1
|
Cafaro A, Schietroma I, Sernicola L, Belli R, Campagna M, Mancini F, Farcomeni S, Pavone-Cossut MR, Borsetti A, Monini P, Ensoli B. Role of HIV-1 Tat Protein Interactions with Host Receptors in HIV Infection and Pathogenesis. Int J Mol Sci 2024; 25:1704. [PMID: 38338977 PMCID: PMC10855115 DOI: 10.3390/ijms25031704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Each time the virus starts a new round of expression/replication, even under effective antiretroviral therapy (ART), the transactivator of viral transcription Tat is one of the first HIV-1 protein to be produced, as it is strictly required for HIV replication and spreading. At this stage, most of the Tat protein exits infected cells, accumulates in the extracellular matrix and exerts profound effects on both the virus and neighbor cells, mostly of the innate and adaptive immune systems. Through these effects, extracellular Tat contributes to the acquisition of infection, spreading and progression to AIDS in untreated patients, or to non-AIDS co-morbidities in ART-treated individuals, who experience inflammation and immune activation despite virus suppression. Here, we review the role of extracellular Tat in both the virus life cycle and on cells of the innate and adaptive immune system, and we provide epidemiological and experimental evidence of the importance of targeting Tat to block residual HIV expression and replication. Finally, we briefly review vaccine studies showing that a therapeutic Tat vaccine intensifies ART, while its inclusion in a preventative vaccine may blunt escape from neutralizing antibodies and block early events in HIV acquisition.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| | | | | | | | | | | | | | | | | | | | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| |
Collapse
|
2
|
Lawrence SP, Elser SE, Torben W, Blair RV, Pahar B, Aye PP, Schiro F, Szeltner D, Doyle-Meyers LA, Haggarty BS, Jordan APO, Romano J, Leslie GJ, Alvarez X, O’Connor DH, Wiseman RW, Fennessey CM, Li Y, Piatak M, Lifson JD, LaBranche CC, Lackner AA, Keele BF, Maness NJ, Marsh M, Hoxie JA. A cellular trafficking signal in the SIV envelope protein cytoplasmic domain is strongly selected for in pathogenic infection. PLoS Pathog 2022; 18:e1010507. [PMID: 35714165 PMCID: PMC9275724 DOI: 10.1371/journal.ppat.1010507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023] Open
Abstract
The HIV/SIV envelope glycoprotein (Env) cytoplasmic domain contains a highly conserved Tyr-based trafficking signal that mediates both clathrin-dependent endocytosis and polarized sorting. Despite extensive analysis, the role of these functions in viral infection and pathogenesis is unclear. An SIV molecular clone (SIVmac239) in which this signal is inactivated by deletion of Gly-720 and Tyr-721 (SIVmac239ΔGY), replicates acutely to high levels in pigtail macaques (PTM) but is rapidly controlled. However, we previously reported that rhesus macaques and PTM can progress to AIDS following SIVmac239ΔGY infection in association with novel amino acid changes in the Env cytoplasmic domain. These included an R722G flanking the ΔGY deletion and a nine nucleotide deletion encoding amino acids 734-736 (ΔQTH) that overlaps the rev and tat open reading frames. We show that molecular clones containing these mutations reconstitute signals for both endocytosis and polarized sorting. In one PTM, a novel genotype was selected that generated a new signal for polarized sorting but not endocytosis. This genotype, together with the ΔGY mutation, was conserved in association with high viral loads for several months when introduced into naïve PTMs. For the first time, our findings reveal strong selection pressure for Env endocytosis and particularly for polarized sorting during pathogenic SIV infection in vivo.
Collapse
Affiliation(s)
- Scott P. Lawrence
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Samra E. Elser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Workineh Torben
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Robert V. Blair
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Bapi Pahar
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Pyone P. Aye
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Faith Schiro
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Dawn Szeltner
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Lara A. Doyle-Meyers
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Beth S. Haggarty
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrea P. O. Jordan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Josephine Romano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George J. Leslie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David H. O’Connor
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Yuan Li
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Celia C. LaBranche
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrew A. Lackner
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - James A. Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Hachiya A, Kubota M, Shigemi U, Ode H, Yokomaku Y, Kirby KA, Sarafianos SG, Iwatani Y. Specific mutations in the HIV-1 G-tract of the 3'-polypurine tract cause resistance to integrase strand transfer inhibitors. J Antimicrob Chemother 2021; 77:574-577. [PMID: 34894227 PMCID: PMC8865006 DOI: 10.1093/jac/dkab448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In vitro selection experiments identified viruses resistant to integrase strand transfer inhibitors (INSTIs) carrying mutations in the G-tract (six guanosines) of the 3'-polypurine tract (3'-PPT). A clinical study also reported that mutations in the 3'-PPT were observed in a patient receiving dolutegravir monotherapy. However, recombinant viruses with the 3'-PPT mutations that were found in the clinical study were recently shown to be susceptible to INSTIs. OBJECTIVES To identify the specific mutation(s) in the G-tract of the 3'-PPT for acquiring INSTI resistance, we constructed infectious clones bearing single or multiple mutations and systematically characterized the susceptibility of these clones to both first- and second-generation INSTIs. METHODS The infectious clones were tested for their infectivity and susceptibility to INSTIs in a single-cycle assay using TZM-bl cells. RESULTS A single mutation of thymidine (T) at the fifth position (GGG GTG) in the G-tract of the 3'-PPT had no effect on INSTI resistance. A double mutation, cytidine (C) or 'T' at the second position and 'T' at the fifth position (GCG GTG and GTG GTG), increased resistance to INSTIs, with the appearance of a plateau in the maximal percentage inhibition (MPI) of the dose-response curves, consistent with a non-competitive mechanism of inhibition. CONCLUSIONS Mutations at the second and fifth positions in the G-tract of the 3'-PPT may result in complex resistance mechanism(s), rather than simply affecting INSTI binding at the IN active site.
Collapse
Affiliation(s)
- Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan,Corresponding author. Present address: Tokyo Medical University, Department of Laboratory Medicine, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan and Nitobe Bunka College, Department of Infectious Diseases and Immunology, 3-43-16, Nakano, Nakano-ku, Tokyo 164-0001, Japan. E-mail:
| | - Mai Kubota
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Urara Shigemi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan,Department of AIDS Research, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
4
|
Arizala JAC, Takahashi M, Burnett JC, Ouellet DL, Li H, Rossi JJ. Nucleolar Localization of HIV-1 Rev Is Required, Yet Insufficient for Production of Infectious Viral Particles. AIDS Res Hum Retroviruses 2018; 34:961-981. [PMID: 29804468 PMCID: PMC6238656 DOI: 10.1089/aid.2017.0306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Combination antiretroviral therapy fails in complete suppression of HIV-1 due to drug resistance and persistent latency. Novel therapeutic intervention requires knowledge of intracellular pathways responsible for viral replication, specifically those untargeted by antiretroviral drugs. An understudied phenomenon is the nucleolar localization of Rev phosphoprotein, which completes nucleocytoplasmic transport of unspliced/partially spliced HIV mRNA through multimerization with intronic cis-acting targets-the Rev-response element (RRE). Rev contains a nucleolar localization signal (NoLS) comprising the COOH terminus of the arginine-rich motif for accumulation within nucleoli-speculated as the interaction ground for Rev with cellular proteins mediating mRNA-independent nuclear export and splicing. Functionality of Rev nucleolar access during HIV-1 production and infection was investigated in the context of deletion and single-point mutations within Rev-NoLS. Mutations induced upon Rev-NoLS are hypothesized to inactivate the HIV-1 infectious cycle. HIV-1HXB2 replication ceased with Rev mutations lacking nucleolar access due to loss or replacement of multiple arginine residues. Rev mutations missing single arginine residues remained strictly nucleolar in pattern and participated in proviral production, however, with reduced efficiency. Viral RNA packaging also decreased in efficiency after expression of nucleolar-localizing mutations. These results were observed during propagation of variant HIV-1NL4-3 containing nucleolar-localizing mutations within the viral backbone (M4, M5, and M6). Lentiviral particles produced with Rev single-point mutations were transducible at extremely low frequency. Similarly, HIV-1NL4-3 Rev-NoLS variants lost infectivity, unlike virulent WT (wild type) HIV-1NL4-3. HIV-1NL4-3 variants were capable of CD4+ host entry and reverse transcription as WT HIV-1NL4-3, but lacked ability to complete a full infectious cycle. We currently reveal that viral integration is deregulated in the presence of Rev-NoLS mutations.
Collapse
Affiliation(s)
- Jerlisa Ann C. Arizala
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
- Irell & Manella Graduate School of Biological Sciences, Duarte, California
| | - Mayumi Takahashi
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
- Irell & Manella Graduate School of Biological Sciences, Duarte, California
| | - John C. Burnett
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
| | - Dominique L. Ouellet
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
| | - Haitang Li
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute at the City of Hope, Duarte, California
- Irell & Manella Graduate School of Biological Sciences, Duarte, California
| |
Collapse
|
5
|
Spontaneous reactivation of latent HIV-1 promoters is linked to the cell cycle as revealed by a genetic-insulators-containing dual-fluorescence HIV-1-based vector. Sci Rep 2018; 8:10204. [PMID: 29977044 PMCID: PMC6033903 DOI: 10.1038/s41598-018-28161-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Long-lived latently HIV-1-infected cells represent a barrier to cure. We developed a dual-fluorescence HIV-1-based vector containing a pair of genetic insulators flanking a constitutive fluorescent reporter gene to study HIV-1 latency. The protective effects of these genetic insulators are demonstrated through long-term (up to 394 days) stable fluorescence profiles in transduced SUP-T1 cells. Analysis of 1,941 vector integration sites confirmed reproduction of HIV-1 integration patterns. We sorted monoclonal cells representing latent HIV-1 infections and found that both vector integration sites and integrity of the vector genomes influence the reactivation potentials of latent HIV-1 promoters. Interestingly, some latent monoclonal cells exhibited a small cell subpopulation with a spontaneously reactivated HIV-1 promoter. Higher expression levels of genes involved in cell cycle progression are observed in these cell subpopulations compared to their counterparts with HIV-1 promoters that remained latent. Consistently, larger fractions of spontaneously reactivated cells are in the S and G2 phases of the cell cycle. Furthermore, genistein and nocodazole treatments of these cell clones, which halted cells in the G2 phase, resulted in a 1.4–2.9-fold increase in spontaneous reactivation. Taken together, our HIV-1 latency model reveals that the spontaneous reactivation of latent HIV-1 promoters is linked to the cell cycle.
Collapse
|
6
|
van der Kuyl AC, Vink M, Zorgdrager F, Bakker M, Wymant C, Hall M, Gall A, Blanquart F, Berkhout B, Fraser C, Cornelissen M. The evolution of subtype B HIV-1 tat in the Netherlands during 1985-2012. Virus Res 2018; 250:51-64. [PMID: 29654800 DOI: 10.1016/j.virusres.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Abstract
For the production of viral genomic RNA, HIV-1 is dependent on an early viral protein, Tat, which is required for high-level transcription. The quantity of viral RNA detectable in blood of HIV-1 infected individuals varies dramatically, and a factor involved could be the efficiency of Tat protein variants to stimulate RNA transcription. HIV-1 virulence, measured by set-point viral load, has been observed to increase over time in the Netherlands and elsewhere. Investigation of tat gene evolution in clinical isolates could discover a role of Tat in this changing virulence. A dataset of 291 Dutch HIV-1 subtype B tat genes, derived from full-length HIV-1 genome sequences from samples obtained between 1985-2012, was used to analyse the evolution of Tat. Twenty-two patient-derived tat genes, and the control TatHXB2 were analysed for their capacity to stimulate expression of an LTR-luciferase reporter gene construct in diverse cell lines, as well as for their ability to complement a tat-defective HIV-1LAI clone. Analysis of 291 historical tat sequences from the Netherlands showed ample amino acid (aa) variation between isolates, although no specific mutations were selected for over time. Of note, however, the encoded protein varied its length over the years through the loss or gain of stop codons in the second exon. In transmission clusters, a selection against the shorter Tat86 ORF was apparent in favour of the more common Tat101 version, likely due to negative selection against Tat86 itself, although random drift, transmission bottlenecks, or linkage to other variants could also explain the observation. There was no correlation between Tat length and set-point viral load; however, the number of non-intermediate variants in our study was small. In addition, variation in the length of Tat did not significantly change its capacity to stimulate transcription. From 1985 till 2012, variation in the length of the HIV-1 subtype B tat gene is increasingly found in the Dutch epidemic. However, as Tat proteins did not differ significantly in their capacity to stimulate transcription elongation in vitro, the increased HIV-1 virulence seen in recent years could not be linked to an evolving viral Tat protein.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Monique Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Fokla Zorgdrager
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Chris Wymant
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W21PG, United Kingdom; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew Hall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Astrid Gall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - François Blanquart
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W21PG, United Kingdom; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Christophe Fraser
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W21PG, United Kingdom; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Fernandes JD, Faust TB, Strauli NB, Smith C, Crosby DC, Nakamura RL, Hernandez RD, Frankel AD. Functional Segregation of Overlapping Genes in HIV. Cell 2017; 167:1762-1773.e12. [PMID: 27984726 DOI: 10.1016/j.cell.2016.11.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/29/2016] [Accepted: 11/15/2016] [Indexed: 11/28/2022]
Abstract
Overlapping genes pose an evolutionary dilemma as one DNA sequence evolves under the selection pressures of multiple proteins. Here, we perform systematic statistical and mutational analyses of the overlapping HIV-1 genes tat and rev and engineer exhaustive libraries of non-overlapped viruses to perform deep mutational scanning of each gene independently. We find a "segregated" organization in which overlapped sites encode functional residues of one gene or the other, but never both. Furthermore, this organization eliminates unfit genotypes, providing a fitness advantage to the population. Our comprehensive analysis reveals the extraordinary manner in which HIV minimizes the constraint of overlapping genes and repurposes that constraint to its own advantage. Thus, overlaps are not just consequences of evolutionary constraints, but rather can provide population fitness advantages.
Collapse
Affiliation(s)
- Jason D Fernandes
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tyler B Faust
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Tetrad Program, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nicolas B Strauli
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Cynthia Smith
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - David C Crosby
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Robert L Nakamura
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ryan D Hernandez
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Kamori D, Ueno T. HIV-1 Tat and Viral Latency: What We Can Learn from Naturally Occurring Sequence Variations. Front Microbiol 2017; 8:80. [PMID: 28194140 PMCID: PMC5276809 DOI: 10.3389/fmicb.2017.00080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/11/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the effective use of antiretroviral therapy, the remainder of a latently HIV-1-infected reservoir mainly in the resting memory CD4+ T lymphocyte subset has provided a great setback toward viral eradication. While host transcriptional silencing machinery is thought to play a dominant role in HIV-1 latency, HIV-1 protein such as Tat, may affect both the establishment and the reversal of latency. Indeed, mutational studies have demonstrated that insufficient Tat transactivation activity can result in impaired transcription of viral genes and the establishment of latency in cell culture experiments. Because Tat protein is one of highly variable proteins within HIV-1 proteome, it is conceivable that naturally occurring Tat mutations may differentially modulate Tat functions, thereby influencing the establishment and/or the reversal of viral latency in vivo. In this mini review, we summarize the recent findings of Tat naturally occurring polymorphisms associating with host immune responses and we highlight the implication of Tat sequence variations in relation to HIV latency.
Collapse
Affiliation(s)
- Doreen Kamori
- Center for AIDS Research, Kumamoto University Kumamoto, Japan
| | - Takamasa Ueno
- Center for AIDS Research, Kumamoto UniversityKumamoto, Japan; International Research Center for Medical Sciences, Kumamoto UniversityKumamoto, Japan
| |
Collapse
|
9
|
Geng G, Liu B, Chen C, Wu K, Liu J, Zhang Y, Pan T, Li J, Yin Y, Zhang J, Huang F, Yu F, Chen J, Ma X, Zhou J, Kuang E, Liu C, Cai W, Zhang H. Development of an Attenuated Tat Protein as a Highly-effective Agent to Specifically Activate HIV-1 Latency. Mol Ther 2016; 24:1528-37. [PMID: 27434587 PMCID: PMC5113098 DOI: 10.1038/mt.2016.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 05/16/2016] [Indexed: 12/22/2022] Open
Abstract
Although combined antiretroviral therapy (cART) successfully decreases plasma viremia to undetectable levels, the complete eradication of human immunodeficiency virus type 1 (HIV-1) remains impractical because of the existence of a viral reservoir, mainly in resting memory CD4(+) T cells. Various cytokines, protein kinase C activators, and histone deacetylase inhibitors (HDACi) have been used as latency-reversing agents (LRAs), but their unacceptable side effects or low efficiencies limit their clinical use. Here, by a mutation accumulation strategy, we generated an attenuated HIV-1 Tat protein named Tat-R5M4, which has significantly reduced cytotoxicity and immunogenicity, yet retaining potent transactivation and membrane-penetration activity. Combined with HDACi, Tat-R5M4 activates highly genetically diverse and replication-competent viruses from resting CD4(+) T lymphocytes isolated from HIV-1-infected individuals receiving suppressive cART. Thus, Tat-R5M4 has promising potential as a safe, efficient, and specific LRA in HIV-1 treatment.
Collapse
Affiliation(s)
- Guannan Geng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Kang Wu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jun Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yue Yin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Junsong Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Feng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fei Yu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jingliang Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jie Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou 8th People's Hospital, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Ode H, Matsuda M, Matsuoka K, Hachiya A, Hattori J, Kito Y, Yokomaku Y, Iwatani Y, Sugiura W. Quasispecies Analyses of the HIV-1 Near-full-length Genome With Illumina MiSeq. Front Microbiol 2015; 6:1258. [PMID: 26617593 PMCID: PMC4641896 DOI: 10.3389/fmicb.2015.01258] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/29/2015] [Indexed: 12/29/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) exhibits high between-host genetic diversity and within-host heterogeneity, recognized as quasispecies. Because HIV-1 quasispecies fluctuate in terms of multiple factors, such as antiretroviral exposure and host immunity, analyzing the HIV-1 genome is critical for selecting effective antiretroviral therapy and understanding within-host viral coevolution mechanisms. Here, to obtain HIV-1 genome sequence information that includes minority variants, we sought to develop a method for evaluating quasispecies throughout the HIV-1 near-full-length genome using the Illumina MiSeq benchtop deep sequencer. To ensure the reliability of minority mutation detection, we applied an analysis method of sequence read mapping onto a consensus sequence derived from de novo assembly followed by iterative mapping and subsequent unique error correction. Deep sequencing analyses of aHIV-1 clone showed that the analysis method reduced erroneous base prevalence below 1% in each sequence position and discarded only < 1% of all collected nucleotides, maximizing the usage of the collected genome sequences. Further, we designed primer sets to amplify the HIV-1 near-full-length genome from clinical plasma samples. Deep sequencing of 92 samples in combination with the primer sets and our analysis method provided sufficient coverage to identify >1%-frequency sequences throughout the genome. When we evaluated sequences of pol genes from 18 treatment-naïve patients' samples, the deep sequencing results were in agreement with Sanger sequencing and identified numerous additional minority mutations. The results suggest that our deep sequencing method would be suitable for identifying within-host viral population dynamics throughout the genome.
Collapse
Affiliation(s)
- Hirotaka Ode
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Masakazu Matsuda
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Kazuhiro Matsuoka
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Atsuko Hachiya
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Junko Hattori
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Yumiko Kito
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Yoshiyuki Yokomaku
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan ; Department of AIDS Research, Graduate School of Medicine, Nagoya University Nagoya, Japan
| | - Wataru Sugiura
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan ; Department of AIDS Research, Graduate School of Medicine, Nagoya University Nagoya, Japan
| |
Collapse
|
11
|
Systematic Analysis of the Functions of Lysine Acetylation in the Regulation of Tat Activity. PLoS One 2013; 8:e67186. [PMID: 23826228 PMCID: PMC3695041 DOI: 10.1371/journal.pone.0067186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/15/2013] [Indexed: 11/28/2022] Open
Abstract
The Tat protein of HIV-1 has several well-known properties, such as nucleocytoplasmic trafficking, transactivation of transcription, interaction with tubulin, regulation of mitotic progression, and induction of apoptosis. Previous studies have identified a couple of lysine residues in Tat that are essential for its functions. In order to analyze the functions of all the lysine residues in Tat, we mutated them individually to alanine, glutamine, and arginine. Through systematic analysis of the lysine mutants, we discovered several previously unidentified characteristics of Tat. We found that lysine acetylation could modulate the subcellular localization of Tat, in addition to the regulation of its transactivation activity. Our data also revealed that lysine mutations had distinct effects on microtubule assembly and Tat binding to bromodomain proteins. By correlation analysis, we further found that the effects of Tat on apoptosis and mitotic progression were not entirely attributed to its effect on microtubule assembly. Our findings suggest that Tat may regulate diverse cellular activities through binding to different proteins and that the acetylation of distinct lysine residues in Tat may modulate its interaction with various partners.
Collapse
|
12
|
Dahiya S, Nonnemacher MR, Wigdahl B. Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. J Gen Virol 2012; 93:1151-1172. [PMID: 22422068 DOI: 10.1099/vir.0.041186-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte-macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein-protein and protein-DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
13
|
McQueen P, Donald LJ, Vo TN, Nguyen DH, Griffiths H, Shojania S, Standing KG, O'Neil JD. Tat peptide-calmodulin binding studies and bioinformatics of HIV-1 protein-calmodulin interactions. Proteins 2011; 79:2233-46. [DOI: 10.1002/prot.23048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/18/2011] [Accepted: 03/22/2011] [Indexed: 01/08/2023]
|
14
|
Shojania S, Henry GD, Chen VC, Vo TN, Perreault H, O’Neil JD. High yield expression and purification of HIV-1 Tat1−72 for structural studies. J Virol Methods 2010; 164:35-42. [DOI: 10.1016/j.jviromet.2009.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 12/11/2022]
|
15
|
Passiatore G, Rom S, Eletto D, Peruzzi F. HIV-1 Tat C-terminus is cleaved by calpain 1: implication for Tat-mediated neurotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:378-87. [PMID: 19022302 DOI: 10.1016/j.bbamcr.2008.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/24/2008] [Accepted: 10/14/2008] [Indexed: 01/15/2023]
Abstract
HIV-Encephalopathy (HIVE) is a common neurological disorder associated with HIV-1 infection and AIDS. The activity of the HIV trans-activating protein Tat is thought to contribute to neuronal pathogenesis. While Tat proteins from primary virus isolates consist of 101 or more amino acids, 72 and 86 amino acids forms of Tat are commonly used for in vitro studies. Although Tat72 contains the minimal domain required for viral replication, other activities of Tat appear to vary according to its length, sub-cellular localization, cell type and the stage of cellular differentiation. In this study, we investigated the stability of intracellular Tat101 during proliferation and differentiation of neuronal cells in culture. We have utilized rat neuronal progenitors as a model of neuronal cell proliferation and differentiation, as well as rat primary cortical neurons as a model of fully differentiated cells. Our results indicate that, upon internalization, Tat101 was degraded more rapidly in proliferating cells than in cells which either underwent neuronal differentiation or were fully differentiated. Intracellular degradation of Tat was prevented by the calpain 1 inhibitor, ALLN, in both proliferating and differentiated cells. Inhibition of calpain 1 by calpastatin peptide also prevented Tat cleavage. In vitro calpain digestion and mass spectrometry analysis further demonstrated that the sequence of Tat sensitive to calpain cleavage was located in the C-terminus of this viral protein, between amino acids 68 and 69. Moreover, cleavage of Tat101 by calpain 1 increased neurotoxic effect of this viral protein and presence of the calpain inhibitor protected neuronal cells from Tat-mediated toxicity.
Collapse
Affiliation(s)
- Giovanni Passiatore
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|
16
|
Coiras M, Camafeita E, López-Huertas MR, Calvo E, López JA, Alcamí J. Application of proteomics technology for analyzing the interactions between host cells and intracellular infectious agents. Proteomics 2008; 8:852-73. [PMID: 18297655 PMCID: PMC7167661 DOI: 10.1002/pmic.200700664] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Host–pathogen interactions involve protein expression changes within both the host and the pathogen. An understanding of the nature of these interactions provides insight into metabolic processes and critical regulatory events of the host cell as well as into the mechanisms of pathogenesis by infectious microorganisms. Pathogen exposure induces changes in host proteins at many functional levels including cell signaling pathways, protein degradation, cytokines and growth factor production, phagocytosis, apoptosis, and cytoskeletal rearrangement. Since proteins are responsible for the cell biological functions, pathogens have evolved to manipulate the host cell proteome to achieve optimal replication. Intracellular pathogens can also change their proteome to adapt to the host cell and escape from immune surveillance, or can incorporate cellular proteins to invade other cells. Given that the interactions of intracellular infectious agents with host cells are mainly at the protein level, proteomics is the most suitable tool for investigating these interactions. Proteomics is the systematic analysis of proteins, particularly their interactions, modifications, localization and functions, that permits the study of the association between pathogens with their host cells as well as complex interactions such as the host–vector–pathogen interplay. A review on the most relevant proteomic applications used in the study of host–pathogen interactions is presented.
Collapse
Affiliation(s)
- Mayte Coiras
- Unidad de Inmunopatología del SIDA, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Mahlknecht U, Dichamp I, Varin A, Van Lint C, Herbein G. NF-kappaB-dependent control of HIV-1 transcription by the second coding exon of Tat in T cells. J Leukoc Biol 2007; 83:718-27. [PMID: 18070983 DOI: 10.1189/jlb.0607405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
HIV-1 two-exon transactivator protein (Tat) is a 101-aa protein. We investigated the possible contribution of the extreme C terminus of HIV-1 Tat to maximize nuclear transcription factor NF-kappaB activation, long terminal repeat (LTR) transactivation, and viral replication in T cells. C-terminal deletion and substitution mutants made with the infectious clone HIV-89.6 were assayed for their ability to transactivate NF-kappaB-secreted alkaline phosphatase and HIV-1 LTR-luciferase reporter constructs for low concentrations of Tat. A mutant infectious clone of HIV-89.6 engineered by introducing a stop codon at aa 72 in the Tat open-reading frame (HIVDeltatatexon2) replicated at a significantly lower rate than the wild-type HIV-89.6 in phytohemagglutinin-A/IL-2-stimulated primary peripheral blood lymphocytes. Altogether, our results suggest a critical role for the glutamic acids at positions 92, 94, and 96 or lysines at positions 88, 89, and 90, present in the second encoding Tat exon in activating NF-kappaB, transactivating the HIV-1 LTR and enhancing HIV-1 replication in T cells.
Collapse
Affiliation(s)
- Ulrich Mahlknecht
- Franche-Comté School of Medicine, Hôpital Saint-Jacques, 2 Place Saint-Jacques, F-25030 Besançon Cedex, France
| | | | | | | | | |
Collapse
|
18
|
Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J Virol 2007; 82:764-74. [PMID: 17977962 DOI: 10.1128/jvi.01534-07] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrase (IN), an essential enzyme of human immunodeficiency virus (HIV), is an attractive antiretroviral drug target. The antiviral activity and resistance profile in vitro of a novel IN inhibitor, elvitegravir (EVG) (also known as JTK-303/GS-9137), currently being developed for the treatment of HIV-1 infection are described. EVG blocked the integration of HIV-1 cDNA through the inhibition of DNA strand transfer. EVG inhibited the replication of HIV-1, including various subtypes and multiple-drug-resistant clinical isolates, and HIV-2 strains with a 50% effective concentration in the subnanomolar to nanomolar range. EVG-resistant variants were selected in two independent inductions, and a total of 8 amino acid substitutions in the catalytic core domain of IN were observed. Among the observed IN mutations, T66I and E92Q substitutions mainly contributed to EVG resistance. These two primary resistance mutations are located in the active site, and other secondary mutations identified are proximal to these primary mutations. The EVG-selected IN mutations, some of which represent novel IN inhibitor resistance mutations, conferred reduced susceptibility to other IN inhibitors, suggesting that a common mechanism is involved in resistance and potential cross-resistance. The replication capacity of EVG-resistant variants was significantly reduced relative to both wild-type virus and other IN inhibitor-resistant variants selected by L-870,810. EVG and L-870,810 both inhibited the replication of murine leukemia virus and simian immunodeficiency virus, suggesting that IN inhibitors bind to a conformationally conserved region of various retroviral IN enzymes and are an ideal drug for a range of retroviral infections.
Collapse
|
19
|
Hetzer C, Bisgrove D, Cohen MS, Pedal A, Kaehlcke K, Speyerer A, Bartscherer K, Taunton J, Ott M. Recruitment and activation of RSK2 by HIV-1 Tat. PLoS One 2007; 2:e151. [PMID: 17225856 PMCID: PMC1764712 DOI: 10.1371/journal.pone.0000151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 12/11/2006] [Indexed: 12/21/2022] Open
Abstract
The transcriptional activity of the integrated HIV provirus is dependent on the chromatin organization of the viral promoter and the transactivator Tat. Tat recruits the cellular pTEFb complex and interacts with several chromatin-modifying enzymes, including the histone acetyltransferases p300 and PCAF. Here, we examined the interaction of Tat with activation-dependent histone kinases, including the p90 ribosomal S6 kinase 2 (RSK2). Dominant-negative RSK2 and treatment with a small-molecule inhibitor of RSK2 kinase activity inhibited the transcriptional activity of Tat, indicating that RSK2 is important for Tat function. Reconstitution of RSK2 in cells from subjects with a genetic defect in RSK2 expression (Coffin-Lowry syndrome) enhanced Tat transactivation. Tat interacted with RSK2 and activated RSK2 kinase activity in cells. Both properties were lost in a mutant Tat protein (F38A) that is deficient in HIV transactivation. Our data identify a novel reciprocal regulation of Tat and RSK2 function, which might serve to induce early changes in the chromatin organization of the HIV LTR.
Collapse
Affiliation(s)
| | - Dwayne Bisgrove
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Michael S. Cohen
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Angelika Pedal
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Katrin Kaehlcke
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Anja Speyerer
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Abstract
Tat (transactivator of transcription) is a small RNA-binding protein that plays a central role in the regulation of human immunodeficiency virus type 1 replication and in approaches to treating latently infected cells. Its interactions with a wide variety of both intracellular and extracellular molecules is well documented. A molecular understanding of the multitude of Tat activities requires a determination of its structure and interactions with cellular and viral partners. To increase the dispersion of NMR signals and permit dynamics analysis by multinuclear NMR spectroscopy, we have prepared uniformly 15N- and 15N/13C-labeled Tat-(1-72) protein. The cysteine-rich protein is unambiguously reduced at pH 4.1, and NMR chemical shifts and coupling constants suggest that it exists in a random coil conformation. Line broadening and multiple peaks in the Cys-rich and core regions suggest that transient folding occurs in two of the five sequence domains. NMR relaxation parameters were measured and analyzed by spectral density and Lipari-Szabo approaches, both confirming the lack of structure throughout the length of the molecule. The absence of a fixed conformation and the observation of fast dynamics are consistent with the ability of Tat protein to interact with a wide variety of proteins and nucleic acid and support the concept of a natively unfolded protein.
Collapse
Affiliation(s)
- Shaheen Shojania
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | |
Collapse
|
21
|
Campbell GR, Watkins JD, Esquieu D, Pasquier E, Loret EP, Spector SA. The C terminus of HIV-1 Tat modulates the extent of CD178-mediated apoptosis of T cells. J Biol Chem 2005; 280:38376-82. [PMID: 16155003 DOI: 10.1074/jbc.m506630200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
HIV infection and the progression to AIDS are characterized by the depletion of CD4(+) T cells through apoptosis of the uninfected bystander cells and the direct killing of HIV-infected cells. This is mediated in part by the human immunodeficiency virus, type 1 Tat protein, which is secreted by virally infected cells and taken up by uninfected cells and CD178 gene expression, which is critically involved in T cell apoptosis. The differing ability of HIV strains to induce death of infected and uninfected cells may play a role in the clinical and biological differences displayed by HIV strains. We chemically synthesized the 86-residue truncated short variant of Tat and its full-length form. We show that the trans-activation ability of Tat at the long terminal repeat does not correlate with T cell apoptosis but that the ability of Tat to up-regulate CD178 mRNA expression and induce apoptosis in T cells is critically dependent on the C terminus of Tat. Moreover, the greater 86-residue Tat-induced apoptosis is via the extrinsic pathway of CD95-CD178.
Collapse
Affiliation(s)
- Grant R Campbell
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093-0672, USA
| | | | | | | | | | | |
Collapse
|
22
|
Bennasser Y, Le SY, Benkirane M, Jeang KT. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 2005; 22:607-19. [PMID: 15894278 DOI: 10.1016/j.immuni.2005.03.010] [Citation(s) in RCA: 361] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/24/2005] [Accepted: 03/28/2005] [Indexed: 12/18/2022]
Abstract
In plants and invertebrate animals, RNA silencing is a form of nucleic acid-based adaptive immunity. By contrast, jawed vertebrates have evolved complex protein-based adaptive immunity. Although short interfering RNAs (siRNAs) have been used as artificial tools to silence viral infection in human cells, it remains unknown whether mammalian viruses naturally elicit such immunity in vertebral cells. Here, we report the evidence that HIV-1 encodes viral siRNA precursors in its genome and that natural HIV-1 infection provokes nucleic acid-based immunity in human cells. To combat this cellular defense, HIV-1 has evolved in its Tat protein a suppressor of RNA silencing (SRS) function. Tat abrogates the cell's RNA-silencing defense by subverting the ability of Dicer to process precursor double-stranded RNAs into siRNAs.
Collapse
Affiliation(s)
- Yamina Bennasser
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
23
|
Scriba TJ, zur Megede J, Glashoff RH, Treurnicht FK, Barnett SW, van Rensburg EJ. Functionally-inactive and immunogenic Tat, Rev and Nef DNA vaccines derived from sub-Saharan subtype C human immunodeficiency virus type 1 consensus sequences. Vaccine 2005; 23:1158-69. [PMID: 15629359 DOI: 10.1016/j.vaccine.2004.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 08/10/2004] [Indexed: 11/17/2022]
Abstract
The efficacy of cellular immune responses elicited by HIV vaccines is dependent on their strength, durability and antigenic breadth. The regulatory proteins are abundantly expressed early in the viral life cycle and CTL recognition may bring about early killing of infected cells. We synthesised DNA vaccine constructs that encode consensus HIV-1 subtype C Tat, Rev and Nef proteins. Proteins carrying inactivating mutations were tested for functional activity and highly expressing, inactive Tat, Rev and Nef mutants were identified and their reading frames fused into a TatRevNef cassette. Single- and polygene Tat, Rev and/or Nef constructs were immunogenic in BALB/c mice. These constructs may serve to increase the antigenic breadth for an HIV-1 vaccine that is relevant for sub-Saharan Africa.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Cell Line
- Consensus Sequence/immunology
- Female
- Genes, nef/genetics
- Genes, nef/immunology
- Genes, rev/genetics
- Genes, rev/immunology
- Genes, tat/genetics
- Genes, tat/immunology
- HIV-1/genetics
- HIV-1/immunology
- HeLa Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Mutation
- Vaccines, DNA/classification
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Inactivated/genetics
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Thomas J Scriba
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
24
|
Yedavalli VSRK, Neuveut C, Chi YH, Kleiman L, Jeang KT. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 2004; 119:381-92. [PMID: 15507209 DOI: 10.1016/j.cell.2004.09.029] [Citation(s) in RCA: 436] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 08/18/2004] [Accepted: 08/23/2004] [Indexed: 01/19/2023]
Abstract
A single transcript in its unspliced and spliced forms directs the synthesis of all HIV-1 proteins. Although nuclear export of intron-containing cellular transcripts is restricted in mammalian cells, HIV-1 has evolved the viral Rev protein to overcome this restriction for viral transcripts. Previously, CRM1 was identified as a cellular cofactor for Rev-dependent export of intron-containing HIV-1 RNA. Here, we present evidence that Rev/CRM1 activity utilizes the ATP-dependent DEAD box RNA helicase, DDX3. We show that DDX3 is a nucleo-cytoplasmic shuttling protein, which binds CRM1 and localizes to nuclear membrane pores. Knockdown of DDX3 using either antisense vector or dominant-negative mutants suppressed Rev-RRE-function in the export of incompletely spliced HIV-1 RNAs. Plausibly, DDX3 is the human RNA helicase which functions in the CRM1 RNA export pathway analogously to the postulated role for Dbp5p in yeast mRNA export.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Xie B, Calabro V, Wainberg MA, Frankel AD. Selection of TAR RNA-binding chameleon peptides by using a retroviral replication system. J Virol 2004; 78:1456-63. [PMID: 14722301 PMCID: PMC321383 DOI: 10.1128/jvi.78.3.1456-1463.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction between the arginine-rich motif (ARM) of the human immunodeficiency virus (HIV) Tat protein and TAR RNA is essential for Tat activation and viral replication. Two related lentiviruses, bovine immunodeficiency virus (BIV) and Jembrana disease virus (JDV), also require Tat ARM-TAR interactions to mediate activation, but the viruses have evolved different RNA-binding strategies. Interestingly, the JDV ARM can act as a "chameleon," adopting both the HIV and BIV TAR binding modes. To examine how RNA-protein interactions may evolve in a viral context and possibly to identify peptides that recognize HIV TAR in novel ways, we devised a retroviral system based on HIV replication to amplify and select for RNA binders. We constructed a combinatorial peptide library based on the BIV Tat ARM and identified peptides that, like the JDV Tat ARM, also function through HIV TAR, revealing unexpected sequence characteristics of an RNA-binding chameleon. The results suggest that a retroviral screening approach may help identify high-affinity TAR binders and may provide new insights into the evolution of RNA-protein interactions.
Collapse
Affiliation(s)
- Baode Xie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143-2280, USA
| | | | | | | |
Collapse
|
26
|
Smith SM, Pentlicky S, Klase Z, Singh M, Neuveut C, Lu CY, Reitz MS, Yarchoan R, Marx PA, Jeang KT. An in vivo replication-important function in the second coding exon of Tat is constrained against mutation despite cytotoxic T lymphocyte selection. J Biol Chem 2003; 278:44816-25. [PMID: 12947089 DOI: 10.1074/jbc.m307546200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human and simian immunodeficiency virus (HIV/SIV) Tat proteins are specified by two coding exons. Tat functions in the transcription of primate lentiviruses. A plethora of in vitro data currently suggests that the second coding exon of Tat is largely devoid of function. However, whether the second exon of Tat contributes functionally to viral pathogenesis in vivo remains unknown. To address this question directly, we compared infection of rhesus macaques with an SIV, engineered to express only the first coding exon of Tat (SIVtat1ex), to counterpart infection with wild-type SIVmac239 virus, which expresses the full 2-exon Tat. This comparison showed that the second coding exon of Tat contributes to chronic SIV replication in vivo. Interestingly, in macaques, we observed a cytotoxic T lymphocytes (CTL) response to the second coding exon of Tat, which appears to durably control SIV replication. When SIV mutated in an attempt to escape this second Tat-exon-CTL, the resulting virus was less replicatively fit and failed to populate the host in vivo. Our study provides the first evidence that the second coding exon in Tat embodies an important function for in vivo replication. We suggest the second coding exon of Tat as an example of a functionally constrained "epitope" whose elicited CTL response cannot be escaped by virus mutation without producing a virus that replicates poorly in vivo.
Collapse
Affiliation(s)
- Stephen M Smith
- Saint Michael's Medical Center, Newark, New Jersey 07102, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Neuveut C, Scoggins RM, Camerini D, Markham RB, Jeang KT. Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1. J Biomed Sci 2003. [DOI: 10.1007/bf02256316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Kurosu T, Mukai T, Komoto S, Ibrahim MS, Li YG, Kobayashi T, Tsuji S, Ikuta K. Human immunodeficiency virus type 1 subtype C exhibits higher transactivation activity of Tat than subtypes B and E. Microbiol Immunol 2003; 46:787-99. [PMID: 12516777 DOI: 10.1111/j.1348-0421.2002.tb02766.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although human immunodeficiency virus type 1 (HIV-1) subtypes C and E are expanding faster and seem to be of greater global significance than HIV-1 subtype B, there is only little information about Tat activity of such non-B subtypes. Here, we showed evidence that subtype C Tat exhibits higher transcriptional activity from the HIV-1 long-terminal repeat (LTR) in a human T-cell line, compared with subtypes B and E. This higher activity of subtype C Tat was not due to the LTR, but to the Tat sequence variability. We examined three candidate regions with sequence for the higher activity of subtype C Tat, such as the cysteine-rich motif, the basic domain, and the 2nd exon. The results showed that the variation in subtype C Tat at two amino acid residues, Ser57 and Glu63 in stead of Arg57 and Gln63 in subtypes B and E, within and close to the basic domain were involved in the higher activity of subtype C Tat. This variation did not affect its nuclear localization activity. Thus, there may be a significant advantage for the high Tat activity on subtype C replication.
Collapse
Affiliation(s)
- Takeshi Kurosu
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Xie B, Wainberg MA, Frankel AD. Replication of human immunodeficiency viruses engineered with heterologous Tat-transactivation response element interactions. J Virol 2003; 77:1984-91. [PMID: 12525632 PMCID: PMC140932 DOI: 10.1128/jvi.77.3.1984-1991.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency viruses (HIVs) and the related bovine lentiviruses bovine immunodeficiency virus (BIV) and Jembrana disease virus (JDV) utilize the viral Tat protein to activate viral transcription. The arginine-rich RNA-binding domains of the Tat proteins bind to their cognate transactivation response element (TAR) RNA hairpins located at the 5' ends of the viral mRNAs, resulting in enhanced processivity of RNA polymerase II. It has previously been shown that HIV type 1 (HIV-1) Tat requires the cellular cyclin T1 protein for high-affinity RNA binding whereas BIV Tat and JDV Tat bind with high affinity on their own and adopt distinct beta-hairpin conformations when complexed to RNA. Here we have engineered the BIV and JDV Tat-TAR interactions into HIV-1 and show that the heterologous interactions support viral replication, correlating well with their RNA-binding affinities. Viruses engineered with a variant TAR able to bind all three Tat proteins replicate efficiently with any of the proteins. In one virus containing a noncognate Tat-TAR pair that neither interacts nor efficiently replicates (HIV-1 TAR and BIV Tat), viral revertants were isolated in which TAR had become mutated to generate a functional BIV Tat binding site. Our results support the view that incremental changes to TAR structure can provide routes for evolving new Tat-TAR complexes while maintaining active viral replication.
Collapse
Affiliation(s)
- Baode Xie
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143-0448, USA
| | | | | |
Collapse
|
30
|
Xu XM, Carlson BA, Grimm TA, Kutza J, Berry MJ, Arreola R, Fields KH, Shanmugam I, Jeang KT, Oroszlan S, Combs GF, Marx PA, Gladyshev VN, Clouse KA, Hatfield DL. Rhesus monkey simian immunodeficiency virus infection as a model for assessing the role of selenium in AIDS. J Acquir Immune Defic Syndr 2002; 31:453-63. [PMID: 12473832 DOI: 10.1097/00126334-200212150-00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The objective of this study was to determine whether simian immunodeficiency virus (SIV) infection of macaques could be used as a model system to assess the role of selenium in AIDS. Plasma and serum selenium levels were determined by standard assays in monkeys before and after inoculation of SIV. SIV-infected cells or cells expressing the HIV Tat protein were labeled with 75Se, and protein extracts were prepared and electrophoresed to analyze selenoprotein expression. Total tRNA was isolated from CEMx174 cells infected with SIV or from KK1 cells infected with HIV, and selenocysteine tRNA isoforms were characterized by reverse phase chromatography. SIV-infected monkeys show a decrease in blood selenium levels similar to that observed in AIDS with development of SAIDS. Cells infected with SIV in vitro exhibit reduced selenoprotein levels and an accumulation of small molecular weight selenium compounds relative to uninfected cells. Examination of the selenocysteine tRNA isoforms in HIV-infected KK1 cells or SIV-infected CEMx174 cells reveals an isoform distribution characteristic of selenium-deficient cells. Furthermore, transfection of Jurkat E6 cells with the Tat gene selectively altered selenoprotein synthesis, with GPX4 and Sep15 being the most inhibited and TR1 the most enhanced. Taken together, the data show that monkeys infected with SIV in vivo and cells infected with SIV in vitro will provide appropriate models for investigating the mechanism(s) responsible for reduced selenium levels that accompany the progression of AIDS in HIV disease.
Collapse
Affiliation(s)
- Xue-Ming Xu
- Section on the Molecular Biology of Selenium, Basic Research Laboratory, National Cancer Institute/NIH, Building 37, Room 2D09, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rich EA, Orenstein JM, Jeang KT. A macrophage-tropic HIV-1 that expresses green fluorescent protein and infects alveolar and blood monocyte-derived macrophages. J Biomed Sci 2002. [DOI: 10.1007/bf02255001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Richardson MW, Mirchandani J, Silvera P, Régulier EG, Capini C, Bojczuk PM, Hu J, Gracely EJ, Boyer JD, Khalili K, Zagury JF, Lewis MG, Rappaport J. Immunogenicity of HIV-1 IIIB and SHIV 89.6P Tat and Tat toxoids in rhesus macaques: induction of humoral and cellular immune responses. DNA Cell Biol 2002; 21:637-51. [PMID: 12396606 DOI: 10.1089/104454902760330174] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study compared immune responses in rhesus macaques immunized with unmodified HIV-1 IIIB Tat, SHIV89.6P Tat, and carboxymethylated IIIB and 89.6P Tat toxoids. Immunization with either IIIB or 89.6P preparation induced high titer and broadly crossreactive serum anti-Tat IgG that recognized HIV-1 subtype-E and SIVmac251 Tat. However, the response was delayed, and titers were lower in 89.6P vaccination groups. Serum anti-Tat IgG recognized peptides corresponding to the amino-terminus, basic domain, and carboxy-terminal region. Cellular proliferative responses to Tat toxoids corresponding to the immunogen were evident in vitro in both IIIB and 89.6P groups. Crossreactive proliferative responses were observed in IIIB groups in response to stimulation with 89.6P or SIVmac251 Tat toxoids, but were much less prevalent in 89.6P groups. The truncated 86 amino acid IIIB Tat appears to be more immunogenic than the 102 amino acid 89.6P Tat with respect to both humoral and cellular immune responses, and may be a better vaccine component. Despite induction of robust humoral and cellular immune responses (including both CD4+ and CD8+ T-cell responses) to Tat, all animals were infected upon intravenous challenge with 30 MID(50) of SHIV89.6P and outcome of vaccine groups was not different from controls. Sequencing both Tat exons from serum viral RNA revealed no evidence of escape mutants. These results suggest that with intravenous SHIV89.6P challenge in rhesus macaques, precipitous CD4+ T-cell decline overwhelms potentially protective immune responses. Alternatively, Tat specific CD8+ T-cell responses may not appropriately recognize infected cells in vivo in this model. In view of evidence demonstrating Tat specific CTLs in the SIV model and in humans infected with HIV-1, results in this pathogenic SHIV model may not apparently predict the efficacy of this approach in human studies. The potency and cross-reactivity of these immune responses confirm Tat toxoid as an excellent candidate vaccine component.
Collapse
Affiliation(s)
- Max W Richardson
- Center for Neurovirology and Cancer Biology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Brès V, Kiernan R, Emiliani S, Benkirane M. Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication. J Biol Chem 2002; 277:22215-21. [PMID: 11956210 DOI: 10.1074/jbc.m201895200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus type-1 trans-activator Tat is a transcription factor that activates the HIV-1 promoter through binding to the trans-activation-responsive region (TAR) localized at the 5'-end of all viral transcripts. We and others have recently shown that Tat is directly acetylated at lysine 28, within the activation domain, and lysine 50, in the TAR RNA binding domain, by Tat-associated histone acetyltransferases p300, p300/CBP-associating factor, and hGCN5. Here, we show that mutation of acetyl-acceptor lysines to arginine or glutamine affects virus replication. Interestingly, mutation of lysine 28 and lysine 50 differentially affected Tat trans-activation of integrated versus nonintegrated long terminal repeat. Our results highlight the importance of lysine 28 and lysine 50 of Tat in virus replication and Tat-mediated trans-activation.
Collapse
Affiliation(s)
- Vanessa Brès
- Institut de Génétique Humaine, CNRS UPR 1142, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France
| | | | | | | |
Collapse
|
34
|
Zhang M, Li X, Pang X, Ding L, Wood O, Clouse KA, Hewlett I, Dayton AI. Bcl-2 upregulation by HIV-1 Tat during infection of primary human macrophages in culture. J Biomed Sci 2002; 9:133-9. [PMID: 11914580 DOI: 10.1007/bf02256024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The ability of cells of the human monocyte/macrophage lineage to host HIV-1 replication while resisting cell death is believed to significantly contribute to their ability to serve as a reservoir for viral replication in the host. Although macrophages are generally resistant to apoptosis, interruption of anti-apoptotic pathways can render them susceptible to apoptosis. Here we report that HIV-1(BAL )infection of primary human monocyte-derived macrophages (MDM) upregulates the mRNA and protein levels of the anti-apoptic gene, Bcl-2. Furthermore, this upregulation can be quantitatively mimicked by treating MDM with soluble HIV-1 Tat-86 protein. These results suggest that in infecting cells of the monocyte/macrophage lineage, HIV-1 may be benefiting from additional protection against apoptosis caused by specific upregulation of cellular anti-apoptotic genes.
Collapse
Affiliation(s)
- Mingjie Zhang
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Rockville, MD 20852-1448, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- W A Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Jimmy Fund Building, Room 824, Boston, MA 02115, USA
| |
Collapse
|
36
|
Wyszko E, Barciszewska MZ, Bald R, Erdmann VA, Barciszewski J. The specific hydrolysis of HIV-1 TAR RNA element with the anti-TAR hammerhead ribozyme: structural and functional implications. Int J Biol Macromol 2001; 28:373-80. [PMID: 11325424 DOI: 10.1016/s0141-8130(01)00138-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The main transcriptional regulator of the human immunodeficiency virus is the Tat protein, which recognises and binds to a fragment RNA at the 5' end of viral mRNA, named transactivation response element (TAR) RNA. Extensive mutagenesis studies have shown that a region of TAR RNA important for Tat binding involves a set of nucleotides surrounding a characteristic UCU nucleotide bulge. The specific Tat-TAR complex formation enhances the rate of transcription elongation but inhibition of that interaction prevents the human immunodeficiency virus type 1 (HIV-1) replication. If so, a possibility of virus inactivation would be a site specific degradation of the TAR RNA element. To break down and inactivate TAR RNA, we designated the anti-hammerhead (HH) ribozyme to cleave nucleosides within the bulge. We showed for the first time the new type of the AUC hammerhead ribozyme, which hydrolyses specifically the TAR RNA element at C8 nucleotide in the bulge (C24 in the standard TAR RNA numbering). The cleavage reaction has broad magnesium requirements. Mn and particularly Ca are less efficient. Argininamide interferes with the cleavage of TAR RNA induced by the ribozyme. These results have two implications; (i) structural, where the HIV-1 TAR RNA element in solution occurs in equilibrium of only two forms, one of which, a double stranded RNA, meets structural requirements for ribozyme pairing and cleavage, and (ii) functional, the HH ribozyme can be explored for an inactivation of HIV-1 through the TAR RNA element deintegration.
Collapse
Affiliation(s)
- E Wyszko
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61794, Poznan, Poland
| | | | | | | | | |
Collapse
|
37
|
Zhang M, Li X, Pang X, Ding L, Wood O, Clouse K, Hewlett I, Dayton AI. Identification of a potential HIV-induced source of bystander-mediated apoptosis in T cells: upregulation of trail in primary human macrophages by HIV-1 tat. J Biomed Sci 2001; 8:290-6. [PMID: 11385301 DOI: 10.1007/bf02256603] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The induction of apoptosis in T cells by bystander cells has been repeatedly implicated as a mechanism contributing to the T cell depletion seen in HIV infection. It has been shown that apoptosis could be induced in T cells from asymptomatic HIV-infected individuals in a Fas-independent, TNF-related apoptosis-inducing ligand (TRAIL)-dependent manner if the cells were pretreated with anti-CD3. It has also been shown that T cells from HIV-infected patients were even more sensitive to TRAIL induction of apoptosis than they were to Fas induction. Recently, it has been reported that in an HIV-1 SCID-Hu model, the vast majority of the T cell apoptosis is not associated with p24 and is therefore produced by bystander effects. Furthermore, few apoptotic cells were associated with neighboring cells which were positive for either Fas ligand or TNF. However, most of the apoptotic cells were associated with TRAIL-positive cells. The nature of these TRAIL-positive cells was undetermined. Here, we report that HIV infection of primary human macrophages switches on abundant TRAIL production both at the RNA and protein levels. Furthermore, more macrophages produce TRAIL than are infected by HIV, indicating that a bystander mechanism may, at least in part, upregulate TRAIL. Exogenously supplied HIV-1 Tat protein upregulates TRAIL production by primary human macrophages to an extent indistinguishable from infection. The results suggest a model in which HIV-1-infected cells produce extracellular Tat protein, which in turn upregulates TRAIL in macrophages which then can induce apoptosis in bystander T cells.
Collapse
Affiliation(s)
- M Zhang
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, FDA, Rockville, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kameoka M, Rong L, Götte M, Liang C, Russell RS, Wainberg MA. Role for human immunodeficiency virus type 1 Tat protein in suppression of viral reverse transcriptase activity during late stages of viral replication. J Virol 2001; 75:2675-83. [PMID: 11222691 PMCID: PMC115892 DOI: 10.1128/jvi.75.6.2675-2683.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have examined the role of the human immunodeficiency virus type 1 (HIV-1) Tat protein in the regulation of reverse transcription. We show that a two-exon but not a one-exon form of Tat markedly suppressed cell-free reverse transcriptase (RT) activity. Conversely, viruses expressing two-exon Tat (pNL43 and pNL101) showed rapid replication kinetics and more efficient endogenous RT activity compared with viruses expressing one-exon Tat (pM1ex). The pM1ex virions, as well as pM1ex-infected cells, also contained higher levels of viral DNA than did either the pNL43 or pNL101 viruses, indicating that reverse transcription might have continued during later stages of viral replication in the absence of the second Tat exon. Moreover, degradation of viral genomic RNA was more apparent in the pM1ex virions. Accordingly, we propose that the two-exon Tat may help augment viral infectivity by suppressing the reverse transcription reaction during late stages of viral synthesis and by preventing the synthesis of potentially deleterious viral DNA products.
Collapse
MESH Headings
- Cell Line
- DNA, Viral/metabolism
- Exons
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Gene Products, tat/physiology
- Genes, tat
- HIV Infections/virology
- HIV Reverse Transcriptase/antagonists & inhibitors
- HIV Reverse Transcriptase/metabolism
- HIV-1/physiology
- Humans
- Jurkat Cells
- RNA, Viral/metabolism
- Templates, Genetic
- Transcription, Genetic
- Transfection
- Virion/metabolism
- Virus Replication/physiology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- M Kameoka
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
39
|
Gatignol A, Jeang KT. Tat as a transcriptional activator and a potential therapeutic target for HIV-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:209-27. [PMID: 10987092 DOI: 10.1016/s1054-3589(00)48007-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A Gatignol
- U529 INSERM, Institut Cochin de Génétique Moléculaire, Paris, France
| | | |
Collapse
|
40
|
Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT. Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci U S A 2000; 97:11466-71. [PMID: 11027346 PMCID: PMC17223 DOI: 10.1073/pnas.97.21.11466] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2000] [Accepted: 08/15/2000] [Indexed: 12/14/2022] Open
Abstract
Chemokines and chemokine receptors play important roles in HIV-1 infection and tropism. CCR5 is the major macrophage-tropic coreceptor for HIV-1 whereas CXC chemokine receptor 4 (CXCR4) serves the counterpart function for T cell-tropic viruses. An outstanding biological mystery is why only R5-HIV-1 is initially detected in new seroconvertors who are exposed to R5 and X4 viruses. Indeed, X4 virus emerges in a minority of patients and only in the late stage of disease, suggesting that early negative selection against HIV-1-CXCR4 interaction may exist. Here, we report that the HIV-1 Tat protein, which is secreted from virus-infected cells, is a CXCR4-specific antagonist. Soluble Tat selectively inhibited the entry and replication of X4, but not R5, virus in peripheral blood mononuclear cells (PBMCs). We propose that one functional consequence of secreted Tat is to select against X4 viruses, thereby influencing the early in vivo course of HIV-1 disease.
Collapse
Affiliation(s)
- H Xiao
- Laboratories of Molecular Microbiology and Host Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-0460, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The HIV-1 Tat protein is an RNA-binding transcriptional transactivator. Recent findings suggest that Tat associates with a cellular kinase that phosphorylates the carboxyl-terminal domain of the largest subunit of RNA polymerase II. Here we review, in brief, the role of Tat-associated kinase in Tat-activated transcription. We discuss evidence that suggests involvement of TFIIH and/or P-TEFb.
Collapse
Affiliation(s)
- K T Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD 20892-0460, USA.
| |
Collapse
|
42
|
Péloponèse JM, Grégoire C, Opi S, Esquieu D, Sturgis J, Lebrun E, Meurs E, Collette Y, Olive D, Aubertin AM, Witvrow M, Pannecouque C, De Clercq E, Bailly C, Lebreton J, Loret EP. 1H-13C nuclear magnetic resonance assignment and structural characterization of HIV-1 Tat protein. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2000; 323:883-94. [PMID: 11098404 DOI: 10.1016/s0764-4469(00)01228-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tat is a viral protein essential for activation of the HIV genes and plays an important role in the HIV-induced immunodeficiency. We chemically synthesized a Tat protein (86 residues) with its six glycines C alpha labelled with 13C. This synthetic protein has the full Tat activity. Heteronuclear nuclear magnetic resonance (NMR) spectra and NOE back-calculation made possible the sequential assignment of the 86 spin systems. Consequently, 915 NMR restraints were identified and 272 of them turned out to be long range ([i-j] > 4), providing structural information on the whole Tat protein. The poor spectral dispersion of Tat NMR spectra does not allow an accurate structure to be determined as for other proteins studied by 2D NMR. Nevertheless, we were able to determine the folding for Tat protein at a 1-mM protein concentration in a 100 mM, pH 4.5 phosphate buffer. The two main Tat functional regions, the basic region and the cysteine-rich region, are well exposed to solvent while a part of the N-terminal region and the C-terminal region constitute the core of Tat Bru. The basic region adopts an extended structure while the cysteine-rich region is made up of two loops. Resolution of this structure was determinant to develop a drug design approach against Tat. The chemical synthesis of the drugs allowed the specific binding and the inhibition of Tat to be verified.
Collapse
Affiliation(s)
- J M Péloponèse
- Laboratoire d'ingéniérie des systèmes macromoléculaires, Institut de biologie structurale et microbiologie, Marseilles, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chen H, He J, Fong S, Wilcox G, Wood C. Jembrana disease virus Tat can regulate human immunodeficiency virus (HIV) long terminal repeat-directed gene expression and can substitute for HIV Tat in viral replication. J Virol 2000; 74:2703-13. [PMID: 10684286 PMCID: PMC111760 DOI: 10.1128/jvi.74.6.2703-2713.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jembrana disease virus (JDV) is a bovine lentivirus genetically similar to bovine immunodeficiency virus; it causes an acute and sometimes fatal disease in infected animals. This virus carries a very potent Tat that can strongly activate not only its own long terminal repeat (LTR) but also the human immunodeficiency virus (HIV) LTR. In contrast, HIV Tat cannot reciprocally activate the JDV LTR (H. Chen, G. E. Wilcox, G. Kertayadnya, and C. Wood, J. Virol. 73:658-666, 1999). This indicates that in transactivation JDV Tat may utilize a mechanism similar to but not the same as that of the HIV Tat. To further study the similarity of JDV and HIV tat in transactivation, we first tested the responses of a series of HIV LTR mutants to the JDV Tat. Cross-transactivation of HIV LTR by JDV Tat was impaired by mutations that disrupted the HIV type 1 transactivation response element (TAR) RNA stem-loop structure. Our results demonstrated that JDV Tat, like HIV Tat, transactivated the HIV LTR at least partially in a TAR-dependent manner. However, the sequence in the loop region of TAR was not as critical for the function of JDV Tat as it was for HIV Tat. The competitive inhibition of Tat-induced transactivation by the truncated JDV or HIV Tat, which consisted only of the activation domain, suggested that similar cellular factors were involved in both JDV and HIV Tat-induced transactivation. Based on the one-round transfection assay with HIV tat mutant proviruses, the cotransfected JDV tat plasmid can functionally complement the HIV tat defect. To further characterize the effect of JDV Tat on HIV, a stable chimeric HIV carrying the JDV tat gene was generated. This chimeric HIV replicated in a T-cell line, C8166, and in peripheral blood mononuclear cells, which suggested that JDV Tat can functionally substitute for HIV Tat. Further characterization of this chimeric virus will help to elucidate how JDV Tat functions and to explain the differences between HIV and JDV Tat transactivation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Binding, Competitive
- Cattle
- Cells, Cultured
- Gene Expression
- Gene Expression Regulation, Viral
- Gene Products, tat/classification
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- Genetic Complementation Test
- HIV Long Terminal Repeat
- HIV-1/genetics
- HIV-1/physiology
- Humans
- Lentiviruses, Bovine/genetics
- Leukocytes, Mononuclear/cytology
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Proviruses/genetics
- RNA, Viral
- Transcriptional Activation
- Virus Replication/physiology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- H Chen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | | | |
Collapse
|
44
|
Cai R, Carpick B, Chun RF, Jeang KT, Williams BR. HIV-I TAT inhibits PKR activity by both RNA-dependent and RNA-independent mechanisms. Arch Biochem Biophys 2000; 373:361-7. [PMID: 10620360 DOI: 10.1006/abbi.1999.1583] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replication of the human immunodeficiency virus type 1 (HIV-1) is inhibited by interferons (IFNs), in part through activity of the IFN-inducible protein kinase PKR. To escape this antiviral effect, HIV-1 has developed strategies for blocking PKR function. We have previously shown that the HIV-1 Tat protein can associate with PKR in vitro and in vivo and inhibit PKR activity. Here we present evidence that Tat can inhibit PKR activity by both RNA-dependent and RNA-independent mechanisms. Tat inhibited PKR activation by the non-RNA activator heparin, and also suppressed PKR basal level autophosphorylation in the absence of RNA. However, when Tat and dsRNA were preincubated, the amount of Tat required to inhibit PKR activation by dsRNA depended on the dsRNA concentration. In addition to its function in vitro, Tat can also reverse translation inhibition mediated by PKR in COS cells. The Tat amino acid sequence required for interaction with PKR was mapped to residues 40-58, overlapping the hydrophobic core and basic region of HIV-1 Tat. Alignment of amino acid sequences of Tat and eIF-2alpha indicates similarity between the Tat-PKR binding region and the residues around the eIF-2alpha phosphorylation site, suggesting that Tat and eIF-2alpha may bind to the same site on PKR.
Collapse
Affiliation(s)
- R Cai
- Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
45
|
Marasco WA, LaVecchio J, Winkler A. Human anti-HIV-1 tat sFv intrabodies for gene therapy of advanced HIV-1-infection and AIDS. J Immunol Methods 1999; 231:223-38. [PMID: 10648940 DOI: 10.1016/s0022-1759(99)00159-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The early successes of highly active anti-retroviral therapies (HAART) for the treatment of HIV-1-infection and AIDS have raised the question as to whether there is a legitimate role for gene therapy in the treatment of this chronic infectious disease. However, in many patients the profound suppression of viral replication is short lived, particularly if patients have been treated with sequential monotherapies in the past, have been infected with a highly drug resistant isolate of HIV-1, or have temporarily discontinued therapy as a "holiday" or because of drug intolerance. In addition, life-long adherence to maintenance HAART will probably be required even in responding patients with undetectable viremia because of the reservoirs of latently infected cells that can persist for years. Gene therapy through the introduction of anti-retroviral "resistance" genes into CD4(+) T cells is one approach that could give long term protection to these HIV-1 susceptible cells in vivo. We have explored this approach by developing intrabodies to the critical HIV-1 transactivator protein, Tat that is absolutely required for HIV-1 replication. This provocative treatment approach, that will be tested in a clinical gene therapy trial, sets the groundwork for determining if anti-Tat intrabody gene therapy together with HAART can provide a treatment strategy for the immune reconstitution of HIV-1-infected patients with advanced disease.
Collapse
Affiliation(s)
- W A Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|
46
|
Jeang KT, Xiao H, Rich EA. Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 1999; 274:28837-40. [PMID: 10506122 DOI: 10.1074/jbc.274.41.28837] [Citation(s) in RCA: 330] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- K T Jeang
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
47
|
Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S. HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. J Neurochem 1999; 73:578-86. [PMID: 10428053 DOI: 10.1046/j.1471-4159.1999.0730578.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat induces neuronal apoptosis. To examine the mechanism(s) that contribute to this process, we studied Tat's effects on glycogen synthase kinase-3beta (GSK-3beta), an enzyme that has been implicated in the regulation of apoptosis. Addition of Tat to rat cerebellar granule neurons resulted in an increase in GSK-3beta activity, which was not associated with a change in protein expression and could be abolished by the addition of an inhibitor of GSK-3beta (lithium). Lithium also enhanced neuronal survival following exposure to Tat. Coprecipitation experiments revealed that Tat can associate with GSK-3beta, but direct addition of Tat to purified GSK-3beta had no effect on enzyme activity, suggesting that Tat's effects might be mediated indirectly. As the activation of platelet activating factor (PAF) receptors is critical for the induction of neuronal death by several candidate HIV-1 neurotoxins, we determined whether PAF can also activate GSK-3beta. Application of PAF to neuronal cultures activated GSK-3beta, and coincubation with lithium ameliorated PAF-induced neuronal apoptosis. These findings are consistent with the existence of one or more pathways that can lead to GSK-3beta activation in neurons, and they suggest that the dysregulation of this enzyme could contribute to HIV-induced neuronal apoptosis.
Collapse
Affiliation(s)
- S B Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York 14642, USA
| | | | | | | | | |
Collapse
|
48
|
Rana TM, Jeang KT. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys 1999; 365:175-85. [PMID: 10328810 DOI: 10.1006/abbi.1999.1206] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-1 trans-activator of transcription (Tat) is an unusual transcriptional activator in being an RNA-binding protein rather than a DNA-binding protein. Recent findings have greatly advanced our understanding of the transcriptional function(s) of this protein. Here we review how Tat interacts with trans-activation responsive RNA and how this interaction contributes to transcription. We discuss the biological implications of recent studies showing an association of Tat with cellular kinases(s) and protein acetylases. Evidence for nontranscriptional activities of the Tat protein is also summarized.
Collapse
Affiliation(s)
- T M Rana
- Department of Pharmacology, Robert Wood Johnson (Rutgers) Medical School, 675 Hoes Lane, Piscataway, New Jersey, 08854, USA
| | | |
Collapse
|
49
|
Verhoef K, Berkhout B. A second-site mutation that restores replication of a Tat-defective human immunodeficiency virus. J Virol 1999; 73:2781-9. [PMID: 10074125 PMCID: PMC104035 DOI: 10.1128/jvi.73.4.2781-2789.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We previously constructed a large set of mutants of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Tat with conservative amino acid substitutions in the activation domain. These Tat variants were analyzed in the context of the infectious virus, and several mutants were found to be defective for replication. In an attempt to obtain second-site suppressor mutations that could provide information on the Tat protein structure, some of the replication-impaired viruses were used as a parent for the isolation of revertant viruses with improved replication capacity. Sequence analysis of revertant viruses frequently revealed changes within the tat gene, most often first-site reversions either to the wild-type amino acid or to related amino acids that restore, at least partially, the Tat function and virus replication. Of 30 revertant cultures, we identified only one second-site suppressor mutation. The inactive Y26A mutant yielded the second-site suppressor mutation Y47N that partially restored trans-activation activity and virus replication. Surprisingly, when the suppressor mutation was introduced in the wild-type Tat background, it also improved the trans-activation function of this protein about twofold. We conclude that the gain of function measured for the Y47N change is not specific for the Y26A mutant, arguing against a direct interaction of Tat amino acids 26 and 47 in the three-dimensional fold of this protein. Other revertant viruses did not contain any additional Tat changes, and some viruses revealed putative second-site Tat mutations that did not significantly improve Tat function and virus replication. We reason that these mutations were introduced by chance through founder effects or by linkage to suppressor mutations elsewhere in the virus genome. In conclusion, the forced evolution of mutant HIV-1 genomes, which is an efficient approach for the analysis of RNA regulatory motifs, seems less suited for the analysis of the structure of this small transcription factor, although protein variants with interesting properties can be generated.
Collapse
Affiliation(s)
- K Verhoef
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
50
|
Trinh DP, Brown KM, Jeang KT. Epithelin/granulin growth factors: extracellular cofactors for HIV-1 and HIV-2 Tat proteins. Biochem Biophys Res Commun 1999; 256:299-306. [PMID: 10079180 DOI: 10.1006/bbrc.1999.0317] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelin/granulin growth factor is synthesized as a 593 amino acid precursor protein that contains 7.5 imperfectly conserved repeats of approximately 57 amino acids. Processed epithelin/granulin peptides have been isolated from vertebrate/invertebrate species and are growth factors implicated in epithelial and haemic cell function. Here they are identified as Human Immunodeficiency Virus (HIV) Tat binding proteins using the yeast two-hybrid assay. Intracellularly in yeast, mutation of selected cysteines in an epithelin/granulin dimeric repeat caused loss of binding to Tat exon 1. In vitro binding of HIV-1 and HIV-2 Tat to epithelin/granulin dimeric and monomeric repeats was also observed by GST-glutathione bead "pulldown" assays. Because Tat is actively secreted from HIV-infected cells and has been shown to serve as a mitogenic factor for angiogenesis and for Kaposi-like cells, our observations suggest that epithelin/granulin growth factors may function as biologically important extracellular Tat co-factors.
Collapse
Affiliation(s)
- D P Trinh
- Department of Biological Sciences, George Washington University, 332 Lisner Hall, 2023 G Street N.W., Washington, DC 20052, USA
| | | | | |
Collapse
|