1
|
Cook M, Freniere C, Wu C, Lozano F, Xiong Y. Structural insights into HIV-2 CA lattice formation and FG-pocket binding revealed by single-particle cryo-EM. Cell Rep 2025; 44:115245. [PMID: 39864060 PMCID: PMC11912512 DOI: 10.1016/j.celrep.2025.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/20/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
One of the striking features of human immunodeficiency virus (HIV) is the capsid, a fullerene cone comprised of pleomorphic capsid protein (CA) that shields the viral genome and recruits cofactors. Despite significant advances in understanding the mechanisms of HIV-1 CA assembly and host factor interactions, HIV-2 CA assembly remains poorly understood. By templating the assembly of HIV-2 CA on functionalized liposomes, we report high-resolution structures of the HIV-2 CA lattice, including both CA hexamers and pentamers, alone and with peptides of host phenylalanine-glycine (FG)-motif proteins Nup153 and CPSF6. While the overall fold and mode of FG-peptide binding is conserved with HIV-1, this study reveals distinctive features of the HIV-2 CA lattice, including differing structural character at regions of host factor interactions and divergence in the mechanism of formation of CA hexamers and pentamers. This study extends our understanding of HIV capsids and highlights an approach facilitating the study of lentiviral capsid biology.
Collapse
Affiliation(s)
- Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Faith Lozano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Wang T, Becker D, Twizerimana AP, Luedde T, Gohlke H, Münk C. Cyclophilin A Regulates Tripartite Motif 5 Alpha Restriction of HIV-1. Int J Mol Sci 2025; 26:495. [PMID: 39859212 PMCID: PMC11764967 DOI: 10.3390/ijms26020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite motif protein 5) in primates is a key species-specific restriction factor defining the HIV-1 pandemic. The incomplete adaptation of HIV-1 to humans is due to the different utilization of CYPA by pandemic and non-pandemic HIV-1. The enzymatic activity of CYPA on the viral core is likely an important reason for regulating the TRIM5 restriction activity. Thus, the HIV-1 capsid and its CYPA interaction may serve as new targets for future anti-AIDS therapeutic agents. This article will describe the species-specificity of the restriction factor TRIM5, understand the role of CYPA in regulating restriction factors in retroviral infection, and discuss important future research issues.
Collapse
Affiliation(s)
- Tingting Wang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Augustin Penda Twizerimana
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| |
Collapse
|
3
|
Twentyman J, Emerman M, Ohainle M. Capsid-dependent lentiviral restrictions. J Virol 2024; 98:e0030824. [PMID: 38497663 PMCID: PMC11019884 DOI: 10.1128/jvi.00308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Host antiviral proteins inhibit primate lentiviruses and other retroviruses by targeting many features of the viral life cycle. The lentiviral capsid protein and the assembled viral core are known to be inhibited through multiple, directly acting antiviral proteins. Several phenotypes, including those known as Lv1 through Lv5, have been described as cell type-specific blocks to infection against some but not all primate lentiviruses. Here we review important features of known capsid-targeting blocks to infection together with several blocks to infection for which the genes responsible for the inhibition still remain to be identified. We outline the features of these blocks as well as how current methodologies are now well suited to find these antiviral genes and solve these long-standing mysteries in the HIV and retrovirology fields.
Collapse
Affiliation(s)
- Joy Twentyman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Molly Ohainle
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
4
|
Padron A, Prakash P, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Emerging role of cyclophilin A in HIV-1 infection: from producer cell to the target cell nucleus. J Virol 2023; 97:e0073223. [PMID: 37843371 PMCID: PMC10688351 DOI: 10.1128/jvi.00732-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The HIV-1 genome encodes a small number of proteins with structural, enzymatic, regulatory, and accessory functions. These viral proteins interact with a number of host factors to promote the early and late stages of HIV-1 infection. During the early stages of infection, interactions between the viral proteins and host factors enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain access to the nucleus, and integrate into the host genome. Similarly, the viral proteins recruit another set of host factors during the late stages of infection to orchestrate HIV-1 transcription, translation, assembly, and release of progeny virions. Among the host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first host factor to be packaged within HIV-1 particles. It is now well established that CypA promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to pinpoint CypA's role have spanned from an effect in the producer cell to the early steps of infection in the target cell. In this review, we will describe our understanding of the role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.
Collapse
Affiliation(s)
- Adrian Padron
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeremy Luban
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chris Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Twentyman J, Khalifeh A, Felton AL, Emerman M, Ohainle M. Primate TRIM34 is a broadly-acting, TRIM5-dependent lentiviral restriction factor. Retrovirology 2023; 20:15. [PMID: 37608289 PMCID: PMC10464172 DOI: 10.1186/s12977-023-00629-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Human immunodeficiency virus (HIV) and other lentiviruses adapt to new hosts by evolving to evade host-specific innate immune proteins that differ in sequence and often viral recognition between host species. Understanding how these host antiviral proteins, called restriction factors, constrain lentivirus replication and transmission is key to understanding the emergence of pandemic viruses like HIV-1. Human TRIM34, a paralogue of the well-characterized lentiviral restriction factor TRIM5α, was previously identified by our lab via CRISPR-Cas9 screening as a restriction factor of certain HIV and SIV capsids. Here, we show that diverse primate TRIM34 orthologues from non-human primates can restrict a range of Simian Immunodeficiency Virus (SIV) capsids including SIVAGM-SAB, SIVAGM-TAN and SIVMAC capsids, which infect sabaeus monkeys, tantalus monkeys, and rhesus macaques, respectively. All primate TRIM34 orthologues tested, regardless of species of origin, were able to restrict this same subset of viral capsids. However, in all cases, this restriction also required the presence of TRIM5α. We demonstrate that TRIM5α is necessary, but not sufficient, for restriction of these capsids, and that human TRIM5α functionally interacts with TRIM34 from different species. Finally, we find that both the TRIM5α SPRY v1 loop and the TRIM34 SPRY domain are essential for TRIM34-mediated restriction. These data support a model in which TRIM34 is a broadly-conserved primate lentiviral restriction factor that acts in tandem with TRIM5α, such that together, these proteins can restrict capsids that neither can restrict alone.
Collapse
Affiliation(s)
- Joy Twentyman
- Department of Global Health, University of Washington, Seattle, WA, USA
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anthony Khalifeh
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California -Berkeley, Berkeley, CA, USA
| | - Abby L Felton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Molly Ohainle
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California -Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Twentyman J, Khalifeh A, Felton AL, Emerman M, OhAinle M. Primate TRIM34 is a broadly-acting, TRIM5-dependent lentiviral restriction factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534139. [PMID: 36993223 PMCID: PMC10055373 DOI: 10.1101/2023.03.24.534139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Human immunodeficiency virus (HIV) and other lentiviruses adapt to new hosts by evolving to evade host-specific innate immune proteins that differ in sequence and often viral recognition between host species. Understanding how these host antiviral proteins, called restriction factors, constrain lentivirus replication and transmission is key to understanding the emergence of pandemic viruses like HIV-1. Human TRIM34, a paralogue of the well-characterized lentiviral restriction factor TRIM5α, was previously identified by our lab via CRISPR-Cas9 screening as a restriction factor of certain HIV and SIV capsids. Here, we show that diverse primate TRIM34 orthologues from non-human primates can restrict a range of Simian Immunodeficiency Virus (SIV) capsids including SIV AGM-SAB , SIV AGM-TAN and SIV MAC capsids, which infect sabaeus monkeys, tantalus monkeys, and rhesus macaques, respectively. All primate TRIM34 orthologues tested, regardless of species of origin, were able to restrict this same subset of viral capsids. However, in all cases, this restriction also required the presence of TRIM5α. We demonstrate that TRIM5α is necessary, but not sufficient, for restriction of these capsids, and that human TRIM5α functionally interacts with TRIM34 from different species. Finally, we find that both the TRIM5α SPRY v1 loop and the TRIM34 SPRY domain are essential for TRIM34-mediated restriction. These data support a model in which TRIM34 is a broadly-conserved primate lentiviral restriction factor that acts in tandem with TRIM5α, such that together, these proteins can restrict capsids that neither can restrict alone.
Collapse
Affiliation(s)
- Joy Twentyman
- Department of Global Health, University of Washington, Seattle, WA, United States
- Divisions of Human Biology and Basic Sciences, Fred Hutch Cancer Center, Seattle, WA, United States
| | - Anthony Khalifeh
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California –Berkeley, Berkeley, CA, United States
| | - Abby L. Felton
- Divisions of Human Biology and Basic Sciences, Fred Hutch Cancer Center, Seattle, WA, United States
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutch Cancer Center, Seattle, WA, United States
| | - Molly OhAinle
- Divisions of Human Biology and Basic Sciences, Fred Hutch Cancer Center, Seattle, WA, United States
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California –Berkeley, Berkeley, CA, United States
| |
Collapse
|
7
|
Han J, Kyu Lee M, Jang Y, Cho WJ, Kim M. Repurposing of cyclophilin A inhibitors as broad-spectrum antiviral agents. Drug Discov Today 2022; 27:1895-1912. [PMID: 35609743 PMCID: PMC9123807 DOI: 10.1016/j.drudis.2022.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 12/28/2022]
Abstract
Cyclophilin A (CypA) is linked to diverse human diseases including viral infections. With the worldwide emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2), drug repurposing has been highlighted as a strategy with the potential to speed up antiviral development. Because CypA acts as a proviral component in hepatitis C virus, coronavirus and HIV, its inhibitors have been suggested as potential treatments for these infections. Here, we review the structure of cyclosporin A and sanglifehrin A analogs as well as synthetic micromolecules inhibiting CypA; and we discuss their broad-spectrum antiviral efficacy in the context of the virus lifecycle.
Collapse
Affiliation(s)
- Jinhe Han
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Meeheyin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
8
|
Troyano-Hernáez P, Reinosa R, Holguín Á. HIV Capsid Protein Genetic Diversity Across HIV-1 Variants and Impact on New Capsid-Inhibitor Lenacapavir. Front Microbiol 2022; 13:854974. [PMID: 35495642 PMCID: PMC9039614 DOI: 10.3389/fmicb.2022.854974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
The HIV p24 capsid protein has an essential, structural, and functional role in the viral replication cycle, being an interesting target for vaccine design, diagnostic tests, and new antiretroviral drugs (ARVs). The HIV-1 variability poses a challenge for the accuracy and efficiency of diagnostic and treatment tools. This study analyzes p24 diversity among HIV-1 variants and within its secondary structure in HIV-1 M, O, P, and N groups. All available HIV-1 p24 nucleotide sequences were downloaded from the Los Alamos HIV Sequence Database, selecting 23,671 sequences belonging to groups O, N, P, and M (9 subtypes, 7 sub-sub types, and 109 circulating recombinant forms or CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio program), we analyzed the amino acid conservation compared to the HXB2 subtype B reference sequence and the V-markers, or amino acid changes that were specific for each variant with at least 10 available sequences. We inferred the p24 consensus sequence for HIV-1 and for each group to analyze the overall conservation in p24 main structural regions, reporting the percentage of substitutions per variant affecting the capsid assembly and molecule-binding, including those associated with resistance to the new capsid-inhibitor lenacapavir, and the key residues involved in lenacapavir-p24 interaction, according to the bibliography. Although the overall structure of p24 was highly conserved, the conservation in the secondary structure varied between HIV-1 variants and the type of secondary structure. All HIV-1 variants presented >80% amino acid conservation vs. HXB2 reference sequence, except for group M sub-subtype F1 (69.27%). Mutants affecting the capsid assembly or lenacapavir capsid-binding were found in <1% of the p24 consensus sequence. Our study reports the HIV-1 variants carrying 14 unique single V-markers in 9/38 group M variants and the level of p24 conservation in each secondary structure region among the 4 HIV-1 groups and group M variants, revealing no natural resistance to lenacapavir in any HIV-1 variant. We present a thorough analysis of p24 variability among all HIV-1 variants circulating to date. Since p24 genetic variability can impact the viral replication cycle and the efficacy of new p24-based diagnostic, therapeutic, and vaccine strategies, conservation studies must consider all HIV-1 variants circulating worldwide.
Collapse
Affiliation(s)
- Paloma Troyano-Hernáez
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - Roberto Reinosa
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| |
Collapse
|
9
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
10
|
Cell Type-Dependent Escape of Capsid Inhibitors by Simian Immunodeficiency Virus SIVcpz. J Virol 2020; 94:JVI.01338-20. [PMID: 32907979 DOI: 10.1128/jvi.01338-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Pandemic human immunodeficiency virus type 1 (HIV-1) is the result of the zoonotic transmission of simian immunodeficiency virus (SIV) from the chimpanzee subspecies Pan troglodytes troglodytes (SIVcpzPtt). The related subspecies Pan troglodytes schweinfurthii is the host of a similar virus, SIVcpzPts, which did not spread to humans. We tested these viruses with small-molecule capsid inhibitors (PF57, PF74, and GS-CA1) that interact with a binding groove in the capsid that is also used by CPSF6. While HIV-1 was sensitive to capsid inhibitors in cell lines, human macrophages, and peripheral blood mononuclear cells (PBMCs), SIVcpzPtt was resistant in rhesus FRhL-2 cells and human PBMCs but was sensitive to PF74 in human HOS and HeLa cells. SIVcpzPts was insensitive to PF74 in FRhL-2 cells, HeLa cells, PBMCs, and macrophages but was inhibited by PF74 in HOS cells. A truncated version of CPSF6 (CPSF6-358) inhibited SIVcpzPtt and HIV-1, while in contrast, SIVcpzPts was resistant to CPSF6-358. Homology modeling of HIV-1, SIVcpzPtt, and SIVcpzPts capsids and binding energy estimates suggest that these three viruses bind similarly to the host proteins cyclophilin A (CYPA) and CPSF6 as well as the capsid inhibitor PF74. Cyclosporine treatment, mutation of the CYPA-binding loop in the capsid, or CYPA knockout eliminated the resistance of SIVcpzPts to PF74 in HeLa cells. These experiments revealed that the antiviral capacity of PF74 is controlled by CYPA in a virus- and cell type-specific manner. Our data indicate that SIVcpz viruses can use infection pathways that escape the antiviral activity of PF74. We further suggest that the antiviral activity of PF74 capsid inhibitors depends on cellular cofactors.IMPORTANCE HIV-1 originated from SIVcpzPtt but not from the related virus SIVcpzPts, and thus, it is important to describe molecular infection by SIVcpzPts in human cells to understand the zoonosis of SIVs. Pharmacological HIV-1 capsid inhibitors (e.g., PF74) bind a capsid groove that is also a binding site for the cellular protein CPSF6. SIVcpzPts was resistant to PF74 in HeLa cells but sensitive in HOS cells, thus indicating cell line-specific resistance. Both SIVcpz viruses showed resistance to PF74 in human PBMCs. Modulating the presence of cyclophilin A or its binding to capsid in HeLa cells overcame SIVcpzPts resistance to PF74. These results indicate that early cytoplasmic infection events of SIVcpzPts may differ between cell types and affect, in an unknown manner, the antiviral activity of capsid inhibitors. Thus, capsid inhibitors depend on the activity or interaction of currently uncharacterized cellular factors.
Collapse
|
11
|
The HIV-1 Capsid: More than Just a Delivery Package. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:69-83. [PMID: 31317496 DOI: 10.1007/978-3-030-14741-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Productive HIV infection requires integration of viral genes into the host genome. But how viral DNA gets to the nucleus in the first place remains one of the most controversial yet deceptively simple questions in HIV post-entry biology. This is illustrated in cartoons of viral entry, which often depict the entry process as an 'explosion' of the HIV capsid in the cytosol and independent movement of viral DNA through nuclear pores and into the nucleus. HIV enters the cell cytosol with two encapsidated RNA strands and must undergo reverse transcription (RT) to synthesise DNA. Even here there is no consensus for where, when or how RT happens. HIV must get into the nucleus, which in a non-dividing cell requires transport through the nuclear pore. Finally, the virus must 'uncoat': shed its protein capsid to allow its DNA to be spliced with that of the host. Where the virus uncoats and whether this is a single or multi-step process are similarly hotly debated. Understanding these processes is further complicated by three broad factors. First, that there are inter-relationships between these processes that may ensure HIV undergoes the right step at the right place at the right time. Second, the host has cofactors which the virus is dependent upon and must recruit but also immune factors that can sense and inhibit virus and so must be avoided. Third, HIV post-entry biology is cell-type dependent-meaning that factors which are essential in one cell type can be redundant in another.
Collapse
|
12
|
Bhargava A, Lahaye X, Manel N. Let me in: Control of HIV nuclear entry at the nuclear envelope. Cytokine Growth Factor Rev 2018. [PMID: 29526438 DOI: 10.1016/j.cytogfr.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nuclear envelope is a physical barrier that isolates the cellular DNA from the rest of the cell, thereby limiting pathogen invasion. The Human Immunodeficiency Virus (HIV) has a remarkable ability to enter the nucleus of non-dividing target cells such as lymphocytes, macrophages and dendritic cells. While this step is critical for replication of the virus, it remains one of the less understood aspects of HIV infection. Here, we review the viral and host factors that favor or inhibit HIV entry into the nucleus, including the viral capsid, integrase, the central viral DNA flap, and the host proteins CPSF6, TNPO3, Nucleoporins, SUN1, SUN2, Cyclophilin A and MX2. We review recent perspectives on the mechanism of action of these factors, and formulate fundamental questions that remain. Overall, these findings deepen our understanding of HIV nuclear import and strengthen the favorable position of nuclear HIV entry for antiviral targeting.
Collapse
Affiliation(s)
- Anvita Bhargava
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Xavier Lahaye
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| |
Collapse
|
13
|
Burse M, Shi J, Aiken C. Cyclophilin A potentiates TRIM5α inhibition of HIV-1 nuclear import without promoting TRIM5α binding to the viral capsid. PLoS One 2017; 12:e0182298. [PMID: 28767697 PMCID: PMC5540582 DOI: 10.1371/journal.pone.0182298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/14/2017] [Indexed: 11/29/2022] Open
Abstract
The host immunophilin cyclophilin A (CypA) binds to the capsid protein (CA) of HIV-1 and regulates its infectivity. Depending on the target cell type, CypA can either promote or inhibit HIV-1 infection. The ability of CypA to promote HIV-1 infection has been extensively studied and linked to several steps in early replication including uncoating, reverse transcription and nuclear import. By contrast, the mechanism by which CypA inhibits infection is less well understood. We investigated the mechanism by which CypA potentiates restriction of HIV-1 by the tripartite motif-containing protein 5 (TRIM5α). Depletion of TRIM5α in the African green monkey cell line Vero, resulted in a loss of inhibition of infection by CypA, demonstrating that inhibition by CypA is mediated by TRIM5α. Complementary genetic and biochemical assays failed to demonstrate an ability of CypA to promote binding of TRIM5α to the viral capsid. TRIM5α inhibits HIV-1 reverse transcription in a proteasome-dependent manner; however, we observed that inhibition of proteasome activity did not reduce the ability of CypA to inhibit infection, suggesting that CypA acts at a step after reverse transcription. Accordingly, we observed a CypA-dependent reduction in the accumulation of nuclear HIV-1 DNA, indicating that CypA specifically promotes TRIM5α inhibition of HIV-1 nuclear import. We also observed that the ability of CypA to inhibit HIV-1 infection is abolished by amino acid substitutions within the conserved CPSF6-binding surface in CA. Our results indicate that CypA inhibits HIV-1 infection in Vero cells not by promoting TRIM5α binding to the capsid but by blocking nuclear import of the HIV-1 preintegration complex.
Collapse
Affiliation(s)
- Mallori Burse
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jiong Shi
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christopher Aiken
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
14
|
Cyclophilins and nucleoporins are required for infection mediated by capsids from circulating HIV-2 primary isolates. Sci Rep 2017; 7:45214. [PMID: 28345672 PMCID: PMC5366920 DOI: 10.1038/srep45214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
HIV-2 groups have emerged from sooty mangabey SIV and entered the human population in Africa on several separate occasions. Compared to world pandemic HIV-1 that arose from the chimpanzee SIVcpz virus, the SIVsm-derived HIV-2, largely confined to West Africa, is less replicative, less transmissible and less pathogenic. Here, we evaluated the interactions between host cellular factors, which control HIV-1 infection and target the capsid, and HIV-2 capsids obtained from primary isolates from patients with different disease progression status. We showed that, like HIV-1, all HIV-2 CA we tested exhibited a dependence on cyclophilin A. However, we observed no correlation between HIV-2 viremia and susceptibility to hu-TRIM5alpha or dependence to CypA. Finally, we found that all CA from HIV-2 primary isolates exploit Nup358 and Nup153 for nucleus transposition. Altogether, these findings indicate that the ability to use the two latter nucleoporins is essential to infection of human cells for both HIV-1 and HIV-2. This dependence provides another molecular target that could be used for antiviral strategies against both HIV-1 and 2, based on both nucleoporins.
Collapse
|
15
|
Madlala P, Singh R, An P, Werner L, Mlisana K, Abdool Karim SS, Winkler CA, Ndung’u T. Association of Polymorphisms in the Regulatory Region of the Cyclophilin a Gene (PPIA) with Gene Expression and HIV/AIDS Disease Progression. J Acquir Immune Defic Syndr 2016; 72:465-73. [PMID: 27088296 PMCID: PMC4942341 DOI: 10.1097/qai.0000000000001028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human cyclophilin A (CypA) encoded by peptidyl prolyl isomerase A gene (PPIA), enhances HIV-1 replication by aiding capsid uncoating. The association of genetic variation in the PPIA regulatory region with susceptibility to HIV-1 infection, disease progression, and gene expression among black South Africans at risk for infection or infected with HIV-1 is unknown. METHODS We genotyped 539 participants from 2 longitudinal study cohorts of black South Africans at high risk for infection or infected with HIV-1 for PPIA regulatory single nucleotide polymorphisms by polymerase chain reaction-restriction fragment length polymorphism. RESULTS Minor allele (G) of SNP rs6850 (rs6850 G) significantly associated with higher viral loads (mean 4.85 versus 4.46 log copies/mL, P = 0.0006) and lower CD4 T-cell counts (mean 506 versus 557 cells/μL, P = 0.0256) during the acute phase of infection in the Centre for the AIDS Programme of Research in South Africa (CAPRISA) 002 cohort. Consistently, rs6850 G significantly associated with higher viral loads (mean 4.49 versus 4.01 log copies/mL, P < 0.0001) and lower CD4 T-cell counts (mean 442 versus 494 cells/μL, P = 0.0002) during the early chronic phase of infection in the CAPRISA 002 cohort; rs6850 G further associated significantly with rapid CD4 T-cell decline in the CAPRISA 002 cohort (P = 0.0481) and Sinikithemba chronic infection cohort (P = 0.0156). Interestingly, rs6850 G significantly associated with elevated CypA mRNA levels in HIV-1-positive individuals (P = 0.0061). CONCLUSIONS These data suggest that rs6850 G enhances HIV-1 replication through upregulation of CypA expression following HIV-1 infection. The data support ongoing efforts to develop anti-HIV-1 drugs that block interaction of HIV-1 and cellular proteins.
Collapse
Affiliation(s)
- Paradise Madlala
- HIV Pathogenesis Programme, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ravesh Singh
- HIV Pathogenesis Programme, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ping An
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Lise Werner
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Koleka Mlisana
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S. Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Cheryl A. Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
16
|
Capsid-CPSF6 Interaction Is Dispensable for HIV-1 Replication in Primary Cells but Is Selected during Virus Passage In Vivo. J Virol 2016; 90:6918-6935. [PMID: 27307565 DOI: 10.1128/jvi.00019-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/08/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a host factor that interacts with the HIV-1 capsid (CA) protein, is implicated in diverse functions during the early part of the HIV-1 life cycle, including uncoating, nuclear entry, and integration targeting. Preservation of CA binding to CPSF6 in vivo suggests that this interaction is fine-tuned for efficient HIV-1 replication in physiologically relevant settings. Nevertheless, this possibility has not been formally examined. To assess the requirement for optimal CPSF6-CA binding during infection of primary cells and in vivo, we utilized a novel CA mutation, A77V, that significantly reduced CA binding to CPSF6. The A77V mutation rendered HIV-1 largely independent from TNPO3, NUP358, and NUP153 for infection and altered the integration site preference of HIV-1 without any discernible effects during the late steps of the virus life cycle. Surprisingly, the A77V mutant virus maintained the ability to replicate in monocyte-derived macrophages, primary CD4(+) T cells, and humanized mice at a level comparable to that for the wild-type (WT) virus. Nonetheless, revertant viruses that restored the WT CA sequence and hence CA binding to CPSF6 emerged in three out of four A77V-infected animals. These results suggest that the optimal interaction of CA with CPSF6, though not absolutely essential for HIV-1 replication in physiologically relevant settings, confers a significant fitness advantage to the virus and thus is strictly conserved among naturally circulating HIV-1 strains. IMPORTANCE CPSF6 interacts with the HIV-1 capsid (CA) protein and has been implicated in nuclear entry and integration targeting. Preservation of CPSF6-CA binding across various HIV-1 strains suggested that the optimal interaction between CA and CPSF6 is critical during HIV-1 replication in vivo Here, we identified a novel HIV-1 capsid mutant that reduces binding to CPSF6, is largely independent from the known cofactors for nuclear entry, and alters integration site preference. Despite these changes, virus carrying this mutation replicated in humanized mice at levels indistinguishable from those of the wild-type virus. However, in the majority of the animals, the mutant virus reverted back to the wild-type sequence, hence restoring the wild-type level of CA-CPSF6 interactions. These results suggest that optimal binding of CA to CPSF6 is not absolutely essential for HIV-1 replication in vivo but provides a fitness advantage that leads to the widespread usage of CPSF6 by HIV-1 in vivo.
Collapse
|
17
|
Perilla JR, Gronenborn AM. Molecular Architecture of the Retroviral Capsid. Trends Biochem Sci 2016; 41:410-420. [PMID: 27039020 DOI: 10.1016/j.tibs.2016.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/21/2016] [Accepted: 02/26/2016] [Indexed: 12/13/2022]
Abstract
Retroviral capsid cores are proteinaceous containers that self-assemble to encase the viral genome and a handful of proteins that promote infection. Their function is to protect and aid in the delivery of viral genes to the nucleus of the host, and, in many cases, infection pathways are influenced by capsid-cellular interactions. From a mathematical perspective, capsid cores are polyhedral cages and, as such, follow well-defined geometric rules. However, marked morphological differences in shapes exist, depending on virus type. Given the specific roles of capsid in the viral life cycle, the availability of detailed molecular structures, particularly at assembly interfaces, opens novel avenues for targeted drug development against these pathogens. Here, we summarize recent advances in the structure and understanding of retroviral capsid, with particular emphasis on assemblies and the capsid cores.
Collapse
Affiliation(s)
- Juan R Perilla
- Beckman Institute for Advanced Science and Technology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, and Pittsburgh Center for HIV Protein Interactions, Pittsburgh, PA 15260, USA.
| |
Collapse
|
18
|
Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. J Virol 2016; 89:8334-45. [PMID: 26041300 DOI: 10.1128/jvi.00908-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) can prevent lentiviral infection in nonhuman primates and may slow the spread of human immunodeficiency virus type 1 (HIV-1). Although protection by passive transfer of human bnAbs has been demonstrated in monkeys, durable expression is essential for its broader use in humans. Gene-based expression of bnAbs provides a potential solution to this problem, although immune responses to the viral vector or to the antibody may limit its durability and efficacy. Here, we delivered an adeno-associated viral vector encoding a simianized form of a CD4bs bnAb, VRC07, and evaluated its immunogenicity and protective efficacy. The expressed antibody circulated in macaques for 16 weeks at levels up to 66 g/ml, although immune suppression with cyclosporine (CsA) was needed to sustain expression. Gene-delivered simian VRC07 protected against simian-human immunodeficiency virus (SHIV) infection in monkeys 5.5 weeks after treatment. Gene transfer of an anti-HIV antibody can therefore protect against infection by viruses that cause AIDS in primates when the host immune responses are controlled.
Collapse
|
19
|
Sultana T, Nakayama EE, Tobita S, Yokoyama M, Seki Y, Saito A, Nomaguchi M, Adachi A, Akari H, Sato H, Shioda T. Novel mutant human immunodeficiency virus type 1 strains with high degree of resistance to cynomolgus macaque TRIMCyp generated by random mutagenesis. J Gen Virol 2016; 97:963-976. [PMID: 26795727 DOI: 10.1099/jgv.0.000408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Old World monkey TRIM5α strongly suppresses human immunodeficiency virus type 1 (HIV-1) replication. A fusion protein comprising cynomolgus macaque (CM) TRIM5 and cyclophilin A (CM TRIMCyp) also potently suppresses HIV-1 replication. However, CM TRIMCyp fails to suppress a mutant HIV-1 that encodes a mutant capsid protein containing a SIVmac239-derived loop between α-helices 4 and 5 (L4/5). There are seven amino acid differences between L4/5 of HIV-1 and SIVmac239. Here, we investigated the minimum numbers of amino acid substitutions that would allow HIV-1 to evade CM TRIMCyp-mediated suppression. We performed random PCR mutagenesis to construct a library of HIV-1 variants containing mutations in L4/5, and then we recovered replication-competent viruses from CD4+ MT4 cells that expressed high levels of CM TRIMCyp. CM TRIMCyp-resistant viruses were obtained after three rounds of selection in MT4 cells expressing CM TRIMCyp and these were found to contain four amino acid substitutions (H87R, A88G, P90D and P93A) in L4/5. We then confirmed that these substitutions were sufficient to confer CM TRIMCyp resistance to HIV-1. In a separate experiment using a similar method, we obtained novel CM TRIM5α-resistant HIV-1 strains after six rounds of selection and rescue. Analysis of these mutants revealed that V86A and G116E mutations in the capsid region conferred partial resistance to CM TRIM5α without substantial fitness cost when propagated in MT4 cells expressing CM TRIM5α. These results confirmed and further extended the previous notion that CM TRIMCyp and CM TRIM5α recognize the HIV-1 capsid in different manners.
Collapse
Affiliation(s)
- Tahmina Sultana
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Satoshi Tobita
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yohei Seki
- Center of Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Akatsuki Saito
- Center of Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akio Adachi
- Department of Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirofumi Akari
- Center of Human Evolution Modeling Research, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi 484-8506, Japan.,Laboratory of Evolutional Virology, Institute for Virus Research, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
20
|
Pizzato M, McCauley SM, Neagu MR, Pertel T, Firrito C, Ziglio S, Dauphin A, Zufferey M, Berthoux L, Luban J. Lv4 Is a Capsid-Specific Antiviral Activity in Human Blood Cells That Restricts Viruses of the SIVMAC/SIVSM/HIV-2 Lineage Prior to Integration. PLoS Pathog 2015; 11:e1005050. [PMID: 26181333 PMCID: PMC4504712 DOI: 10.1371/journal.ppat.1005050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/25/2015] [Indexed: 12/24/2022] Open
Abstract
HIV-2 and SIVMAC are AIDS-causing, zoonotic lentiviruses that jumped to humans and rhesus macaques, respectively, from SIVSM-bearing sooty mangabey monkeys. Cross-species transmission events such as these sometimes necessitate virus adaptation to species-specific, host restriction factors such as TRIM5. Here, a new human restriction activity is described that blocks viruses of the SIVSM/SIVMAC/HIV-2 lineage. Human T, B, and myeloid cell lines, peripheral blood mononuclear cells and dendritic cells were 4 to >100-fold less transducible by VSV G-pseudotyped SIVMAC, HIV-2, or SIVSM than by HIV-1. In contrast, transduction of six epithelial cell lines was equivalent to that by HIV-1. Substitution of HIV-1 CA with the SIVMAC or HIV-2 CA was sufficient to reduce HIV-1 transduction to the level of the respective vectors. Among such CA chimeras there was a general trend such that CAs from epidemic HIV-2 Group A and B isolates were the most infectious on human T cells, CA from a 1° sooty mangabey isolate was the least infectious, and non-epidemic HIV-2 Group D, E, F, and G CAs were in the middle. The CA-specific decrease in infectivity was observed with either HIV-1, HIV-2, ecotropic MLV, or ALV Env pseudotypes, indicating that it was independent of the virus entry pathway. As2O3, a drug that suppresses TRIM5-mediated restriction, increased human blood cell transduction by SIVMAC but not by HIV-1. Nonetheless, elimination of TRIM5 restriction activity did not rescue SIVMAC transduction. Also, in contrast to TRIM5-mediated restriction, the SIVMAC CA-specific block occurred after completion of reverse transcription and the formation of 2-LTR circles, but before establishment of the provirus. Transduction efficiency in heterokaryons generated by fusing epithelial cells with T cells resembled that in the T cells, indicative of a dominant-acting SIVMAC restriction activity in the latter. These results suggest that the nucleus of human blood cells possesses a restriction factor specific for the CA of HIV-2/SIVMAC/SIVSM and that cross-species transmission of SIVSM to human T cells necessitated adaptation of HIV-2 to this putative restriction factor. HIV-1 and HIV-2, the two lentiviruses that cause AIDS in humans, are members of a family of such viruses that infect African primates. HIV-1 is a zoonosis that was transmitted to humans from chimpanzees. HIV-2 was transmitted to humans from sooty mangabey monkeys. In several documented cases of cross-species transmission of lentiviruses it has been shown that replication of the virus in the new host species necessitated that the virus adapt to species-specific antiviral factors in the host. Here we report that human blood cells possess an antiviral activity that exhibits specificity for viruses of the HIV-2/SIVMAC/SIVSM lineage, with restriction being greatest for SIVSM and the least for epidemic HIV-2. Here we show that this dominant-acting, antiviral activity is specific for the capsid and blocks the virus after it enters the nucleus. The evidence suggests that, in order to jump from sooty mangabey monkeys to humans, the capsid of these viruses changed in order to adapt to this antiviral activity. In keeping with the practice concerning anti-lentiviral activities we propose to call this new antiviral activity Lv4.
Collapse
Affiliation(s)
- Massimo Pizzato
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Center for Integrative Biology, University of Trento, Trento, Italy
| | - Sean Matthew McCauley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Martha R. Neagu
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Thomas Pertel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Claudia Firrito
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Serena Ziglio
- Center for Integrative Biology, University of Trento, Trento, Italy
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Madeleine Zufferey
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Lionel Berthoux
- Laboratory of Retrovirology, University of Québec, Trois-Rivières, Quebec, Canada
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Contribution of glutamine residues in the helix 4-5 loop to capsid-capsid interactions in simian immunodeficiency virus of macaques. J Virol 2014; 88:10289-302. [PMID: 24991000 DOI: 10.1128/jvi.01388-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Following retrovirus entry, the viral capsid (CA) disassembles into its component capsid proteins. The rate of this uncoating process, which is regulated by CA-CA interactions and by the association of the capsid with host cell factors like cyclophilin A (CypA), can influence the efficiency of reverse transcription. Inspection of the CA sequences of lentiviruses reveals that several species of simian immunodeficiency viruses (SIVs) have lost the glycine-proline motif in the helix 4-5 loop important for CypA binding; instead, the helix 4-5 loop in these SIVs exhibits an increase in the number of glutamine residues. In this study, we investigated the role of these glutamine residues in SIVmac239 replication. Changes in these residues, particularly glutamine 89 and glutamine 92, resulted in a decreased efficiency of core condensation, decreased stability of the capsids in infected cells, and blocks to reverse transcription. In some cases, coexpression of two different CA mutants produced chimeric virions that exhibited higher infectivity than either parental mutant virus. For this complementation of infectivity, glutamine 89 was apparently required on one of the complementing pair of mutants and glutamine 92 on the other. Modeling suggests that glutamines 89 and 92 are located on the distal face of hexameric capsid spokes and thus are well positioned to contribute to interhexamer interactions. Requirements to evade host restriction factors like TRIMCyp may drive some SIV lineages to evolve means other than CypA binding to stabilize the capsid. One solution used by several SIV strains consists of glutamine-based bonding. IMPORTANCE The retroviral capsid is an assembly of individual capsid proteins that surrounds the viral RNA. After a retrovirus enters a cell, the capsid must disassemble, or uncoat, at a proper rate. The interactions among capsid proteins contribute to this rate of uncoating. We found that some simian immunodeficiency viruses use arrays of glutamine residues, which can form hydrogen bonds efficiently, to keep their capsids stable. This strategy may allow these viruses to forego the use of capsid-stabilizing factors from the host cell, some of which have antiviral activity.
Collapse
|
22
|
Maelfait J, Seiradake E, Rehwinkel J. Keeping your armour intact: how HIV-1 evades detection by the innate immune system: HIV-1 capsid controls detection of reverse transcription products by the cytosolic DNA sensor cGAS. Bioessays 2014; 36:649-57. [PMID: 24782340 PMCID: PMC4190646 DOI: 10.1002/bies.201400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
HIV-1 infects dendritic cells (DCs) without triggering an effective innate antiviral immune response. As a consequence, the induction of adaptive immune responses controlling virus spread is limited. In a recent issue of Immunity, Lahaye and colleagues show that intricate interactions of HIV capsid with the cellular cofactor cyclophilin A (CypA) control infection and innate immune activation in DCs. Manipulation of HIV-1 capsid to increase its affinity for CypA results in reduced virus infectivity and facilitates access of the cytosolic DNA sensor cGAS to reverse transcribed DNA. This in turn induces a strong host response. Here, we discuss these findings in the context of recent developments in innate immunity and consider the implications for disease control and vaccine design.
Collapse
Affiliation(s)
- Jonathan Maelfait
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
23
|
De Iaco A, Luban J. Cyclophilin A promotes HIV-1 reverse transcription but its effect on transduction correlates best with its effect on nuclear entry of viral cDNA. Retrovirology 2014; 11:11. [PMID: 24479545 PMCID: PMC3916700 DOI: 10.1186/1742-4690-11-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/27/2014] [Indexed: 01/13/2023] Open
Abstract
Background The human peptidyl-prolyl isomerase Cyclophilin A (CypA) binds HIV-1 capsid (CA) and influences early steps in the HIV-1 replication cycle. The mechanism by which CypA regulates HIV-1 transduction efficiency is unknown. Disruption of CypA binding to CA, either by genetic means or by the competitive inhibitor cyclosporine A (CsA), reduces the efficiency of HIV-1 transduction in some cells but not in others. Transduction of certain cell types increases significantly when CypA binding to particular HIV-1 CA mutants, i.e., A92E, is prevented. Previous studies have suggested that this cell type-specific effect is due to a dominant-acting, CypA-dependent restriction factor. Results Here we investigated the mechanism by which CypA regulates HIV-1 transduction efficiency using 27 different human cell lines, 32 HeLa subclones, and several previously characterized HIV-1 CA mutants. Disruption of CypA binding to wild-type CA, or to any of the mutant CAs, caused a decrease in HIV-1 reverse transcription in all the cell lines analyzed here. This block to reverse transcription, though, did not correlate with cell type-specific effects on transduction efficiency. The level of 2-LTR circles, a marker for nuclear transport of the viral cDNA that results from reverse transcription, correlated closely with effects on infectivity. No correlation was observed between the cell type-specific effects on infectivity and the steady-state CypA protein levels in these cells. Instead, as indicated by a fate-of-capsid assay, CsA released the HIV-1 CA core from an apparent state of hyperstabilization, in a cell type-specific manner. Conclusion These data demonstrate that, while CypA promotes reverse transcription under all conditions tested here, its effect on HIV-1 infectivity correlates more closely with effects on nuclear entry of the viral cDNA. The data also support the hypothesis that a cell-type specific CypA-dependent restriction factor blocks HIV-1 replication by delaying CA core uncoating and hindering nuclear entry.
Collapse
Affiliation(s)
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland.
| |
Collapse
|
24
|
Bichel K, Price AJ, Schaller T, Towers GJ, Freund SMV, James LC. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Retrovirology 2013; 10:81. [PMID: 23902822 PMCID: PMC3750474 DOI: 10.1186/1742-4690-10-81] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/12/2013] [Indexed: 11/21/2022] Open
Abstract
Background Lentiviruses such as HIV-1 can be distinguished from other retroviruses by the cyclophilin A-binding loop in their capsid and their ability to infect non-dividing cells. Infection of non-dividing cells requires transport through the nuclear pore but how this is mediated is unknown. Results Here we present the crystal structure of the N-terminal capsid domain of HIV-1 in complex with the cyclophilin domain of nuclear pore protein NUP358. The structure reveals that HIV-1 is positioned to allow single-bond resonance stabilisation of exposed capsid residue P90. NMR exchange experiments demonstrate that NUP358 is an active isomerase, which efficiently catalyzes cis-trans isomerization of the HIV-1 capsid. In contrast, the distantly related feline lentivirus FIV can bind NUP358 but is neither isomerized by it nor requires it for infection. Conclusion Isomerization by NUP358 may be preserved by HIV-1 to target the nuclear pore and synchronize nuclear entry with capsid uncoating.
Collapse
Affiliation(s)
- Katsiaryna Bichel
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
25
|
Mamede JI, Sitbon M, Battini JL, Courgnaud V. Heterogeneous susceptibility of circulating SIV isolate capsids to HIV-interacting factors. Retrovirology 2013; 10:77. [PMID: 23883001 PMCID: PMC3751554 DOI: 10.1186/1742-4690-10-77] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/05/2013] [Indexed: 11/13/2022] Open
Abstract
Background Many species of non-human primates in Africa are naturally infected by simian immunodeficiency viruses (SIV) and humans stand at the forefront of exposure to these viruses in Sub-Saharan Africa. Cross-species transmission and adaptation of SIV to humans have given rise to human immunodeficiency viruses (HIV-1 and HIV-2) on twelve accountable, independent occasions. However, the determinants contributing to a simian-to-human lasting transmission are not fully understood. Following entry, viral cores are released into the cytoplasm and become the principal target of host cellular factors. Here, we evaluated cellular factors likely to be involved in potential new SIV cross-species transmissions. We investigated the interactions of capsids from naturally circulating SIV isolates with both HIV-1 restricting (i.e. TRIM5 proteins) and facilitating (i.e. cyclophilin A and nucleopore-associated Nup358/RanBP2 and Nup153) factors in single-round infectivity assays that reproduce early stages of the viral life-cycle. Results We show that human TRIM5α is unlikely to prevent cross-species transmission of any SIV we tested and observed that the SIV CA-CypA interaction is a widespread but not a universal feature. Moreover, entry in the nucleus of different SIV appeared to follow pathways that do not necessarily recruit Nup358/RanBP2 or Nup153, and this regardless of their interaction with CypA. Nevertheless, we found that, like HIV-1, human-adapted HIV-2 infection was dependent on Nup358/RanBP2 and Nup153 interactions for optimal infection. Furthermore, we found that, unlike HIV CA, SIV CA did not require a direct interaction with the Cyp-like domain of Nup358/RanBP2 to carry out successful infection. Conclusions Circulating SIV present a variety of phenotypes with regard to CA-interacting restricting or facilitating factors. Altogether, we unveiled unidentified pathways for SIV CA, which could also be exploited by HIV in different cellular contexts, to drive entry into the nucleus. Our findings warrant a closer evaluation of other potential defenses against circulating SIV.
Collapse
Affiliation(s)
- João I Mamede
- Institut de Génétique Moléculaire de Montpellier UMR 5535 CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
26
|
Gallay PA, Ptak RG, Bobardt MD, Dumont JM, Vuagniaux G, Rosenwirth B. Correlation of naturally occurring HIV-1 resistance to DEB025 with capsid amino acid polymorphisms. Viruses 2013; 5:981-97. [PMID: 23524389 PMCID: PMC3705307 DOI: 10.3390/v5030981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022] Open
Abstract
DEB025 (alisporivir) is a synthetic cyclosporine with inhibitory activity against human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV). It binds to cyclophilin A (CypA) and blocks essential functions of CypA in the viral replication cycles of both viruses. DEB025 inhibits clinical HIV-1 isolates in vitro and decreases HIV-1 virus load in the majority of patients. HIV-1 isolates being naturally resistant to DEB025 have been detected in vitro and in nonresponder patients. By sequence analysis of their capsid protein (CA) region, two amino acid polymorphisms that correlated with DEB025 resistance were identified: H87Q and I91N, both located in the CypA-binding loop of the CA protein of HIV-1. The H87Q change was by far more abundant than I91N. Additional polymorphisms in the CypA-binding loop (positions 86, 91 and 96), as well as in the N-terminal loop of CA were detected in resistant isolates and are assumed to contribute to the degree of resistance. These amino acid changes may modulate the conformation of the CypA-binding loop of CA in such a way that binding and/or isomerase function of CypA are no longer necessary for virus replication. The resistant HIV-1 isolates thus are CypA-independent.
Collapse
Affiliation(s)
- Philippe A. Gallay
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla 92037, California, USA; E-Mails: (P.A.G.); (M.D.B.)
| | - Roger G. Ptak
- Southern Research Institute, Frederick, Maryland 21701, USA; E-Mail:
| | - Michael D. Bobardt
- Department of Immunology & Microbial Science, The Scripps Research Institute, La Jolla 92037, California, USA; E-Mails: (P.A.G.); (M.D.B.)
| | - Jean-Maurice Dumont
- Debiopharm, 1002 Lausanne, Switzerland; E-Mail:
- Author to whom correspondence should be addressed: E-Mail: ; Mailing address: Debiopharm SA, Forum “après-demain”, Chemin Messidor 5-7, Case postale 5911, CH-1002 Lausanne, Switzerland; Tel. +41 21 3210111; Fax: +41 21 3210169
| | | | - Brigitte Rosenwirth
- Klinisches Institut fuer Virologie, Medizinische Universitaet Wien, 1095 Vienna, Austria; E-Mail:
| |
Collapse
|
27
|
Yu H, Usmani SM, Borch A, Krämer J, Stürzel CM, Khalid M, Li X, Krnavek D, van der Ende ME, Osterhaus AD, Gruters RA, Kirchhoff F. The efficiency of Vpx-mediated SAMHD1 antagonism does not correlate with the potency of viral control in HIV-2-infected individuals. Retrovirology 2013; 10:27. [PMID: 23497283 PMCID: PMC3599662 DOI: 10.1186/1742-4690-10-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/22/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Hangxing Yu
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wasilenko ST, Montano-Loza AJ, Mason AL. Is there a role for cyclophilin inhibitors in the management of primary biliary cirrhosis? Viruses 2013; 5:423-38. [PMID: 23348060 PMCID: PMC3640509 DOI: 10.3390/v5020423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/17/2022] Open
Abstract
Autoimmune hepatitis (AIH) and primary biliary cirrhosis (PBC) are poorly understood autoimmune liver diseases. Immunosuppression is used to treat AIH and ursodeoxycholic acid is used to slow the progression of PBC. Nevertheless, a proportion of patients with both disorders progress to liver failure. Following liver transplantation, up to a third of patients with PBC experience recurrent disease. Moreover a syndrome referred to as "de novo AIH" occurs in a proportion of patients regardless of maintenance immunosuppression, who have been transplanted for disorders unrelated to AIH. Of note, the use of cyclosporine A appears to protect against the development of recurrent PBC and de novo AIH even though it is a less potent immunosuppressive compared to tacrolimus. The reason why cyclosporine A is protective has not been determined. However, a virus resembling mouse mammary tumor virus (MMTV) has been characterized in patients with PBC and AIH. Accordingly, we hypothesized that the protective effect of cyclosporine A in liver transplant recipients may be mediated by the antiviral activity of this cyclophilin inhibitor. Treatment of the MMTV producing MM5MT cells with different antivirals and immunosuppressive agents showed that both cyclosporine A and the analogue NIM811 inhibited MMTV production from the producer cells. Herein, we discuss the evidence supporting the role of MMTV-like human betaretrovirus in the development of PBC and de novo AIH and speculate on the possibility that the agent may be associated with disease following transplantation. We also review the mechanisms of how both cyclosporine A and NIM811 may inhibit betaretrovirus production in vitro.
Collapse
Affiliation(s)
- Shawn T Wasilenko
- Department of Medicine, Zeidler Ledcor Centre, University of Alberta Hospital, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
29
|
Takemura T, Murakami T. Functional constraints on HIV-1 capsid: their impacts on the viral immune escape potency. Front Microbiol 2012; 3:369. [PMID: 23087682 PMCID: PMC3474374 DOI: 10.3389/fmicb.2012.00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/28/2012] [Indexed: 12/17/2022] Open
Abstract
In mature HIV-1 particles, viral capsid (CA) proteins form the conical core structure that encapsidates two copies of the viral RNA genome. After fusion of the viral envelope and cellular membranes, the CA core enters into the cytoplasm of the target cells. CA proteins then interact with a variety of viral other protein as well as host factors, which may either support or inhibit replication of the virus. Recent studies have revealed that CA proteins are important not only for the uncoating step but also for the later nuclear import step. Identification of proteins that interact with CA to fulfill these functions is, therefore, important for understanding the unknown HIV-1 replication machinery. CA proteins can also be targets of the host immune response. Notably, some HLA-restricted cytotoxic T-lymphocyte (CTL) responses that recognize CA functional regions can greatly contribute to delay in AIDS progression. The multi-functionality of the CA protein may limit the flexible virus evolution and reduce the possibility of an escape mutant arising. The presence of many functional regions in CA protein may make it a potential target for effective therapies.
Collapse
Affiliation(s)
- Taichiro Takemura
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | | |
Collapse
|
30
|
Abstract
Current human immunodeficiency virus type 1 pandemic is believed to originate from cross-species transmission of simian immunodeficiency virus (SIV) into human population. Such cross-species transmission, however, is not efficient in general, because viral replication is modulated by host cell factors, with the species-specificity of these factors affecting viral tropism. An understanding of those host cell factors that affect viral replication contributes to elucidation of the mechanism for determination of viral tropism. This review will focus an anti-viral effect of ApoB mRNA editing catalytic subunit, tripartite motif protein 5 alpha, and cyclophilins on SIV replication and provide insight into the mechanism of species-specific barriers against viral infection in human cells. It will then present our current understanding of the mechanism that may explain zoonotic transmission of retroviruses.
Collapse
Affiliation(s)
- Ryuta Sakuma
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
31
|
Takeuchi H, Ishii H, Kuwano T, Inagaki N, Akari H, Matano T. Host cell species-specific effect of cyclosporine A on simian immunodeficiency virus replication. Retrovirology 2012; 9:3. [PMID: 22225545 PMCID: PMC3311600 DOI: 10.1186/1742-4690-9-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/06/2012] [Indexed: 12/12/2022] Open
Abstract
Background An understanding of host cell factors that affect viral replication contributes to elucidation of the mechanism for determination of viral tropism. Cyclophilin A (CypA), a peptidyl-prolyl cis-trans isomerase (PPIase), is a host factor essential for efficient replication of human immunodeficiency virus type 1 (HIV-1) in human cells. However, the role of cyclophilins in simian immunodeficiency virus (SIV) replication has not been determined. In the present study, we examined the effect of cyclosporine A (CsA), a PPIase inhibitor, on SIV replication. Results SIV replication in human CEM-SS T cells was not inhibited but rather enhanced by treatment with CsA, which inhibited HIV-1 replication. CsA treatment of target human cells enhanced an early step of SIV replication. CypA overexpression enhanced the early phase of HIV-1 but not SIV replication, while CypA knock-down resulted in suppression of HIV-1 but not SIV replication in CEM-SS cells, partially explaining different sensitivities of HIV-1 and SIV replication to CsA treatment. In contrast, CsA treatment inhibited SIV replication in macaque T cells; CsA treatment of either virus producer or target cells resulted in suppression of SIV replication. SIV infection was enhanced by CypA overexpression in macaque target cells. Conclusions CsA treatment enhanced SIV replication in human T cells but abrogated SIV replication in macaque T cells, implying a host cell species-specific effect of CsA on SIV replication. Further analyses indicated a positive effect of CypA on SIV infection into macaque but not into human T cells. These results suggest possible contribution of CypA to the determination of SIV tropism.
Collapse
Affiliation(s)
- Hiroaki Takeuchi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hué S, Fletcher AJ, Lee K, KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ. HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 2011; 7:e1002439. [PMID: 22174692 PMCID: PMC3234246 DOI: 10.1371/journal.ppat.1002439] [Citation(s) in RCA: 368] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 11/01/2011] [Indexed: 01/10/2023] Open
Abstract
Lentiviruses such as HIV-1 traverse nuclear pore complexes (NPC) and infect terminally differentiated non-dividing cells, but how they do this is unclear. The cytoplasmic NPC protein Nup358/RanBP2 was identified as an HIV-1 co-factor in previous studies. Here we report that HIV-1 capsid (CA) binds directly to the cyclophilin domain of Nup358/RanBP2. Fusion of the Nup358/RanBP2 cyclophilin (Cyp) domain to the tripartite motif of TRIM5 created a novel inhibitor of HIV-1 replication, consistent with an interaction in vivo. In contrast to CypA binding to HIV-1 CA, Nup358 binding is insensitive to inhibition with cyclosporine, allowing contributions from CypA and Nup358 to be distinguished. Inhibition of CypA reduced dependence on Nup358 and the nuclear basket protein Nup153, suggesting that CypA regulates the choice of the nuclear import machinery that is engaged by the virus. HIV-1 cyclophilin-binding mutants CA G89V and P90A favored integration in genomic regions with a higher density of transcription units and associated features than wild type virus. Integration preference of wild type virus in the presence of cyclosporine was similarly altered to regions of higher transcription density. In contrast, HIV-1 CA alterations in another patch on the capsid surface that render the virus less sensitive to Nup358 or TRN-SR2 depletion (CA N74D, N57A) resulted in integration in genomic regions sparse in transcription units. Both groups of CA mutants are impaired in replication in HeLa cells and human monocyte derived macrophages. Our findings link HIV-1 engagement of cyclophilins with both integration targeting and replication efficiency and provide insight into the conservation of viral cyclophilin recruitment.
Collapse
Affiliation(s)
- Torsten Schaller
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - Karen E. Ocwieja
- University of Pennsylvania School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania, United States of America
| | - Jane Rasaiyaah
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - Amanda J. Price
- Medical Research Council Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge, United Kingdom
| | - Troy L. Brady
- University of Pennsylvania School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania, United States of America
| | - Shoshannah L. Roth
- University of Pennsylvania School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania, United States of America
| | - Stéphane Hué
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - Adam J. Fletcher
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - KyeongEun Lee
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vineet N. KewalRamani
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Mahdad Noursadeghi
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - Richard G. Jenner
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| | - Leo C. James
- Medical Research Council Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge, United Kingdom
| | - Frederic D. Bushman
- University of Pennsylvania School of Medicine, Department of Microbiology, Philadelphia, Pennsylvania, United States of America
| | - Greg J. Towers
- University College London Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, London, United Kingdom
| |
Collapse
|
33
|
Sparks ME, Gundersen-Rindal DE. The Lymantria dispar IPLB-Ld652Y cell line transcriptome comprises diverse virus-associated transcripts. Viruses 2011; 3:2339-50. [PMID: 22163348 PMCID: PMC3230855 DOI: 10.3390/v3112339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 12/28/2022] Open
Abstract
The enhanced viral susceptibility of the gypsy moth (Lymantria dispar)-derived IPLB-Ld652Y cell line has made it a popular in vitro system for studying virus-related phenomena in the Lepidoptera. Using both single-pass EST sequencing and 454-based pyrosequencing, a transcriptomic library of 14,368 putatively unique transcripts (PUTs) was produced comprising 8,476,050 high-quality, informative bases. The gene content of the IPLB-Ld652Y transcriptome was broadly assessed via comparison with the NCBI non-redundant protein database, and more detailed functional annotation was inferred by comparison to the Swiss-Prot subset of UniProtKB. In addition to L. dispar cellular transcripts, a diverse array of both RNA and DNA virus-associated transcripts was identified within the dataset, suggestive of a high level of viral expression and activity in IPLB-Ld652Y cells. These sequence resources will provide a sound basis for developing testable experimental hypotheses by insect virologists, and suggest a number of avenues for potential research.
Collapse
Affiliation(s)
- Michael E Sparks
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA.
| | | |
Collapse
|
34
|
Dietrich I, McEwan WA, Hosie MJ, Willett BJ. Restriction of the felid lentiviruses by a synthetic feline TRIM5-CypA fusion. Vet Immunol Immunopathol 2011; 143:235-42. [PMID: 21813188 PMCID: PMC4261132 DOI: 10.1016/j.vetimm.2011.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gene therapy approaches to the treatment of HIV infection have targeted both viral gene expression and the cellular factors that are essential for virus replication. However, significant concerns have been raised regarding the potential toxic effects of such therapies, the emergence of resistant viral variants and unforeseen biological consequences such as enhanced susceptibility to unrelated pathogens. Novel restriction factors formed by the fusion of the tripartite motif protein (TRIM5) and cyclophilin A (CypA), or "TRIMCyps", offer an effective antiviral defence strategy with a very low potential for toxicity. In order to investigate the potential therapeutic utility of TRIMCyps in gene therapy for AIDS, a synthetic fusion protein between feline TRIM5 and feline CypA was generated and transduced into cells susceptible to infection with feline immunodeficiency virus (FIV). The synthetic feline TRIMCyp was highly efficient at preventing infection with both HIV and FIV and the cells resisted productive infection with FIV from either the domestic cat or the puma. Feline TRIMCyp and FIV infection of the cat offers a unique opportunity to evaluate TRIMCyp-based approaches to genetic therapy for HIV infection and the treatment of AIDS.
Collapse
Affiliation(s)
- Isabelle Dietrich
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - William A. McEwan
- Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge CB1 0QH, United Kingdom
| | - Margaret J. Hosie
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom
| | - Brian J. Willett
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
35
|
Gupta P, Singhal PK, Rajendrakumar P, Padwad Y, Tendulkar AV, Kalyanaraman VS, Schmidt RE, Srinivasan A, Mahalingam S. Mechanism of host cell MAPK/ERK-2 incorporation into lentivirus particles: characterization of the interaction between MAPK/ERK-2 and proline-rich-domain containing capsid region of structural protein Gag. J Mol Biol 2011; 410:681-97. [PMID: 21762808 DOI: 10.1016/j.jmb.2011.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 01/11/2023]
Abstract
The characteristic event that follows infection of a cell by retroviruses Including human immunodeficiency virus (HIV)/ simian immunodeficiency virus (SIV) is the formation of a reverse transcription complex in which viral nucleic acids are synthesized. Nuclear transport of newly synthesized viral DNA requires phosphorylation of proteins in the reverse transcription complex by virion-associated cellular kinases. Recently, we demonstrated that disruption of cellular mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 2 (ERK-2) incorporation into SIV virions inhibits virus replication in nonproliferating target cells, indicating that MAPK/ERK-2 plays an important role in HIV /SIV replication. The mechanism of incorporation of MAPK/ERK-2 into virus particles is not defined. In this regard, we hypothesized that a likely interaction of MAPK/ERK-2 with Gag(p55) may enable its packaging into virus particles. In the present investigation, we provided evidence for the first time that MAPK/ERK-2 interacts with the structural Gag polyprotein p55 using a combination of mutagenesis and protein-protein interaction analysis. We further show that MAPK/ERK-2 interacts specifically with the poly-proline motif present in the capsid region of Gag(p55). Utilizing virus-like particles directed by Gag, we have shown that the exchange of conserved proline residues within capsid of Gag(p55) resulted in impaired incorporation of MAPK/ERK-2. In addition, the deletion of a domain comprising amino acids 201 to 255 within host cell MAPK/ERK-2 abrogates its interaction with Gag(p55). The relevance of the poly-proline motif is further evident by its conservation in diverse retroviruses, as noted from the sequence analysis and structural modeling studies of predicted amino acid sequences of the corresponding Gag proteins. Collectively, these data suggest that the interaction of MAPK/ERK-2 with Gag polyprotein results in its incorporation into virus particles and may be essential for retroviral replication.
Collapse
Affiliation(s)
- Pankaj Gupta
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai, India
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Giroud C, Chazal N, Briant L. Cellular kinases incorporated into HIV-1 particles: passive or active passengers? Retrovirology 2011; 8:71. [PMID: 21888651 PMCID: PMC3182982 DOI: 10.1186/1742-4690-8-71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/02/2011] [Indexed: 11/10/2022] Open
Abstract
Phosphorylation is one of the major mechanisms by which the activities of protein factors can be regulated. Such regulation impacts multiple key-functions of mammalian cells, including signal transduction, nucleo-cytoplasmic shuttling, macromolecular complexes assembly, DNA binding and regulation of enzymatic activities to name a few. To ensure their capacities to replicate and propagate efficiently in their hosts, viruses may rely on the phosphorylation of viral proteins to assist diverse steps of their life cycle. It has been known for several decades that particles from diverse virus families contain some protein kinase activity. While large DNA viruses generally encode for viral kinases, RNA viruses and more precisely retroviruses have acquired the capacity to hijack the signaling machinery of the host cell and to embark cellular kinases when budding. Such property was demonstrated for HIV-1 more than a decade ago. This review summarizes the knowledge acquired in the field of HIV-1-associated kinases and discusses their possible function in the retroviral life cycle.
Collapse
Affiliation(s)
- Charline Giroud
- Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé, UMR5236 CNRS - Université Montpellier 1-Montpellier 2, Montpellier, France
| | | | | |
Collapse
|
37
|
The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J Virol 2011; 85:7818-27. [PMID: 21593146 DOI: 10.1128/jvi.00325-11] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lentiviruses likely infect nondividing cells by commandeering host nuclear transport factors to facilitate the passage of their preintegration complexes (PICs) through nuclear pore complexes (NPCs) within nuclear envelopes. Genome-wide small interfering RNA screens previously identified karyopherin β transportin-3 (TNPO3) and NPC component nucleoporin 153 (NUP153) as being important for infection by human immunodeficiency virus type 1 (HIV-1). The knockdown of either protein significantly inhibited HIV-1 infectivity, while infection by the gammaretrovirus Moloney murine leukemia virus (MLV) was unaffected. Here, we establish that primate lentiviruses are particularly sensitive to NUP153 knockdown and investigate HIV-1-encoded elements that contribute to this dependency. Mutants lacking functional Vpr or the central DNA flap remained sensitive to NUP153 depletion, while MLV/HIV-1 chimera viruses carrying MLV matrix, capsid, or integrase became less sensitive when the latter two elements were substituted. Two capsid missense mutant viruses, N74D and P90A, were largely insensitive to NUP153 depletion, as was wild-type HIV-1 when cyclophilin A was depleted simultaneously or when infection was conducted in the presence of cyclosporine A. The codepletion of NUP153 and TNPO3 yielded synergistic effects that outweighed those calculated based on individual knockdowns, indicating potential interdependent roles for these factors during HIV-1 infection. Quantitative PCR revealed normal levels of late reverse transcripts, a moderate reduction of 2-long terminal repeat (2-LTR) circles, and a relatively large reduction in integrated proviruses upon NUP153 knockdown. These results suggest that capsid, likely by the qualities of its uncoating, determines whether HIV-1 requires cellular NUP153 for PIC nuclear import.
Collapse
|
38
|
Rauddi ML, Donald CLM, Affranchino JL, González SA. Mapping of the self-interaction domains in the simian immunodeficiency virus Gag polyprotein. AIDS Res Hum Retroviruses 2011; 27:303-16. [PMID: 20969459 DOI: 10.1089/aid.2010.0137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To gain a better understanding of the assembly process in simian immunodeficiency virus (SIV), we first established the conditions under which recombinant SIV Gag lacking the C-terminal p6 domain (SIV GagΔp6) assembled in vitro into spherical particles. Based on the full multimerization capacity of SIV GagΔp6, and to identify the Gag sequences involved in homotypic interactions, we next developed a pull-down assay in which a panel of histidine-tagged SIV Gag truncation mutants was tested for its ability to associate in vitro with GST-SIVGagΔp6. Removal of the nucleocapsid (NC) domain from Gag impaired its ability to interact with GST-SIVGagΔp6. However, this Gag mutant consisting of the matrix (MA) and capsid (CA) domains still retained 50% of the wild-type binding activity. Truncation of SIV Gag from its N-terminus yielded markedly different results. The Gag region consisting of the CA and NC was significantly more efficient than wild-type Gag at interacting in vitro with GST-SIVGagΔp6. Notably, a small Gag subdomain containing the C-terminal third of the CA and the entire NC not only bound to GST-SIVGagΔp6 in vitro at wild-type levels, but also associated in vivo with full-length Gag and was recruited into extracellular particles. Interestingly, when the mature Gag products were analyzed, the MA and NC interacted with GST-SIVGagΔp6 with efficiencies representing 20% and 40%, respectively, of the wild-type value, whereas the CA failed to bind to GST-SIVGagΔp6, despite being capable of self-associating into multimeric complexes.
Collapse
Affiliation(s)
- María L. Rauddi
- Laboratorio de Virología, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), C1426BMJ Buenos Aires, Argentina
| | - Cecilia L. Mac Donald
- Laboratorio de Virología, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), C1426BMJ Buenos Aires, Argentina
| | - José L. Affranchino
- Laboratorio de Virología, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), C1426BMJ Buenos Aires, Argentina
| | - Silvia A. González
- Laboratorio de Virología, CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), C1426BMJ Buenos Aires, Argentina
| |
Collapse
|
39
|
Maillard PV, Zoete V, Michielin O, Trono D. Homology-based identification of capsid determinants that protect HIV1 from human TRIM5α restriction. J Biol Chem 2010; 286:8128-8140. [PMID: 21169362 DOI: 10.1074/jbc.m110.187609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tropism of retroviruses relies on their ability to exploit cellular factors for their replication as well as to avoid host-encoded inhibitory activities such as TRIM5α. N-tropic murine leukemia virus is sensitive to human TRIM5α (huTRIM5α) restriction, whereas human immunodeficiency virus type 1 (HIV1) escapes this antiviral factor. We previously revealed that mutation of four critical amino acid residues within the capsid can render murine leukemia virus resistant to huTRIM5α. Here, we exploit the high degree of conservation in the tertiary structure of retroviral capsids to map the corresponding positions on the HIV1 capsid. We then demonstrated that, when changes were introduced at some of these positions, HIV1 becomes sensitive to huTRIM5α restriction, a phenomenon reinforced by additionally mutating the nearby cyclophilin A binding loop of the viral protein. These results indicate that retroviruses have evolved similar mechanisms to escape TRIM5α restriction via the interference of structurally homologous determinants in the viral capsid.
Collapse
Affiliation(s)
- Pierre V Maillard
- From the Global Health Institute, School of Life Sciences, and "Frontiers in Genetics" National Center for Competence in Research, Ecole Polytechnique Fédérale de Lausanne and
| | - Vincent Zoete
- the Swiss Institute of Bioinformatics, Molecular Modeling Group, Genopode Building, 1015 Lausanne, Switzerland
| | - Olivier Michielin
- the Swiss Institute of Bioinformatics, Molecular Modeling Group, Genopode Building, 1015 Lausanne, Switzerland,; the Ludwig Institute for Cancer Research, Ltd., 1066 Epalinges, Switzerland, and; the Pluridisciplinary Centre for Clinical Oncology (CePO), Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Didier Trono
- From the Global Health Institute, School of Life Sciences, and "Frontiers in Genetics" National Center for Competence in Research, Ecole Polytechnique Fédérale de Lausanne and.
| |
Collapse
|
40
|
Kono K, Song H, Yokoyama M, Sato H, Shioda T, Nakayama EE. Multiple sites in the N-terminal half of simian immunodeficiency virus capsid protein contribute to evasion from rhesus monkey TRIM5α-mediated restriction. Retrovirology 2010; 7:72. [PMID: 20825647 PMCID: PMC2944288 DOI: 10.1186/1742-4690-7-72] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously reported that cynomolgus monkey (CM) TRIM5α could restrict human immunodeficiency virus type 2 (HIV-2) strains carrying a proline at the 120th position of the capsid protein (CA), but it failed to restrict those with a glutamine or an alanine. In contrast, rhesus monkey (Rh) TRIM5α could restrict all HIV-2 strains tested but not simian immunodeficiency virus isolated from macaque (SIVmac), despite its genetic similarity to HIV-2. RESULTS We attempted to identify the viral determinant of SIVmac evasion from Rh TRIM5α-mediated restriction using chimeric viruses formed between SIVmac239 and HIV-2 GH123 strains. Consistent with a previous study, chimeric viruses carrying the loop between α-helices 4 and 5 (L4/5) (from the 82nd to 99th amino acid residues) of HIV-2 CA were efficiently restricted by Rh TRIM5α. However, the corresponding loop of SIVmac239 CA alone (from the 81st to 97th amino acid residues) was not sufficient to evade Rh TRIM5α restriction in the HIV-2 background. A single glutamine-to-proline substitution at the 118th amino acid of SIVmac239 CA, corresponding to the 120th amino acid of HIV-2 GH123, also increased susceptibility to Rh TRIM5α, indicating that glutamine at the 118th of SIVmac239 CA is necessary to evade Rh TRIM5α. In addition, the N-terminal portion (from the 5th to 12th amino acid residues) and the 107th and 109th amino acid residues in α-helix 6 of SIVmac CA are necessary for complete evasion from Rh TRIM5α-mediated restriction. A three-dimensional model of hexameric GH123 CA showed that these multiple regions are located on the CA surface, suggesting their direct interaction with TRIM5α. CONCLUSION We found that multiple regions of the SIVmac CA are necessary for complete evasion from Rh TRIM5α restriction.
Collapse
Affiliation(s)
- Ken Kono
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Dietrich I, Macintyre A, McMonagle E, Price AJ, James LC, McEwan WA, Hosie MJ, Willett BJ. Potent lentiviral restriction by a synthetic feline TRIM5 cyclophilin A fusion. J Virol 2010; 84:8980-5. [PMID: 20554781 PMCID: PMC2919025 DOI: 10.1128/jvi.00858-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/07/2010] [Indexed: 11/20/2022] Open
Abstract
A synthetic feline TRIM5-cyclophilin A fusion protein (feTRIMCyp) was generated and transduced into feline cells. feTRIMCyp was highly efficient at preventing infection with human (HIV) and feline (FIV) immunodeficiency virus pseudotypes, and feTRIMCyp-expressing cells resisted productive infection with either FIV-Fca or FIV-Pco. The restriction of FIV infection by feTRIMCyp was reversed by the cyclosporine (Cs) derivatives NIM811 and Debio-025 but less so by Cs itself. FeTRIMCyp and FIV infections of the cat offer a unique opportunity to evaluate TRIMCyp-based approaches to genetic therapy for HIV infection and the treatment of AIDS.
Collapse
Affiliation(s)
- Isabelle Dietrich
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom, Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge CB1 0QH, United Kingdom
| | - Angela Macintyre
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom, Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge CB1 0QH, United Kingdom
| | - Elizabeth McMonagle
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom, Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge CB1 0QH, United Kingdom
| | - Amanda J. Price
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom, Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge CB1 0QH, United Kingdom
| | - Leo C. James
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom, Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge CB1 0QH, United Kingdom
| | - William A. McEwan
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom, Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge CB1 0QH, United Kingdom
| | - Margaret J. Hosie
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom, Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge CB1 0QH, United Kingdom
| | - Brian J. Willett
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom, Division of Protein and Nucleic Acid Chemistry, MRC-Laboratory of Molecular Biology, Hills Road, Cambridge CB1 0QH, United Kingdom
| |
Collapse
|
42
|
Takeuchi H. Contribution of Cyclophilin A to determination of simian immunodeficiency virus tropism: a progress update. Vaccine 2010; 28 Suppl 2:B51-4. [PMID: 20510744 DOI: 10.1016/j.vaccine.2009.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 09/25/2009] [Accepted: 10/06/2009] [Indexed: 01/08/2023]
Abstract
An understanding of cellular factors that affect viral replication contributes to elucidation of the mechanism for the determination of viral tropism. Cyclophilin A (CypA), a peptidyl-prolyl cis-trans isomerase (PPIase), is an essential host factor for the efficient replication of human immunodeficiency virus type 1 (HIV-1) in human cells. However, its role in simian immunodeficiency virus (SIV) replication has not been determined. In the 2008 US-Japan AIDS panel meeting, I have presented the effect of cyclosporine A (CsA), a PPIase inhibitor, on replication of wild-type SIV. Interestingly, CsA treatment enhanced SIV replication in human cells but abrogated SIV replication in macaque cells, implying a species-specific effect of CsA on SIV replication. After this meeting, analysis using CypA knocked-down human cells indicated that CypA was considered inhibitory for SIV replication. These results suggest possible involvement of CypA in the determination of SIV tropism.
Collapse
Affiliation(s)
- Hiroaki Takeuchi
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
43
|
Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization. Nat Chem Biol 2010; 6:331-7. [PMID: 20364129 PMCID: PMC3867001 DOI: 10.1038/nchembio.342] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/14/2010] [Indexed: 02/08/2023]
Abstract
The detailed characterization of endogenous proteins and use of non-natural amino acid engineering allows the identification and structural and functional analysis of a post-translational modification in regulating ligand binding and enzyme activity.![]() Cyclophilin A (CypA) is a ubiquitous cis–trans prolyl isomerase with key roles in immunity and viral infection. CypA suppresses T-cell activation through cyclosporine complexation and is required for effective HIV-1 replication in host cells. We show that CypA is acetylated in diverse human cell lines and use a synthetically evolved acetyllysyl-tRNA synthetase/tRNACUA pair to produce recombinant acetylated CypA in Escherichia coli. We determined atomic-resolution structures of acetylated CypA and its complexes with cyclosporine and HIV-1 capsid. Acetylation markedly inhibited CypA catalysis of cis to trans isomerization and stabilized cis rather than trans forms of the HIV-1 capsid. Furthermore, CypA acetylation antagonized the immunosuppressive effects of cyclosporine by inhibiting the sequential steps of cyclosporine binding and calcineurin inhibition. Our results reveal that acetylation regulates key functions of CypA in immunity and viral infection and provide a general set of mechanisms by which acetylation modulates interactions to regulate cell function.
Collapse
|
44
|
Cyclosporine blocks incorporation of HIV-1 envelope glycoprotein into virions. J Virol 2010; 84:4851-5. [PMID: 20181694 DOI: 10.1128/jvi.01699-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclosporine (CsA) decreases HIV-1 infectivity by blocking HIV-1 capsid (CA) interaction with target cell cyclophilin A (CypA). Yet, HIV-1 virions produced in the presence of CsA also exhibit decreased infectivity that was previously shown to be independent of the well-characterized HIV-1 CA-CypA interaction. Here, we demonstrate that CsA decreases gp120 and gp41 incorporation into HIV-1 virions and that the fusion of these virions with susceptible target cells is impaired. This effect was not observed with HIV-1 virions pseudotyped with the vesicular stomatitis virus glycoprotein or with the amphotropic envelope protein of murine leukemia virus. It was independent of calcineurin signaling, the endoplasmic reticulum luminal protein cyclophilin B, and the long cytoplasmic tail of gp41. Thus, cyclosporine blocks HIV-1 infectivity via two independent mechanisms, the first involving HIV-1 CA in target cells and the second involving HIV-1 Env in producer cells.
Collapse
|
45
|
Price AJ, Marzetta F, Lammers M, Ylinen LMJ, Schaller T, Wilson SJ, Towers GJ, James LC. Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct Mol Biol 2009; 16:1036-42. [PMID: 19767750 PMCID: PMC3556581 DOI: 10.1038/nsmb.1667] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/08/2009] [Indexed: 12/31/2022]
Abstract
TRIMCyps are primate antiretroviral proteins that potently inhibit HIV replication. Here we describe how rhesus macaque TRIMCyp (RhTC) has evolved to target and restrict HIV-2. We show that the ancestral cyclophilin A (CypA) domain of RhTC targets HIV-2 capsid with weak affinity, which is strongly increased in RhTC by two mutations (D66N and R69H) at the expense of HIV-1 binding. These mutations disrupt a constraining intramolecular interaction in CypA, triggering the complete restructuring (>16 A) of an active site loop. This new configuration discriminates between divergent HIV-1 and HIV-2 loop conformations mediated by capsid residue 88. Viral sensitivity to RhTC restriction can be conferred or abolished by mutating position 88. Furthermore, position 88 determines the susceptibility of naturally occurring HIV-1 sequences to restriction. Our results reveal the complex molecular, structural and thermodynamic changes that underlie the ongoing evolutionary race between virus and host.
Collapse
Affiliation(s)
- Amanda J Price
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Strebel K, Luban J, Jeang KT. Human cellular restriction factors that target HIV-1 replication. BMC Med 2009; 7:48. [PMID: 19758442 PMCID: PMC2759957 DOI: 10.1186/1741-7015-7-48] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/16/2009] [Indexed: 01/23/2023] Open
Abstract
Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G), bone marrow stromal cell antigen 2 (BST-2), cyclophilin A, tripartite motif protein 5 alpha (Trim5alpha), and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.
Collapse
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, NIAID, the National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
47
|
Kaiser E, Pust S, Kroll C, Barth H. Cyclophilin A facilitates translocation of theClostridium botulinumC2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Cell Microbiol 2009; 11:780-95. [DOI: 10.1111/j.1462-5822.2009.01291.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Liu X, Sun L, Yu M, Wang Z, Xu C, Xue Q, Zhang K, Ye X, Kitamura Y, Liu W. Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. Cell Microbiol 2009; 11:730-41. [PMID: 19207730 DOI: 10.1111/j.1462-5822.2009.01286.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Influenza A virus matrix protein (M1) is the most abundant conservative protein that regulates the replication, assembly and budding of the viral particles upon infection. Several host cell factors have been determined to interact with M1 possibly in regulating influenza virus replication. By yeast two-hybrid screening, the isomerase cyclophilin A (CypA) was identified to interact with the M1 protein. CypA specifically interacted with M1 both in vitro and in vivo. The mutagenesis results showed CypA bound to the functional middle (M) domain of M1. The depletion of endogenous CypA by RNA interference resulted in the increase of influenza virus infectivity while overexpression of CypA caused decreasing the infectivity in affected cells. The immunofluorescence assays indicated that overexpressed CypA deduced the infectivity and inhibited the translocation of M1 protein into the nucleus while did not affect nucleoprotein entering the nucleus. Further studies indicated that overexpression of CypA significantly increased M1 self-association. Western blot with purified virions confirmed that CypA was encapsidated within the virus particle. These results together indicated that CypA interacted with the M1 protein and affected the early stage of the viral replication.
Collapse
Affiliation(s)
- Xiaoling Liu
- Center for Molecular Virology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
de Silva TI, Cotten M, Rowland-Jones SL. HIV-2: the forgotten AIDS virus. Trends Microbiol 2008; 16:588-95. [PMID: 18964021 DOI: 10.1016/j.tim.2008.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
HIV type 2 (HIV-2), a closely related retrovirus discovered a few years after HIV type 1, causes AIDS in only a minority of infected individuals. Determining why HIV-2 causes asymptomatic infection in most patients could further our understanding of HIV immunopathogenesis. Studies to date have suggested that both enhanced immune responses and lower viral replication could play a role. We summarize the important findings to date and highlight areas that warrant further exploration.
Collapse
Affiliation(s)
- Thushan I de Silva
- Medical Research Council Laboratories, Atlantic Road, PO Box 273, Fajara, The Gambia, West Africa.
| | | | | |
Collapse
|
50
|
Abstract
Viral replication requires the help of host cell factors, whose species specificity may affect viral tropism. On the other hand, there exist host factors that restrict viral replication. The anti-viral system mediated by some of these restriction factors, which is termed intrinsic immunity and is distinguished from conventional innate and adaptive immunity, has been described as playing an important role in making species-specific barriers against viral infection. Here, we describe the current progress in understanding of such restriction factors against retroviral replication, focusing on TRIM5alpha and APOBEC, whose anti-retroviral effects have recently been recognized. Additionally, we mention cyclophilin A, which is essential for HIV-1 replication in human cells and may affect viral tropism. Understanding of these host factors would contribute to identification of the determinants for viral tropism.
Collapse
Affiliation(s)
- Hiroaki Takeuchi
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | |
Collapse
|