein gp41/immunology
- HIV Envelope Protein gp41/metabolism
- HIV-1/isolation & purification
- Humans
- Molecular Sequence Data
- Protein Processing, Post-Translational
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Subtilisins/metabolism
- Sucrose
- Virion
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- J M Binley
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Doranz BJ, Baik SS, Doms RW. Use of a gp120 binding assay to dissect the requirements and kinetics of human immunodeficiency virus fusion events. J Virol 1999; 73:10346-58. [PMID: 10559353 PMCID: PMC113090 DOI: 10.1128/jvi.73.12.10346-10358.1999] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Binding of the extracellular subunit of human immunodeficiency type 1 (HIV-1) envelope (Env) glycoprotein (gp120) to CD4 triggers the induction or exposure of a highly conserved coreceptor binding site in gp120 that helps mediate membrane fusion. Characterizing the structural features involved in gp120-coreceptor binding and the conditions under which binding occurs is important for understanding the fusion process, the evolution of pathogenic strains in vivo, the identification of novel anti-HIV compounds, and the development of HIV vaccines that utilize triggered structures of Env. Here we use the kinetics of interaction between CCR5 and gp120 to understand temporal and structural changes that occur during viral fusion. Using saturation binding and homologous competition analysis, we estimated the K(d) of interaction between CCR5 and gp120 from the macrophage tropic HIV-1 strain JRFL to be 4 nM. Unlike Env-mediated fusion, gp120 binding to CCR5 did not require divalent cations or elevated temperatures. Binding was not significantly affected by the pH of binding, G-protein coupling of CCR5, or partial gp120 deglycosylation. Oligomeric, uncleaved JRFL gp140 failed to bind CCR5 despite its ability to bind CD4 and monoclonal antibody 17b, suggesting that the uncleaved ectodomain of gp41 interferes with full exposure of the chemokine receptor binding site. Exposure of the chemokine receptor binding site on gp120 could be induced rapidly by CD4, but exposure of this site was lost upon CD4 dissociation from gp120, indicating that the conformational changes in gp120 induced by CD4 binding are fully reversible. The functional gp120-soluble CD4 complex was remarkably stable over time and temperature ranges, offering the possibility that complexes in which the highly conserved coreceptor binding site in gp120 is exposed can be used for vaccine development.
Collapse
Affiliation(s)
- B J Doranz
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|