1
|
Kim KS, Iwamoto M, Kitagawa K, Park H, Hayashi S, Tsukuda S, Matsui T, Atsukawa M, Matsuura K, Chuaypen N, Tangkijvanich P, Allweiss L, Nishiyama T, Nakamura N, Fujita Y, Kawakami E, Nakaoka S, Muramatsu M, Aihara K, Wakita T, Perelson AS, Dandri M, Watashi K, Iwami S, Tanaka Y. Prediction of cccDNA dynamics in hepatitis B patients by a combination of serum surrogate markers. PLoS Comput Biol 2025; 21:e1012615. [PMID: 39787253 PMCID: PMC11753647 DOI: 10.1371/journal.pcbi.1012615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 01/22/2025] [Accepted: 11/04/2024] [Indexed: 01/12/2025] Open
Abstract
Quantification of intrahepatic covalently closed circular DNA (cccDNA) is a key for evaluating an elimination of hepatitis B virus (HBV) in infected patients. However, quantifying cccDNA requires invasive methods such as a liver biopsy, which makes it impractical to access the dynamics of cccDNA in patients. Although HBV RNA and HBV core-related antigens (HBcrAg) have been proposed as surrogate markers for evaluating cccDNA activity, they do not necessarily estimate the amount of cccDNA. Here, we employed a recently developed multiscale mathematical model describing intra- and intercellular viral propagation and applied it in HBV-infected patients under treatment. We developed a model that can predict intracellular HBV dynamics by use of extracellular viral markers, including HBsAg, HBV DNA, and HBcrAg in peripheral blood. Importantly, the model prediction of the amount of cccDNA in patients over time was confirmed to be well correlated with the data for quantified cccDNA by paired liver biopsy. Thus, our method combining classic and emerging surrogate markers enables us to predict the decay dynamics of cccDNA in patients undergoing treatment.
Collapse
Affiliation(s)
- Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Scientific Computing, Pukyong National University, Busan, South Korea
| | - Masashi Iwamoto
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kosaku Kitagawa
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Takeshi Matsui
- Center for Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Masanori Atsukawa
- Department of Gastroenterology and Hepatology, Nippon Medical School, Tokyo, Japan
| | - Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites, Germany
| | - Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Eiryo Kawakami
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Medical Sciences Innovation Hub Program; RIKEN, Yokohama, Kanagawa, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Maura Dandri
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
- Institute of Mathematics for Industry, Kyushu University,; Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Xie C, Lu D. Evolution and diversity of the hepatitis B virus genome: Clinical implications. Virology 2024; 598:110197. [PMID: 39098184 DOI: 10.1016/j.virol.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Hepatitis B virus (HBV) infection remains a significant global health burden. The genetic variation of HBV is complex. HBV can be divided into nine genotypes, which show significant differences in geographical distribution, clinical manifestations, transmission routes and treatment response. In recent years, substantial progress has been made through various research methods in understanding the development, pathogenesis, and antiviral treatment response of clinical disease associated with HBV genetic variants. This progress provides important theoretical support for a deeper understanding of the natural history of HBV infection, virus detection, drug treatment, vaccine development, mother-to-child transmission, and surveillance management. This review summarizes the mechanisms of HBV diversity, discusses methods used to detect viral diversity in current studies, and the impact of viral genome variation during infection on the development of clinical disease.
Collapse
Affiliation(s)
- Chengzuo Xie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Daiqiang Lu
- Institute of Molecular and Medical Virology, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, Guangdong Province, 510632, China.
| |
Collapse
|
3
|
Shin H, Choi WM, Kim SU, Ko Y, Park Y, Park J, Hur MH, Park MK, Lee YB, Kim YJ, Yoon JH, Lee JH, Zoulim F. Lack of association between early on-treatment HBeAg seroclearance and development of hepatocellular carcinoma or decompensated cirrhosis. JHEP Rep 2024; 6:101089. [PMID: 38974365 PMCID: PMC11225842 DOI: 10.1016/j.jhepr.2024.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND & AIMS The association between hepatitis B envelope antigen (HBeAg) seroclearance during long-term nucleos(t)ide analogue (NA) treatment and the risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB) remains unclear. Here, we aimed to investigate the association of HBeAg seroclearance during potent NA treatment with the development of HCC and decompensated cirrhosis. METHODS Using a multicenter historical cohort including 2,392 non-cirrhotic adult patients with HBeAg-positive CHB who initiated NA treatment with tenofovir or entecavir, the risk of HCC and decompensated cirrhosis was compared between patients who achieved HBeAg seroclearance within 36 months of NA treatment (the HBeAg-loss group) and those who did not (the HBeAg-maintained group), using inverse probability of treatment weighting. RESULTS Over a median of 6.6 years of NA treatment, 1,077 patients achieved HBeAg seroclearance (HBeAg loss rate = 6.0 per 100 person-years), 64 patients developed HCC (HCC incidence rate = 0.39 per 100 person-years), and 46 patients developed decompensated cirrhosis (decompensation incidence rate = 0.28 per 100 person-years). The HBeAg-loss and HBeAg-maintained groups had a similar risk of developing HCC (hazard ratio 0.89; 95% CI 0.47-1.68; p = 0.72) and decompensated cirrhosis (hazard ratio 0.98; 95% CI 0.48-1.81; p = 0.91). Compared with delayed HBeAg seroclearance beyond 10 years of NA treatment, the risk of HCC was comparable in those who achieved earlier HBeAg seroclearance at any time point within 10 years, regardless of baseline age and fibrotic burden. CONCLUSIONS Early HBeAg seroclearance during NA treatment was not associated with a reduced risk of development of HCC or decompensated cirrhosis in non-cirrhotic HBeAg-positive patients with CHB. IMPACT AND IMPLICATIONS The association between hepatitis B envelope antigen (HBeAg) seroclearance during long-term nucleos(t)ide analogue treatment and the risk of hepatocellular carcinoma in patients with chronic hepatitis B remains unclear. Our findings indicate that early on-treatment HBeAg seroclearance within 3 years was not associated with the development of hepatocellular carcinoma or decompensated cirrhosis. Achieving HBeAg seroclearance may not be an appropriate surrogate endpoint for preventing the development of liver-related outcomes in non-cirrhotic patients with HBeAg-positive chronic hepatitis B treated with nucleos(t)ide analogues.
Collapse
Affiliation(s)
- Hyunjae Shin
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Mook Choi
- Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea; Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Yunmi Ko
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngsu Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeayeon Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Moon Haeng Hur
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Kyung Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Fabien Zoulim
- INSERM Unit 1052 - Cancer Research Center of Lyon, Hospices Civils de Lyon, Lyon University, Lyon, France
| |
Collapse
|
4
|
Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparative Proteomic Analysis of Huh7 Cells Transfected with Sub-Saharan African Hepatitis B Virus (Sub)genotypes Reveals Potential Oncogenic Factors. Viruses 2024; 16:1052. [PMID: 39066215 PMCID: PMC11281506 DOI: 10.3390/v16071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
In sub-Saharan Africa (SSA), the (sub)genotypes A1, D3, and E of the hepatitis B virus (HBV) prevail. Individuals infected with subgenotype A1 have a 4.5-fold increased risk of HCC compared to those infected with other (sub)genotypes. The effect of (sub)genotypes on protein expression and host signalling has not been studied. Mass spectrometry was used to analyse the proteome of Huh7 cells transfected with replication-competent clones. Proteomic analysis revealed significantly differentially expressed proteins between SSA (sub)genotypes. Different (sub)genotypes have the propensity to dysregulate specific host signalling pathways. Subgenotype A1 resulted in dysregulation within the Ras pathway. Ras-associated protein, RhoC, was significantly upregulated in cells transfected with subgenotype A1 compared to those transfected with other (sub)genotypes, on both a proteomic (>1.5-fold) and mRNA level (p < 0.05). Two of the main cellular signalling pathways involving RHOC, MAPK and PI3K/Akt/mTOR, regulate cell growth, motility, and survival. Downstream signalling products of these pathways have been shown to increase MMP2 and MMP9 expression. An extracellular MMP2 and MMP9 ELISA revealed a non-significant increase in MMP2 and MMP9 in the cells transfected with A1 compared to the other (sub)genotypes (p < 0.05). The upregulated Ras-associated proteins have been implicated as oncoproteins in various cancers and could contribute to the increased hepatocarcinogenic potential of A1.
Collapse
Affiliation(s)
- Kiyasha Padarath
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| | - Aurélie Deroubaix
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
- Life Sciences Imaging Facility, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Previn Naicker
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0184, South Africa;
| | - Stoyan Stoychev
- ReSyn Biosciences, Johannesburg 2000, South Africa;
- Evosep Biosystems, 5230 Odense, Denmark
| | - Anna Kramvis
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| |
Collapse
|
5
|
Keeshan A, da Silva CF, Vachon A, Giles E, Osiowy C, Coffin C, Cooper CL. Hepatitis B Virus Genotype Influence on Virological and Enzymatic Measures over Time-A Retrospective Longitudinal Cohort Study. J Clin Med 2023; 12:6807. [PMID: 37959272 PMCID: PMC10649073 DOI: 10.3390/jcm12216807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
HBV is a hepatotropic virus with multiple genotypes. It is uncertain if specific genotype(s) influence virological measures and/or liver markers over time. It is unclear whether nucleos(t)ide analogue therapy response is influenced by genotype. In this retrospective longitudinal study, we utilized data from The Ottawa Hospital Viral Hepatitis Program (TOHVHP) to evaluate the role of HBV genotype on viral load, liver enzymatic levels, fibrosis progression, and parenchymal inflammation and steatosis over time. HBV DNA, ALT, and AST levels, as well as transient elastography scores for fibrosis (E) and inflammation/steatosis (CAP), were modeled using mixed-effects linear regression. Interaction terms between HBV genotype and time were included to investigate if there was a difference in trends between genotypes. A total of 393 HBV patients infected with genotypes A-E were included. The mean age was 44.4 years, and 56% were male. Asian (50.5%), Black (29.1%), and White (6.4%) patients were well-represented. By multivariate analysis, we found no evidence that the trajectories of these commonly measured viral or liver measures varied over time by HBV genotype in those receiving HBV nucleos(t)ides and in those not on antiviral therapy.
Collapse
Affiliation(s)
- Alexa Keeshan
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Alicia Vachon
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Division of Infectious Diseases, Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Elizabeth Giles
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R2C 3A9, Canada
| | - Carla Osiowy
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R2C 3A9, Canada
| | - Carla Coffin
- Department of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Curtis L. Cooper
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Division of Infectious Diseases, Department of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
6
|
Uchida T, Imamura M, Hayes CN, Suehiro Y, Teraoka Y, Ohya K, Aikata H, Abe-Chayama H, Ishida Y, Tateno C, Hara Y, Hino K, Okamoto T, Matsuura Y, Aizaki H, Wake K, Kohara M, Liang TJ, Oka S, Chayama K. HBV with precore and basal core promoter mutations exhibits a high replication phenotype and causes ER stress-mediated cell death in humanized liver chimeric mice. Hepatology 2023; 78:929-942. [PMID: 36896966 PMCID: PMC11519831 DOI: 10.1097/hep.0000000000000335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/25/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND AIMS Mutations within the precore (PC) and basal core promoter (BCP) regions of the HBV genome are associated with fulminant hepatitis and HBV reactivation. These mutations may enhance viral replication, but little is known about whether they directly induce damage to the liver. We investigated mechanisms of direct cytopathic effects induced by the infection with PC/BCP mutants in the absence of immune response in vitro and in vivo . APPROACH AND RESULTS Mice with humanized livers and hepatocytes derived from humanized mice were infected with either wild-type or mutant-type PC/BCP HBV, and the HBV replication and human hepatocyte damage were evaluated. HBV proliferated vigorously in mice with PC/BCP-mutant infection, and the severe loss of human hepatocytes with a slight human ALT elevation subsequently occurred only in PC/BCP mutant mice. In PC/BCP mutant infection, the accumulation of HBsAg in humanized livers colocalized with the endoplasmic reticulum, leading to apoptosis through unfolded protein response in HBV-infected hepatocytes. RNA-sequencing revealed the molecular characteristics of the phenotype of PC/BCP mutant infection in a humanized mouse model. Reduced ALT elevation and higher HBV DNA levels in this model are consistent with characteristics of HBV reactivation, indicating that the hepatocyte damage in this model might mimic HBV reactivation followed by hepatocyte damage under immunosuppressive conditions. CONCLUSION PC and BCP mutations were associated with enhanced viral replication and cell death induced by ER stress using HBV infection models. These mutations might be associated with liver damage in patients with fulminant hepatitis or HBV reactivation.
Collapse
Affiliation(s)
- Takuro Uchida
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C. Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yosuke Suehiro
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Teraoka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuki Ohya
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe-Chayama
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Center for Medical Specialist Graduate Education and Research, Hiroshima, Japan
| | - Yuji Ishida
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Higashihiroshima, Japan
| | - Chise Tateno
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- PhoenixBio Co., Ltd., Higashihiroshima, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Toru Okamoto
- Institute for Advanced Co-creation Studies, Research Institute for Microbial Diseases Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenjiro Wake
- Liver Research Unit, Minophagen Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Research Center for Hepatology and Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Collaborative Research Laboratory of Medical Innovation, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Hiroshima Institute of Life Sciences, Hiroshima, Japan
| |
Collapse
|
7
|
Jilg N, Baumert TF. Unfolding the mechanism of hepatocyte injury of HBV precore and core promoter variants. Hepatology 2023; 78:702-705. [PMID: 37036194 PMCID: PMC7615604 DOI: 10.1097/hep.0000000000000400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Affiliation(s)
- Nikolaus Jilg
- Massachusetts General Hospital, Boston, MA, USA
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg
- Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg
- Institut hospitalo-universitaire (IHU), Université de Strasbourg, Strasbourg
- Institut Universitaire de France (IUF), Paris
| |
Collapse
|
8
|
Li J, Li J, Chen S, Xu W, Zhang J, Tong S. Clinical isolates of hepatitis B virus genotype C have higher in vitro transmission efficiency than genotype B isolates. J Med Virol 2023; 95:e28879. [PMID: 37314050 PMCID: PMC10404337 DOI: 10.1002/jmv.28879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Serum samples were collected from 54 hepatitis B e antigen (HBeAg)-positive Chinese patients infected with hepatitis B virus (HBV) subgenotype B2 or C2. They were compared for transmission efficiency using same volume of samples or infectivity using same genome copy number. Adding polyethylene glycol (PEG) during inoculation did not increase infectivity of fresh samples but markedly increased infectivity following prolonged sample storage. Differentiated HepaRG cells infected without PEG produced more hepatitis B surface antigen (HBsAg) and higher HBsAg/HBeAg ratio than sodium taurocholate cotransporting polypeptide (NTCP)-reconstituted HepG2 cells infected with PEG. They better supported replication of core promoter mutant in contrast to wild-type (WT) virus by HepG2/NTCP cells. Overall, subgenotype C2 samples had higher viral load than B2 samples, and in general produced more HBeAg, HBsAg, and replicative DNA following same-volume inoculation. Precore mutant was more prevalent in subgenotype B2 and had reduced transmission efficiency. When same genome copy number of viral particles was inoculated, viral signals were not necessarily higher for three WT C2 isolates than four WT B2 isolates. Using viral particles generated from cloned HBV genome, three WT C2 isolates showed slightly reduced infectivity than three B2 isolates. In conclusion, subgenotype C2 serum samples had higher transmission efficiency than B2 isolates in association with higher viral load and lower prevalence of precore mutant, but not necessarily higher infectivity. PEG-independent infection by HBV viremic serum samples is probably attributed to a labile host factor.
Collapse
Affiliation(s)
- Jing Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Weicheng Xu
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
9
|
E B, Ko K, Kim R, Nagashima S, Ouoba S, Hussain MRA, Sato T, Chuon C, Abe K, Sugiyama A, Takahashi K, Akita T, Tung R, Ork V, Hossain MS, Saphonn V, Tanaka J. Residual risk of mother-to-child transmission of HBV despite timely Hepatitis B vaccination: a major challenge to eliminate hepatitis B infection in Cambodia. BMC Infect Dis 2023; 23:261. [PMID: 37101167 PMCID: PMC10131410 DOI: 10.1186/s12879-023-08249-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND In countries with intermediate or high hepatitis B virus (HBV) endemicity, mother-to-child transmission (MTCT) represents the main route of chronic HBV infection. There is a paucity of information on HBV MTCT in Cambodia. This study aimed to investigate the prevalence of HBV infection among pregnant women and its MTCT rate in Siem Reap, Cambodia. METHODS This longitudinal study included two parts, study-1 to screen HBsAg among pregnant women and study-2 to follow up babies of all HBsAg-positive and one-fourth of HBsAg-negative mothers at their delivery and six-month post-partum. Serum or dried blood spot (DBS) samples were collected to examine HBV sero-markers by chemiluminescent enzyme immunoassay (CLEIA), and molecular analyses were performed on HBsAg-positive samples. Structured questionnaires and medical records were used to examine the risk factors for HBV infection. MTCT rate was calculated by HBsAg positivity of 6-month-old babies born to HBsAg-positive mothers and ascertained by the homology of HBV genomes in mother-child pair at 6-month-old. RESULTS A total of 1,565 pregnant women were screened, and HBsAg prevalence was 4.28% (67/1565). HBeAg positivity was 41.8% and was significantly associated with high viral load (p < 0.0001). Excluding subjects who dropped out due to restrictions during COVID-19, one out of 35 babies born to HBsAg-positive mothers tested positive for HBsAg at 6 months of age, despite receiving timely HepB birth dose and HBIG, followed by 3 doses of HepB vaccine. Hence the MTCT rate was 2.86%. The mother of the infected baby was positive for HBeAg and had a high HBV viral load (1.2 × 109 copies/mL). HBV genome analysis showed 100% homology between the mother and the child. CONCLUSIONS Our findings illustrate the intermediate endemicity of HBV infection among pregnant women in Siem Reap, Cambodia. Despite full HepB vaccination, a residual risk of HBV MTCT was observed. This finding supports the recently updated guidelines for the prevention of HBV MTCT in 2021, which integrated screening and antiviral prophylaxis for pregnant women at risk of HBV MTCT. Furthermore, we strongly recommend the urgent implementation of these guidelines nationwide to effectively combat HBV in Cambodia.
Collapse
Affiliation(s)
- Bunthen E
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
- Payment Certification Agency (PCA), Ministry of Health, Phnom Penh, Cambodia
| | - Ko Ko
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Rattana Kim
- National Maternal and Child Health Center (NMCHC), Ministry of Health, Phnom Penh, Cambodia
| | - Shintaro Nagashima
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Serge Ouoba
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
- Unité de Recherche Clinique de Nanoro (URCN), Institut de Recherche en Sciences de La Santé (IRSS), Nanoro, Burkina Faso
| | - Md Razeen Ashraf Hussain
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Tomoki Sato
- Hiroshima City Funairi Citizens Hospital, Hiroshima, Japan
| | - Channarena Chuon
- Doctor Alliance of Union of Youth Federation of Cambodia (DAUYFC), Phnom Penh, Cambodia
| | - Kanon Abe
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Aya Sugiyama
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Kazuaki Takahashi
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | | | - Vichit Ork
- National Immunization Program (NIP), Ministry of Health, Phnom Penh, Cambodia
| | - Md Shafiqul Hossain
- Expanded Program On Immunization, World Health Organization Country Office, Phnom Penh, Cambodia
| | | | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
10
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
11
|
Castro GM, Sosa MJ, Sicilia PE, Riberi MI, Moreno C, Cattaneo R, Debes JD, Barbás MG, Cudolá AE, Pisano MB, Ré VE. Acute and chronic HBV infection in central Argentina: High frequency of sub-genotype F1b, low detection of clinically relevant mutations and first evidence of HDV. Front Med (Lausanne) 2023; 9:1057194. [PMID: 36698842 PMCID: PMC9868314 DOI: 10.3389/fmed.2022.1057194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/16/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Genomic analysis of hepatitis B virus (HBV) identifies phylogenetic variants, which may lead to distinct biological and clinical behaviors. The satellite hepatitis D virus (HDV) may also influence clinical outcomes in patients with hepatitis B. The aim of this study was to investigate HBV genetic variants, including clinically relevant mutations, and HDV infection in acute and chronic hepatitis B patients in central Argentina. Methods A total of 217 adult HBV infected patients [acute (AHB): n = 79; chronic (CHB): n = 138] were studied; 67 were HBV/human immunodeficiency virus (HIV) coinfected. Clinical and demographic data were obtained from medical records. Serological markers were determined. Molecular detection of HBV and HDV was carried out by RT-Nested PCR, followed by sequencing and phylogenetic analysis. Results Overall, genotype (gt) F [sub-genotype (sgt) F1b] was the most frequently found. In AHB patients, the gts/sgts found were: F1b (74.7%) > A2 (13.9%) > F4 (7.6%) > C (2.5%) > A1 (1.3%). Among CHB patients: F1b (39.1%) > A2 (23.9%) > F4 (18.2%) > D (9.4%) > C and F6 (3.6% each) > A1, A3 and B2 (0.7% each). The distribution of sgt A2 and gt D was significantly different between HBV mono and HBV/HIV coinfected patients [A2: 15.9% vs. 35.7% (p < 0.05), respectively and D: 14.6% vs. 1.8% (p < 0.05), respectively]. Mutation frequency in basal core promoter/pre-Core (BCP/pC) region was 35.5% (77/217) [AHB: 20.3% (16/79), CHB: 44.2% (61/138)]. In the open reading frame (ORF) S, mutations associated with vaccine escape and diagnostic failure were detected in 7.8% of the sequences (17/217) [AHB: 3.8% (3/79), CHB: 10.1% (14/138)]. ORF-P amino acid substitutions associated with antiviral resistance were detected in 3.2% of the samples (7/217) [AHB: 1.3% (1/79), CHB 4.3%, (6/138)]. The anti-HDV seropositivity was 5.2% (4/77); one sample could be sequenced, belonging to gt HDV-1 associated with sgt HBV-D3. Discussion We detected an increase in the circulation of genotype F in Central Argentina, particularly among AHB patients, suggesting transmission advantages over the other genotypes. A low rate of mutations was detected, especially those with antiviral resistance implications, which is an encouraging result. The evidence of HDV circulation in our region, reported for the first time, alerts the health system for its search and diagnosis.
Collapse
Affiliation(s)
- Gonzalo M. Castro
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina,*Correspondence: Gonzalo M. Castro,
| | - María J. Sosa
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Paola E. Sicilia
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - María I. Riberi
- Laboratorio de Virología, Servicio de Microbiología, Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Moreno
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Rodolfo Cattaneo
- Servicio de Gastroenterología, Hospital Rawson, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - José D. Debes
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - María G. Barbás
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Analía E. Cudolá
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - María B. Pisano
- Laboratorio de Hepatitis Virales, Instituto de Virología “Dr. J. M. Vanella” (InViV)–CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Viviana E. Ré
- Laboratorio de Hepatitis Virales, Instituto de Virología “Dr. J. M. Vanella” (InViV)–CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
12
|
Lefeuvre C, Roux M, Blanchard S, Le Guillou-Guillemette H, Boursier J, Lunel-Fabiani F, Jeannin P, Pivert A, Ducancelle A. Analysis of hepatic fibrosis markers in the serum of chronic hepatitis B patients according to basal core promoter/precore mutants. Sci Rep 2022; 12:10261. [PMID: 35715541 PMCID: PMC9205978 DOI: 10.1038/s41598-022-14285-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/03/2022] [Indexed: 12/29/2022] Open
Abstract
The A1762T/G1764A double mutant in the basal core promoter (BCP) region of the hepatitis B virus (HBV) is associated with severe hepatic lesions while the G1899A mutation with the double mutant is associated with a significant reduction in the risk of severe fibrosis. This study aims to measure a number of markers in the serum of patients with chronic HBV infection and to assess relationships between these markers and BCP/precore mutants with consideration of the stage of fibrosis. The serum levels of resistin, TGF-β1, MMP-1, TIMP-1, collagen IA1 and PDGF-BB, which are markers that are known to be involved in the process of hepatic fibrosis, were assayed. The serum levels of PDGF-BB and TIMP-1, and the mutation profile were independently associated with advanced fibrosis. A higher level of TIMP-1 was associated with advanced fibrosis regardless of the mutation status, and a higher level of PDGF-BB was associated with nonsevere fibrosis in patients infected with viruses harboring the A1762T/G1764A or A1762T/G1764A/G1899A mutations. Our results suggest an impact of the A1762T/G1764A mutant on the biological pathway related to TGF-β1 and PDGF-BB. In vitro studies are needed to understand the impact of these mutants on the serum secretion of markers involved in fibrosis severity.
Collapse
Affiliation(s)
| | - Marine Roux
- Univ Angers, HIFIH, SFR ICAT, F-49000, Angers, France
| | - Simon Blanchard
- Univ Angers, INSERM Unité 892, CNRS Unit 6299, F-49000, Angers, France
| | | | - Jérôme Boursier
- Univ Angers, CHU Angers, HIFIH, SFR ICAT, F-49000, Angers, France
| | | | - Pascale Jeannin
- Univ Angers, INSERM Unité 892, CNRS Unit 6299, F-49000, Angers, France
| | - Adeline Pivert
- Univ Angers, CHU Angers, HIFIH, SFR ICAT, F-49000, Angers, France
| | | |
Collapse
|
13
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
14
|
Laras A, Papatheodoridi M, Panopoulou E, Papatheodoridis GV, Hadziyannis SJ, Hadziyannis E. Serum hepatitis B virus RNA detectability, composition and clinical significance in patients with ab initio hepatitis B e antigen negative chronic hepatitis B. Virol J 2022; 19:22. [PMID: 35093105 PMCID: PMC8800272 DOI: 10.1186/s12985-022-01749-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Background Serum hepatitis B virus (HBV) RNA is a surrogate biomarker for intrahepatic covalently closed circular DNA (cccDNA) transcriptional activity and persistence. In this retrospective study, we investigated its presence, levels and composition in ab initio Hepatitis B e antigen (HBeAg) negative chronically infected patients and examined possible associations with disease activity and the outcome of nucleos(t)ide analogue (NA) discontinuation. Methods We developed a sensitive real time polymerase chain reaction (RT-PCR) for the specific detection of HBV pregenomic RNA (pgRNA) and precore (preC) mRNA and analyzed 220 serum specimens, 160 under NA treatment, from 116 Greek patients initially negative for HBeAg. Results HBV pgRNA was detected in 31% and preC mRNA in 15% of samples, at lower levels representing a small fraction (3.4%) of total core promoter produced transcripts. In the absence of NAs, pgRNA was detected in 57% of samples with median value of 5.19 (2.61–8.35) log10 cp/mL, at lower levels than HBV DNA and correlated significantly with ALT (r = 0.764) and serum HBV DNA (r = 0.906). A wide range of HBV DNA/pgRNA ratio was observed with significant inter- and intra-patient variation. During NA treatment, pgRNA displayed low detectability (22%) and variable levels, median 3.97 (2.30– 8.13) log10 cp/mL, as well as, a significant inverse correlation with the duration of treatment (r = − 0.346, p < 0.01). In 74 events of NA discontinuation, end-of-treatment pgRNA-positive compared to pgRNA-negative cases, experienced more frequently virological (p = 0.016) and clinical (p = 0.011) relapse. Conclusions In genotype D ab initio HBeAg negative patients, serum HBV RNA is primarily composed of pgRNA plus a minor fraction of preC mRNA transcripts. Serum pgRNA is associated with disease activity, suggesting lysis of infected hepatocytes as a possible source of serum HBV RNA in untreated patients and in the early phase of NA treatment. During long term NA treatment, detectable serum pgRNA predicts viral rebound and clinical relapse following treatment discontinuation and may thus serve as a marker for the decision of cessation of therapy.
Collapse
|
15
|
Chen QY, Jia HH, Wang XY, Shi YL, Zhang LJ, Hu LP, Wang C, He X, Harrison TJ, Jackson JB, Wu L, Fang ZL. Analysis of entire hepatitis B virus genomes reveals reversion of mutations to wild type in natural infection, a 15 year follow-up study. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105184. [PMID: 34902556 DOI: 10.1016/j.meegid.2021.105184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
It has been reported that some mutations in the genome of hepatitis B virus (HBV) may predict the outcome of the virus infection. However, evolutionary data derived from long-term longitudinal analysis of entire HBV genomes using next generation sequencing (NGS) remain rare. In this study, serum samples were collected from asymptomatic hepatitis B surface antigen (HBsAg) carriers from a long-term prospective cohort. The entire HBV genome was amplified by polymerase chain reaction (PCR) and sequenced using NGS. Twenty-eight time series serum samples from nine subjects were successfully analysed. The Shannon entropy (Sn) ranged from 0 to 0.89, with a median value of 0.76, and the genetic diversity (D) ranged from 0 to 0.013, with a median value of 0.004. Intrahost HBV viral evolutionary rates ranged from 2.39E-04 to 3.11E-03. Double mutations at nt1762(A → T) and 1764(G → A) and a stop mutation at nt1896(G → A) were seen in all sequences from subject BO129 in 2007. However, in 2019, most sequences were wild type at these positions. Deletions between nt 2920-3040 were seen in all sequences from subject TS115 in 2007 and 2013 but these were not present in 2004 or 2019. Some sequences from subject CC246 had predicted escape substitutions (T123N, G145R) in the surface protein in 2004, 2013 and 2019 but none of the sequences from 2007 had these changes. In conclusion, HBV mutations may revert to wild type in natural infection. Clinicians should be wary of predicting long-term prognoses on the basis of the presence of mutations.
Collapse
Affiliation(s)
- Qin-Yan Chen
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | - Hui-Hua Jia
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China; School of Preclinical Medicine, Guangxi Medical University, 22 ShuangYong Road, Nanning, Guangxi 530021, China
| | - Xue-Yan Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | - Yun-Liang Shi
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | - Lu-Juan Zhang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | - Li-Ping Hu
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | - Chao Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China
| | - Xiang He
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Tim J Harrison
- Division of Medicine, University College London Medical School, London, UK
| | - J Brooks Jackson
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Zhong-Liao Fang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, Guangxi 530028, China.
| |
Collapse
|
16
|
Abstract
Hepatitis B was discovered by researchers who were investigating jaundice associated with blood transfusions as well as parenterally administered medications. Through trial and error, the HBV was identified. There are specific tests that detect HBV infection, whether it is a previous exposure or active infection. The various HBV serologies are reviewed in this work as well. Hepatitis B surface antigen has emerged as a tool in defining treatment endpoint and its significance is reviewed. HBV genotypes are distributed uniquely throughout the world, in particular, genotype C is associated with higher rates of hepatocellular carcinoma. Various HBV genotypes and their impact on the clinical course are discussed. The relationship of HBV serologies and HBV DNA to disease progression is outlined. There are specific recommendations on monitoring those infected with HBV and this is reviewed here. HBV mutations have an impact on the disease course and those of significance are also discussed.
Collapse
|
17
|
Zhang H, Tu T. Approaches to quantifying Hepatitis B Virus covalently closed circular (ccc)DNA. Clin Mol Hepatol 2021; 28:135-149. [PMID: 34674513 PMCID: PMC9013611 DOI: 10.3350/cmh.2021.0283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Chronic hepatitis B is a major cause of liver disease worldwide and is currently incurable. Hepatitis B virus (HBV) covalently closed circular (ccc) DNA is a key form of the virus responsible for its persistence and is the transcriptional template for all viral transcripts. The field is focussed on methods to clear HBV cccDNA but this been limited by technical difficulties in its quantification due to: identical sequence to other forms of HBV DNA; low copy number per cell; and high resistance to denaturation by heat, leading to difficulty using polymerase chain reaction or hybridization methods for detection. A number of assays have been developed in order to overcome these hurdles either directly or detecting cccDNA levels indirectly via its transcriptional products. In this review, we summarize the approaches to cccDNA quantification that are currently used, and outline key open questions in the cccDNA biology field which remain to be answered due to the limitations of current methods.
Collapse
Affiliation(s)
- Henrik Zhang
- Storr Liver Centre, Westmead Clinical School and Westmead Institute for Medical Research, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Thomas Tu
- Storr Liver Centre, Westmead Clinical School and Westmead Institute for Medical Research, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead NSW 2145, Australia
| |
Collapse
|
18
|
Hayashi S, Nagaoka K, Tanaka Y. Blood-Based Biomarkers in Hepatitis B Virus-Related Hepatocellular Carcinoma, Including the Viral Genome and Glycosylated Proteins. Int J Mol Sci 2021; 22:11051. [PMID: 34681709 PMCID: PMC8540379 DOI: 10.3390/ijms222011051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC) development and is a global public health issue. High performance biomarkers can aid the early detection of HCC development in HBV-infected individuals. In addition, advances in the understanding of the pathogenesis of HBV infection and in clinical laboratory techniques have enabled the establishment of disease-specific tests, prediction of the progression of liver diseases, including HCC, and auxiliary diagnosis of HCC, using blood-based methods instead of biopsies of liver or HCC tissues. Viral factors such as the HBV genotype, HBV genetic mutations, HBV DNA, and HBV-related antigens, as well as host factors, such as tumor-associated proteins and post-translational modifications, especially glycosylated proteins, can be blood-based, disease-specific biomarkers for HCC development in HBV-infected patients. In this review, we describe the clinical applications of viral biomarkers, including the HBV genome and glycosylated proteins, for patients at a risk of HBV-related HCC, based on their molecular mechanisms. In addition, we introduce promising biomarker candidates for practical use, including colony stimulating factor 1 receptor (CSF1R), extracellular vesicles, and cell-free, circulating tumor DNA. The clinical use of such surrogate markers may lead to a better understanding of the risk of disease progression and early detection of HCC in HBV-infected patients, thereby improving their prognosis.
Collapse
Affiliation(s)
| | | | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (S.H.); (K.N.)
| |
Collapse
|
19
|
Wang SJ, Chen ZM, Wei M, Liu JQ, Li ZL, Shi TS, Nian S, Fu R, Wu YT, Zhang YL, Wang YB, Zhang TY, Zhang J, Xiong JH, Tong SP, Ge SX, Yuan Q, Xia NS. Specific determination of hepatitis B e antigen by antibodies targeting precore unique epitope facilitates clinical diagnosis and drug evaluation against hepatitis B virus infection. Emerg Microbes Infect 2021; 10:37-50. [PMID: 33296295 PMCID: PMC7832009 DOI: 10.1080/22221751.2020.1862631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis B e antigen (HBeAg) is a widely used marker both for chronic hepatitis B (CHB) clinical management and HBV-related basic research. However, due to its high amino acid sequence homology to hepatitis B core antigen (HBcAg), most of available anti-HBe antibodies are cross-reactive with HBcAg resulting in high interference against accurate measurement of the status and level of HBeAg. In the study, we generated several monoclonal antibodies (mAbs) targeting various epitopes on HBeAg and HBcAg. Among these mAbs, a novel mAb 16D9, which recognizes the SKLCLG (aa -10 to -5) motif on the N-terminal residues of HBeAg that is absent on HBcAg, exhibited excellent detection sensitivity and specificity in pairing with another 14A7 mAb targeting the HBeAg C-terminus (STLPETTVVRRRGR, aa141 to 154). Based on these two mAbs, we developed a novel chemiluminescent HBeAg immunoassay (NTR-HBeAg) which could detect HBeAg derived from various HBV genotypes. In contrast to widely used commercial assays, the NTR-HBeAg completely eliminated the cross-reactivity with secreted HBcAg from precore mutant (G1896A) virus in either cell culture or patient sera. The improved specificity of the NTR-HBeAg assay enables its applicability in cccDNA-targeting drug screening in cell culture systems and also provides an accurate tool for clinical HBeAg detection.
Collapse
Affiliation(s)
- Shao-Juan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Zi-Min Chen
- Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Min Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jia-Qi Liu
- Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Zong-Lin Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Tian-Shu Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Sheng Nian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Rao Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Yang-Tao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ya-Li Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ying-Bin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jun-Hui Xiong
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China.,Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Shu-Ping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sheng-Xiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
20
|
Elpek GO. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J Clin Cases 2021; 9:4890-4917. [PMID: 34307543 PMCID: PMC8283590 DOI: 10.12998/wjcc.v9.i19.4890] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of cancer among primary malignant tumors of the liver and is a consequential cause of cancer-related deaths worldwide. In recent years, uncovering the molecular mechanisms involved in the development and behavior of this tumor has led to the identification of multiple potential treatment targets. Despite the vast amount of data on this topic, HCC remains a challenging tumor to treat due to its aggressive behavior and complex molecular profile. Therefore, the number of studies aiming to elucidate the mechanisms involved in both carcinogenesis and tumor progression in HCC continues to increase. In this context, the close association of HCC with viral hepatitis has led to numerous studies focusing on the direct or indirect involvement of viruses in the mechanisms contributing to tumor development and behavior. In line with these efforts, this review was undertaken to highlight the current understanding of the molecular mechanisms by which hepatitis B virus (HBV) and hepatitis C virus (HCV) participate in oncogenesis and tumor progression in HCC and summarize new findings. Cumulative evidence indicates that HBV DNA integration promotes genomic instability, resulting in the overexpression of genes related to cancer development, metastasis, and angiogenesis or inactivation of tumor suppressor genes. In addition, genetic variations in HBV itself, especially preS2 deletions, may play a role in malignant transformation. Epigenetic dysregulation caused by both viruses might also contribute to tumor formation and metastasis by modifying the methylation of DNA and histones or altering the expression of microRNAs. Similarly, viral proteins of both HBV and HCV can affect pathways that are important anticancer targets. The effects of these two viruses on the Hippo-Yap-Taz pathway in HCC development and behavior need to be investigated. Additional, comprehensive studies are also needed to determine these viruses' interaction with integrins, farnesoid X, and the apelin system in malignant transformation and tumor progression. Although the relationship of persistent inflammation caused by HBV and HCV hepatitis with carcinogenesis is well defined, further studies are warranted to decipher the relationship among inflammasomes and viruses in carcinogenesis and elucidate the role of virus-microbiota interactions in HCC development and progression.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
21
|
Gerlich W. Hepatitis B virus - an anaerobic organism? J Hepatol 2021; 75:16-18. [PMID: 33820670 DOI: 10.1016/j.jhep.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/04/2022]
Affiliation(s)
- Wolfram Gerlich
- Institute for Medical Virology, Justus Liebig University Giessen, Germany.
| |
Collapse
|
22
|
Lost Small Envelope Protein Expression from Naturally Occurring PreS1 Deletion Mutants of Hepatitis B Virus Is Often Accompanied by Increased HBx and Core Protein Expression as Well as Genome Replication. J Virol 2021; 95:e0066021. [PMID: 33910956 PMCID: PMC8223946 DOI: 10.1128/jvi.00660-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) transcribes coterminal mRNAs of 0.7 to 3.5 kb from the 3.2-kb covalently closed circular DNA, with the 2.1-kb RNA being most abundant. The 0.7-kb RNA produces HBx protein, a transcriptional transactivator, while the 3.5-kb pregenomic RNA (pgRNA) drives core and P protein translation as well as genome replication. The large (L) and small (S) envelope proteins are translated from the 2.4-kb and 2.1-kb RNAs, respectively, with the majority of the S protein being secreted as noninfectious subviral particles and detected as hepatitis B surface antigen (HBsAg). pgRNA transcription could inhibit transcription of subgenomic RNAs. The present study characterized naturally occurring in-frame deletions in the 3' preS1 region, which not only codes for L protein but also serves as the promoter for 2.1-kb RNA. The human hepatoma cell line Huh7 was transiently transfected with subgenomic expression constructs for envelope (and HBx) proteins, dimeric constructs, or constructs mimicking covalently closed circular DNA. The results confirmed lost 2.1-kb RNA transcription and HBsAg production from many deletion mutants, accompanied by increases in other (especially 2.4-kb) RNAs, intracellular HBx and core proteins, and replicative DNA but impaired virion and L protein secretion. The highest intracellular L protein levels were achieved by mutants that had residual S protein expression or retained the matrix domain in L protein. Site-directed mutagenesis of a high replicating deletion mutant suggested that increased HBx protein expression and blocked virion secretion both contributed to the high replication phenotype. Our findings could help explain why such deletions are selected at a late stage of chronic HBV infection and how they contribute to viral pathogenesis. IMPORTANCE Expression of hepatitis B e antigen (HBeAg) and overproduction of HBsAg by wild-type HBV are implicated in the induction of immune tolerance to achieve chronic infection. How HBV survives the subsequent immune clearance phase remains incompletely understood. Our previous characterization of core promoter mutations to reduce HBeAg production revealed the ability of the 3.5-kb pgRNA to diminish transcription of coterminal RNAs of 2.4 kb, 2.1 kb, and 0.7 kb. The later stage of chronic HBV infection often selects for in-frame deletions in the preS region. Here, we found that many 3' preS1 deletions prevented transcription of the 2.1-kb RNA for HBsAg production, which was often accompanied by increases in intracellular 3.5-, 0.7-, and especially 2.4-kb RNAs, HBx and core proteins, and replicative DNA but lost virion secretion. These findings established the biological consequences of preS1 deletions, thus shedding light on why they are selected and how they contribute to hepatocarcinogenesis.
Collapse
|
23
|
In vitro expression of precore proteins of hepatitis B virus subgenotype A1 is affected by HBcAg, and can affect HBsAg secretion. Sci Rep 2021; 11:8167. [PMID: 33854155 PMCID: PMC8046783 DOI: 10.1038/s41598-021-87529-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
HBeAg, a non-particulate protein of hepatitis B virus (HBV), is translated from the precore/core region as a precursor, which is post-translationally modified. Subgenotype A1 of HBV, which is a risk factor for hepatocellular carcinoma (HCC), has unique molecular characteristics in the basic core promoter/precore regions. Carriers of A1 exhibit early HBeAg loss. We sought to further characterize the precore proteins of A1 in vitro. HuH-7 cells were transfected with subgenomic constructs expressing individual precore proteins. Western blot analysis using DAKO anti-core antibody showed the expected sizes and a 1 kDa larger band for P22, P20 and P17. Using confocal microscopy, a cytoplasmic accumulation of HBeAg and precursors was observed with P25-expressing plasmid, whereas P22 localized both in the cytoplasm and nucleus. P20 and P17, which lack the carboxy end of P22 showed strong nuclear accumulation, implicating a nuclear localization signal in the N-terminal 10 amino acids. G1862T, unique to subgenotype A1, is frequently found in HBV from HCC patients. P25 with G1862T showed delayed and reduced HBeAg expression/secretion. Knock-out of core in the replication competent clones led to precore protein accumulation in the cytoplasm/perinuclear region, and decreased HBeAg secretion. Knock-out of precore proteins increased HBsAg secretion but intracellular HBsAg expression was unaffected. Over-expression of precore proteins in trans led to decreased HBsAg expression and secretion. Intracellular trafficking of HBV A1 precore proteins was followed. This was unaffected by the CMV promoter and different cell types. In the viral context, precore protein expression was affected by absence of core, and affected HBsAg expression, suggesting an interrelationship between precore proteins, HBcAg and HBsAg. This modulatory role of HBeAg and its precursors may be important in viral persistence and ultimate development of HCC.
Collapse
|
24
|
Liu HB, Chen QY, Wang XY, Zhang LJ, Hu LP, Harrison TJ, Wang C, Fang ZL. Infection with Hepatitis B Virus May Increase the Serum Concentrations of Osteopontin. Intervirology 2021; 64:126-134. [PMID: 33735879 PMCID: PMC8491474 DOI: 10.1159/000513687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Serum osteopontin (OPN) concentrations were found to be significantly increased in patients infected with hepatitis B virus (HBV) and patients with hepatocellular carcinoma (HCC). OBJECTIVE The aim of this study was to determine the association among HCC, OPN, and HBV. METHODS Two hundred and forty-one subjects were recruited and divided into 6 groups: healthy controls, asymptomatic HBsAg carriers, HBsAg (-) patients with other tumors, HBsAg (+) chronic liver disease patients, HBsAg (+) patients with HCC, and HBsAg (-) patients with HCC or liver cirrhosis (LC). Serum concentrations of OPN and HBsAg were measured and analyzed. RESULTS OPN concentrations in the HBsAg (+) HCC group were significantly higher than the healthy control group and the HBsAg (-) patients with other cancers (both p = 0.0001). The OPN concentrations of the HBsAg (-) patients with HCC or LC also did not differ significantly from those of the healthy control group (p = 0.075). There is a correlation between the titer of HBsAg and concentrations of OPN in all 3 HBsAg (+) groups (all p values <0.05). CONCLUSIONS Infection with HBV may increase the serum concentrations of OPN. The association of OPN and HCC may be not attributable to tumor development per se but, rather, to HBV infection.
Collapse
Affiliation(s)
- Hua-Bing Liu
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Qin-Yan Chen
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, China
| | - Xue-Yan Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, China
| | - Lu-Juan Zhang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, China
| | - Li-Ping Hu
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, China
| | - Tim J Harrison
- Division of Medicine, UCL Medical School, London, United Kingdom
| | - Chao Wang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, China
| | - Zhong-Liao Fang
- Guangxi Zhuang Autonomous Region Center for Disease Prevention and Control, Guangxi Key Laboratory for the Prevention and Control of Viral Hepatitis, Nanning, China,
| |
Collapse
|
25
|
Li J, Li J, Chen S, Yuan Q, Zhang J, Wu J, Jiang Q, Wang Q, Xia NS, Zhang J, Tong S. Naturally occurring 5' preS1 deletions markedly enhance replication and infectivity of HBV genotype B and genotype C. Gut 2021; 70:575-584. [PMID: 32571971 DOI: 10.1136/gutjnl-2019-320096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Deletion of 15-nucleotide or 18-nucleotide (nt) covering preS1 ATG frequently arises during chronic infection with HBV genotypes B and C. Since the second ATG is 33nt downstream, they truncate large (L) envelope protein by 11 residues like wild-type genotype D. This study characterised their functional consequences. METHODS HBV genomes with or without deletion were amplified from a patient with advanced liver fibrosis and assembled into replication competent 1.1mer construct. Deletion, insertion or point mutation was introduced to additional clones of different genotypes. Viral particles concentrated from transfected HepG2 cells were inoculated to sodium taurocholate cotransporting polypeptide (NTCP)-reconstituted HepG2 (HepG2/NTCP) cells or differentiated HepaRG cells, and HBV RNA, DNA, proteins were monitored. RESULTS From transfected HepG2 cells, the 15-nt and 18-nt deletions increased HBV RNA, replicative DNA and extracellular virions. When same number of viral particles was inoculated to HepG2/NTCP cells, the deletion mutants showed higher infectivity. Conversely, HBV infectivity was diminished by putting back the 18nt into naturally occurring genotype C deletion mutants and by adding 33nt to genotype D. Infectivity of full-length genotype C clones was also enhanced by mutating the first ATG codon of the preS1 region but diminished by mutating the second in-frame ATG. Removing N-terminal 11 residues from preS1 peptide 2-59 of genotype C potentiated inhibition of HBV infection and enhanced binding to HepG2/NTCP cells. CONCLUSIONS The 15-nt and 18-nt deletions somehow increase HBV RNA, replicative DNA and virion production. Shortened L protein is more efficient at mediating HBV infection.
Collapse
Affiliation(s)
- Jing Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shiqi Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Publich Health, Xiamen University, Xiamen, China
| | - Jing Zhang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qirong Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianru Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Publich Health, Xiamen University, Xiamen, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA .,Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Shivlata L, Pacholi S, Chouksey VK, Barde PV. Molecular characterization of hepatitis B virus reveals circulation of multiple subgenotypes of genotype D with clinically important mutations in central India. Indian J Med Microbiol 2021; 39:67-72. [PMID: 33515632 DOI: 10.1016/j.ijmmb.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Hepatitis B virus (HBV) is one of the leading causes of morbidity and mortality across the globe. The pathogenesis, clinical outcomes, disease progression and response to antiviral treatment of HBV depend on infecting genotypes and mutations across HBV genome. There is a lack of such information from central India. The present study was planned to identify genotype/subgenotype and epidemiologically important mutation in HBV circulating in the area. METHODS Samples positive for HBsAg by ELISA from 2012 to 2016 were included and analysed in this retrospective study. The amplification of partial S gene (n = 25) and full genome (n = 10) was carried out to determine the genotype/subgenotype and genome wide mutations of HBV. The sequencing data was analysed using bioinformatics tools. RESULTS All 25 sequences belonged to genotype D; subgenotypes D1, D2, D3 and D5 with dominance of D1 were detected in the study subjects. Mutational profiling revealed the presence of nucleotide substitutions in promoter/regulatory/precore region associated with liver disease progressions. The amino acid (aa) changes associated with vaccine escape, immune escape, antiviral resistance and progression to liver cirrhosis (LC) or hepatocellular carcinoma (HCC) were detected. CONCLUSIONS This maiden molecular study on HBV from central India indicates that the genotype D with subgenotypes D1, D2, D3 and D5 harbouring mutations of clinical and epidemiological importance are in circulation. This study will serve as a baseline for future. Studies with larger sample size may aid in identifying the circulation of more genotypes.
Collapse
Affiliation(s)
- L Shivlata
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur, MP, India.
| | - Sanchita Pacholi
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur, MP, India.
| | - Vivek Kumar Chouksey
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur, MP, India.
| | - Pradip V Barde
- Division of Virology and Zoonoses, ICMR-National Institute of Research in Tribal Health, Nagpur Road, Jabalpur, MP, India.
| |
Collapse
|
27
|
Abstract
Hepatitis B virus (HBV) is a major cause of hepatocellular carcinoma (HCC). There are approximately 250 million people in the world that are chronically infected by this virus, resulting in nearly 1 million deaths every year. Many of these patients die from severe liver diseases, including HCC. HBV may induce HCC through the induction of chronic liver inflammation, which can cause oxidative stress and DNA damage. However, many studies also indicated that HBV could induce HCC via the alteration of hepatocellular physiology that may involve genetic and epigenetic changes of the host DNA, the alteration of cellular signaling pathways, and the inhibition of DNA repair mechanisms. This alteration of cellular physiology can lead to the accumulation of DNA damages and the promotion of cell cycles and predispose hepatocytes to oncogenic transformation.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA.
| |
Collapse
|
28
|
Zhang H, Chen F, Giang E, Bao F, Lauer GM, Marsh C, Law M, Pockros PJ. Virus reactivation in a non-cirrhotic HBV patient requiring liver transplantation after cessation of nucleoside analogue therapy. Antivir Ther 2021; 26:3-8. [PMID: 35485347 PMCID: PMC9272995 DOI: 10.1177/13596535211042205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Nucleos(t)ide analogues (NAs) are a mainstay of therapy for chronic hepatitis B (CHB) infections and have a profound effect on hepatitis B virus (HBV) suppression. We report a rare case of HBV reactivation in a CHB patient without cirrhosis following cessation of NA therapy that resulted in acute liver failure requiring liver transplantation. Investigation of the viral genetics and host immune responses suggest that viral mutations known to promote virus replication are associated with reactivation, whereas adaptive immunity to HBV remained defective in this patient. Viral sequencing may be useful for identifying mutations that are unfavorable for therapy withdrawal.
Collapse
Affiliation(s)
- Han Zhang
- Division of Gastroenterology/Hepatology, Scripps Clinic, La Jolla, CA, USA
| | - Fang Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Fei Bao
- Department of Pathology, Scripps Clinic, La Jolla, CA, USA
| | - Georg M Lauer
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher Marsh
- Scripps Center for Organ Transplantation, Scripps Clinic, La Jolla, CA, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Paul J Pockros
- Division of Gastroenterology/Hepatology, Scripps Clinic, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
29
|
Wang T, Qin Y, Zhang J, Li X, Tong S, Zhao W, Zhang J. An antiviral drug-resistant mutant of hepatitis B virus with high replication capacity in association with a large in-frame deletion in the preS1 region of viral surface gene. Virus Genes 2020; 56:677-686. [PMID: 32840739 DOI: 10.1007/s11262-020-01787-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
We amplified a full-length hepatitis B virus (HBV) genome from the serum of a chronic hepatitis B patient who experienced virological breakthrough with high HBV DNA titer following adefovir (ADV) therapy. The PCR product was cloned and sequencing of the six clones revealed an isolate of C2 subgenotype. Mutation(s) in the polymerase gene responsible for ADV resistance included rtA181T (all clones) and rtN236T (four clones). The rtA181T mutation caused the W172* nonsense mutation in the overlapping S gene. In addition, all the clones harbored another nonsense mutation in the S gene (C69*) and a 207nt in-frame deletion in the preS1 region. These clones were converted to a 1.1mer construct for transient transfection of Huh7 cells. All the clones were deficient in hepatitis B surface antigen production. Three clones had similar levels of DNA replication. Comparison with a wild-type clone of the same genotype revealed a higher intracellular level of replicative DNA for clone c4, which was reduced by putting back the deleted 207nt, but not by co-transfection with an expression construct for the three surface proteins to rescue virion production. The HBcAg expression of the c4 and c4+207nt clones was mainly in the nucleus. Co-transfection with the L/M/S proteins expression construct did not alter the distribution of core. Clone c4 showed a significantly decreased susceptibility to ADV, a mild reduction in susceptibility to lamivudine and tenofovir, but remained sensitive to entecavir. In conclusion, this is an unusual ADV-resistant HBV isolate harboring two nonsense mutations in the S gene and a large in-frame deletion in the preS1 region, but still retains a high replication phenotype, which can provide a platform for recombinant vector construction.
Collapse
Affiliation(s)
- Ting Wang
- Department of Infectious Diseases, Jing'An District Centre Hospital of Shanghai (Huashan Hospital, Fudan University Jing'An Branch), Shanghai, China
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Gusu District, Soochow, 215006, Jiangsu, China
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Jing Zhang
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinyan Li
- Department of Hepatitis Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuping Tong
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Weifeng Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Gusu District, Soochow, 215006, Jiangsu, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Jing'An District Centre Hospital of Shanghai (Huashan Hospital, Fudan University Jing'An Branch), Shanghai, China.
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
30
|
Velkov S, Protzer U, Michler T. Global Occurrence of Clinically Relevant Hepatitis B Virus Variants as Found by Analysis of Publicly Available Sequencing Data. Viruses 2020; 12:v12111344. [PMID: 33238650 PMCID: PMC7700573 DOI: 10.3390/v12111344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Several viral factors impact the natural course of hepatitis B virus (HBV) infection, the sensitivity of diagnostic tests, or treatment response to interferon-α and nucleos(t)ide analogues. These factors include the viral genotype and serotype but also mutations affecting the HBV surface antigen, basal core promoter/pre-core region, or reverse transcriptase. However, a comprehensive overview of the distribution of HBV variants between HBV genotypes or different geographical locations is lacking. To address this, we performed an in silico analysis of publicly available HBV full-length genome sequences. We found that not only the serotype frequency but also the majority of clinically relevant mutations are primarily associated with specific genotypes. Distinct mutations enriched in certain world regions are not explained by the local genotype distribution. Two HBV variants previously identified to confer resistance to the nucleotide analogue tenofovir in vitro were not identified, questioning their translational relevance. In summary, our work elucidates the differences in the clinical manifestation of HBV infection observed between genotypes and geographical locations and furthermore helps identify suitable diagnostic tests and therapies.
Collapse
Affiliation(s)
- Stoyan Velkov
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, D-81675 München, Germany; (S.V.); (U.P.)
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, D-81675 München, Germany; (S.V.); (U.P.)
- German Center for Infection Research (DZIF), Munich Partner Site, D-81675 Munich, Germany
| | - Thomas Michler
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, D-81675 München, Germany; (S.V.); (U.P.)
- German Center for Infection Research (DZIF), Munich Partner Site, D-81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-6814
| |
Collapse
|
31
|
Peiffer KH, Spengler C, Basic M, Jiang B, Kuhnhenn L, Obermann W, Zahn T, Glitscher M, Loglio A, Facchetti F, Carra G, Kubesch A, Vermehren J, Knop V, Graf C, Dietz J, Finkelmeier F, Herrmann E, Trebicka J, Grünweller A, Zeuzem S, Sarrazin C, Lampertico P, Hildt E. Quadruple mutation GCAC1809-1812TTCT acts as a biomarker in healthy European HBV carriers. JCI Insight 2020; 5:135833. [PMID: 33055418 PMCID: PMC7710305 DOI: 10.1172/jci.insight.135833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Many mutation analyses of the HBV genome have been performed in the search for new prognostic markers. However, the Kozak sequence preceding precore was covered only infrequently in these analyses. In this study, the HBV core promoter/precore region was sequenced in serum samples from European inactive HBV carriers. Quadruple mutation GCAC1809-1812TTCT was found with a high prevalence of 42% in the Kozak sequence preceding precore among all HBV genotypes. GCAC1809-1812TTCT was strongly associated with coexistence of basal core promoter (BCP) double mutation A1762T/G1764A and lower HBV DNA levels. In vitro GCAC1809-1812TTCT lead to drastically diminished synthesis of pregenomic RNA (pgRNA), precore mRNA, core, HBsAg, and HBeAg. Calculation of the pgRNA secondary structure suggests a destabilization of the pgRNA structure by A1762T/G1764A that was compensated by GCAC1809-1812TTCT. In 125 patients with HBV-related cirrhosis, GCAC1809-1812TTCT was not detected. While a strong association of GCAC1809-1812TTCT with inactive carrier status was observed, BCP double mutation was strongly correlated with cirrhosis, but this was only observed in absence of GCAC1809-1812TTCT. In conclusion, our data reveal that GCAC1809-1812TTCT is highly prevalent in inactive carriers and acts as a compensatory mutation for BCP double mutation. GCAC1809-1812TTCT seems to be a biomarker of good prognosis in HBV infection. HBV core promoter/precore region was sequenced in serum samples of European inactive HBV carriers, revealing that GCAC1809-1812TTCT mutation is highly prevalent in inactive carriers.
Collapse
Affiliation(s)
- Kai-Henrik Peiffer
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany.,Paul Ehrlich Institute, Division of Virology, Langen, Germany
| | | | - Michael Basic
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany.,Paul Ehrlich Institute, Division of Virology, Langen, Germany
| | - Bingfu Jiang
- Paul Ehrlich Institute, Division of Virology, Langen, Germany
| | - Lisa Kuhnhenn
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Wiebke Obermann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Tobias Zahn
- Paul Ehrlich Institute, Division of Virology, Langen, Germany
| | - Mirco Glitscher
- Paul Ehrlich Institute, Division of Virology, Langen, Germany
| | - Alessandro Loglio
- A.M. and A. Migliavacca Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Maggiore Hospital, University of Milan, Milan, Italy
| | - Floriana Facchetti
- A.M. and A. Migliavacca Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Maggiore Hospital, University of Milan, Milan, Italy
| | - Gert Carra
- Paul Ehrlich Institute, Division of Virology, Langen, Germany
| | - Alica Kubesch
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Johannes Vermehren
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Viola Knop
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christiana Graf
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Julia Dietz
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Eva Herrmann
- Department of Medicine, Institute of Biostatistics and Mathematical Modeling, J.W. Goethe University, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Stefan Zeuzem
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany
| | - Christoph Sarrazin
- Department of Gastroenterology and Hepatology, University Hospital Frankfurt, Frankfurt, Germany.,Department of Gastroenterology, St. Josefs Hospital, Wiesbaden, Germany
| | - Pietro Lampertico
- A.M. and A. Migliavacca Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Maggiore Hospital, University of Milan, Milan, Italy
| | - Eberhard Hildt
- Paul Ehrlich Institute, Division of Virology, Langen, Germany.,German Center for Infection Research (DZIF), Gießen-Marburg-Langen, Germany
| |
Collapse
|
32
|
Gerlich WH, Glebe D. Enigmatic PreS deletions in hepatitis B virus DNA. Virus Genes 2020; 56:675-676. [PMID: 33151446 PMCID: PMC7679326 DOI: 10.1007/s11262-020-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Wolfram H Gerlich
- Institute for Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| | - Dieter Glebe
- Institute for Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
33
|
The evolution and clinical impact of hepatitis B virus genome diversity. Nat Rev Gastroenterol Hepatol 2020; 17:618-634. [PMID: 32467580 DOI: 10.1038/s41575-020-0296-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
The global burden of hepatitis B virus (HBV) is enormous, with 257 million persons chronically infected, resulting in more than 880,000 deaths per year worldwide. HBV exists as nine different genotypes, which differ in disease progression, natural history and response to therapy. HBV is an ancient virus, with the latest reports greatly expanding the host range of the Hepadnaviridae (to include fish and reptiles) and casting new light on the origins and evolution of this viral family. Although there is an effective preventive vaccine, there is no cure for chronic hepatitis B, largely owing to the persistence of a viral minichromosome that is not targeted by current therapies. HBV persistence is also facilitated through aberrant host immune responses, possibly due to the diverse intra-host viral populations that can respond to host-mounted and therapeutic selection pressures. This Review summarizes current knowledge on the influence of HBV diversity on disease progression and treatment response and the potential effect on new HBV therapies in the pipeline. The mechanisms by which HBV diversity can occur both within the individual host and at a population level are also discussed.
Collapse
|
34
|
Lau KCK, Joshi SS, Mahoney DJ, Mason AL, van Marle G, Osiowy C, Coffin CS. Differences in HBV Replication, APOBEC3 Family Expression, and Inflammatory Cytokine Levels Between Wild-Type HBV and Pre-core (G1896A) or Basal Core Promoter (A1762T/G1764A) Mutants. Front Microbiol 2020; 11:1653. [PMID: 32760388 PMCID: PMC7372132 DOI: 10.3389/fmicb.2020.01653] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background Chronic hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC) world-wide. HBV variants, particularly the G1896A pre-core (PC) and A1762T/G1764A basal core promoter (BCP) mutations, are established risk factors for cirrhosis and HCC, but the molecular biological basis is unclear. We hypothesized that these variants result in differential HBV replication, APOBEC3 family expression, and cytokine/chemokine expression. Methods HepG2 cells were transfected with monomeric full-length containing wild-type, PC, or BCP HBV. Cells and supernatant were collected to analyze viral infection markers (i.e., HBsAg, HBeAg, HBV DNA, and RNA). Cellular APOBEC3 expression and activity was assessed by quantitative real-time (qRT)-PCR, immunoblot, differential DNA denaturation PCR, and sequencing. Cytokine/chemokines in the supernatant and in serum from 11 CHB carriers (4 non-cirrhotic; 7 cirrhotic and/or HCC) with predominantly wild-type, PC, or BCP variants were evaluated by Luminex. Results HBeAg expression was reduced in PC and BCP variants, and higher supernatant HBV DNA and HBV RNA levels were found with A1762T/G1764A vs. G1896A mutant (p < 0.05). Increased APOBEC3G protein levels in wild-type vs. mutant were not associated with HBV covalently closed circular DNA G-to-A hypermutations. Differences in cytokine/chemokine expression in culture supernatants, especially IL-13 were observed amongst the variants analyzed. Noticeable increases of numerous cytokines/chemokines, including IL-4 and IL-8, were observed in ex vivo serum collected from CHB carriers with PC mutant. Conclusion HBV sequence variation leads to differences in HBV protein production (HBeAg) and viral replication in addition to altered host innate antiviral restriction factor (APOBEC3) and cytokine/chemokine expression.
Collapse
Affiliation(s)
- Keith C K Lau
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calgary Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shivali S Joshi
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calgary Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Douglas J Mahoney
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrew L Mason
- Department of Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Guido van Marle
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carla Osiowy
- Viral Hepatitis and Bloodborne Pathogens, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Carla S Coffin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calgary Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Zhou X, Wuchter P, Egerer G, Kriegsmann M, Kommoss FKF, Witzens-Harig M, Kriegsmann K. Serological hepatitis B virus (HBV) activity in patients with HBV infection and B-cell non-Hodgkin's lymphoma. Eur J Haematol 2020; 104:469-475. [PMID: 31961011 DOI: 10.1111/ejh.13388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Previous epidemiological studies suggest an association between hepatitis B virus (HBV) infection and B-cell non-Hodgkin lymphoma (B-NHL). The aim of our study was to evaluate clinical characteristics and serological indicators of HBV activity in patients who were diagnosed with both HBV infection and indolent or aggressive B-NHL. METHODS Seventy-two patients with current or resolved HBV infection and B-NHL were identified between 2000 and 2017 at our institution. RESULTS Forty-five (63%) and 27 (37%) patients were identified with aggressive and indolent B-NHL, respectively. In indolent B-NHL, the proportion of HBsAg-positive patients was significantly higher compared with aggressive B-NHL (59% vs 38%, P = .03). HBV-DNA levels were significantly higher in patients with indolent compared to aggressive B-NHL (P = .01). In the subgroup analyzes of follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL), the rate of HBsAg positivity in FL is significantly higher than that in DLBCL (83% vs 44%, P = .04), and HBV-DNA levels were significantly higher in FL compared with DLBCL (P = .007). CONCLUSION Our results suggest that serological HBV activity is higher in patients with both HBV infection and indolent B-NHL compared to those with aggressive B-NHL.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine V, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany.,Department of Internal Medicine II, Würzburg University Hospital, University of Würzburg, Würzburg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | - Gerlinde Egerer
- Department of Internal Medicine V, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- Insititue of Pathology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Felix K F Kommoss
- Insititue of Pathology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Mathias Witzens-Harig
- Department of Internal Medicine V, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Katharina Kriegsmann
- Department of Internal Medicine V, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
36
|
High mutation prevalence of precore and basal core promoter in pregnant women who underwent spontaneous HBeAg seroconversion within one year postpartum. Dig Liver Dis 2020; 52:199-204. [PMID: 31320303 DOI: 10.1016/j.dld.2019.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Seroconversion of hepatitis B e antigen (HBeAg) is a critical event in the natural course of hepatitis B virus (HBV) infection. AIM We herein characterize the virological factors associated with postpartum spontaneous HBeAg seroconversion. METHODS A total of 214 pregnant women positive for both hepatitis B surface antigen (HBsAg) and HBeAg were followed up at 7-12 months postpartum. RESULTS Of the subjects, 26 (12.1%) achieved spontaneous HBeAg seroconversion. Receiver operating curve analysis indicated that HBV DNA level <1.0 × 107 IU/mL, HBsAg <1.0 × 104 IU/mL and HBeAg <7.36 × 102 S/CO each independently predicted HBeAg seroconversion within 12 months postpartum. At delivery, 73.1% (19/26) women with postpartum HBeAg seroconversion had precore (PC) and/or basal core promoter (BCP) mutations, higher than that (5/36, 13.9%) in the women without postpartum seroconversion. Binary logistic regression analysis indicated that the presence of mutations in PC, BCP, and both PC and BCP at delivery was associated with an increased likelihood (OR = 13.286, 16. 238, and 22.143 respectively, all P < 0.05) to undergo postpartum spontaneous HBeAg seroconversion. CONCLUSION These results suggest that quantitative determination of virological markers and sequencing PC and BCP can predict spontaneous HBeAg seroconversion, which could be valuable in deciding antiviral therapy against HBV.
Collapse
|
37
|
Bannister E, Sozzi V, Mason H, Locarnini S, Hardikar W, Revill PA. Analysis of the in vitro replication phenotype of African hepatitis B virus (HBV) genotypes and subgenotypes present in Australia identifies marked differences in DNA and protein expression. Virology 2019; 540:97-103. [PMID: 31765921 DOI: 10.1016/j.virol.2019.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus infection in Africa is characterised by distinct genotypes with observed differences in natural history and clinical outcomes. Replication-competent cDNA clones of African genotypes were generated from patient-derived sequences identified in African children with chronic hepatitis B infection living in Australia: A1 (wild-type and basal core promotor (BCP) mutant), D2, D6, and E, comparing the replication phenotype to an established D3 cDNA clone in a transient transfection cell culture model. All clones replicated efficiently although less than the European D3 reference clone, and demonstrated marked differences in replication capacity, highest for subgenotypes A1 and D2. The BCP mutation increased the replication levels of the A1 subgenotype compared to wild-type. Intracellular and secreted surface antigen and HBeAg protein expression also varied across genotypes. We observed differences in functional activity in the upstream regulatory region across the genotypes that may contribute to the replication and protein differences observed.
Collapse
Affiliation(s)
- E Bannister
- Department of Gastroenterology and Clinical Nutrition, The Royal Children's Hospital, Melbourne, Victoria, Australia; Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - V Sozzi
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - H Mason
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - S Locarnini
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - W Hardikar
- Department of Gastroenterology and Clinical Nutrition, The Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - P A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
38
|
Rybicka M, Woziwodzka A, Romanowski T, Sznarkowska A, Stalke P, Dręczewski M, Bielawski KP. Host genetic background affects the course of infection and treatment response in patients with chronic hepatitis B. J Clin Virol 2019; 120:1-5. [PMID: 31505315 DOI: 10.1016/j.jcv.2019.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Hepatitis B virus (HBV) utilizes proteins encoded by the host to infect hepatocytes and replicate. Recently, several novel host factors have been identified and described as important to the HBV lifecycle. The influence of host genetic background on chronic hepatitis B (CHB) pathogenesis is still poorly understood. OBJECTIVES Here, we aimed to investigate the association of NTCP, FXRα, HNF1α, HNF4α, and TDP2 genetic polymorphisms with the natural course of CHB and antiviral treatment response. STUDY DESIGN We genotyped 18 single-nucleotide polymorphisms using MALDI-TOF mass spectrometry in 136 patients with CHB and 100 healthy individuals. We investigated associations of the selected polymorphisms with biochemical, serological and hepatic markers of disease progression and treatment response. RESULTS No significant differences in genotypic or allelic distribution between CHB and control groups were observed. Within TDP2, rs3087943 variations were associated with treatment response, and rs1047782 modified the risk of advanced liver inflammation. Rs7154439 within NTCP was associated with HBeAg seroconversion after 48 weeks of nucleos(t)ide analogue treatment. HNF1α genotypes were associated with treatment response, liver damage and baseline HBeAg presence. HNF4α rs1800961 predicted PEG-IFNα treatment-induced HBsAg clearance in long-term follow up. CONCLUSIONS This study indicates host genetic background relevance in the course of CHB and confirms the role of recently described genes for HBV infection. The obtained results might serve as a starting point for validation studies on the clinical application of selected genetic variants to predict individual risks of CHB-induced liver failure and treatment response.
Collapse
Affiliation(s)
- Magda Rybicka
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Anna Woziwodzka
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Tomasz Romanowski
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| | - Alicja Sznarkowska
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland; International Centre for Cancer Vaccine Science, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Piotr Stalke
- Department of Infectious Diseases, Medical University of Gdansk, ul. Powstania Styczniowego 9b, 81-519 Gdynia, Poland.
| | - Marcin Dręczewski
- Department of Infectious Diseases, Medical University of Gdansk, ul. Powstania Styczniowego 9b, 81-519 Gdynia, Poland.
| | - Krzysztof Piotr Bielawski
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
39
|
Podlaha O, Gane E, Brunetto M, Fung S, Chuang WL, Pan CQ, Jiang Z, Liu Y, Bhardwaj N, Mukherjee P, Flaherty J, Gaggar A, Subramanian M, Izumi N, Shalimar, Lim YS, Marcellin P, Buti M, Chan HLY, Agarwal K. Large-scale viral genome analysis identifies novel clinical associations between hepatitis B virus and chronically infected patients. Sci Rep 2019; 9:10529. [PMID: 31324819 PMCID: PMC6642195 DOI: 10.1038/s41598-019-46609-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Despite the high global prevalence of chronic hepatitis B (CHB) infection, datasets covering the whole hepatitis B viral genome from large patient cohorts are lacking, greatly limiting our understanding of the viral genetic factors involved in this deadly disease. We performed deep sequencing of viral samples from patients chronically infected with HBV to investigate the association between viral genome variation and patients' clinical characteristics. We discovered novel viral variants strongly associated with viral load and HBeAg status. Patients with viral variants C1817T and A1838G had viral loads nearly three orders of magnitude lower than patients without those variants. These patients consequently experienced earlier viral suppression while on treatment. Furthermore, we identified novel variants that either independently or in combination with precore mutation G1896A were associated with the transition from HBeAg positive to the negative phase of infection. These observations are consistent with the hypothesis that mutation of the HBeAg open reading frame is an important factor driving CHB patient's HBeAg status. This analysis provides a detailed picture of HBV genetic variation in the largest patient cohort to date and highlights the diversity of plausible molecular mechanisms through which viral variation affects clinical phenotype.
Collapse
Affiliation(s)
- Ondrej Podlaha
- Gilead Sciences Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA.
| | - Edward Gane
- Auckland Clinical Studies, Auckland, New Zealand
| | - Maurizia Brunetto
- Internal Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Liver Unit, University Hospital of Pisa Hepatology Unit, University Hospital of Pisa, Pisa, Italy
| | - Scott Fung
- Toronto General Hospital, Toronto, ON, Canada
| | - Wan-Long Chuang
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Calvin Q Pan
- Division of Gastroenterology and Hepatology, Department of Medicine, NYU Langone Health, NYU School of Medicine, New York, NY, USA
| | - Zhaoshi Jiang
- Gilead Sciences Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Yang Liu
- Gilead Sciences Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Neeru Bhardwaj
- Gilead Sciences Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | | | - John Flaherty
- Gilead Sciences Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Anuj Gaggar
- Gilead Sciences Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Mani Subramanian
- Gilead Sciences Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Shalimar
- All India Institute of Medical Sciences, Department of Gastroenterology, New Delhi, India
| | - Young-Suk Lim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | - Maria Buti
- Liver Unit, Department of Medicine, Hospital General Universitari Vall d'Hebron and Ciberehd del Instituto Carlos III, Barcelona, Spain
| | | | | |
Collapse
|
40
|
Ogura S, Tameda M, Sugimoto K, Ikejiri M, Usui M, Ito M, Takei Y. A substitution in the pre-S1 promoter region is associated with the viral regulation of hepatitis B virus. Virol J 2019; 16:59. [PMID: 31046787 PMCID: PMC6498540 DOI: 10.1186/s12985-019-1169-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Much evidence has demonstrated the influence of Hepatitis B virus (HBV) mutations on the clinical course of HBV infection. As large (L) protein plays a crucial role for viral entry, we hypothesized that mutations in the pre-S1 promoter region might affect the expression of L protein and subsequently change the biological characters of virus. Methods Patients infected with genotype C HBV were enrolled for analysis. HBV DNA sequences were inserted into a TA cloning vector and analyzed. To evaluate the effects of mutations in the pre-S1 promoter region, promoter activity and the expression of mRNA and L protein were analyzed using HepG2 cells. Results In total, 35 patients were enrolled and 13 patients (37.1%) had a single base substitution in the pre-S1 promoter region; the most frequent substitution was a G-to-A substitution at the 2765th base (G2765A) in the Sp1 region. The HBV viral load showed a negative correlation with the substitution ratio of the Sp1 region or G2765A (r = − 0.493 and − 0.473, respectively). Among those with a viral load ≤5.0 log IU/ml, patients with the G2765A substitution showed a significantly lower HBV viral load than those with the wild-type sequence. HepG2 cells transfected with the G2765A substitution vector showed reduced luciferase activity of the pre-S1 promoter, as well as reduced expression of pre-S1 mRNA and L protein. Furthermore, the G2765A substitution greatly reduced the L protein expression level of vector-produced virus particles. Conclusion G2765A substitution in the pre-S1 promoter reduced the expression of L protein and resulted in a low viral load and less severe disease in chronic HBV infections.
Collapse
Affiliation(s)
- Suguru Ogura
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masahiko Tameda
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazushi Sugimoto
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan. .,Department of Central Laboratory, Mie University Hospital, Tsu, Japan.
| | - Makoto Ikejiri
- Department of Central Laboratory, Mie University Hospital, Tsu, Japan
| | - Masanobu Usui
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
41
|
Norder H, Twagirumugabe T, Said J, Tian Y, Tang KW, Lindh M. High Frequency of Either Altered Pre-Core StartCodon or Weakened Kozak Sequence in the CorePromoter Region in Hepatitis B Virus A1 Strainsfrom Rwanda. Genes (Basel) 2019; 10:genes10030182. [PMID: 30813638 PMCID: PMC6471190 DOI: 10.3390/genes10030182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is endemic in Rwanda and is a major etiologic agent for chronic liver disease in the country. In a previous analysis of HBV strains from Rwanda, the S genes of most strains segregated into one single clade of subgenotype, A1. More than half (55%) of the anti-HBe positive individuals were viremic. In this study, 23 complete HBV genomes and the core promoter region (CP) from 18 additional strains were sequenced. Phylogenetic analysis of complete genomes confirmed that most Rwandan strain formed a single unique clade, within subgenotype A1. Strains from 17 of 22 (77%) anti-HBe positive HBV carriers had either mutated the precore start codon (9 strains with either CUG, ACG, UUG, or AAG) or mutations in the Kozak sequence preceding the pre-core start codon (8 strains). These mutually exclusive mutations were also identified in subgenotypes A1 (70/266; 26%), A2 (12/255; 5%), and A3 (26/49; 53%) sequences from the GenBank. The results showed that previous, rarely described HBV variants, expressing little or no HBeAg, are selected in anti-HBe positive subgenotype Al carriers from Rwanda and that mutations reducing HBeAg synthesis might be unique for a particular HBV clade, not just for a specific genotype or subgenotype.
Collapse
Affiliation(s)
- Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, 405 30 Gothenburg, Sweden.
| | - Theogene Twagirumugabe
- School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Joanna Said
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, 405 30 Gothenburg, Sweden.
| | - Yarong Tian
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, 405 30 Gothenburg, Sweden.
| | - Ka-Wei Tang
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, 405 30 Gothenburg, Sweden.
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, 405 30 Gothenburg, Sweden.
| |
Collapse
|
42
|
Zhang J, Zong L, Wang Y, Li C, Chen C, Wen Y, Li J, Tong S. Core gene insertion in hepatitis B virus genotype G functions at both the encoded amino acid sequence and RNA structure levels to stimulate core protein expression. Virology 2019; 526:203-213. [PMID: 30415131 PMCID: PMC6283280 DOI: 10.1016/j.virol.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus genotype G possesses a 36-nucleotide (nt) insertion at the 5' end of core gene, adding 12 residues to core protein. The insertion markedly increased core protein level irrespective of viral genotype, with the effect reproducible using CMV-core gene construct. Here we used such expression constructs and transient transfection experiments in Huh7 cells to identify the structural bases. The insertion is predicted to create a stem-loop structure 14nt downstream of core gene AUG. A + 1 or + 2 frameshift into the 36nt mitigated enhancement of core protein level. Point mutations to disrupt or restore the stem-loop had opposite effects on core protein expression. Shifting the translation initiation site downstream or further upstream of the stem-loop rendered it inhibitory or no longer stimulatory of core protein expression. Therefore, both the reading frame and a properly positioned stem-loop structure contribute to marked increase in core protein expression by the 36-nt insertion.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Zong
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Li
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chaoyang Chen
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, The Alpert Warren School of Medicine, Brown University, Providence, RI, USA
| | - Shuping Tong
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai, China; Liver Research Center, Rhode Island Hospital, The Alpert Warren School of Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
43
|
Meier-Stephenson V, Bremner WTR, Dalton CS, van Marle G, Coffin CS, Patel TR. Comprehensive Analysis of Hepatitis B Virus Promoter Region Mutations. Viruses 2018; 10:E603. [PMID: 30388827 PMCID: PMC6265984 DOI: 10.3390/v10110603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Over 250 million people are infected chronically with hepatitis B virus (HBV), the leading cause of liver cancer worldwide. HBV persists, due, in part, to its compact, stable minichromosome, the covalently-closed, circular DNA (cccDNA), which resides in the hepatocytes' nuclei. Current therapies target downstream replication products, however, a true virological cure will require targeting the cccDNA. Finding targets on such a small, compact genome is challenging. For HBV, to remain replication-competent, it needs to maintain nucleotide fidelity in key regions, such as the promoter regions, to ensure that it can continue to utilize the necessary host proteins. HBVdb (HBV database) is a repository of HBV sequences spanning all genotypes (A⁻H) amplified from clinical samples, and hence implying an extensive collection of replication-competent viruses. Here, we analyzed the HBV sequences from HBVdb using bioinformatics tools to comprehensively assess the HBV core and X promoter regions amongst the nearly 70,000 HBV sequences for highly-conserved nucleotides and variant frequencies. Notably, there is a high degree of nucleotide conservation within specific segments of these promoter regions highlighting their importance in potential host protein-viral interactions and thus the virus' viability. Such findings may have key implications for designing antivirals to target these areas.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
| | - William T R Bremner
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Chimone S Dalton
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Guido van Marle
- Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Carla S Coffin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Calgary, AB T2N 4Z6, Canada.
| | - Trushar R Patel
- Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
- DiscoveryLab, Faculty of Medicine & Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
44
|
Kramvis A, Kostaki EG, Hatzakis A, Paraskevis D. Immunomodulatory Function of HBeAg Related to Short-Sighted Evolution, Transmissibility, and Clinical Manifestation of Hepatitis B Virus. Front Microbiol 2018; 9:2521. [PMID: 30405578 PMCID: PMC6207641 DOI: 10.3389/fmicb.2018.02521] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) infection, a global public health problem can be asymptomatic, acute or chronic and can lead to serious consequences of infection, including cirrhosis, and hepatocellular carcinoma. HBV, a partially double stranded DNA virus, belongs to the family Hepadnaviridae, and replicates via reverse transcription of an RNA intermediate. This reverse transcription is catalyzed by a virus-encoded polymerase that lacks proof reading ability, which leads to sequence heterogeneity. HBV is classified into nine genotypes and at least 35 subgenotypes, which may be characterized by distinct geographical distributions. This HBV diversification and distinct geographical distribution has been proposed to be the result of the co-expansion of HBV with modern humans, after their out-of-Africa migration. HBeAg is a non-particulate protein of HBV that has immunomodulatory properties as a tolerogen that allows the virus to establish HBV infection in vivo. During the natural course of infection, there is seroconversion from a HBeAg-positive phase to a HBeAg-negative, anti-HBe-positive phase. During this seroconversion, there is loss of tolerance to infection and immune escape-HBeAg-negative mutants can be selected in response to the host immune response. The different genotypes and, in some cases, subgenotypes develop different mutations that can affect HBeAg expression at the transcriptional, translational and post-translational levels. The ability to develop mutations, affecting HBeAg expression, can influence the length of the HBeAg-positive phase, which is important in determining both the mode of transmission and the clinical course of HBV infection. Thus, the different genotypes/subgenotypes have evolved in such a way that they exhibit different modes of transmission and clinical manifestation of infection. Loss of HBeAg may be a sign of short-sighted evolution because there is loss of tolerogenic ability of HBeAg and HBeAg-negative virions are less transmissible. Depending on their ability to lead to HBeAg seroconversion, the genotype/subgenotypes exhibit varying degrees of short-sighted evolution. The “arms race” between HBV and the immune response to HBeAg is multifaceted and its elucidation intricate, with transmissibility and persistence being important for the survival of the virus. We attempt to shed some light on this complex interplay between host and virus.
Collapse
Affiliation(s)
- Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Evangelia-Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
45
|
van der Ree MH, Jansen L, Welkers MRA, Reesink HW, Feenstra KA, Kootstra NA. Deep sequencing identifies hepatitis B virus core protein signatures in chronic hepatitis B patients. Antiviral Res 2018; 158:213-225. [PMID: 30121196 DOI: 10.1016/j.antiviral.2018.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND We aimed to identify HBc amino acid differences between subgroups of chronic hepatitis B (CHB) patients. METHODS Deep sequencing of HBc was performed in samples of 89 CHB patients (42 HBeAg positive, 47 HBeAg negative). Amino acid types were compared using Sequence Harmony to identify subgroup specific sites between HBeAg-positive and -negative patients, and between patients with combined response and non-response to peginterferon/adefovir combination therapy. RESULTS We identified 54 positions in HBc where the frequency of appearing amino acids was significantly different between HBeAg-positive and -negative patients. In HBeAg negative patients, 22 positions in HBc were identified which differed between patients with treatment response and those with non-response. The fraction non-consensus sequence on selected positions was significantly higher in HBeAg-negative patients, and was negatively correlated with HBV DNA and HBsAg levels. CONCLUSIONS Sequence Harmony identified a number of amino acid changes associated with HBeAg-status and response to peginterferon/adefovir combination therapy.
Collapse
Affiliation(s)
- Meike H van der Ree
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Louis Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Hendrik W Reesink
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - K Anton Feenstra
- Center for Integrative Bioinformatics VU (IBIVU), Department of Computer Science, Amsterdam Institute for Molecules, Medicine and Systems (AIMMS), VU University Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Yeh CSH, Hsu CW, Liang KH, Chen YC, Lin CL, Chien RN, Hu TH, Lin WR, Lai MW, Chu YD, Yeh CT. Development of a fibrosis index including hepatitis B virus basal core promoter A1762T mutation for pretherapeutic evaluation. J Gastroenterol Hepatol 2018; 33:1530-1537. [PMID: 29424069 DOI: 10.1111/jgh.14120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Commonly used non-invasive fibrosis scores usually included serum transaminase levels in the equations, including Aspartate transaminase to Platelet Ratio Index (APRI) and fibrosis-4 (FIB-4). Transaminases fluctuated significantly in chronic hepatitis B patients with exacerbations, leading to unsteady score values. As such, here, we aim to develop a transaminase-free score suitable for pretherapeutic evaluation of fibrosis stages. METHODS Firstly, 1082 treatment-naïve chronic hepatitis B patients were enrolled and divided into modeling (n = 541) and verification (n = 541) cohorts. Secondly, 265 patients having received liver biopsy, with known Ishak fibrosis stages, were included for independent correlation. RESULTS Cross-sectional analysis of 1082 patients revealed age-dependent variation of association between virological factors and cirrhosis. A fibrosis score including Anti-hepatitis B e antibody, Basal core promoter (BCP) A1762T mutation, and Platelet count Index (named ABPI) was derived from the modeling cohort. ABPI performed better than APRI and FIB-4 in the verification cohort for identifying cirrhotic patients (comparison of area under the receiver operating characteristic curves: ABPI vs APRI and FIB-4 = 0.785 vs 0.563 [P < 0.001] and 0.700 [P = 0.026], respectively). The performance of ABPI was even better in young (< 40 years old) hepatitis B patients (area under the receiver operating characteristic curves: 0.856 vs 0.402 [P < 0.001] and 0.599 [P = 0.009], respectively). Finally, in the independent cohort of 265 patients with known Ishak fibrosis stages, it was found that ABPI effectively distinguished between Ishak fibrosis stages 3 and > 3 and between 4 and > 4 (P < 0.001 for each). CONCLUSIONS We developed a transaminase-free fibrosis score (ABPI) utilizing basal core promoter A1762T data, which outperformed APRI and FIB-4.
Collapse
Affiliation(s)
- Christopher Sung-Huan Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Cognitive Science, College of Letters and Science, University of California, California, Los Angeles, USA
| | - Chao-Wei Hsu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kung-Hao Liang
- Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Cheng Chen
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Lang Lin
- Liver Research Unit, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Rong-Nan Chien
- Liver Research Unit, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wey-Ran Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
47
|
An P, Xu J, Yu Y, Winkler CA. Host and Viral Genetic Variation in HBV-Related Hepatocellular Carcinoma. Front Genet 2018; 9:261. [PMID: 30073017 PMCID: PMC6060371 DOI: 10.3389/fgene.2018.00261] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in men and the second leading cause of cancer deaths globally. The high prevalence of HCC is due in part to the high prevalence of chronic HBV infection and the high mortality rate is due to the lack of biomarkers for early detection and limited treatment options for late stage HCC. The observed individual variance in development of HCC is attributable to differences in HBV genotype and mutations, host predisposing germline genetic variations, the acquisition of tumor-specific somatic mutations, as well as environmental factors. HBV genotype C and mutations in the preS, basic core promoter (BCP) or HBx regions are associated with an increased risk of HCC. Genome-wide association studies have identified common polymorphisms in KIF1B, HLA-DQ, STAT4, and GRIK1 with altered risk of HBV-related HCC. HBV integration into growth control genes (such as TERT), pro-oncogenic genes, or tumor suppressor genes and the oncogenic activity of truncated HBx promote hepatocarcinogenesis. Somatic mutations in the TERT promoter and classic cancer signaling pathways, including Wnt (CTNNB1), cell cycle regulation (TP53), and epigenetic modification (ARID2 and MLL4) are frequently detected in hepatic tumor tissues. The identification of HBV and host variation associated with tumor initiation and progression has clinical utility for improving early diagnosis and prognosis; whereas the identification of somatic mutations driving tumorigenesis hold promise to inform precision treatment for HCC patients.
Collapse
Affiliation(s)
- Ping An
- Basic Research Laboratory, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jinghang Xu
- Basic Research Laboratory, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States.,Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
| | - Yanyan Yu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
| | - Cheryl A Winkler
- Basic Research Laboratory, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
48
|
Gededzha MP, Sondlane TH, Malinga LA, Burnett RJ, Lebelo RL, Blackard JT, Mphahlele MJ, Selabe SG. Molecular characterization of hepatitis B virus X gene in HIV-positive South Africans. Virus Genes 2018; 54:190-198. [PMID: 29411271 DOI: 10.1007/s11262-018-1536-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/27/2018] [Indexed: 12/25/2022]
Abstract
Hepatitis B virus (HBV) infection is a major public health problem worldwide and the major cause of hepatocellular carcinoma (HCC) in South Africa. The role of HBV in HCC is not well understood, although the HBV X gene has been implicated as a critical factor. Data on the HBV X gene in HIV-positive South Africans are limited; thus, we investigated X gene variability in 24 HIV-infected treatment-naïve patients at Dr George Mukhari Academic Hospital. Quantitative and qualitative HBV DNA tests were conducted using real-time and in-house polymerase chain reaction (PCR) assays, respectively, targeting the complete HBV X gene. In-house PCR-positive samples were cloned using the P-Gem T-easy vector System II and sequenced. By phylogenetic analysis, X gene sequences were classified as subgenotype A1 (n = 15), A2 (n = 4), and D1 (n = 4), and one dual infection with subgenotypes as A1 and C. The basal core promoter mutations T1753C, A1762T, and G1764A were identified in the majority of sequences. Genotype D sequences had a 6-nucleotide insertion. In conclusion, subgenotype A1 was predominant, and a rare dual infection of HBV genotype A and C was detected. The 6-nucleotide insertion could represent a unique variant in the region and highlights the need for functional studies of HBV X gene variants, particularly from resource-limited settings.
Collapse
Affiliation(s)
- Maemu P Gededzha
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Service, P.O. Box 173, MEDUNSA, 0204, Pretoria, South Africa.,Department of Molecular Medicine and Haematology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Tsakani H Sondlane
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Service, P.O. Box 173, MEDUNSA, 0204, Pretoria, South Africa
| | - Lesibana A Malinga
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Service, P.O. Box 173, MEDUNSA, 0204, Pretoria, South Africa
| | - Rosemary J Burnett
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Service, P.O. Box 173, MEDUNSA, 0204, Pretoria, South Africa
| | - Ramokone L Lebelo
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Service, P.O. Box 173, MEDUNSA, 0204, Pretoria, South Africa
| | - Jason T Blackard
- Division of Digestive Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M Jeffrey Mphahlele
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Service, P.O. Box 173, MEDUNSA, 0204, Pretoria, South Africa.,South African Medical Research Council, Pretoria, South Africa
| | - Selokela G Selabe
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Service, P.O. Box 173, MEDUNSA, 0204, Pretoria, South Africa.
| |
Collapse
|
49
|
Cao M, Zhao Z, Tang Y, Wei Q, Wang L, Xiang Q, Zhang Y, Zhang H, Lai G. A new hepatitis B virus e antigen-negative strain gene used as a reference sequence in an animal model. Biochem Biophys Res Commun 2018; 496:502-507. [PMID: 29339154 DOI: 10.1016/j.bbrc.2018.01.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
Abstract
Infection with hepatitis B virus (HBV) e-antigen (HBeAg)-negative strains is increasingly prevalent. Currently, detailed information of the obtained natural HBV strain is not available except for the B genotype and HBeAg-negative. The aim of the present study was to characterize the natural genetic variation of the HBeAg-negative strain and investigate its function. The genic sequence was determined using Sanger sequencing, and compared to related sequences using alignment and phylogenetic analysis. In vivo, virus-specific serum markers were investigated in CBA/CaJ mice. The sequence had a full genome length of 3215 nucleotides. Sites 122, 125, 127, and 160 in S regions were identified as lysine, threonine, proline, and lysine respectively. The main four point variants including A1762T, G1764A, G1896A, and G1899A were detected in the full-length genome. The genotype of the sequence was B, with sub-genotype B2 and serological subtype adw2. The characterize of the natural genetic variation strain showed no reported drug-resistant variant in P region and no reported immune escape site in S region. The strain will increase viral replication and infection for mutations A1762T and G1764A in the basal core promoter region, and mutations G1896A and G1899A in the pre-core region. The G1896A variant resulted in a premature stop codon and abolished HBeAg expression. HBsAg persisted for 26 weeks and HBeAg was still negative in CBA/CaJ mice. The present sequence is representative of the HBeAg-negative genome and may serve as a valuable reference for studying HBeAg-negative strains. The present findings were successfully verified in CBA/CaJ mice, demonstrating good applicability of the sequence.
Collapse
Affiliation(s)
- Min Cao
- Chongqing Medical University Laboratory Animal Center, Chongqing, China
| | - Zhonghua Zhao
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Yuwei Tang
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Qinglv Wei
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Lei Wang
- Chongqing Medical University Laboratory Animal Center, Chongqing, China
| | - Qin Xiang
- Chongqing Medical University Laboratory Animal Center, Chongqing, China
| | - Yunmei Zhang
- The Nursing College of Chongqing Medical University, Chongqing, China
| | - Huatang Zhang
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Guoqi Lai
- Chongqing Medical University Laboratory Animal Center, Chongqing, China.
| |
Collapse
|
50
|
Elizalde MM, Sevic I, González López Ledesma MM, Campos RH, Barbini L, Flichman DM. Human hepatocytes apoptosis induced by replication of hepatitis B virus subgenotypes F1b and F4: Role of basal core promoter and preCore mutations. Virology 2018; 513:160-167. [DOI: 10.1016/j.virol.2017.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 02/06/2023]
|